A PROTOTYPE VIEW UPDATE
TRANSLATION FACILITY

Arthur M. Keller and Laurel Harvey
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-46 December 1987

Page 1 of 11.

A Prototype View Update Translation Facility
Arthur M. Keller and Laurel Harvey
University of Texas at Austin

ABSTRACT, We describe a prototype implementation
of a view update translation facility. This facility con-
sists of two programs: one for defining the view and
specifying the view update semantics and the other for
translating view updates into database updates based
on these semantics. The first program is run once at
view definition time and obtains the necessary seman-
tics by asking the view definer a sequence of questions
In an interactive dialog. The second program takes
any valid requests to insert, delete, or replace a sin-
gle view tuple and performs the necessary operations, if
permitted, on the database to accomplish the view up-
date request without any disambiguating dialog. Pro-
tolype implementation was simplified by not actually
using a relational database system but rather all inter-
action normally with the database instead is with the
person running the program. This has the advantages
of clearly showing all database operations and it elimi-
nates the need to set up a database with desired test or
demonstration cases. The database operations for per-
forming a view update are those that are necessary for
validating the request and changing the database in ac-
cordance with the specified semantics so that the view
changes as requested. Unnecessary database operations
have not been observed in this prototype system. The
class of views that can be updated using this prototype
system is a large class of selection, projection, and join
views. '

1 Introduction

In shared relational databases, views provide a way
to give the database user only the information rele-
vant to the user. Views may be defined for each class
of user, and users may express queries and updates
against them. The problem of answering queries ex-
pressed against views is.well understood: The user’s
query is composed with the view definition to obtain
a query that can be executed on the-underlying data-
base. The handling of updates expressed against views
is more complex because view update requests must be
translated into requests on the underlying database, be-
cause the translation process involves ambiguity, and

This work was supported in part by the Corﬁputer Sciences Re-
search and Development Fund and the University Research Insti-
tute of The University of Texas at Austin.

Authors’ address: The University of Texas at Austin, Department
of Computer Sciences, Austin, TX 78712-1188,

because view updates potentially have far-reaching ef-
fects on underlying database relations and other views.

Since the view is only an uninstantiated window
onto the database in the common model of relational :

databases [ANSI 82], any updates specified against the
database view must be translated into updates againsti
the underlying database. This updated database state
induces a new view state, and it is desirable that the
new view state correspond as closely as possible to per-

forming the user-specified update directly on the origi-

nal view. This is described by the following diagram.

V(DB) U, U(V(DB)) = V(Dij
v |7 1%

W)
DB——T(U)(DB) = DB’

The user specifies update U against the view of the
database, V(DB). The view update translator 7' sup-
plies the database update T(U/), which results in DB’
when applied to the database. The new view state is
V(DB'). This translation has no side effects in the
view if V(DB') = U(V(DB)), that is, if the view has
changed precisely in accordance with the user’s request.
No side effects are necessary to translate updates ex-
pressed against select and project views. In some cases,

updates expressed against views that involve joins can--

not be translated unless some side effects are permitted.

Given a view definition, the question of choosing
a view update translator arises. The problem of trans-
lating updates expressed against views into updates ex-
pressed against the underlying database has been con-
sidered by many researchers [Bancilhon 81, Brosda. 85,

.Carlson 79, Clemons 78, Cosmadakis 84, Davidson 83,

Dayal 82, Furtado 79, 85, Hegner 84, Kaplan 81, Keller
82, 84, 8ba, 85b, 86, Masunaga 83, Medeiros 85, Rowe
79, Salveter 84, Sevcik 78, Tuchermann 83]. The ways
in which individual view update requests may be satis-

" fied by database updates must be understood. Since the

view is many-to-one, the new view state may correspond
to many database states. We would like to choose the
database state that is “as close as possible” under some
measure to the original database state, minimizing the
effect of the view update on the database. Five crite-
ria used to obtain only the simplest (or minimal) view
update translations proscribe (1) database side effects,

Page 2 of 11.

{2) multiple changes to the same database tuple, (3) un-
necessary database changes, (4) replacements that can
be simplified, and (5) delete-insert pairs on the same
relation {Keller 85a].

For a large class of select, project, join views, there
is an enumeration of all translations of view updates
into database updates [Kellet 85a). This enumeration
shows that the problem of translating view updatés to
database updates is inherently ambiguous. In earlier
work [Keller 86a], we illustrated this ambiguity by show-
ing two views that are structurally similiar but whose
semantics require different view update translators. We
have proposed: [Keller 85a, 85b, 86a, 86b] that seman-
tics be obtained at view definition time and choice of
a translator made through use of a dialog with the
database administrator {or other knowledgeable per-
son). The dialog would be based on the view definition,
structural schema information about the database, and
answers to previous questions in the dialog.

We have previously described the class of view up-
date translators [Keller 85a}, the role of semantics in
choosing a translator [Keller 86a], and algorithms that
obtain at view definition time the semantics necessary
to choose a view update translator [Keller 86b]. In this

paper, we describe a prototype implementation of these -

algorithms and an interpreter for the translator they
choose.

2 Prototype Programs

For a large class of views, we have described an algo-
rithm for this dialog [Keller 86b]. Two prototype pro-
grams have been written to implement this specific class
of view updates.

Figure 1 describes how these programs are intended
to fit into a production database environment. The first
program, the view definition facility, obtains the rela-
tion and view definitions and then engages in a dialog
with the view definer to obtain the semantics to choose
a specific view update translator. This translator is de-
scribed in a translator specification file (TSF). The sec-
ond program, the view update facility, implements view
updates requested by the user by translating them into
database operations according to the translator stated
in the TSF. These two programs do not depend on a
particular database system; rather, they are standalone
prototype programs that have not been interfaced to a
particular database system. Instead, all database oper-
ations are simulated by printing the operation requested
on the terminal and having the terminal operator enter
the results of the operation. This has the benefits of
explicitly showing all interaction with the database and

datebese

sdmimstrator user

Messeges

answers
vhew
defimiion updates :::wers
. and
queries

viBw —
defimtion trensiator updete
facility feciity

oatlabose .

. updates NSWErS
databose snd ant
schema queries

dalubasé
Figure 1

eliminating the need to preload the database with test
or demonstration data.

3 Class of Views

The views handled by the prototype programs are a
large class of select, project, and join views on Boyece-
Codd Normal Form relations. The views must meet the -
following restrictions {Keller 85a, 85b, 86al:

JoIin RESTRICTIONS The key of the root relation-of the
view must be a key or foreign key of every relation. The
joins must all be extension joins that cascade from this
root relation in a tree pattern. '

PROJECTION RESTRICTIONS Relation keys and join at-
tributes may not be removed from the view by pro-
jection. However, an attribute equated to another at-
tribute by a join in the view may substitute for the
latter attribute in the view.

SELECTION RESTRICTIONS The terms of the selection
condition may only test whether an attribute is or is not

-a member of a constant set of domain values. The WHERE

clause in the view definition may only be a conjunction
of selection terms and equality comparisons specifying

Joins. ,

messages

Page 3 of 11. -

Formal descriptions, examples, and explanations of
the class of views handled may be found in our prior
work [Keller 85a, 85b, 864, 86b).

4 Updates

A (database or view) update is either a deletion, an in-
sertion, or a replacement of a single tuple. A deletion
is the removal of a single tuple from a relation. An in-
sertion is the addition of a single tuple into a relation.
A replacement is the combination of a deletion and an

Insertion into the same relation into a single atomic ac- -
tion that does not require an intermediate consistent:

state between the deletion and insertion steps. View
updates must satisfy relevant constraints on the data-
base or view, such as key dependencies, and their effects
must be visible to the view.

A view defines a virtual relation that appears as a ‘
stored relation to the user. Queries and updates on the
view require that the database system compensate for

the fact that the view contains no data itself but only
reflects data actually stored in database relations.

5 Relation and View Deﬁnitions

Views may be structurally similar but semautlcally dif-
ferent, so that they require different view update trans-
lators. Two views which display this semantic difference
will be described here and used in the following sections.
Before we can describe the views, we must de-
scribe the underlying database relations appearing in
the views. We will define these using the modified SQL
syntax used in the prototype View Definition Facility.
We use the convention for this syntax that all capitals
are used for reserved words, initial capitals for relation
and view names,.and lower case for attribute names.

DEFINE RELATION Employee {(lastname,
firstname :> phone, dept, loc,
project, onbbteam}; -

DEFINE RELATION Dept (deptname :> manager,
division); '

As shown in this example, the relation narde is fol-
lowed by the attribute names enclosed in parentheses.
The list of attributes in the key are followed by > and
the list of non-key atiributes. Both lists contain at-
tribute names separated by commas.

The personnel manager for New York, Susan, uses
the fol]owmg view to select employees WOrkmg in New
York. : :

DEFINE VIEW Nypersmgr AS

SELECT Employee.lastname, Employee.firstname, -

Employee.phone, Employee.dept,
Dept.manager

FROM (Employee (Dept))

WHERE Dept.deptname = Employee.dept
AND Employee.loc IN SET [NY];

There are several simplifications of SQL in this syn-
tax. The SELECT clause contains only attributes qual-
ified by relation natnes. The FROM clause is written in
LISP tree notation; any cascaded extension join tree
may be described this way. The WHERE clause consists
of a conjunction of equality comparisons for joins and
terms of the form attribute IN SET [a,b,..] or ai-
tribute NOT IN SET [a,b,...].

The key of the view is not explicitly specified; the
“key of the root relation (the root of the extension join
tree) becomes the key of the view, as it is a key or

foreign key for every attribute in the view.
The baseball tearmn manager, Frank, uses the fol-
lowing view.

DEFINE VIEW Bbteammgr AS

SELECT Employee.lastname, Employee. flrstname,
Employee.phone, Employee. dept,
Dept.manager

FROM (Employee (Dept))

WHERE Dept.deptname = Employee.dept
AND Employee.onbbteam IN SET [YES];

These two views are structﬁrally and syntactically

‘similar, but have differing semantics. In the next sec-

tion, we will consider the dialog part of the View Defini-
tion Facility and show how these semantics are obtained
to choose differing view update translators.

6 View Definition Facility

When the View Definition Facility obtains a view defini-
tion, it verifies that the view is capable of being updated

and then asks the view definer (such as the database

administrator) information used in choosmg the view
update translator. The class of possible view update
translators for a given view can be arranged into a de-

cision tree. This decision tree can be traversed so that
the view definer is asked a question at each node, until

the desired translator is reached at a leaf of the decision
tree. This decision tree is not actually created; rather
it represents the tree of computational paths through

the dialog algorlthm The algorithm for this dialog is _.

presented in previous work [Keller 86h].

Page 4 of 11.

The dialog from the prototype View Definition Fa-
cility for the baseball team manager’s view is given be-
low. This dialog has been edited because of space limi-
tations. System questions are written in this typeface,
while user responses are written in this typeface..

Is deletion of view tuples allowed?

YES .

Should deletion of a view tuple result in DELETION
of the corresponding tuple in relation Employee or its
REPLACEMENT? '

REPLACE

You will replace the value of the atiribute onbbteam
from relation Employee. Choose a value not in tlus set:

[YES]

Vlew tuple deletions are permitted and are done by
replacing Employee.onbbteam with the value NO.

Is insertion of view tuples allowed?

YES

Are modifications to the Employee relation permitted?
YES

Can a new tuple be inserted into the Employee relation?
NO

Can a view tuple insertion result in a change to a
tuple in this relation which presently is not satisfying a
selecting condition needed for appearance in the view?
YES . .

If a view tuple is inserted, should Employee.onbbteam
be changed to the value YES?

YES .
Are modifications to the Dept relation permitted?

NO _

Insertion of a view tuple now is defined.

Is replacement of view tuples allowed?

YES

Can the root relation (Emp]oyee) tuple of & view tuple
be modified?

YES

Can the key of a view tuple (the root tuple key) be
changed?

YES

Should deletion of a view tuple result in DELETION
of the corresponding root relation (Employee) tuple or
its REPLACEMENT?

REPLACE

You will replace the value of Employee.onbbteam
Choose a value not in this set: [YES]

NO

Can a new tuple be inserted into the Empldyee relation?

RO

Can a view tuple replacement result in a change to a
tuple in this relation which presently is not satisfying a
selecting condition needed for appearance in the view? '
YES

Can a view tuple replacement result in a change to a
tuple in this relation which presently does satisfy the
selecting condition(s) needed for appearance in the
view? :

YES

Can the non-key attribute Employee.phone be changed?
YES :

Can the non-key attribute Employee.dept be changed?
YES

Are modifications to the Dept relation permltted"‘

NO ‘

Replacement of a view tuple now is defined.

After the dialog is completed, the prototype View
Definition Facility prints a summary of the dialog and
translator defined. The edited summary of the New
York manager’s view follows (Not the baseball team
view!)

View tuple deletions are permitted.
Deletion of a view tuple is done by deleting the
corresponding tuple from root relation Employee.
View tuple insertions are permitted. '
For-relation Employee:
Modifications are permitted.
" A new tuple can be inserted into this relation.
~ View tuple insertion can result in change
to a relation tuple not satisfying a selecting
condition.
Non-view, non-selecting attributes and values:
project = available
onbbteam = no
Non-view, selecting attributes and values:
loc = NY
For relation Dept
Modifications are permitted.
View tuple replacements are permitted.
For relation Employee:
Modifications are permitted.
The key of a view tuple can be changed.
The old root tuple is deleted. '
A new tuple can be inserted into this relation.
View tuple replacerent can result in change
to a relation tuple not satlsfymg a selecting
condition. _
View tuple replacement can result in change to
a relation tuple satisfying selection conditions.
Non-view, selecting attributes and values:
loc = NY

Page 5 of 11.

Non-key, in-view attributes: (YES = value
can be changed)
phone = YES
dept = YES
For relation Dept:
Modifications are not permitted,
A new tuple can not be inserted into this
relation. ‘ .
View tuple insertion can result in change
to-a relation tuple not satisfying a selectmg
condition.
View tuple insertion can result in change to a
relation tuple satisfying selection conditions.
Non-key, in-view attributes: (YES = value
can be changed)
manager = YES

The outpﬁt of the View Definition Facility is the
Translator Specification File (TSF). This file is described
in the next section.

7 View Update Translator Specification File

The Translator Specification File (TSF) tells how view
updates are to be translated into database updates. The
semantics obtained during the dialog in the View Defi-
nition Facility are encoded in a precise description of the
translator chosen. In our prototype, the relation defini-
tions appear at the beginning of the TSF, followed by
the information for each view: the view definition and
its view translator.

The TSF is designed to be easily parsed by the
View Update Facility but still be intelligible to facilitate
debugging the prototype View Definition Facility and
checking that the correct translator is chosen.

The translator for the baseball team manager’s view
is described as follows in the TSF.

DIALOG PART =
ALLOWED = YES
RELATION = Employee

METHOD = REPLACE

RSET onbbteam = ¥0

DIALOG PART = INSERTION

ALLOWED = YES

RELATION = Employee

METHOD = CHANGE_TUPLE :
CHANGE_NON_SATISFYING_SELECT_COND_ALLOWED = YES
SSET onbbteam = YES.

RELATION = Dept

METEOD = NO_CHANGE

DIALOG PART = REPLACEMENT

ALLOWED = YES

DELETION

" RELATION =

RELATION = Employee
KEY_CHANGE_ALLOWED = YES
METHOD = REPLACE_OLD
RSET ombbteam = KO
NEW_TUPLE_ALLOWED = NO
CHANGE_NON_SATISFYING_SELECT_COND_ALLOWED = YES .
CHANGE_SATISFYING_SELECT_COND_ALLOWED = YES
SSET onbbteam = YES
VIEW_NON_KEY_ATTR_CHANGE_ALLOWED?

CHAKGE phone = YES
CHANGE dept - = NO
RELATION = Dept

METHOD = NO_CHANGE

/END OF DIALOG/

The translator for the New York personnel man-
ager’s view is described as fo]lows in the TSF

DIALOG PART =
ALLOWED = YES
RELATION = Employee

METHOD = DELETE

DIALOG PART = INSERTION

ALLOWED = YES _

Employee

METHOD = NEW_TUPLE/CHANGE_TUPLE
CHANGE_NON_SATISFYING_SELECT_COND ALLDWED YES
SET project = avallable

SET onbbteam = no .

SSET loc = Y

RELATION = Dept

METHOD = NO_CHANGE

DIALOG PART = REPLACEMERT

ALLOWED = YES :
RELATION = Employee

KEY_CHANGE_ALLOWED = YES

METHOD = DELETE_COLD

NEW_TUPLE_ALLOWED = YES .
CHANGE_NON_SATISFYING_SELECT_COND_ALLOWED = YES
CHANGE_SATISFYING_SELECT_COND_ALLOWED = YES

DELETION

SET project = available

SET onbbteam = no

SSET 1loc _ = NY
VIEW_NON_KEY_ATTR_CHANGE_ALLOWED?
CHANGE .phone = YES

CHANGE dept - = YES -

RELATTION = Dept

METHOD = CEANGE_TUPLE

CHANGE_NON_SATISFYING_SELECT_COND_ALLOWED = YES
CHANGE_SATISFYING_SELECT_ COND_ALLOWED = YES
VIEW_NON_KEY_ATTR_CHANGE_ALLOWED?

CHANGE manager = YES

Page 6 of 11.

/EKD OF DIALOG/

Examples of view updates translated into database
updates by the View Update Facility using these TSF
excerpts are given in the next section.

8 View Update Facility

The View Update Facility interprets the TSF informa-
tion to translate view update requests into database
requests. These view update requests may be deletions,
insertions, and replacements of individual view tuples.
To simplify implementation of the prototype, new and
old attributes values associated with a view update re-
quest are asked as needed while executing the update
request; this allows the user to specify (by using *.” in-
stead of a value) that the current value should be used
for an attribute in an existing tuple.

The prototype View Update Facility has not been
interfaced with a database system. All interaction in-
tended with the database instead appears on the user’s
terminal. This approach facilitates understanding the
operation of the program and is a useful debugging aid.
It also eliminates the need to preload the database with
demonstration or test data. In the examples that follow,
such interaction intended for the database is preceded
by (D).

8-1 View Update Validation

View updates must be validated by the view update
facility. Updating through views imposes constraints,
in particular those involving view tuple visibility, that
are not required when updating directly through the
database,

For deletion, the inclusion dependency on the ex-
tension join means that if the root database tuple sat-
isfies the selection clause, the view tuple will appear in
the view unless some extension join tuple does not sat-
isfy its part of the selection clause. Verifying that the
root database tuple satisfies the selection clause is easily
done by reading the tuple before replacing or deleting
it. We do not check whether all extension join tuples
satisfy their selection clauses, if any; it can be expensive
to check whether all extension join tuples satisfy their
selection conditions and there is no other reason to read
them. (We are adding such checking to the prototype
implementation to show how it can be done and to help
in deciding whether to do such checking; perhaps the
decision to do this checking should be left up to the
view definer.) We can be certain, however, that after
a successful view delete operation, there is no longer a
view tuple with the key of the view tuple deleted.

For insertion, we must ensure that the new view
tuple is really new. This means that there was no
view tuple whose key matched that of the view tuple
being inserted. This implies that there was no data-
base tuple in the root relation with the key of the new
view tuple, there was such a database tuple but it did
not satisfy the selection condition on the root relation,
or some extension join tuple does ot satisfy its selec-
tion clause. The two cases involving the root relation
are easily checked while determining what database up-
dates are to be done to the root. We can easily check
the third case, as the relevant tuples are already read
while we ensure that the values in the database tuple
maich the ¢orresponding values in the view. Thus, we
are certain that after a successful view insert operation
the new view tuple will actually appear in the view.

For replacement, similar considerations apply about
the appearance of the relevant view tuples. In this case,
we verify that the old view tuple does in fact appear in
the view by checking that the database tuples whose
attribute values match the corresponding ones for the
view do satisfy view selection conditions. As usual, we
are certain that after a successful view replacement op-
eration the old view tuple will no longer appear while
the new one will.

The lack of complete checking of whether exten-
sion join tuples {non-root tuples) satisfy their selection
conditions is a simplification made in our prototype im-
plementation that is not inherent in our approach. The
effect on deletion is to allow some invalid deletion oper-
ations when an extension join tuple does not satisfy its
selection condition. We have essentially traded some
correctness for some improved performance and effi- .
ciency in our prototypes. System designers who adopt
our approach to updating views need to evaluate such
tradeoffs for their own systems. '

8-2 Deletion

We will first illustrate a deletion from the baseball team
manager’s view. We read the corresponding database
root tuple, ensure that it satisfies the selection condi-
tion, and then delete it. :

User, what view do you want to update? - -

Bbteammgr ‘

User, do you want to delete, insert, or replace?

DELETE

User, please enter the view tuple value for the following
view attribute(s):

lastname = Smith

firstname = T,

Page 7 of 11.-

(D) Database, does a tuple with this key exist in view
Bbteammgr (root relation Employee)?

(D) YES

(D) What are the values for these attribute(s)?

(D) Employee.onbbteam = YES _
This view tuple will be deleted by replacing the old.
value of Employee.onbbteam with the new value NO in
the Employee relation tuple with the key:

Employee lastname = Smith

Employee firstname = T.

The New York manager now deletes an employee
from her view.

User, what view do you want to update?

Nypersmgr
" User, do you want to delete, insert, or replace?
DELETE

User, please enter the view tuple value for the following
view attribute(s):

lastname = Bergman

firstname = P.

(D) Database, does a tuple with this key exist in view
Nypersmgr (root relation Employee)?

(D) YES

(D) What are the values for these atiribute(s)?

(D) Employee.loc = KY _
This view tuple will be deleted by deleting from root
relation Employee the tuple with the key:
Employee.lastname = Bergman

Employee firstname = P,

8-3 Insertion

We insert into the baseball team manager’s view by
performing a replacement on the database.

User, what view do you want to update?

Bbteammgr

User, do you want to DELETE, INSERT, or RE—
PLACE'? '

INSERT

(Employee relation)

User, please enter the view tuple value for the following
attrlbute(s) :
lastname = Johnson

firstname = J.

(D) For key value(s):

(D) Employee.lastname = Johnson

(D) Employee.firstname = J.

(D) Database, does a tuple with thls key exist in
relation Employee‘?

(D) YES

(D) What are the values for these attribute(s)? -

(D) Employee.phone = 333-3333
(D) Employee.dept = service
(D} Employee.loc = NY
(D} Employee.project = s33
(D) Employee.onbbteam = NO C
User, please enter the view tuple value for the followmg
view attribute(s): :
attribute = OLD value — NEW value
phone = 333-3333 — .
dept = service — .
(Dept relation)
(D) For key value(s):
(D) Dept.deptname = service
(D) Database, does a tuple with this Ley exist in
relation Dept? ; :
(D) YES
(D) What are the values for these a.ttrlbute(s)'?
(D) Dept.manager = S.Survik
(D) Dept.division = auto ‘
User, please enter the view tuple value for the followmg
view attribute(s): ‘
attribute = OLD value — NEW value
manager = 5.Survik — .

The view tuple is successfully inserted, and the fol-

lowing summary table describes the translation.

ATTRNAME . XEY? OLDVALUE

NEWVALUE VIEWORNOT
***+Employee relation tuple was replaced
lastname Key Johnson Johnson IN VIEW
firstname Key J. J. - IN VIEW
phone Non 333-3333 333-3333 IN VIEW
dept Non service service IN VIEW
loc Non NY NY :
project Fon =33 s33
onbbteam Non NGO YES
**xDept relation tuple was unchanged
deptrame Key service service IN VIEW:
manager Non S.Survik S.Survik IR VIEW
division Nen auto auto o

We insert into the New York manager’s view by
inserting into the database.

{Employee relation)

User, please enter the view tuple value for the followmg
a,ttnbute(s) -
lastname = Guerra

firstname = R. .

(D) For key value(s):

{D) Employee.lastname = Guerra

(D) Employee.firstname = R.

Page 8§ of 11.

(D) Database, does a tuple w1th this l\ey exist in
relation Employee?

(D) ¥O

User, please enter the view tuple value for the followmg
view attribute(s}): :
attribute = NEW value

phone — 444-4444

dept — finance

(Dept relation)

(D) For key value(s):

(D} Dept.deptname = finance :

(D} Database, does a tuple with this key exist in
relation Dept?

(D) YES

(D) What are the values for the following a.ttrlbut.e(s)
(D) Dept.manager = P.Ellis

(D) Dept.division = auto

User, please enter the view tuple va]ue for the followmg
view attribute(s): :
attribute = OLD value — NEW va.lue

manager = P.Ellis — .

8-4 Replacement

The first example shows how replacement is used by

the baseball team manager to replace on employee on -

the team by another. Notice how the manager elects to
use the existing phone number and department name
for the new team member, rather than using the values
from the old team member.

{Employee relation)

User, please enter the OLD and NEW value for the
following attribute(s):

atiribute = OLD value — NEW value
lastname = Talley — Chang

firsthame = B, — N.

(Old view tuple) .

(D) For key value(s):

(D) Employee lastname = Talley

(D} Employee firstname = B.

(D} Database, does a tuple with this old key exist in
relation Employee?

- (D)YESs .

. (D) What are the values for these a,ttrlbute(s)
(D) Empioyee.phone = 555-5556

(D) Employee.dept = sales

(D) Employee.loc = RY

(D) Employee.project = salb

(D) Employee.onbbteam = YES

(D) For key value(s):

{D) Dept.deptname = sales

(D)) Database, does a tuple with this key exist in
relation Dept?

(D) YES

(D) What are the values for the following attribute(s)
(D) Dept.manager = G.Jacobson

(D) Dept.division = auto

(New view tuple)

(D) For key value(s):

(D) Employee.lastname = Chang

(D) Employee firstname = N.

(D) Database, does a tuple with this key exist in -
relation Employee?

(D) YES

(D) What are the values for the following attrlbute(s)
(D) Employee.phone = 777-T777

(D) Employee.dept = service

(D) Employee.loc = NY

(D) Employee.project = ser77

(D) Employee.onbbteam = NO

User, please enter the view tuple value for the following
view attribute(s):

attribute = OLD value — NEW value

phone = 777-7777 — .

dept = service — .

(Dept relation)

(D) For key value(s):

(D) Dept.deptname = service

(D) Database, does a tuple with this key exist in
relation Dept? '

(D) YES

(D) What are the values for the following attribute(s)?
{D) Dept.manager = S.Survik ' '
(D) Dept.division = auto

User, please enter the view tuple value for the followmg .
view attribute(s):

attribute = QLD value — NEW value

manager = S.Survik — .

The translation of the view tuple replacement on
the baseball team view was done according to the fol-
lowing summary table.

NEWVALUE

ATTRNAME KEY? OLDVALUE VIEWOREOT
#¥x*Employee relation tuple was replaced
lastname Key Talley Talley IN VIEW
firstname Key B, B. IN VIEW
phone Non b555-B6565 = 5b5-55b65 IN VIEW
dept Non sales sales IR VIEW -
loc Non NY NY C
project " Non salb salb

onbbteam Non YES NG

++Employee relation tuple was replaced

Page 9 of 11.

lastname Key Chang Chang IN VIEW
firstname Key ¥. N. IN VIEW
phone Non 777-T777 77Y7-7777 1IN VIEW
dept Non service service IN VIEW
loc Non NY NY

project Non ser77 - ser77

onbhteam Non NO YES

***Dept relation tuple was unchanged
deptname Key service service IN VIEW
manager Fon S.Survik .= S5.Survik IN VIEW
division Non auto auto

The next update, by the New York manager, trans-

fers an employee from the sales department to the fi-
nance department. The replacement can be performed
because there already is a finance department tuple.
Note also that the manager of the finance department
has been changed in the department relation by explicit
user request. The dialog allows us to change existing tu-
ples in the department relation, but not insert new ones,
through this particular view. The change to the man-
ager of the finance department necessarily affects any

other employees in the finance department, and hence’

their corresponding view tuples. This side effect means
that -the view tuple replacement request was not im-
plemented exactly, as additional changes were made to
other view tuples that are implied by the user’s request.

. .We considered this issue in more detail in our earlier

work [Keller 85a, 85b, 86a, 86b)].

(Employee relation)

User, please enter the OLD and NEW value for the
following attribute(s):

attribute = OLD value — NEW value
lastname = Meyer — .

firstname = W. — .

(Old view tuple)

(D) For key value(s):

(D) Employee.lastname = Meyer

(D) Employee.firstname = W.

(D) Database, does a tuple with this old key exist in
relation Employee'?

(D) YES ,

(D) What are the values for these attribute(s)?-
(D) Employee.phone — 666-6666

{D) Employee.dept = sales

(D) Employeeloc = NY -

(D) Employee.project = sal66

(D) Employee.onbbteam = NO

(D) For key value(s):

(D) Dept.deptname = sales

(D) Database, does a tuple with this key exist in
relation Dept?

(D) YES

(D) What are the values for the following attrlbute(s)
(D) Dept.manager = G. Jacobson

(D) Dept.division = auto

User, please enter the view tuple va]ue for the following
view attribute(s):

attribute = OLD value — NEW value

phone = 666-6666 — .

dept = sales — finance

(Dept relation)

(D) For key value(s):

(D) Dept.deptname = finance .

(D) Database, does a tuple with this key exist in
relation Dept?

(D) YEs

(D) What are the values for the following attribute(s)?
(D) Dept.manager = P.Ellis

(D) Dept.division = auto

User, please enter the view tuple value for the following

view attribute(s):
attribute = OLD value — NEW value
manager = P.Ellis — J.Parks

The view tuple replacement on the New York man-
ager view was translated according to the following sum-
mary table.

ATTRNAME KEY? OLDVALUE NEWVALUE VIEWORKOT
***Employee relation tuple was replaced

lastname Key Meyer Meyer IN VIEW
firstname Key WU. W. IN VIEW -
Phone -Non 6£66-6666 ©666-6666 -IN VIEW
dept Non sales - finance IN VIEW
loc Non WY Ny

project Non sal6é salgé

onbbteam Nonr NO NO

**++Dept relation tuple was replaced

deptname Key finance finance IN VIEW
manager Non P.Ellis J.Parks IN VIEW
division Non auto auto

9 Simplifications and Limitations

Our prototypes used a simplified language based on
SQL that facilitated parsing and building data struc-
tures for schemas, etc. Rather than interacting with
a real database, our prototype View Update Facility
printed ‘all database requests on the terminal and read
in from the terminal the database vahies.

Page 10 of 11.

We handle a large but somewhat limited class of
select, project, and join views. This class can be ex-
tended somewhat but at increased complexity. The sim-
plest enlargement of the class of views would include di-
rected acyclic graphs in addition to trees. Disjunctions
and non-join comparisons of attributes would compli-
cate the decisions of what attributes to change and to
what values to change them. Allowing join attributes
to be removed from the view would incur a level of am-
biguity that would require the use of heuristics or a
clarification dialog at update request time rather than

static semantics we use. (For example, see [Davidson
831.)

10 Implementation Statistics

Three undergraduate students wrote the two programs
expending 8 man-months of effort during one academic
year. The prototype View Definition Facility contains
less than 3000 lines of code which includes parsing (about
150 lines), reading relation definitions (about 300 lines),
reading view definition (about 400 lines), verifying that
view can be updated (about 400 lines), obtaining view
update semantics usmg the dialog (about 850 lmes) dis-
playing relation, view, and translator summaries (about
200 Hnes), and writing the TSF file (about 400 lines).

The prototype View Update Facility contains about
3200 lines of code, of which about 1100 lines are used

to load in the TSF file containing the relation and view

definitions and the view update translator, and about
1500 lines of code-are used to translate view updates
into database operations (simulated on the terminal).

11 Conclusion

We have implemented a prototype view update trans-
lation system. This system consists of two parts: a
View Definition Facility run once when a view is de-
fined (probably by the Database Administrator), and
a View Update Facility run whenever the user specifies
an update in terms of a view.

Our system handles a large class of select, project
and join views. It can translate every single view tuple
insertion, deletion, and replacement that satisfies data-
base constraints. However, our approach allows some
expressible and correct updates to be re_]ected for secu-
rity or other related reasons.

We have shown that it is feasible to update rela-

tional databases through views if the ambiguities are .
resolved at view definition time by obtaining the se- .

mantics for choosing a translator. We have developed
a theory of view update translation that allows us to

enumerate the set of possible translators for a view. By

thinking about these translators as organized into a de-
cision tree, we are able to choose the desired translator
through a dialog. It is the semantics of the problem and
view that affect how the decision tree is traversed and
what translator is chosen. We have created an encoding
for describing the translator chosen and shown how to
use this encoding to translate view update requests into
database update requests.

There is a significant difference between a demon-
stration prototypé and integration of the techniques
in production commercial systems. However, we be-
lieve that our prototype View Update Translation Fa-
cility demonstrates the feasibility of updating relational
databases through views, so that commercial relational
database systems will soon support updating through
views.

12 - Acknowledgements

This work is based on a dissertation [Keller 85b] re-
searched under the supervision of Gio Wiederhold, Jeff
Ullman, and Christos Papadimitriou. Gio Wiederhold
suggested developing a prototype implementation and
describing it in this paper. The implementation of the
prototype View Definition Facility was begun by Moon
Ho Chung and Nazir Alimohammad. This part was
completed by Laurel Harvey, who also implemented the
prototype View Update Facility and assisted in writ-
ing this paper. The programs were designed by Arthur
Keller, who supervised their implementation after de-
veloping the necessary theories and algorithms.

13 Bibliography

[Bancilhon 81] F. Bancilhon and N. Spyratos, ’
“Update Semantics and Relational Views,” ACM
Trans. on Database Systems, 6:4, December 1981.

[ANSI 82] “Final Report of the ANSI/X3/SPARC
DBS-SG Relaticnal Database Task Group,” in
SIGMOD Record, 12:4, July 1982.

[Brosda 85] Volkert Brosda and Gottfried Vossen
“Updating a Relational Database through a
Universal Schema Interface,” 4th PODS, March
1985.

[Carlson 79] C. Robert Carlson and Adarsh K. Arora,
“The Updatability of Relational Views Based
ont Functional Dependencies,” Third International
Computer Software and Applications Conference,
IEEE Computer Society, Chicago, IL, November
1979. B .

[Clemons 78] E. K. Clemons, “An External Schema
Facility to Support Data Base Updates,” in Data-
bases: Improving Usability and Responsiveness,

Page 11 of 11.

Academic Press, 1978,

[Codd 82] E. F. Codd, “Relational Database: A
Practical Foundation for Productivity,” Comm.
ACM, 25:2, February 1982.

[Cosmadakis 84] Stavros S. Cosmadakis and Christos
H. Papadimitriou, “Updates of Relational Views,”
in Journal of the Assoc. Comput. Mach., 31:4,
October 1984,

[Davidson 83] J.E. Davidson, “Interpreting Natural
Language Database Updates,” Stanford University,
Computer Science Dept., Ph.D. dissertation,
December 1983.

[Dayal 82] U. Dayal and P. A. Bernstein, “On
the Correct Translation of Update Operations
on Relational Views,” ACM Trans. on Database
Systems, T:3, September 1982,

[Finkelstein 82] Sheldon Finkelstein, “Common
‘Expression Analysis in- Database Applications,”
Proc. Int. Conf. on Management of Data, ACM
SIGMOD, June 1982.

[Furtado 79] A. L. Furtado, K. C. Sevcik, and C. S.
dos Santos, “Permitting Updates Through Views
of Data Bases,” Inform. Systems, 4:4, 1979.

[Furtado 85] A. L. Furtado and M. A. Casanova,
“Updating Relational Views,” in Query Processing
in Database Systems, W. Kim, D. S. Reiner, and
D. S. Batory, eds., Springer-Verlag, 1985.

{Hegner 84] Stephen J. Hegner, “Canonical View
Update Support through Boolean ~Algebras of
Components,” 3rd PODS, ACM, April 1984.

[Kaplan 81} S. Jerrold Kaplan and J im Davidson, “In-
terpreting Natural Language Database Updates,”
Proc. 19th Annual Meeting of the Association for
‘Computational Linguistics, Stanford, California,
June 1981. ,

[Keller 82] Arthur M. Keller, “Updates to Relational
Databases Through Views Involving Joins,” in
Improving Database Usability and Responsiveness,
Peter Scheuermann, ed., Academic Press, New
York, 1982. :

[Keller 84} Arthur M. Keller and Jeffrey D. Ullman,
“On Complementary and Independent Mappings
on Databases,” 1984 ACM SIGMOD Int. Conf. on
Management of Data, Boston, June 1984,

[Keller 85a) Arthur M. Keller; “Algorithms for
Translating View Updates to Database Updates

for Views Involving Selections, Projections, and .

Joins,” 4th PODS, ACM, March 1985.
[Keller 85b] Arthur M. Keller, “Updating Relational

Databases Through Views,” Ph.D. dissertation,.

Stanford University, Computer Science Dept.,
February 1985.

[Keller 86a] Arthur M. Keller, “The Role of Semantics
in Translating View Updates,” IEEE Computer,
19:1, January 1986, pp. 63-73.

[Keller 86b] Arthur M. Keller, “Choosing a View
Update Translator by Dialog at View Definition
Time,” 12th Int. Conf. on Very Large Data Bases,
Kyoto, Japan, August 1986, pp. 467-474.

[Maier 83] D. Maier, Theory of Relational Databases,
Computer Science Press, Rockville, MD, 1983.
[Masunaga 83] Y. Masunaga, “A Relational Database
View Update Translation Mechanism,” IBM, San
Jose Reserach Laboratory, Report RJ3742, 1983.

[Medeiros 85] C.M.B. Medeiros, “A Validation Tool
for Designing DSatabase Views that Permit
Updates,” Ph.D. dissertation, Data Structuring
Group, Dept. of Computer Science, University of
Waterloo, November 1985.

[Rowe 79} L. Rowe and K. A. Schoens, “Data
Abstractions, Views, and Updates in RIGEL)”
Proc. ACM SIGMOD Int. Conf. on Management
of Data, May 1979.

[Salveter 84] Sharon Salveter, “A Transportable
Natural Language Database Update System,” 3rd
PODS, ACM, April 1984

[Seveik 78] K. C.Sevcik and A. L. Furtado, “Complete
and Compatible Sets of Update Operators,” Proc.
Int. Conf. on Management of Data, ACM, June
1978.

[Stonebraker 75] Michael Stonebraker, “Implementa-
tion of Integrity Constraints and Views by Query
Modification,” Proc. 1975 SIGMOD Conf., ACM
SIGMOD, June 1975.

[Tuchermann 83] L. Tuchermann, A. L. Furtado,
M. A. Casanova, “A Pragmatic Approach to
Structured Database Design,” Proc. 9th VLDB
Conference, QOctober 1983. _

[Ullman 82] Jeflrey D. Ullman, Principles of Database
Systems, Computer Science Press, Potomac, MD,
second edition, 1982.

	tr87-40-46_001

