FORMAL MODEL OF CORRECTNESS
WITHOUT SERIALIZABILITY

Henry F. Korth and Gregory Speegle
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-47 December 1987

Formal Model of Correctness Without Serializability*

Henry F. Korth
.. Gregory Speegle

Department af Compuler Sciences
Universily of Tezas
Austin, TX 78712-1188

_ Abstract
In the classical approach to transaction processing, a coazurrent execution is considered to
be correct if it is equivalent to a non-concurrent schedule. This notion of correctness is called
serializability. Serializability has proven to be a highly useful concept for transaction systems for
da.ta—processing style applications. Recent interest in applying database concepts to applications
in computer-aided design, office information systems, etc. has resulted in transactions of relatively
long duration. For such transactions, there are serious consequences to requiring senahzablhty as’
" the niotion of correctness. Speclﬁcally, such systems either impose long-duration waits or require the
abortion of long transactions. In this paper, we define a transaction model that allows for several
alternative notions of correctness without the requirement of serializability. After introducing the
model, we investigate classes of schedules for transactions in the model. ‘We show that these
classes are richer than analogous classes under the classical model. Finally, we show the potential
practicality of our mode} by describing protocols that permit a transaction manager to a.llow non-
serializable executions that are correct under our model.’ '

1. Introduction

The classical approach to the theory of database concurrency control [Bernstein et -al." 1987, Papadimitriou
1986, Eswaran et al. 1976] is based on an uninterpreted consistency constraint. Transactions are required to
map consistent states of the database to consistent states. A concuarrent execution of a set of transactions
(a schedule) is correct if it is equivalent to a serial (non-concurrent) execution. This notion of correctness
is called serializability. Since no explicit use is made of the databzse consistency constraint except for the
assumption that transactions preserve consistency, serializability is necessary if one is to prove that a schedule
preserves consistency. The formal theory of serializability is well—developed and appears in [Bernstein et al.
1987, Papadimitrion 1986] as well as elsewhere: - "
The class of serializable schedules is too nch for a practical transaction ma.na.gement systems for several

Teasons 1ncludmg the following: :

e testing for serializability is NP-complete [Papadimitriou 1979]

¢ included among the serializable schedules are schedules that present several obstacles to crash
" recovery (allowance of cascading rollbacks and non-recoverable schedules).

On the other hand, the class of serializable schedules turns oiit to be too restrictive for long duration
transactions. This follows from a theorem of Yannakakis [Yannakakis 1982] which implies that if transaction
systems have no special structure then two phase locking is necessary to ensure serializability. Two phase
locking imposes the constraint that a transaction may not issue a lock request after its first unlock request.
Thus locks must be held in general for a substantial fraction of the duration of a transaction. For long-
duration transactions, this leads to long duration waiting for locks. Alternative techniques for ensuring
senahzabxhty use transaction aborts. However, aborts of long duratlon transactions are highly undesirable
since large amounts of work done by users can be lost.

‘Researchers and developers of database systems for CAD, office information systems, software develop-
ment environments, etc. have dealt with this problem by mplementmg ad-hoc concurrency control mecha-
nisms modeled after human behavior in colla.boratwe pro;ects These methods [Kim et al. 1984, Lone and

* Research partially supported by NSF grant DCR-850-7224, and a'grant from the IBM Cerporation

1

Plouffe 1983] provide tools to assist users in minimizing the adverse effects of concurrency. However, they do
not allow a complete mathematical characterization of correctness. It is impossible to show that schedules
legal under these schemes ensure serializability. Indeed, for any consistency constraint C, it is possible to
construct a legal schedule mapping a state satisfying C to one that does not. Although schemes of this
sort have met the needs of several practical systems, a formal notion of correct schedules that meets the
requirements of CAD and CAD-like a.ppl:catlons is desu'a,ble It is exactly such a model that we propose in
this paper.

2. An Introduction to the Model

Serializability is a correctness criteria which states that the schedule of operations performed by concur-
rently executing transactions is equivalent to a serial execution of these transactions [Eswaran et al. 1976].
Serializable schedules have many qualities which are “good” in some sense. If all of the transactions preserve
the consistency of the database, then serializable schedules also keep the database consistent. Likewise, a
transaction will see either all of the updates performed by another transaction, or none of them, thus seeing
a consistent database. Therefore, users of systems which enforce serializability know their tasks will see a
consistent database and their tasks will execute such that if the tasks finish, they will have been unaffected
by other concurrent transactions. Of course, this also means the amount of help one user can give another,
as in the case of cooperating transactions where two designers work together to complete a project, is very
limited. Although this is acceptable in traditional database systems, long duration transactions need to be
able to interact in order to complete their tasks. Therefore, the goal of a long duration transaction system
should be to allow schedules which permit interaction among transactions while still ma.intaining'consistency.

Our model includes three features for enhancing concurrency that are not part of the traditional model:

» versions

e nested transactions

» explicit consistency predicates

We introduce each of these features informally in this section and define our model formally in the next
section.

2.1 Multiple Versions

One method for improving concurrency is the use of multiple versions for concurrency control [Papadim-
itriou 1986, Bernstein et al. 1987]. Multiple versions are simply old values of a data item retained by the:
system. Whenever a transaction attempts to perform a read operation, an algorithm called the “version
function” assigns one of the values of the data item to the transaction. Whenever a transaction attempts to
write a data item, the system creates a new version of the data item with the new value and leaves the other
versions alone. Obviously, any protocol operating on a system with single versions can be simulated by a
protocol on a system with multiple versions by having the version function assign only the last version cre-
ated to any transaction which attempts to read the data item. In fact, the schedules which are multiversion
serializable form a proper superset of the set of serializable schedules [Papadimitriou and Kanellakis 1982].
Since versions must be supported in a design environment anyway, it is desirable to take advantage of them
to enhance concurrency. ' '

2.2 Nested Transactions

A second techmque for lmprovements in modehng loug duratlon transaction systems is nested transac-
tions [Moss 1985]. The literature contains many articles on nested transaction systems [Beeri et al. 1986,
Fekete et al. 1987, Lynch 1986, Liskov et al. 1987, Moss et al. 1986, Bancilhon et al. 1985, Korth et al 1988,
Weikum and Schek 1984). The fundamental difference between a nested transaction system and an unnested
one is the operations allowed to transactions. In an unnested scheme, such as traditional database systems,
transactions are modeled as a series of reads and writes. With nested transactions, some transactions contain
only primitive operations such as reads and writes, but others contain complex operations which contain
multiple primitive operations themselves. These complex operations can be viewed as subtransactions to

2

the transaction which contains it. This subtransaction becomes a child of its creating transaction. If we
extend this concept, we allow subtransactions to contain subtransactions of their own, thereby creating trees
of transactions. Therefore, nested transactions are frequently represented as a tree, like figure 1.

1.0.0

101 110

Figure 1

A nested transaction such as the one shown in figure 1, could execute in many different ways. For
example, it could execute such that all of the leaves, which are the basic operations, are in a serial order such
as 1.0.0,t.0.1,...t.2.0. Or, transaction t might have a very interleaved execution. The transaction might have
created the first subtransaction, t.0, and performed t.0.0 and t.0.1, when the user realized more work was
needed. The user then contacted another user to perform some task, t.1. That user then split this job into two
parts, .1.0°and t.1.1, one of which was given to yet another user. Thus, t.0.2,t.1.0.0,t.1.0.1,t.1.1.0,t.1.1.1,
and t.1.1.2 represent the steps of three interleaved transactions. Finally, t.0 and $.1 terminate, and the
user of t creates a final subtransaction to perform one .more. operation. - Now t.2 is created and t.2.0 is -
performed.” Obviously, many different executions are possible, but this shows some of .the potential for
nested transactions. g : : ‘

.+ Note that each subtransaction can have only one parent, but each parent can create many subtransac-:
tions. The leaves of the tree, for example t.2.0 and t.1.1.1, are database operations, which cannot be broken
down into smaller parts. The root of this nested transaction system is typically a special transaction which
contains only nesting operations. -A transaction can contain either database access statements, or it can
create subtransactions, however, it cannot do both. This does not reduce the modeling ability of nested
transactions, however, as any transaction. which desires to perform both nesting and access operations can
create subtransactions for each of its needed database accesses. In figure 1, this is displayed in the creation
of £.2, which only performs one operation, t.2.0.. . . _ .

- ‘Another reason for using nested transactions is that they provide a mechanism to allow needed in-
teraction for long duration transactions. These interactions are defined in [Bancilhon et al. 1985). The
subtransactions created by the root, called top-level transactions, are distinct design operations which re-
quire only minimal interaction, but which maintain database consistency. Note that if all of these top-level
transactions contained only database accesses, then the nested transaction system would have the.identi-
cal properties of an unnested system, the only difference being the presence of the root transaction. The
tree structure of nested transactions allows designers to operate in a hierarchy which resembles the design

3

process. A user can request work from another user by creating a new subtransaction for that user. That
work then becomes part of the requesting user’s transaction, so it can be easily incorporated into the user’s’
design. Finally, greater concurrency can be achieved with nested transactions by allowing subtransactions:
to execute in parallel and by allowing schedules which are non-serializable at one level but are equivalent to
some serial schedule at a higher level [Beeri et at 1986).

2.3 Explicit Consistency Predicates

The third additional element of this model is explicit semantics of database systems. Such semantics
can increase the concurrency of the system by redefining the notion of conflict. It must be assumed that any
two operations conflict if there is no information indicating otherwise. The most common example of using
semantics is defining accesses to be either a read or a write of a data item, but other examples can be found
in [Korth 1983]. The semantics of the read statement allow two reac operations to access the same data item
without conflicting, thus increasing concurrency. Our goal in this paper is the use of exphclt consistency
predicates for increasing concurrency.

An earlier use of consistency predicates is [Bancilhon et at 1985], whose model defines an invariant for
a transaction such that if the transaction operates correctly, then the consistency constraint for the entire
database is still correct. We generalize that notion from an invariant to a precondition and a postcondition.
The precondition defines a database state which is needed for the transaction to execute correctly, while
the postcondition describes the state of the database after the transaction has executed, assuming the
transaction is run by itself. Thus, a concurrent execution of transactions is considered to be correct if all
of the transactions leave the database in a state which satisfies their postconditions. For example, top-level
transactions in the nested structure might have to satisfy the database consistency constraint, however, their
subtransactions might have to preserve a predicate which does not leave the database in a consistent state,
but a state in which another subtransaction can execute. That subtransaction, or yet another which executes
later, then restores the database to a consistent state. By doing this, the database remains consistent across
entire long duration transactions, but the smaller pieces of the transaction can achieve greater concurrency.
This is similar to a traditional transaction temnporarily invalidatihg the database durmg its execution, but
restoring the database before it terminates.

2.4 Increased Concurrency Versus Increased Overhead

Each of the above features can increase the concurrency of any database, however, the overhead involved
in using them is easily avoided in traditional 'systems with short duration transactions by using simple
concurrency control techniques like two-phase locking. In applications with long duration transactions, two-
phase locking leads to unacceptably long waiting time as transactions await the release of locks held by other -
transactions. Alternatives to two-phase locking based on timestamps lead either to long-duration delays (e.g.
conservative timestamp ordering [Bernstein et al. 1987}) or to aborts of transactions. Aborts are undesirable
when ‘transactions are of long duration since a substantial amount of work is undone. It has been shown
by Yannakakis [Yannakakis 1982, Papadimitriou 1986) that the only alternative to two-phase locking is a
protocol which imposes a structure on the database entities (e.g. the tree protocol of [Silberschatz and
Kedem 1980]). Structuring, however, restricts the order in whlch tra.nsa.ctlons must access data, thereby
reducing concurrency.

Many applications of long duration transactions do not reéquiré sarializability, though consistency must be
preserved. For example, all that matters in a design application is that the design is correct. The serialization
order (if any) of the work of each designer is not relevant. Furthermore, long-duration transactions justify
the use of more sophisticated concurrenicy ¢ontrol techniques even if these techniques have somewhat higher
overhead. Multiple versions are required in design applications for reference purposes, so it is easy to justify
their use to enhance concurrency. A nested structure fits long-duration transactions well, as has heen
suggested before [Moss 1985, Kim et al. 1984]). We shall see that the use of preconditions and postconditions
allows us to permit a large class of executions which, though correct, are not necessarily serializable.

* Since the most costly component of most applications with long-duration transactions is the time spent
by bumans interacting with the transactions, we feel that it is essential to consider concurrency control

"

schemes which:
e reduce the number and duration of waits
o reduce the number and affect of aborts
s facilitate collaboratlon between users

The model we propose in this paper provides a framework for correct, highly concurrent executlons of
long transactions. The history of every data item is preserved by keeping multiple versions of it. Every
transaction is modeled as a nested transaction, complete with potentially parallel subtransactions. Also,
each transaction has associated with it a precondition and a postcondition which determines the correctness
of individual transactions. Th1s allows us to claim that if all transactions execute correctly; then the system
is correct. o :

Section 3 defines our model. In Section 4, we examine various classes of schedules achievable within our
model. This allows us to characterizein a formal sense the increased concurrency provided by each feature of
our model. In Section 5, we show the potential of our model in a pract.mal sense by descnbmg a concurrency
protocol based on our model. o

3. Formal Presentation of the Model

Long duration transactionis can benefit from using additional semantics, such as consistency predicates,
multiple versions of data items and nesting of transactions. In Section 2, we showed intuitively how these
semantics can be used to increase the concurrency of long duration systems. However, a formal model is
needed to characterize this increase, and to prove that the database remains consistent with this additional’
concurrency. Such a formal model must allow representations of nested transactions, multiple versions and
database predicates. Qur formal model is based on the concept of representing transactions as mappings from"
one database state to another, with schedules becoming compositions of mappings. This concept allows us to
capture the full scope of the additional semantics and by appropriate restrictions applied to these mappings;
represent other transaction models as‘well. Unfortunately, this technique emphasizes concurrency control
over recovery. Our model has a notion of recoverabxhty, which will be discussed later. For now, we focus on
concurrency issues.

3.1 Definitions

Let E denote the set of all entities in the database, and Ve € E, let dom(e)' denote the domain of entity
e. In the standard database model, each entity is assigned one value from: its domain. The collection of all
such values determines the state of the database.
Definition : ‘A unique state, SV, is a one-to-one mapping with & domain E and range QEdom(e) such-
that Ve, SY(e) € dom(e). - ‘

Transactions in the standard model change the database from one unique state to another. Thus,
transactions can be modeled as functions on unique states. Let DV represent the set of all unique states
Definition : A standard transaction is a mapping from DV to DY,

Although this definition of a transaction is very general, it does require some constraints on the actlons
performed by a transaction. For example, a transaction cannot update an entity to an element not in the
domain of the entity, as there can be no unique state SYV which can perform that mapping. Note also that
this definition of a transaction does not require the preservation of any kind of consistency constraint. The
notion of a database consistency constraint is useful, but before it can be defined, the concept of a predicate
on a set of unique states must be established. :

Definition : If P is a predicate on unique states, we extend P to a set of unique states, denoted P(S)
where P(S) = {SV|SY € SA P(SY)}. Clearly, P(S) ¢ DV. .

We shall assume all of our predicates are formed from atoms and clauses. An afom is a comparison z8y,
where @ is one of the comparison operators, =, #, <,<,>, or), and z and y are either database entities.
or constants. A disjunctive-clause is a disjunction (or) of atoms. Ws consxder only predicates in conjunctive
normal form, that is a conjunction of disjunctive clauses. :

5

n—1
Definition : A predicate P is in conjunciive normal form if P = {_\ C; where each C; = _/ L; where
each L; is an atom,
It is easy to show that all predicates can be expressed in comunct.lve normal form. We now mtroduce
a term for the sets of data items which appear in disjunctive clauses of a predicate.

ne-l

‘ Deﬁmtmn Let P= /\ C;. Let z; denote the set of data items mentioned in an atom i in C;. Each such

z; is an object. The set of all objects in a predicate, {zo,z1,...,2n—1} is denoted by B,

Werepresent database consistency constraints as predicates on database states and define what it means
for a transaction to maintain the database consistency constraint.) :
Definition : If C, a predicate, is the database consistency constraint, then a standard transaction maintains
consistency if it is a mapping from C(DY) to C(DY).

Thus a standard transaction can be thought of as a program t, which guarantees that if C(SY) holds when
the transaction begins then C(¢(SV)) holds when the transaction terminates. This is the basic assumption
of standard database models. Transactions executing in a serial order and starting in.a consistent state, will ’
leave the database in a consistent state.

We represent multiple versions in our model by allowing a set of unique states to form a database state.
Definition : A database state S is a set of unique states S7. The set of all database states S is D.

Although this ca.ptures all possible versions of a given data item, it does not represent all possible
combinations of versions which a transaction mlght access. That is represented by the version state which
is associated with each database state.

Definition : The version state of the database is the set of all versions whlch can be generated from a
database state S, and is denoted Vg, where Vg = { f E— ¢ o'z dom(e)|Ve(f(e) €dom (e) Adg € S (g(e) =
F(e)N}. Let V represent the set of all possible version states, and therefore be the same as Vp..

Vs is a collection of value assignments to database entities such that some unique state in S makes the
same: assignment. However, the assignments made to a version state can be drawn from different unique
states. Note that if v € Vg, then v(e) returns a value of some version of €, and that all v satlsfy the definition
of a unique state. Note also that if [S| = 1 and SY € S, then Vg = {SY }

The presence of versions also changes the definition of a transaction.

Definition : A transaction, t, is a mapping from D to DY, such that v € Vs such that ¢({v}) = t(.S') The
result of a transaction, ¢, apphed to state S is the state SU(S5).

In other words, transactions are equivalent to a mapping from a version state to a unigue state.

The second concept added to the standard model concerns pre- and post- conditions of transactions. A
transaction can be viewed as a program which will leave the database in a certain state given that it is not
interleaved with other transactions, and if the database is in a certain state when it begins. These predicates
are the specification of the transaction.

Definition : A specification for a transaction £ is a pair (I;, O;) where I; and Ot are predicates on D. Every
entity read by ¢ must appear in I;. A transaction satisfies its specification if V.S € I(D),}(S) € O«(D).

The third extension involves nested transactions. Nested transactions can be thought of as a lower-level
implementation of their parent. This leads to the followmg definition.

Definition : An implementation of a transaction ¢ is a pair (T, P) where T is a set of transa.ct.lons or
operations and P is a partial order on T.

Thus for all transactions t; € T, ¢ is the parent of ¢;. By our definition, any part of ¢ which cannot be
divided into subtransactions’is a basic operation of the system. Basic operations are usually thought of as
read and write accesses to the database, but can include other accesses such as increment and decrement
operations [Korth 1983] or complex desxgn update operations [Klm et al. 1984]. Frequently, we shall give
both a specification (I;, O;) and an implementation (T, P) for t in a four-tuple (T, P, I, Oy).

We define three sets of data items related to a transaction: the input set, the update set and the fixed-
point set. The fixed-point set is simply the set of all data items which the transaction does not update.
We also define the object set of a transaction, which is based on the predicates in the specification of a
-transaction.

Definition : Let ¢ be (T, P,I;,0;). The input set, Ny is the set of data items in appearing in I;. The
fized-point set, F; = {ele € E AVSU e DV,5Y(e) = (t({SU}))(e)} The update set, Uy = E — Fy. The object

6

sel, i = U (O,,) where {to,13,...,t,.1} are the subtransactions of .

It is now possible to define an execution of a transaction. Such an execution must include a relation

on the subtransactions which is consistent with P, the partial order. Although the semantics for including
a relationship between subtransactions are not yet defined, it may be helpful intuitively to think of this
relation as representing a- “reads from” graph. Also needed in the execution is some notion of the state of
the database before a transaction begins to execute. This is required to check that transactions fulfill their
specifications. _
Definition : An ezecution of a transaction ¢t = (T, P, I, 0;) is a pair (R, X) where R C T x T is a relation
on T such that (t.,t,) € Pt = (t;,1;) ¢ RY, where P* and R* are the transitive closure of P and R
respectively, and X is a mappmg from T to a version state v € Vs. If £ € T, then X (¢;) is called the input
state of 1.

This definition places no restrictions on X and only a proscriptive constraint on R. We add semantics
to our initial definition of execution by requiring that R encode “dependencies” among the X (;) and that
each state’ X(#;) “depend” upon X(t), the input state of the parent transaction.

Definition : A parent-based executlon (R, X) of t=(T,P,I;,O) is an executlon such that for each t; €

T,Ve € E, either 7

o(X(t:))(e) = (X()(e)

o3t; € T such that (t;,%) € R and (X (4:))(e) = (¢:(X(2;))){e)-

Note that (%:,%;) or (¢;,%;) is not required for RY even if Ny, N Uy, # @. This allows for independent
executions which can happen in multiple version systems. The final state of an execution can be defined as
the state of the database after every transaction has executed. By using a pseudo-transaction, iy, the final
state can be defined as follows:

Definition : The final state of an execution is X(t) where Vt; € T, (i, ;) € RT A E= Nt .-

Likewise, we can define a pseudo-transactlon to which creates the initial state of the database. However,

the initial state should only apply to the root transaction, while the final state can apply to any transaction.
Definition : The initial state of an execution can be denoted as #,(5) Where Vt, € T (ta,t.) € RYAE = Ut
parent(parent(ip}) =nil.

Correctness can now be defined for executions of transactions.
Definition : An execution (R,X) of a transaction ¢ = (T, P, It,Ot) is correci if Vt. € T I, (X (t.)) A
OuX ().

In other words an execution is correct if every subtransaction can access a database state which satrsﬁes'

its input condition and the result of all of the subtransactions satisfies the output condition of the transaction.
We can extend this notion of correctness to both the ancestors and descendants of a given transaction, thus
producing multi-level correctness criteria. More importantly, this correctniess criteria can be applled to the
root transaction, thus ensuring that the entire database system executes correctly.

3.2 Proofs of model prbp'erties

Determining if a given execution is correct is an NP-complete problem. This is analogous to determining
if a given schedule is serializable in traditional database models, which is also NP-complete [Papadimitriou
1979]. The proof uses the following lemma which states that ﬁndmg a correct version assignment for one
transaction is an NP-compIete problem Formally, this problem can be represented by a,skmg is Iy, (X (1))
satisfiable. under a given S7 Co

Lemma 1: One tra.nseetion version correctness is NP-complete

The one transaction version correctness problem is:
Given a set E of entities, a transaction ¢t = (T, P, I;, (), a relation R on T, and
a database state S, for a given 1; € T, does there exist X such that I, (X (%;)) is
satisfied?
Proof:
Part 1: One transaction version correctness is in NP.

Step 1: A nondeterministic algorithm guesses X (%;).

Step 2: I, (X(¢;)) is evaluated, which is polynomial since the range of X is a version state, which has
only one value per data item. ' '

Part 2: One transaction version correctuess is NP-hard.
The proof proceeds by transformation of the satisfiability problem. This probiem is stated as:
Given a set U of variables and a predicate C over the variables in U, is there a
. truth assignment for C?

‘Step 1: Let E=U. . :

Step 2: Let S = {SY,57}, where Ve € E,S{(e) = 0ASY(e) = 1.

Step 3: Let I; = C.

If C is satisfiable, there is an assignment of values 0 or 1 to the variables in U that makes C true. Note
that Vs contains version states whick. have all possible combinations of 0’s and 1’s for the data items in E,
that is Vi represents all possible assignments of values to the varizbles in U. If C is satisfiable, then there
exists an X such that X(#;) = v, v € Vs, and v(ux} = 1 if uy is true, and v(u;) = 0 if uy is false. If C is not
satisfiable, then X cannot map a version state to ¢;, such that I, (X (t;)) holds.

Therefore, the satxsﬁablhty problem can be transformed into the one transaction versmn correctness
problem. [J

Theorem 1: Execution correctness is NP-complete

The execution correctness problem is defined as: -
Given a set E of entities, a transaction t = (T, P, I, 0,), with parent(t} =nil,
does there exist a correct (R, X)? Or in other words, Vt, € T, does Ig (X)) A
O (X2 f)) hold"
Proof:
Part 1: Execution cotrectness is in NP.
Step 1: A nondeterministic algorithm guesses X.
Step 2: Vt; € T, evaluate Iy, (X (t:))-
Step 3: Evaluate O:(X (ty)).
Part 2: Execution correctness is NP-hard. ‘
The proof proceeds by showing the one transaction version correctness problem is a sub-problem to this
one.
Step 1: Let T = {#;}.
Step 2: Let O; =true. ' ' '
Therefore, Vt; € T, (1;;(X (t:)) A O(X(t;))) = (Ig,(X(f1)) A Ot(X(tf))), by step 1. Then I, (X (#1)) A
O(X (t5)) = I, (X(t1)), by step 2. Thus, (R, X} is correct if I;, (X (¢1)) is satisfiable.]

4. Correctness Classes

Classical concurrency control theory has developed a number of classes of correct executions for transaction
systems. These classes include view serializability, conflict serializability, multiversion serializability and
others [Bernstein et al. 1987, Papadimitriou 1986]. However, these classes ate too restrictive for use in long
duration transaction systems. Thus, we present broader correctness classes for use'in these systems.

The broadest class we propose, is the set of all schedules which are correct executions. A protocol which
allows a subset of such schedules is presented in the next section. This class contains a large number of
schedules, as can be seen by the following lemma.

Lemma 2: All view serializable schedules are correct executions

Proof sketch:

For an execution to be correct, all transactions must have a satisfied input predicate, which in the case
of view serializable schedules, is the database consistency constraint. Since a view serializable schedule is
view equivalent to a serial schedule, all transactions perform reads en data items which they could have read

8

in the serial schedule. Since it is assumed that all transactions preserve the database consistency constraint,
these reads must also be consistent with this predicate. Likewise, the final result of a view serializable
schedule is the same as a serial schedule; and thus also satisfies the database consistency constraint, which
is the output condition of the database, Therefore, all view serializable schedules are correct executions. O

There are obviously many schedules which are correct executions, but which are not view serializable,
since correct executions allows multiple versions and partial orders, which are not part of the standard model.
We can apply restrictions to correct executions so that.we allow only standard model, view serializable
executions.

4.1 View Serializability. .

The standard model consists of a root (T, P,I,0) where T = {tg,%1,...,%.y%y}, P is the empty order
and both I and O are the database consistency constraint C. Transactions tg and f; are the initial transaction
(which writes the “initial” database) end the final transaction (which reads the “final” database) respectively.
For each t; € T, t; = (a;,p;,14;,0;) where a; C {read, write} x E, p; is a total order on a;, and both i; and
o; are the database consistency constraint C. Note that-a; represents the smallest operations in the standard
meodel, and therefore cannot be broken down into subtransactions. Note also that ¢y is as we defined earlier.
The database is also restricted such that. the database state is always a unique state, so |S| = 1. This is
accomplished in the standard model by having every write operation overwrite the previous value of the
entity. :

In order to formahze the concept of serializability in our model, some representation of the total order
of the transactions is needed. This total order must be consistent with the partial order definéd in R, and is
the basis for the reads performed by a transaction. In lemma 3, this order is formally noted by the function

£

Lemma 3: An execution (R, X) is view serializable if
1: the database system conforms to the standard model;
2: ¥t; € T,3s # {; such that (#,s) € R and 3r # ¢; such that (r,§;) € R;
3: 3 a 1-1, onto mapping f : T'— {0,...,|T| — 1} such that f(t)< f(t)=> (t;,t:) ¢ R;
4 flt) = (ti)+1=’X(tl)_tJ(X(tJ)) '
Proof:
Such an execution is view equivalent to a serial schedule executing in increasing value of f.
Subpart A: Both schedules must contain the same transactions - true by part 2.
Subpart B: Each transaction reads the same values in both schedules - true by parts 3 and 4.
'Subpart C: The database is in the ﬁnal state after both schedules - since the final state is X(ty), true
by parts 3 and 4 0o

Executions with these properties are view serializable since any interleaving of operations which satisfies
these properties is acceptable. For example, the database never has to be the state ¢;(X (t;)) so long as X (t;)
can see the equivalent of that state. Thus, updates can be performed on data items not in N, a.nd X(t:)
can still see £; (X (t;)). ' '

4.2 Extensions to View Serializability

Although view serializable schedules are a basis for correctness in standard database systems, other
classes also exist. These classes are derived by adding semantics, whereby more schedules can be considered
correct by the concurrency control algorithms. In this section, multiple versions, predicates and' partial
orders will be added to the standard model to create new correctness classes. These are the semantics the
model is designed to represent. :
Multiple Versions

Multiple versions are very easy to represent in our model: Everything remains the same except that we

9

relax the requirement |Sf = 1. Obviously, this new class; MVSR, allows more schedules than SR, since we
can restrict MVSR. to SR by the previous condition on S, and the followmg schedule is not allowed in SR
but is in MVSR:

t: . R W) '- R(y) ;;W(y) -
12 ‘R(x) R{y) W({) . S

Example 1

Intuitively, this schedule is not equivalent to ¢;, {3 since ¢ reads y from 5 and it is not equivalent to £z, ¢; since
to reads x from t,. However, X maps the version state v = £3(S) to tg and the versu)n state v = tg((t2))
to t;, thus al]owmg multi-version sema.hzabxhty

Partial Order Senal:zabalziy :

Partial order serializability, <SR, ‘results from allowing the operations of transactions to happen in
a partial order instead of a total order. A transaction is assumed to execute correctly if its operations
are executed in any total order consistent with the partial order given in its implementation (7, P). The
serializability constraint means that the transactions themselves must still be serializable. The increased
concurrency from such a structure is obvious when a locking protocol is used. A scenario can exist where
an item required by a transaction is locked, thus causing a standard transaction to wait. However, if pa.rtlal
orders are used, the transaction can access a different, available data item. ‘ ‘

Also, partial order serializability enables us to extend the notion of serializability to multlp]e Ievels :
Top-level transactions must remain serializable, but lower-level operations must execute consistent with the
partial order of its parent. When these lower level operations are actually transactions, non-serializable
schedules can be generated. This is similar to the work of [Beeri et al. 1986).

Partial order serializability is represented in our model by changing the standard model to the following.

The model consists of a root (T, P, I, O) where T = {t5,13,...,is}, P is the empty order and both I and
O are the database consistency constraint C. Foreach t; € T, t; = (a;, pj, i;, 0;) where a; C {read, write}x E
or ¢; = {tj,,t,,--.,t;, } where each t;, is defined similarly to ¢;, p; is a partial order on a;, and both #; and
0; are the da.tabase consistency constraint C.

Predicatewise Serializability

The concept of predicatewise serializability, PWSR, is derived from a protocol called predicatewise two-
phase locking, presented in [Korth et al 1988]. The basic idea is that if the database consistency constraint
is in conjunctive normal form, we can maintain the consistency constraint by enforcing serializability only
with respect to data items which share a conjunct. The increased concurrency for this class is derived from
the fact the serializable schedules for each conjunct do not have to agree.

It should be noted that we are assuming that no database has an empty consistency constra.mt Indeed
for such a database, any schedule would preserve “consistency,” and no concurrency control of any form is
needed!

Predicatewise serializable schedules can be represented in this model as follows,

The database consistency constraint C, is written as a predicate P, by our definition of a predlcate The
standard model is used to represent the database. Then, Vz; € P where z; is an object, we use the following
definitions. , ‘
Definition : For a transaction ¢ = (T, P, I;,0;), the set of subtransactions which mention z; is 7% =
{tilti e TAz;N(N, UTR,) £ 0.

Definition : For an execution (R, X) of a transactzon t, the restriction of a partial order R by an obJect x;
is B® = {(r,s)|(r,s) € R* Ar € T% As € T%}.
Definition : An execution (R, X) is predicatewise serializable if

1: the database system conforms to the standard model;

2: Vt; € T,3s # 1; such that (t.,s) € Rand 3r#£¢; such that (r,t;) € R; -

3: Vz; € P,3 a 1-1, onto mapping f : T% — {0,.. |T"'"'| ~ 1} such that f(;) < f(t;) = (t_,,t.) ¢ R*+;

10

4 (L) = Ft;) + 1= Ve € i, (X(1:))(e) = (;(X(t;)))(e).

An important issue concerning the relationship between PWSR and SR is the definition of the predicate.
We define the class PW.SR; as the schedules. allowed under PWSR. for a given predicate C. Clearly, for all
predicates, any schedule which is in SR is in PWS R, since the projection of a serializable schedule on to
a set of transactions in the schedule is serializable; Likewise, there exist conjuncts such that a schedule is
in PWSR¢, but not in SR. For example, assume a two item database where one conjunct contains atoms -
which are only over the data item %, and another con;unct contains atoms which are only over the data ltem
¥. Then the following schedule is in PWSRC, but not in SR. -

e R(x) W . R@y) . W(y)
ta: o Rx) R(y) CW(y) - : ‘
' . Example 2
Smce this is the same schedule as example I, the same reasoning holds for why this schedule is not in

SR. PWSRc can decompose this schedule into the two followmg schedules based on the con‘}uncts presented

e R W)

Ctgn R(x)

o Example 3.a
y: | Ry) W)
t,: R(y) W(y)

Example 3.b
Both of these are clearly serializable, since they are in fact, serial schedules.
Predicate Correct

Predicate correct, denoted PC, is the class obtained by combining all of the extensions to serializability
presented in this section. A system which is predicatewise correct allows multiple versions of data items,
multiple levels with partial orders, and predicatewise serializability for its correctness criteria. This class is
very broad, encompassing all of the others, yet it still represents a r&stnctmn of correct executions.
Definition : An execution (R, X) is predicatewise correct if :

1: the database system conforms to the model of Section 4;

2: Vt; € T,3s # 1; such that (1;,5) € R and 3r £ ¢; such that (r,ti) € R '

3: Vz; € P,3 a 1-1, onto mapping f : T% - {0, ..., T | — 1} such that f(t;)< _f(t_,) = (t_,, i) é R

& F(1) = £(t5) + 1= Ve € 20, (X())(e) = (& (X (@)))(e). '
Due to the partial order, schedules can be predicatewise correct but not in PWSR or MVSR. Likewise, the
use of multiple versions increases the choices available to transacticns and the use of predlcates reduces the
conflicts between transactions to allow schedules not in <SR.

The unfortunate consequence of predicatewise correct, is that determining 1f a schedule is in PC'is NP-
complete. It is obvious that determining if a schedule is view serializable is 2 subproblem to this one, with
the reductions applied to this class being the expansions used to gain MVSR, <SR, and PWSR. HOWever,
just as SR can be reduced to an efﬁclent class, conflict serializability, we can reduce PC to an efficient class,
conflict predicate correct. :

4.3 Conflict Predicate Correct

CPC can be built by using the same extensions which we applied to the class SR by applying them to
the class conflict serializability, denoted CSR. A schedule is conflict serializable if it conflict equivalent to any
serial schedule. Two schedules are conflict equivalent if their conflicting steps are in the same order. Under
the standard model, two steps conflict if they are on the same data item and at least one of them is 2 write.

11

The class MVCSR, is defined as all schedules which can be considered to be conflict serializable given that
we can use multiple versions of data items: It turns out that the only conflicts which exist in MVCSR are
reads before writes on the same data item [Papadimitriou 1986, Bernstein et al. 1987]. The class PWCSR
simply enforces conflict serializability on each conjunct of the database constraint, and <CSR allows conflict
serializable schedules but permits operations to be placed in a partial order within a transaction.

Again, as with the previous section, if we combine all of the properties of MVCSR, PWCSR, and <CSR,
we achieve the class CPC. An important property of CPC is that determining if a schedule is CPC can be
done efficiently. The only conflicts which still exist in CPC are a read of a data item followed by a write on
that data item, just as in MVCSR. However, in CPC, if two data items are in different conjuncts, then the
execution order of the transactions does not have to be the same for the transactions. Thus, the techniques
in [Papadimitriou 1986] for showing a schedule to be in MVCSR can be repeated for each conjunct. This
technique creates a graph where each node is a transaction, and an arc is drawn from A to B if A performs
a read step and B performs a write step on the same entity. In this case, each graph corresponds to a single
conjunct, and the arc is drawn only if the data item accessed by A and B is in the conjunct. A schedule is
MVCSR iff the graph is acyclic, and consequently, a schedule is CPC iff all of the graphs are acyclic. Since
testing for acyclicity is efficient for 1 graph, it remains efficient for n graphs where n is unrelated to the
number of nodes or edges, as it is here.

In order to get a better understanding of the classes involved in CPC, ﬁgure 2 presents the relationships
between all of the various subclasses. Examples of schedules are given for each non-empty region of the
diagram.

1. Non-CPC
) R(x) Wi(x) .
ta: R(x) W(x)
Intuitively, this schedule is not in CPC because none of its decompositions by conjuncts (which are
exactly this schedule) can be serialized by a version function. This is because either t; should read from ¢,
or ta should read from 1) in a serial schedule, and this does not happen here.

2. CPC — (PWCSRUMVCSR U <CSR U SR)
t Riy) = . Wix) - W(y) -
t3: : R(x) W) W(Y) :
This schedule is not in PWCSR since the decompomt.lons lead to nonsenahza.ble schedule.. leerse it
is not in MVCSR, because the read of y done by ¢; conflicts with the write of y done by ¢; and s1rmlarly, (2]
conflicts with ¢; on x. However, the schedule could be in. CPC if the database consistency constraint placed
x and y in different conjuncts. The restricted schedules are in MVCSR,

3. PWCSR - (MVCSRU -<CSR USR) , : : :
: t: R(x) W(x) : R(y) W(y)
ta: R(x) W(x) "R(Y) W)
This schedule is clearly in PWCSR if x and y are in different conjuncts. Likewise, the schedule is clearly
not in SR or MVCSR since either serial schedule would cause a transaction to read a data 1tem from the
other transaction, which it did not in this schedule.

4, (PWCSRN MVCSR) - SR . . ,
t: R(x) W(x) R(y) W(y)
ty: R(x) R@y) W(@)
This is the example schedule given in the previous section. The arguments for it being in MVSR and
PWSR hold for MVCSR and PWCSR.

5. SR — PWCSR L
ti: . R(x) Wix) .
tar . - W(x) s :
t3: : W(x)

12

All schedules

CPC
SR
PWCSR
o MVCSR
CSR.
~<CSR
Figure 2

~ ‘This schedule is equwa.lent to the serial schedule t1,t2,13, however, it is not’ conﬁlct. senahzab]e a.nd.
cannot be decomposed by any non-empty predu:a.te

6. SR — MVCSR
t: RE) I W)
to: ' TW(y) :
t3: o Ry) W) - W(y)
This schedule is view equivalent to the serial schedule t1,13,3, but a conflict exists between transactions
t; and {3 on both x and y, keeping this schedule out of MVCSR.

7. 'MVCSR PWCSR BT o
- R® W
S W
Clearly, this schedule remains unserializable for all non-empty predicates, since 2, éanndt be “moved”

to before or after £; by flipping operations. However, if the final read is of the version created by ta, then
this schedule is equivalent to the serial schedule #;,45.

fz

13

8, (SRNMVCSR) — CSR
1 R(x} W(x) W(y)
ta: R(x) Wi(y)
ia: W(x)
This schedule is multi-version conflict serializable to the schedule t1,12,1a3, by having the final read of
y be the version created by t,. It is also serializable to the schedule #5,%;,%s. However, this schedule is not
conflict serializable since no exchanges can move i3 to either before or after ¢;.

9. CSR
t R(x) W(x) Riy) W(y)
ta: ' R(x) R(y) W(y)
Note that all conflicts are resolved in the same order for both x and y in this example schedule.

5. Transaction Management

Given a model for long duration transactions and correctness classes for it, the next step is to develop
protocols to allow schedules in the classes. Protocols work on a different level than the model properties
presented in Section 3. In that section, the entire computation is given and whatever properties the compu-
tation has can be proven by examining this history. This is a static view of the database, since everything
has already terminated, and the final result can be examined. For the protocols, the database is an active
entity with possibly many transactions executing simultaneously at many different places. The system re-
ceives requests from these transactions, and based on the current state of the database, performs a correct
action. It is the goal of these protocols to ensure consistency, however that is defined, and allow as much
concurrency as possible.

In our model, correctness is defined as the class of correct executions, and a protocol which allows
only correct executions is presented here. Other protocols including virtual timestamps and predicatewise
two-phase locking [Korth et al 1988] have been re-defined to fit wihin our model. These will be described
in a future paper.

5.1 A Ccerrect Execution Protocol

Long duration transactions in this model can be thought of as consisting of four parts. The first phase,
called transaction definition, occurs when an active transaction defines a subtransaction. The system obtains
the input constraint, output condition, and place in the partial order, of the defined transaction. The second
phase is the transaction validation phase. This phase is concerned with assigning appropriate versions to
the previously defined transaction. The third phase is called the transection erecution phase. During this
phase, a transaction performs all of its operations. The fourth phase deals with the end of all transactions,
commit, abort or whatever else is needed, and is the trensaction termination phase. Correctness, defined as
correct executions, must be maintained throughout all of these phases. ‘

Correct executions are violated due to two conditions: partial order invalidation and input constraint
dissatisfaction. In terms of the formal model, either R or X can b2 incorrect. R can viclate the definition
of an execution, which says (t1,f2) € Pt = (13,t;) ¢ R", while X, can either map a non-unique state
to a transaction, or 3¢; such that I;;(X(#;}) does not hold. For this protocol, partial order invalidation is
caused by a transaction reading a version of a data item written oy the wrong transaction. This type of
error is similar to an non-serializable schedule in that the database could become inconsistent because the
transaction is reading the wrong data. Input constraint dissatisfaction occurs when a transaction attempts
to execute with data which does not satisfy its input constraint. The execution of the transaction at this
point is undefined. Therefore, a concurrency control protocol should prevent both of these conditions.

During the transaction definition phase the only possible problem is partial order invalidation. Once a
transaction has been defined, the next step is to test the partial order to determine if it is still correct. This
can be done by building a graph representing the partial order and testing the graph for cycles. If any cycles
are found, then the partial order has been violated and the defined transaction is aborted. Another problem
could occur if the defined transaction is placed in the partial order before some transaction which has already

14

committed.. That is, (j,g1 N Ny, # 0 and ¢t commits before ¢; is defined. In that case, the partial order would
be violated if the new transaction wrote a data item which the committed transaction was supposed to read.

There are two ways to solve this problem.. Either we must undo the committed transaction, which is possible .

since the commit is only relative to the parent, or we can prohlblt siuch a construction. Since recovery is not
a primary concern with this work, we shall assume the latter option, though we may consider the former
in practice. After the partial order has been verified, the transaction is named. One method to name a
transaction is to append a number to the name of the parent which i is greater than any prevxously a.ssngned
toa subtransaetlon such as is done in figure 1 of Section 2.

During the transaction ‘validation phase, the system finds versions of data 1tems which sa.t1sfy the input '

constraint of the transaction. For each data item in the input constraint, the transaction places a R, (read
for Valldatlon) lock on the data item in order to protect the transaction from updates performed by other
transactions during this phase. The system then performs a two-part process in order to assign correct
versions to the transaction. The first part determines the set of versions for each data item which can be

read without causing partial order invalidation. 'To do this, a set of transactions, D; is associated with each -

data item d; in the input constraint of the transaction being validated, for simplicity, called ¢;. A transaction
t; is in D; if parent(t;) =parent(t;) unless:

1. (t:,8) € P, or -

2. d; g Uy, or

3. 3t such that (di.€ Uy,) A ({(2,8:), (te, %)} C P+)

Basically, every sibling is considered to be in the set unless the transaction is a successor to the transaction
being verified, it does not write the data item which corresponds to the set, or there exists another transaction
-which comes between this transaction and the transaction being verified and that transaction writes a version
of the data item. Note that transactions which might yet write the data item are not considered in the set
D;. By not considering the transactions which might later write a version of the data item, the protocol is
making the optimistic assumption that such transactions will not write a new version which the transaction
must read. A pessimistic protocol could require the transaction block at this point until all predecessors

have either committed or written every data item in the transactions input set, but th1s could réquire an

extremely long wait, which our protocol avoids.

After the sets of transactions have been determined, each e]ement in the set is checked to see if 1t is a.x

predecessor of the transaction being verified. If one of the transactions is 2 predecessor, then the rest of the
transactions are removed from the set, and the version written by the predecessor is the only one allowed to
the transaction. Otherwise, any of the versions written by any member of the set, or the version assigned to
the parent, can be assigned to the transaction.

Once the set of allowable versions have been determined for every data item in the input set of the
transaction, the system must still select a single version for each data item such that the input constraint is
satisfied. This is the second part of the version assignment problem. Since multiple versions exist for each

data item, an exhaustive search of ali possible combinations would take time exponentlal in the number of*

data items. Instead, a heuristic based scheme should be used for selecting versions. Another alternative
would be to treat the versiofiselection process as a query, which it very closely resembles, to find the tuples

which satisfy the predicate. If a satisfactory SQL-type query could be built from the predicate, then typical

database optimizations, like’ indices, could be used to reduce the time required to find a satisfactory set of
versions. Additionally, the expected case should be better than the general case since at least one transaction
in every non-leaf will have only one version, to chose for each value. Likewise, the partial-order restrictions
and parent-world view also serve to reduce the number of versions which need to be.included in the search

space. Also.remember that any satisfactory set of versions can be used, which inc¢reases the number of goal

states for the search. Finally, even if substantial eﬁ'ort is expended in version selectlon the avoidance of one
long duration wait is likely to justify this overhead. R :

- During the transaction-execution phase, the transactions issue rea.d and write requests which the con-
currency control protocol augments to ensure safe concurrent execution. A-read request is augmented by
upgrading a R,-lock to a R-lock. If the transaction: does not have a R;-lock on the data item, then the read
is rejected. The lock compatibility matrix is then consulted for granting R-lock requests, so a transaction
can either be granted the lock, or temporarily blocked on some writing transaction. After the lock is granted,
the transaction can read from the version assigned to it. A write reouest from a transaction does-not require

15

a transaction to hold a read lock, and therefore‘,’ can never fail (although it is possible for'a transaction
to abort due to its read lock on a data item it is writing). As soon as the write is compléted, the write
lock is released. Once the write lock is Feleased; all read-lock requests which were blocked by the write are

allowed to continue into the re-evaluation process. A write creates a new version of the data. item, which is

immediately available to all siblings of the wntmg transaction.

A transaction which consists of subtransaction opera.tlons does not acquire read locks, but it does use
both write and R,-locks. A non-leaf transaction is validated in exactly the same way as a database access
transaction, complete with acquiring R,-locks. However, since 2 non-leaf transaction does not actually
perform any read operations, it does not a.cqlnre any read-locks. Likewise, a nested transaction does not

perform any write steps, but it does release versions. A version is released when the final subtransaction, t;,

terminates. Each subtransaction must verify O,(X (¢)) before it terminates.

We can now construct a lock compatibility matrix for this model. Note that all locks are placed on the
entity, not on a version of the entity. Let W represent a write lock request, R, represent a read for validation
lock, R represent a read lock. : :

held
R, R w
R, true true false
requested R true true false

w re-eval re-eval true

Figure 3. Lock Compatibility Matrix

The table needs some explana.tlons since it is not a conventlonal compat:blhty matrix. A “true” entry in
the table means the lock can be granted, the appropriate entry is made in the entity lock table, and the

transaction continues normal operations. As expected in mult:ple version systems this result oceurs except
when a read operation conflicts with a write. A “false” entry in the table means the lock cannot be granted

and the transaction becomes blocked on this data item. The blockmg time involved here is small, because
write locks are held only for the duratlon of the write operatlon not for the duration of the entire transaction.
Once a transaction becomes unblocked on a data item, the re-evaluation routine is called, as if the matrix
result had been “re-eval”. A “re-eval” result on the table means the transaction should be interrupted and
its input constraint should be re-evaluated based on the new version written by one of its predecessors.

The purpose of the re-evaluation procedure is to correct problems which might occur as the result of a
write. These problems occur because of the optimistic nature of our protocol. Basically, the re-evaluation

procedure checks to see if a transaction with a read lock on an entity should have read the version most.
recently created instead of the one prev;ously assigned to it. Although a transaction holding a read lock
will have to be aborted, the protocol can try to salvage a transaction which holds a R,-lock by changing

the versions which have been assigned to it. This salvagmg occurs in a procedure called re-assign, which
may chauge any version assignment as long as the tra.nsactlon has not read the data item. The goal of this
procedure is to re-establish both the partial order and the input constraint, and is very similar to actions
taken during the validation phase. Details of the re-eval procedure are given in figure 4.

During the transaction termination phase, the concurrency control protocol operates just as if the
transaction were still in the execution phase. Other protocols for handling commits and aborts interact
with the transaction:at this point, but until the transaction commi's, it can be aborted by the concurrency

control protocol. However, any such abort will be the result of another transaction, as a transaction in the

termination phase cannot perform any operations other than a commit or an abort. The only rule for the

concurrency control protocol is that a transaction cannot commit unil all of its predecessors have comrmtted

all of its subtransactions must have terniinated and its output conéition is satlsﬁed

Although we will soon prove this protocol correct; it can be optimized in many ways. For example, we
can identify siblings before calling the re-eval procedure, thus reduf-mg the work that procedure ha.s to clo
However,; we defer these optimizations to a future paper. o

16

.

Re-eval (R,W,e); (* e is the data item being written;
R is an array of transactions which hold
read locks or Ry, locks on data item e; W is
the transaction which is writing the new version *)

1:==0
While (R[i}.name # nil) (* R[i].name is the name of
~ the transaction *)
if (prefix(R[i].name=prefix(W.name)) _ (*preﬁx returns the all but the last element
in the name of a transaction, so this
checks to see if the transactlons are SJblmgs *
if (path(parent(W).P,W.name,R[i].name)) (* path(a,b,c) returns true if there exists a
path in a partial order (a) from (b) to (c).
This determines if Wisa predecessor to the
lock holding transaction. *) '
V:= the author of the version read by Rj] '
if (path(parent(W).P,V.name,W.name)) (*this determines if W is a successor
of V.If it is, then the transaction which
read from V, should have read from W. *)’
if (R holds an R, lock)
re-assign(R[i]) -~ (* if the transaction held a read for validation
' lock, then it must have its versions re-assigned to
see if an acceptable set of versions exists which
includes the version written by W *)
© else SR : L '
abort(R[]) ' ' (* if the transaction held a read lock, .
: IR then it has already read the data item and must be
aborted due to partial order invalildation *)
- end if ‘ ' -
end if
end if
end if
iL=i+1;
end while

. Figure 4
5.2 Proof of Protocol Correctness

* In Section 4 a schedule is considered to be a correct execution if every transaction sees a database state
which satisfies its input constiaint and every transaction leaves the database in a state consistent with its
output condition. An execution is considered to be parent-based if all transactions read from either siblings
or its parent and no other transactions. All executions legal under the protocol presented in Section 5.1 are
both parent-based and correct.

Lemma 4: All executions allowed under this protocol are parent-based executions.
Proof:
‘This property requires two parts.to.be proven.
L (t:,4;) € Pt = (;,4) ¢ Rt, and
2. For all transactions ¢t = (T, P, I, O;), Vt; € T, Ve e E, either
a. (X(t:))(e) = (X(@))e), or -
b. 3¢; € T such that (¢;,%;) € R and (X (#))(e) = (1; (X(t,)))(e)
Part 1:
Follows from the first restriction on transactions in the set D;.

17

Part 2:
Follows from the mitial condition on transactions in the set D;. [J
It now remains to show that all executions legal under this protocol are correct executions.

Theorem 2: The Concurrency Control Protocol Allows Orly Correct Executions

A legal schedule under the protocol is correct if for the transaction t = (T, P, I, O;), where parent(t)=nil,
there exists (R X), such that Vi; € T, I, (X (#:)) AO(X ().
Proof:

Initially, the input constraint condition is preserved by the version assignment function. No transaction
is allowed to execute unless its input constraint is satisfied. If a transaction is assigned new versions during
the re-evaluation process, then it must also wait until the input constraint is satisfied.

The output condition requirement is met by the termination phase of the protocol, since no transaction
can commit if its output condition is not satisfied. []

6. Conclusions

We have presented an extension to the classical transaction model design to support the requirements
of long-duration, interactive transactions. By showing how to represent both the classical model and the
model of Bancilhon, et al. [1985] using the notation of our model, we demonstrated that our model is
compatible with existing transaction theory. The features we have added to the classical model include pre-
and post- conditions that describe transaction behavior to the transaction manager, a partial interpretation
of these conditions based on the notion of ¢bjects that allows for efficient protocols, direct support for multiple
versions, and the integration of our predicate-based notions of correctness with the nested transaction theory
of Moss [1985] and Beeri, et al. [1986)].

Our model allows a much richer class of schedules than the classical model. Although this is good from
the point of view of increasing concurrency, it may be bad from the point of view of scheduler complexity. We
investigated the complexity question both formally and from a practical perspective. We defined classes of
schedules in our model and compared these classes with those that exist under the classical model. Although
the richest of our classes have an NP-complete recognition problem, this is no worse that in the classical
model in which serializability testing is NP-complete. We showed several interesting subclasses for which the
recognition problem is polynomial. This was achieved by generalizing the notion of conflict serializability.

To show that our model has potential as a practical scheme for transaction management, we showed
that earlier transaction management protocols can be represented easily on our model. We then gave a new
protocol that imposes moderate overhead but offers a high degree of potential concurrency for transactions
in a cooperative processing environment as might exist in CAD.

The new protocol is not necessarily optimal. Although it offers a high degree of concurrency along w1th
a formal notion of correctness, we expect that still better protocols can be defined using our model. Much
future work remains to identify the best performing protocols under our model, and many implementation
details are still to. be addressed, particularly in the area of efficient recovery from failures. We are currently
investigating both implementation questions and extensions to the formal model.

References:

1 Bancilhon, F., Kim, W., Korth, H., “A Model of CAD Transactions,” Proceedirigs of the llth Conference
on Very Large Databases, 1985

2 Beeri, C., Bernstein, P.A., Goodman, N., “A Model for Concurrency in Nested Transaction Systems,”
Technical Report TR-86-03, Wang Institute of Graduate Studies, 1986.

3 Bernstein, P.A., Hadzilacos, V., Goodman, N., Concurrency Control and Recovery in Database Systems,
Addison-Wesley, 1987.

4 Eswaran, K., Gray, J., Lorie, R.., Traiger, 1.; “The Notions of Consistency and Predicate Locks in. a
Database System,” Communrications of the ACM, 19:11, November 1976, pp. 624-633.

18

8

9

10

11

12

13
14

15

16
17

18

19

20

Fekete, A., Lynch, N., Merritt, M., Weihl, W., “Nested Transactions and Read/Write Locking,” Pro-
ceedings of the 6th ACM Symposium on Principles of Datzbase Systems, 1987,

Kim, W., Lorie, R., McNabb, D., Plouffe, W., “A Transaction Mechanism for Engineering Design
Databases,” Proceedings of the 10th Conference on Very Large Databases, 1984.

Korth, H., “Locking Primitives in a Database System,” Journal of the ACM, 30:1, January 1983, pp.
55-79.

Korth, H., Kim, W., Bancilhon, F., “On Long-Duration CAD Transactions” to appear, Information
Sciences, 1988.

Kung, H., Papadimitriou, C., “An Optimality Theory for Concurrency Control for Databases,” Acta
Informatica, 1983.

Liskov, B., Curtis, D., Johnson, P., Scheifler, R., “Implementation of Argus,” Proceedings of the 11th
ACM Symposium on Operating Systems Principles, 1987.

Lorie, R., Plouffe, W., “Relational Databases for Engineering Data,” IBM Research Report, RJ 3847
(43914), 1983.

Lynch, N. “Concurrency Control for Resilient Nested Transactions,” Advences in Compuiing Research
- The Theory of Dalabases, ed. F. Preparata, 1986. 7

Moss, J. Nested Transaclions < An Approach to Reliable Distributed Computing, The MIT Press, 1985.
Moss, J., Griffeth, N., Graham, M., “Abstraction in Recovery Management,” Proceedings of the 12th
ACM SIGMOD Conference, 1986. i
Papadimitriou, C., “The Serializability of Concurrent Database Updates,” Journal of the ACM, 26:4,
October 1979, pp. 631-653.

Papadimitrion, C., The Theory of Database Concurrency Conirol, Computer Science Press, 1986,
Papadimitriou, C., Kanellakis, P., “On Concurrency Contro! by Multiple Versions,” Proceedings of the
1st ACM Symposium on Principles of Database Systems, 1982.

Silberschatz, A., and Kedem, Z., “Consistency in Hierarchical Database Systems,” Journal of the ACM,
27:1, January 1980, pp. 72-80.

Weikum, G., Schek, H.-J., “Architectural Issues of Transactions Management in Multi-Level Systems,”
Proceedings of the 10th Conference on Very Large Databases, 1984, '
Yannakakis, M., “Issues of Correctness in Database Concurrency Control by Locking,” Journal of the
ACM, 29:3, July 1982, pp. 718-740.

19

