QUERY LANGUAGES FOR
NESTED RELATIONAL DATABASES

Henry F. Korth and Mark A. Roth
Deparment of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-45 December 1987

Query Languages for Nested Relational Databases

Henry F. Korth*
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

Mark A. Roth
Department of Electrical and Computer Engineering
Air Force Institute of Technology (AFIT/ENG)
Wright-Patterson AFB, OH 45433

December 2, 1987

Abstract

The nested relational model has proven useful in modeling databases of complex objects. In this paper
we consider query languages designed specifically to exploit the power of this model. First, formal query
languages are considered: a relational calculus defining the desired power of nested relational languages,
and a relationa! algebra that provides a procedural language suitable for query optimization. Next,
two higher-level languages are discussed and compared, SQL/NF, and Heidelberg Data Base Language
(HDBL). Two extensions of these languages are considered. X-SQL/NF is a role-join extended version
of SQL/NF that incorporates an ISA hierarchy into the semantics of the langnage. A rTecuisive version
of HDBL allows the definition of a transitive closure operation on nested relations.

1 Introduction

In recent years, there has been a growing interest in extending the relational model so as to make it applicable
to a wider range of applications. One of the more important of these extensions is the nested relational model,
also known as the NF2 or non-1NF (both standing for “not first normal form”) model.

The nested relational model eliminates the first normal form constraint that all domains must be treated
as atomic. Specifically, all domains that are not atomic are treated as relation-valued domains. The result
is a nesting of relations within relations. The additional modeling power made available by nesting allows
the representation of higher-level user interfaces as well as lower-level implementation details. At the high
level, “objects” that have set-valued fields (e.g., the author set for a book, or the showing times for a movie)
can be represented in a single tuple rather than several tuples. The correspondence between a tuple and an
entity in the user view leads to a more natural interface. At the lower-level, such implementation techniques
as clustering or repeating fields can be represented using the formalism of the nested relational model. This
added power is most useful in applications of database in office information systems, computer-zaided design,
and knowledge bases, where one frequently encounters “complex objects,” that is, entities which contain
other entities.

This paper focuses on the user-level aspects of the nested relational approach. We discuss several query
languages for nested relational database. We begin by considering formal query languages. The first, an
algebraic language, provides us with a set of operations powerful enough to express queries, yet simple enough

*Research partially supported by NSF Grant DCR-8507724

1

for significant optimization. The second, a predicate calculus style language, serves to define the desired
power of a nested relational language. These two languages do not have user-friendliness as an objective.
Rather, the definition of an algebra equivalent to the calculus defines a procedural language of the requisite
power to serve as the foundation for more user-oriented languages. The remaining languages we discuss are
targeted at either application programmers or end-users.

Many of the user-oriented languages we discuss are based on the SQL language. SQL has gained wide
acceptance in both industry and academia as a standard relational query language. By incorporating nested-
relational concepts into SQL, several researchers have show that these concepts are readily applicable in a
practical query language. In fact, the incorporation of nesting into SQL has allowed several “ugly” features
of standard SQL to be eliminated (or kept only for the purpose of downward compatibility). ' :

Although the SQL language is designed to be an end-user language, it is really most applicable for appli-
cation programming. We illustrate with an example how a nested version of SQL facilitates the development
of a forms-management interface. Later, we discuss an extended of a nested SQL to allow direct represen-
tation of generalization and specialization within the language. An entity may serve in several roles (for
example, person, student, employee, manager, parent, child) and may have different attributes pertaining
to each of the roles. By extending nested relational languages to include generalization and specialization,
some role information can be added to the relational semantics, resulting in a higher-level language that
places fewer demands on users. The representation of generalization and speczahza.tlon is a major feature
of object-oriented systems. The incorporation of this capability into SQL/ NF is a step in bndgmg the gap
between relational systems and object-oriented systems.

2 Formal Query Languages

This section summarizes recent work in the area of formal query languages for the nested relational model.
Initial work focused on formulating an extended relational algebra and more recently on extendmg the
relational caleulus.

2.1 Relational Algebras

There has been a large amount of work on extending relational algebra for the nested relational model. Among
these are [1,2,7,8,9,10,11,12,16,18,19,26,29,32,33]. The basic extensions made to the relational algebra consist
of the following operators: '

* 1. the classical relational operators extended to nested relations: union (U), difference (-) selectlon (a')
projection (=), and cartesian product (x);

2. two restrl_lcturlng ,operators. nest (v) and unnest (g).

The unnest operator transforms a relation into one which is less deeply nested by concatenating each
tuple in the relation being unnested to the remaining attributes in the relation. The nest operator creates
partitions based on the formation of equivalence classes. Two tuples are equivalent if they have the same
values for the attributes which are not being nested. For each equivalence class a single tuple is placed
into the result. The attributes being nested are formed into a nested relation containing all tuples in the
equivalence class for those attributes.

All other extended operators which have been proposed can be expressed in terms of these basic operators.
Van Gucht [32] showed that this basic algebra is complete in the sense of Bancilhon and Paradeans [4,21].
We mention also some of the more important extended relational algebra operators and their properties.

Structure preserving operators Since nested relations can be structured to preserve multivalued depen-
dencies which are implicit in their scheme of nesting [20], operators which preserve these properties
are useful. Extensmns for union, mtersectlon difference, projection, and join [2,27] and nest [33] have
been proposed.

Nested selection In the context of the VERSO model [5], [2] propose an extended selection operator which
is capable of performing selections simultaneously from the relation and its nested components.

Statistical operators Operators to support statistical .databases m the SSDB system [17] have sumlar
functlonahty to operators for nested relational databases.

Finally, we note that two proposals have been made for a recursive algebra [11,30] for the nested rela-
tional model. In these algebras, operators may recursively appear within selection predicates and projection
attribute lists. These algebras allow complex queries to be expressed much more naturally than the non-
recursive algebras. They also show greater promise as an intermediate langnage for query translation and
optimization [24], but do provide any more expressive power [10]. '

2.2 Relational Calculi

The expressive power of a query language can best be shown in the form of a non-procedural (declarative)
language based on the predicate calculus. Initial work on nested relational languages, however, focused on
algebraic (procedural} languages. It is surprising that a calculus for the nested relational model was not
developed until several years after the model’s introduction.

The first proposal for an extended relational calculus was made by Roth [26]. This work proposed an
extended calculus which included only two basic extensions to the original relational calculus. These were
two new atoms, one to specify an “element of” relationship and another to allow nested calculus expressions
within simpler atoms. In addition, several semantic constraints on the types of extended calculus expressions
were made to eliminate “unsafe” expressions, that is, those that produced infinite or powerset relations, or
took infinite time to compute. With these restrictions, the extended algebra and extended calculus were
shown to be equivalent in expressive power.

Another approach was taken in [18] by considering both set-valued attributes and aggregate functions.
This approach considered nesting relations one level deep. The methodology of Klug [13] was used to prove
the equivalence of an algebra and a calculus for a model with one-level nesting and aggregate functions.

3 SQL-like Query Languages

This section provides an overview of several language proposals designed to support user access to the nested
relational model. For real-world users of a database system the terse algebra and calculus languages are too
difficult to use. To satisfy these users, several “syntactically sugared” query languages have been defined
and used in existing relational database management systems. Here we concentrate on extensions and
adaptations of the SQL language, which is rapidly becoming an industry standard for relational databases.
First we present a basic extension to the language, called SQL/NF [25], which operates on nested relations
in & manner orthogonal to their design. Next we present a language proposal developed for the Advanced
Information Management Prototype (AIM-P) [22,23,28] which includes additional data types within relations
and & SQL-like language to support them. Finally, we present two extensions to this previous work, the
incorporation of roles for attributes [24], and the use of recursive queries {14].

Before we begin, let us first introduce a sample application which we can use to illustrate the queries
of the proposed languages. This example, a forms processing database application drawn from [31], is
representative of the kind of advanced application for which the nested relational model was envisioned.

We will use four relations of a distribution company’s database: cust-info, vendor-info, produet, and
stock. Figure 1 shows the attributes and nesting scheme of these relations. Note, how there is exactly one
tuple associated with each entity; one tuple in cust-info for each customer, one tuple in vendor-info for each
vendor, and so on. A traditional database implementation would require many more relations to store this
information, distributing each entities data among several tuples in several relations.

cust-info g
cust-no { cname caddress credit-limit
st | city | state-

vendor-info

. supplies
vname | address | catalog prod
prod-no | pname | vprice

" product
prod-no | pname | type | supplier storage price
vname | bin-no | loc
stock
[prod-no storage qoh
bin-no | bgty | capacity

Figure 1: Relation headers for example distribution company

3.1 SQL/NF
In SQL, a basic query conforms to the structure

SELECT attribute-list
FROM relation-list
WHERE predicate

This SFW-expression can be conceptually executed by forming the cartesian product of zll relations in the
relation-list, choosing only tuples in this product that satisfy the predicate, and then choosing only those
attributes in the atiribute-list. If no qualification of tuples is needed then the WHERE clause can be omitted.
In traditional databases, each relation is comprised strictly of scalar values. In nested relational databases,
each relation may be comprised of other relations as well as scalar values. The principle of orthogonality
has been usefully employed in defining the nested relational data structure. Wherever a scalar value could
occur in a traditional relation, a relation can now occur. This simple transformation is now also employed
in the SQL/NF language. SQL has the closure property where the result of any query on one or more
relations is itself a relation. The principle of orthogonality suggests that we should allow an SFW-expression
wherever a relation name could exist. Thus SQL/NF allows SFW-expressions in the FROM clause and in the
SELECT clause. Relations have alwa.ys appeared in the FROM clause of a query and so the substitution of a
SFW-expression for a relation name is merely a convenience. However, the change to the SELECT cla.use is
vital so that nested relations may be accessed with the full power of SQL

Consider, for example, the query: Retrieve product number and bin numbers for products in stock which
have one or more empty bins.

A solution is

SELECT prod-no, SELECT bin-no
FROM storage

FROM stock -

WHERE <7,0,7> IN storage

The outer SFW-expression retrieves tuples from stock where a tuple in storage has a bqty value of 0.
The “?” symbols are don’t care values which match any value in the rélation. The nested SFW-expression

New Order

Customer Name:
Address:
Order No: 10034

Product No | Qty

Figure 2: Form for placing a new order

selects only the bin-no attribute from the nested Storage relation. If only those bin numbers for the empty
bins are desired then a WHERE clause may be added to the nested SFW-expression as follows.

SELECT prod-no, SELECT bin-no
FROM storage
WHERE baty =0

FROM stock

WHERE <7,0,7> IN storage

Furthermore, since the same condition is now being tested in both the outer and nested SFW-expression,
the query can be simplified by giving the newly derived nested relation a name, and referring to that name
in the outer expression’s WHERE clause. The following example uses the EXISTS predicate which yields true
if its argument contains tuples and false if its argument is empty. '

SELECT prod-no, {SELECT bin-no
FROM storage _
WHERE bqty = 0) AS bins
FROM stock
WHERE EXISTS bins

We now show the utility of nested relations for storing and retrieving “forms” in the database. The
distribution company takes orders for products from customers. A form is brought up on the screen as in
Figure 2. The following steps take place in filling in the form. We assume that SQL/NF is embedded in
a programming language which is controlling the form application. Program variables are indicated with a
preceding dollar sign.

1. Today’s date is automatically filled in from the system clock, and the next available order number is
filled in. '

2. The user enter’s the customer name in the CNAME field, and a query is made to look up the other
customer information for verification: ' :

SELECT caddress into SCADDRESS

Invoice

Customer Name:
Address:

Product No | Qty | Price | Amount

Total

~ Figure 3: Form for an invoice

FROM cust-info-
WHERE cname = $CNAME

“The form would a]low steppmg through the query if more than one tuple was retrieved.

3. Product numbers a.nd quantities would then be entered in the PROD fields. Each product would be
checked against the product relation to verify the correct product was being ordered and against the
stock relation to see if enough quantity was on hand to satisfy this order.

4. The customer number, order number, date, and product information would then bestored in a neworder
relation. Each tuple in neworder corresponds to exactly one order placed using this form.

Among several actions that could take place at this point, let us assume that the order can be filled and
now an invoice needs to be generated (see Figure 3). A report writer can get the information it needs with
the following query, producing a relation with a tuple corresponding to each invoice. '

SELECT cname, caddress,
(SELECT prod-no, qty, price, (price*qty) AS amount
FROM prod, product
WHERE prod.prod-no = product.prod-no) AS orders,
(SUM({SELECT amount FROM orders)) AS total

FROM neworder, cust-info

WHERE neworder.cust-no = cust-info.cust-no

Of course, there are many more actions which need to be accomplished even with the simple example we

have used above. The key point was to illustrate the naturalness and ease which nested relations and the
SQL/NF language gives to a non-traditional data processing problem, like forms management.

The de81gn of SQL/NF attempts also to eliminate some arbitrary restrictions of SQL and to simplify the
syntax where possible. Examples of this include allowing query expressions to appear in the FROM clause
(already allowed in an indirect way through the view mechanism) and a simple, more powerful specification
of aggregate functions. In addition, the GROUP BY mechanism can be superseded by the NEST operation and
the ability to use SFW-expressions in the SELECT clause, further simplifying the set of constructs the user
needs to deal with. We illustrate the later with an example.

The role information is stated in X-SQL/NF using the define roles statement:

define roles

mname ISA ename

ename ISA name

dname ISA name

dssn ISA ssn _
Although the semantics of a define roles declaration is simple, the overloading of the dot operator leads
to semantic complication. X-SQL/NF allows a dot expression to appear anywhere an attribute name could
have appeared in SQL/NF. The expression A.B could mean

1. The B field of a tuple on relation A,
2. The relation B which is nested within a tuple of relation A.
3. The B property of the A field of a tuple (on a relation defined implicitly).

It could be argued that this complication is undesirable from a user point-of-view. However, it is argued in
[24] that the overloading of the dot operator is actually a semantic simplification. Consider, for example,
the expression manager.salary. There could be a manager relation with a salary attribute (case 1 above).
However, it is also possible that salary is an atiribute appearing within a nested subrelation of the manager
relation, since languages such as SQL/NF allow users to omit the name of the nested subrelation of manager
if no ambiguity results (case 2 above). Finally, it is possible that manaeger must be cast in its role as
employee and that another relation, department(employee, salary) must be used to obtain the salary of the
manager (case 3 above). Which of the three cases applies does not change the user-level semantics of the
expression. The user seeks the salary of the person (who happens to be a manager). The manner in which
the system obtains this information depends on the underlying database scheme, but it can be argued that
these distinctions are not important to the user. The important semantic issue is that “manager’s salary”
means the amount of money paid to the manager and not, for example, the salary of all employees under
the manager. Although the semantic definition can be made only implicitly in X-SQL/NF, we are no worse
off in this regard than in a standard relational language. _

Although the dot operator may not appear overloaded to the user, there is a severe overloading of
the operator from the standpoint of operational semantics. The subtleties of parsing dot expressions and
generating a translation into the nested relational algebra are discussed in [24).

We now illustrate the expression of queries in X-SQL/NF with a few examples from our sample database
as defined above. : :

Ezample I: Find the salary of the manager of the toy department.
SELECT mmame.salary

FROM employee
WHERE dname = “toy”

The expression mname.salary appears to be ambiguous since salary is an attribute of a nested subrelation of
manager. However, the fully-qualified name for salary is manager.employee.salary. The latter dot expression

does not contain mname. Thus, the role-join semantics of mname.salary can be deduced unambiguously by

the query processor.

Ezample 2: Suppose that a dependent with a social security number of 787-12-1188 has submitted a medical
form. Find the social security number of the employee with this dependent.

SELECT ename.ssn
FROM employee
WBERE EXISTS <7,787-12-1188> IN dependent

11

“station {destinations}

Frankfurt | Stuttgart, Munich

Stuttgart | Munich, Frankfurt

Munich Frankfurt, Stuttgart, Salzburg
Salzburg | Munich, Wien

Wien Salzburg

Figure 5: Train relation [14].

In this example, the ssn attribute does not appear with a relation appearing in the FROM clause, nor in a
nested subrelation. X-SQL/NF requires only that leftmost names in a dot expression appear in the FROM
clause, nor in a nested subrelation. The linkage to the person relation is determined by the role information
given in the define roles section. Note that in this example, as in the one above, no ambiguity results.

3.5 An Extension for Recursive Relations

In this section, we review Linnemann’s proposal [14] to extend HDBL with a recursive query mechanism.
This proposal hopes to further bridge the gap between database systems and advanced applications with
particular emphasis on knowledge-based systems. We illustrate the approach with some examples drawn
from [14]. '
Erample 1: Consider a train connection database, showing for each station a set of destination station that
are directly reachable. An example relation is shown in Figure 5.

HDBL is powerful enough to get cities which can be reached a fixed number of connections away, but the
problem of computing all change connections cannot be solved without a recursive mechanism. A proposed
solution is as follows: :

SELECT [station: r.station,
destinations: r.destinations UNION
(SELECT d
FROM t IN trains, d IN destinations
WHERE EXISTS c IN destinations:
¢ = t.station)

]

FROM r IN trains

The expression for destinations is an equation with left hand side destination. The solution of the equation
can be computed by a loop which keeps adding cities to destinations (by executing the inner SFW-expression)
until there is no change to destinations. For the relation in Figure 5 the result is shown in Figure 6.

The corresponding query in the classical relational model {extended for recursion) would be more difficult
to construct because of the lack of the nested set attribute. This is cumbersome for the user as well as for
optimization of recursive queries. '

4 Conclusion
It is interesting to review the features of nested relational query languages to see how well they meet the
needs of the new database applications that originally motivated the research.

We have seen by an example that the nested relational model lends itself directly to the support of
application-programmer interfaces for the design of forms management systems. Sets arise naturally in such

12

station {destinations}

Frankfurt | Stuttgart, Munich,

Frankfurt, Salzburg, Wien
Stuttgart | Munich, Frankfurt,

Stuttgart, Salzburg

Munich Frankfurt, Stuttgart, Salzburg,
Munich, Wien

Salzburg | Munich, Wien,

Frankfurt, Stuttgart, Salzburg
Wien Salzburg, Munich,

Wien, Stuttgart, Frankfurt

Figure 6: Result of recursive query on train [14].

contexts. By relieving the programmer from much of the complexity of set operations, a nested relational
interface facilitates the development of new forms and the modification of existing forms.

A difficulty with the use of SQL/NF, or any relational language for that matter, within a programming
language interface, is the fact that typical programming languages are record-oriented, while relation lan-
guages are set-oriented. Various “fourth generation” languages have attempted to solve this problem for the
non-nested relational model, usually by means of iterative constructs. Recursive HDBL can be viewed as the
nested-relational equivalent of a fourth generation language. It achieves its power through recursion. Recur-.
sion is a natural means of accessing recursively-nested relational databases and offers the same computing
power as the introduction of iteration. The incorporation of recursion into nested relational languages makes
them competitive with logic query languages such as Datalog.

The role extension of SQL/NF is a step towards the incorporation of the class-subclass semantics of
object-oriented databases within a nested relational framework. Still lacking within the nested relational
model is a means of representing executable code within the data model. Such a representation would serve
as an analog to the methods of the object paradigm.

The design of nested relational query languages remains an area of active research. The languages
presented in this survey illustrate the potential of the nested relational model, though much work remains
to be done. One of the most pressing items on the research agenda is an extension of the theory of relational
query processing to nested relations. Because of the ability of nested relations to represent both high-
level user interfaces and low-level implemmentation strategies, such a theory could have important practical
application. The issue of query optimization is especially interesting for the recursive variants of nested
relational languages. Recent research on logic query processing may be influential in solving this problem.

References

[1] Serge Abiteboul and Nicole Bidoit. Non First Normal Form Relations: An Algebra Allowing Data Re-
structuring. Technical Report 347, Institut National de Recherche en Informatique et en Automatique,
Rocquencort, B.P. 105, 78153 Le Chesnay Cedex, France, 1984.

[2] Serge Abiteboul and Nicole Bidoit. Non first normal form relations to represent hierarchically organized
data. In Proceedings of the Third ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, Waterloo, pages 191-200, April 1984,

[3] F. Anderson, V. Linnemann, P. Pistor, and N. Siidkamp. Advanced Information Managament Proto-
type (AIM-P} - User Manual of the On-line Interface of the Heidelberg Data Base Language (HDBL)

13

Prototype Implementation (Release 1.1). Technical Note TN86.01, Helde]berg Scientific Center, IBM
Germany, 1986.

[4] Frangois Bancithon. On the completeness of query languages for relational data bases. In Proceedings
of the Tth Symposium on Mathematical Foundations of Computer Science, Zakopane, Poland (Lecture
Notes in Compuler Science), Spnnger—Verlag, September 1978.

[6] Frangois Bancilhon, D. Fortm S. Ga.merma.n, J. M. Laubin, P. Richard, Michel Scholl, D. Tusera, and
A. Verroust. VERSO: A reiat:ona! backend database ma.chlne In David K. Hsiao, editor, Advanced
Datebase Machine Archétecture, pages 1-18, Prentice-Hall, 1983.

[6] Catriel Beeri and Henry F. Korth. Compa.tible attributes in a universal relation. In Proceedings of
the ACM SIGACT-SIGMOD Symposium on Principles of Database Systems Los Angeles, pages 5562,
March 1982.

[7] Nicole Bidoit. The VERSQ Algebra or How to Answer Queries with Fewer Joins. Rapport de
Recherche 353, Universite de Paris-SUD, Centre d’Orsay, Laboratoire de Recherche en Informatique,
Bat. 490, 91405 Oxsay, France, 1987.

(8] Patrick C. Fischer and Stan Thomas. Operators for non-first-normal-form relations. In Proceedings of
the 7th International Computer Software Applications Conference, Chicago, pages 464-475, November
1983.

[9] Gerhard Jaeschke. An Algebra of Power Set Type Relations. Technical Report 82.12.002, Heidelberg
Scientific Center, IBM Germany, 1982. .

[10] Gerhard Jaeschke. Nonrecursive Algebra for Relations with Relation Valued Atiributes. Technical Re-
port 84.12.001, Heidelberg Scientific Center, IBM Germany, 1984.

[11] Gerhard Jaeschke. Recursive Algebra for Relations with Relation Valued Atiributes. Technical Re-
port 84.01.003, Heidelberg Scientific Center, IBM Germany, 1984,

[12] Gerhard Jaeschke and Hans-Jorg Schek. Remarks on the algebra of non first normal form relations.
In Proceedings of the ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Los
Angeles, pages 124-138, March 1982.

[13] Anthony Klug. Equivalence of relational algebra and relational calculus query languages ha.vmg aggre-
gate functions. Journal of the ACM, 29(3):699-717, July 1982.

[14] Volker Linnemann. Non first normal form relations and recursive queries: An SQL-based approach. In
Proceedings of the Third International Conference on Data Engmeemng, Los Angeles, pages 591-598,
February 1987.

[15) David Maier, David Rozenshtein, and J . Stein. Representing roles in universal relation scheme interface.
IEEE Trensactions on Software Engineering, 11(7):644-652, July 1985.

[16] Giiltekin Ozsoyoglu and Z. Meral Ozsoyoglu. An extension of relational algebra for surnmary tables.
In Proceedings of the 2nd Iniernational (LBL) Confereuce on Statistical Database Management, Los
Angeles, pages 202-211, September 1983.

[17] Giiltekin Ozsoyoglu and Z. Meral Ozsoyoglu. SSDB-an architecture for statistical databases. In Pro-
ceedings of the 4th Jerusalem Conference on Information Technology, Jerusalem, pages 327-341, May
1984,

(18] Giiltekin Ozsoyoglu, Z. Meral Ozsoyoglu, and Victor Matos. Eztending Relational Algebra and Rela-
tional Calculus with Set-Valued Atiributes and Aggregate Functions. Technical Report, Department of
Computer Engineering and Science, Case Western Reserve University, Cleveland, OH, 1985.

14

{19] Z. Meral Ozsoyogln and Giiltekin Ozsoyolu. A query language for statistical databases. In W. Kim,
D. Reiner, and D. Batory, editors, Query Processing in Database Systems, Springer-Verlag, 1984.

[20] Z. Meral Ozsoyoglu and Li-Yan Yuan. A new normal form for nested relations. ACM Transactions on
Database Systems, 12(1): 111 136, March 1987.

[21] J. Paredaens. On the expressive power of the realtional algebra. Information Processing Letiers,
7(2):107-111, February 1978. '

[22] Peter Pistor and F. Anderson. Designing a generalized NF2 model with an SQL-type language interface.
In Proceedings of the Twelfth International Conference on Very Large Databases, Kyolo, pages 278-285,

August 1986.

[23] Peter Pistor and R. Traunmiller. A data base language for sets, lists, and tables. Information Systems,
11(4):323-336, 1986.

[24] Srinivasen Ramakrishnan. Design and Implementation of a Translator for SQL/NF with Role Joins.
Master’s thesis, The University of Texas at Austin, Austin, Texas, December 1986.

[25] Mark A. Roth, Henry F. Korth, and Don S. Batory. SQL/NF: A query language for —1NF relational
databases. Information Sysiems, 12(1):99-114, 1987.

[26] Mark A. Roth, Henry F. Korth, and Abraham Silberschatz. Eztended Algebra and Celculus for ~INF
Relational Databases. Technical Report TR-84-36, Department of Computer Science, Umversmy of
Texas at Austin, December 1984. revised January 1986.

[27) Mark A. Roth, Henry F. Korth, and Abraham Silberschatz. Null Values in ~INF Relational Databases.
Technical Report TR-85-32, Department of Computer Science, University of Texas at Austin, December
1985. .

[28] Hans-Jorg Schek and Peter Pistor. Data structures for an integrated data base management and infor-
mation retrieval system. In Proceedings of the Eighth International Conference on Very Large Databases,
Mezico City, pages 197-207, September 1982.

[29]. Hans-Jorg Schek and Marc I. Scholl. An Algebra for the Relational Model with Relation-Valued At-
tributes. Technical Report DVSI-1984-T1, Technical University of Darmstadt, Darmstadt, West Gez-

many, 1984.

[30] Hans-J6rg Schek and Marc H. Scholl. The relational model with relation-valued attributes. Information
Systems, 11(2):137-147, 1986.

[31] N. Shu, Y. Lum, F. Tung, and C. Chang. Specification of forms processing and business procedures for
office automation. IEEE Transaclions on Soflware Engincering, 8(5):499-512, September 1982,

[32) Dirk Van Gucht. On the expressive power of the extended relational algebra for the unnormalized rela-
tional model. In Proceedings of the Sizxth ACM SIGACT-SIGMOD-SIGART Symposmm on Principles
of Database Systems, San Diego, pages 302-312, March 1987.

[33] Dirk Van Gucht and Patrick C. Fischer. High-level data manipulation languages for unnormalized
relational database models. In Proceedings of the XP/7.52 Workshop on Datebase Theory, Ausiin,
August 1986. : : :

15

	tr87-40-46_001

