A TAXONOMY OF FAIRNESS AND TEMPORAL
LOGIC PROBLEMS FOR PETRINETS

Rodney R. Howell, Louis E. Rosier, and
Hsu-Chun Yen

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-88-03 January 1988

A Taxonomy of Fairness and Temporal Logic Problems for
Petri Nets”

Rodney R. Howell, Louis E. Rosier Hsu-Chun Yen
Dept. of Computer Sciences Dept of Computer Science
The Univeristy of Texas at Austin Iowa State University
Austin, TX 78712 Ames, TA 50011

January 12, 1988

Abstract

In this paper, we define a temporal logic for reasoning about Petri nets. We show the model checking
problem for this logic to be PTIME equivalent to the Petri net reachability problem. Using this logic and
two refinements, we show the fair nontermination problem to be PTIME equivalent to reachability for
several definitions of fairness. For other versions of fairness, this problem is shown to be either PTIME
equivalent to the boundedness problem or highly undecidable. In all, 24 versions of fairness are examined.

1 Introduction

In the specification and analysis of concurrent systems, some notion of fairness is often necessary to ex-
clude from consideration certain computations which prevent particular events from occurring, even though
these events may be possible infinitely often. Many definitions of fairness have been proposed (see, e.g.,
[5,6,7,8,12,19,20,28]), and each has its merit in particular applications. Several versions of fairness have been
defined (or adapted) for Petri nets [5,6,7,8,28], a powerful formalism often employed to model concurrent
systems [26]. Decidability issues concerning fairness in Petri nets were considered in [6,7,34]. One problem
examined in these papers is the fair nontermination problem; i.e., for a certain definition of fairness, does
there exist an infinite fair computation? Though the decidablity of a number of these problems has been
determined, only a few rough complexity bounds have been given for those known to be decidable [7]. In
[15], we examined the complexity of the fair nontermination problem for conflict-free Petri nets with respect
to several definitions of fairness. In this paper, we extend this study to general Petri nets, examining the 24
versions of fairness presented in [5,6,7,8,12,19,20,28]. The results of this study are summarized in a table in
Section 5.

In the study of Petri nets, a scarcity of knowledge concerning computational complexity is by no means
unique to the fair nontermination problem. For example, the precise complexity of the reachability problem
has remained elusive for many years. For this problem, the most efficient algorithm is not primitive recursive
[18,23], whereas the best known lower bound is exponential space [21]. We show in this paper that there is
a close relationship between the reachability problem and several of the fair nontermination problems. In
particular, we show several of these problems to be equivalent to reachability; i.e., their complexities are

equivalent to that of reachability with respect to PTIME many-one reductions. (Throughout this paper, we

*This work was supported in part by U. 8. Office of Naval Research Grant No. N00014-88-K-0763.

will use the word “equivalent” in this sense when referring to decision problems.) Thus, to determine the
precise complexity of any of these problems (modulo PTIME reductions), it is sufficient to consider only the
reachability problem. For examples of other (more classical) problems known to be equivalent to reachability,
see [26].

Clearly, since some versions of the fair nontermination problem have been shown to be undecidable [6,7],
not all versions are equivalent to reachability. Rather, one of the main points of this paper is that most
versions are either highly undecidable (in particular, complete for £} — the first level of the analytical
hierarchy), equivalent to reachability, or equivalent to boundedness (i.e., exponential space complete with
respect to PTIME many-one reductions). In some sense, it is easier to show problems to be highly undecidable
or equivalent to boundedness than it is to show equivalence to reachability. The reason for this is that highly
undecidable problems and exponential space complete problems as a whole are fairly well understood. The
reachability problem, however is not well understood, as is evidenced by the lack of knowledge concerning
its complexity. Hence, as a way to overcome this difficulty, we develop in this paper a framework based upon
temporal logic for reducing fair nontermination problems to the reachability problem.

For some time, temporal logic has been considered an appropriate formalism for reasoning about systems
of concurrent programs [22,27]. A typical problem involving temporal logic is the model checking problem;
i.e., determining whether a given structure defines a model of a correctness specification expressed in the
temporal logic. The problem can be formally stated in a variety of ways. For the purposes of this paper, model
checking is the problem of deciding whether in a given Petri net there is an infinite firing sequence satisfying
a given temporal logic formula. This version of model checking (with respect to finite-state structures) was
referred to as “determination of truth in a structure” in [31]. What makes the model checking problem useful
for us is that most fairness specifications can be stated in some temporal logic (see, e.g., [10]). Thus, a fair
nontermination problem can be reduced to a model checking problem. Now in order for this reduction to be
useful (for our purposes), the model checking problem must be no harder than reachability. Unfortunately, we
were able to show in [15] that for a fairly simple temporal logic, the model checking problem is undecidable,
even for conflict-free Petri nets (see also [33]). On the other hand, we were able to show a subset of the
logic to be NP-complete for conflict-free nets. This logic utilizes the predicates ge(p,c) (place p is greater
than or equal to ¢), en(t) (transition t is enabled) and fi(t) (transition t is the next to fire). Call this set of
predicates Q'. The operators used are F (sometime), X (next time), A (and), V (or), and = (not), where — is
used only on predicates. The problem with this logic (which we will call f,(Q’ ,F,X)) is that it can only make
assertions about finite portions of (possibly infinite) firing sequences. Hence, it is only marginally useful for
expressing fairness constraints.

With respect to general Petri nets, it is not hard to see that £(QF,X) is powerful enough to express
reachability. Thus, the model checking problem for this logic is as hard as reachability. In this paper, we
extend this logic by adding new predicates which give it the power to specify certain loops. This strategy
differs from our analysis in [15], where we kept the set of predicates fixed but restricted the use of the
operators in order to develop various logics. With this new logic (which we will call L(Q,F X)) we associate
a variation of the model checking problem which we call the finite model checking problem. This problem is to
determine whether there exists a finile firing sequence that satisfies 3 given formula. The reason we introduce
the finite model checking problem is to allow us to use predicates asserting that a firing sequence produces a

nonnegative (or zero) net change on a given place; this assertion would not make sense for arbitrary infinite

firing sequences. We are then able to show that the finite model checking problem for ﬁ(Q,F,X) is equivalent
to reachability. In so doing, we develop a methodology for admitting new predicates to the logic without
destroying its equivalence to reachability. Because E(Q,F,X) has the power to specify loops, it can specify
that certain types of events occur infinitely often. In particular, suppose we wish to determine whether
a Petri net P is a model for a formula f € f(Q' ,F,X). We need only to find a finite firing sequence that
satisfies T and ends in a loop. We can specify a path of this type in £(Q,F,X); hence, the model checking
problem for L£(Q/,F,X) may be expressed as an instance of the finite model checking problem for ﬁ(Q,F,X)
Furthermore, £(Q,F,X) is powerful enough to express formulas of the form “infinitely often q,” where qis a
Boolean combination of predicates from Q. (Call this set of formulas £°(Q').) Again, we can express the
model checking problem for £°(Q’) as an instance of the finite model checking problem for L£(Q,F X). This
answers a question left open in [15] as to whether the model checking problem for £*°(Q') is decidable for
conflict-free Petri nets. Perhaps the most important property of E(Q,F,X) is its ability to succinctly express
various definitions of fairness — namely, co-fairness [5], fdp-T where T is a set of transitions [7], and five
types of fairness introduced by Landweber [19] and Carstensen and Valk [8]. As a result, we are able to show
the fair nontermination problems for all of these types of fairness to be equivalent to reachability. Thus,
[Z(Q,F,X) provides a powerful mechanism for showing equivalence of certain fair nontermination problems
to reachability. Finally, we might also mention that the existence of such a logic is somewhat surprising in
view of the aforementioned negative results of [15].

Since so many of the decidable versions of the fair nontermination problem are equivalent to more
classical Petri net problems, one might surmise that the undecidable versions are equivalent to containment
and equivalence, which have been shown to be undecidable in [4] and [13], respectively. Since reachability
is decidable, it is not hard to see that both of these problems are in II;; i.e., they are co-re. As Vidal-
Naquet [6] and Carstensen [7] have demonstrated, the key step in showing that any version is undecidable
is to show that the Petri net under the given fairness constraint can simulate zero-testing. Once zero-
testing can be performed, the Petri net can simulate an arbitrary Turing machine. Carstensen [7] has
also exhibited another interesting capability of Petri nets under certain fairness constraints: the ability to
nondeterministically generate any natural number without running the risk of entering an infinite loop. Thus,
unbounded nondeterminism can be simulated. We use this fact to show that these versions are complete for
T1. Hence, these problems are highly undecidable and not equivalent to containment or equivalence. These
results may be compared and contrasted with those of [1,2,3,9,14,25,32].

The remainder of the paper is organized as follows. In Section 2, we give the basic definitions of Petri
nets and temporal logic. In Section 3, we develop the logics that are later used to show various types of fair
nontermination problems to be equivalent to reachability. In Section 4, we examine the fair nontermination
problem for the 24 types of fairness. In most cases, we are able to show the problems to be either highly
undecidable, equivalent to reachability, or equivalent to boundedness. One exception is with respect to
fairness (as defined by Lehman, Pnueli, and Stavi [20]) for bounded Petri nets, as is mentioned in [7].
Although this problem is clearly decidable, we are able to show it to be nonprimitive recursive. We conclude

in Section 5 with & summary of our results and a discussion of open problems.

2 Definitions

A Peiri Net (PN, for short) is a tuple (P,T,p,u0), where P is a finite set of places, T is a finite set of
transitions, ¢ is a flow function ¢ : (P x T) U (T x P) — N, and pg is the indtial marking po : P — N,
where N is the set of natural numbers. A marking is 2 mapping p : P — N. We often establish an order
on the places, pi,...,pk, and designate a marking p as a vector in N®, where the ith component represents
u(p;). A transition t € T is enabled at a marking p iff for every p € P, o{p,t)< p{p). A transition t may
fire at a marking p if t is enabled at y. We then write u L !, where ¢/ (p) = p(p) - w(p,t) + o(t,p) for all
p € P. A sequence of transitions o = t1...t, is a firing sequence from po iff po 2N 1 ARt in for some
sequence of markings p1,...,tn. We also write po Z g, and denote ty...t; by ofj] for 1 < j < n. We extend
these notions to infinite firing sequences in the obvious way.

For a PN P = (P, T,, 1t0), the reachability set of P is the set R(P) = {u | po Z p for some o}. Given a
marking p of P, the reachability problem (RP) is to determine whether y € R(P). The boundedness problem
(BP) is to determine whether R(P) is finite. Throughout this paper, we will define several fairness properties
for firing sequences. Given a fairness property x, the nontermination problem with respect to ¢ (NTP?) is to
determine whether there is an infinite firing sequence o in P that satisfies x.

A labeled Peiri netis a triple P=(P1,Th), where P1=(P,T,p,u0) is a PN, I is a finite set of labels, and
h: T — T U {¢} is a labeling function. We also extend h : T* — T* by h(¢)=¢ and h(st)=h(o)h(t). Given
a marking p of P, we define the terminal language of P with respect to p as LY(P,p) = {h(o) | po = p}.

Let A/ denote the set of all PNs, 7* denote all finite firing sequences of nets in A/, 7% denote all infinite
firing sequences of nets in A, and 7% = T* U T¥. A predicaie is a partial function g : N x T®x N —
{true, false}. For P € N, ¢ a (finite or infinite) firing sequence of P, and n € N, we say < P, ou>E qiff
q(P,o,n) = true. A well-formed formula (wif) is either a predicate or of the form —f, f A g, Xf, or f U g,

where f and g are wifs. For a firing sequence ¢ of P and wfls f and g, we say:
e < P,o.n>k —fiff not (< P,o,n>k f);
e <P,on>EXIif < P,ont+i>E 1
o <P,om>EfUgiff 3r>nsuchthat <P,or>kEgandVs,n<s<r, <P,os>kEf
e <P,on>EfAgiff <P,on>=fand < P,on>kEg.
We also use the following abbreviations:
e fVg=—(~fA-g);
e fog=—fVg;
e Ffz= true U]
e Gf=-F-f

We say that P is a (finite) model for { iff there is an infinite (finite, respectively) firing sequence o in
P such that < P,o,0>kE f. Let F be a set of wils. The (finite) model checking problem with respect o F,
denoted MCP(F) (FMCP(F), respectively), is to determine whether a given PN P is a (finite) model for a
given formulaf € F. Let Q be a set of predicates. We then define

e £(Q) = {f|{is a wif using predicates from Q};

o L(Q,F,X) = {f|{is a wif using predicates from Q and the operators ¥, X, A,V, and —, such that =

is used only on predicates}; and
e £°(Q) = {GFf|{is a Boolean combination of predicates from Q}.

For a PN P=(P,T,p, o), a wil f, and a natural number n, we define the model language of P with respect
to fand nas L™(P fn) = {0 | o is finite and < P,o,n>=1}. Aset F of wils is said to be RP-decidable iff for
all f € F,P € N, we can construct in PTIME a labeled PN P'=(P;,T.h), Pi=(P" T, ¢, up), P'=p1,....,pz,
and a marking g on pi,...,ps—1 such that for all n € N, L™(P fn) = LY(P’, (¢ ,n)). We will refer to p; as

the marker.

3 A temporal logic for Petri nets

In this section, we will present a temporal logic for reasoning about Petri nets such that if F is the set of
all wis in the logic, then FMCP(F) =prime RP. The logic will be E(Q,F,X) for a set (of predicates to
be defined later. Even though FMCP(£(Q,F,X)) is no harder than RP, Q will contain a sufficient variety
of predicates to provide a powerful mechanism for showing fair nontermination problems to be equivalent to
RP. Furthermore, certain restrictions of the logic provide interesting extensions to the results shown in [18].
The first extension we show is that MCP(E(Q’ JF. X)) =prrme RP, where Q' is the set of predicates from the
logic developed in [15]. The second extension is that MCP(L*(Q')) =primEe RP. Both of these extensions
may be considered refinements of the main result of this section — that FMCP(L(Q,F. X)) =priue RP.All
of these logics will be used in the next section to show various fair nontermination problems to be equivalent
t0 RP. The main result of this section may therefore be viewed as an umbrella under which a number of the
subsequent results in this paper are derived.

In order to show that FMCP([',(Q,F,X)) <prime RP, we will first show that the reduction holds for
any RP-decidable set of predicates whose negations are also RP-decidable. We will then define Q and show
that both Q and Q = {=q | ¢ € Q} are RP-decidable. We first state the following lemma, which follows
immediately from the definition of the terminal language of a labeled PN.

Lemma 3.1: Given a labeled PN P=(P;, L,h) and a marking g, L*(P,u) # 0 iff » € R(Py).

We can now give the following lemma, relating the FMCP to the RP.

Lemma 3.2: For a set of wifs F, if F is RP-decidable, then FMCP(F) <pr;me RP.

Proof. Given an RP-decidable set F of wifs, let f € 7, and let P be an arbitrary PN. Since F is RP-decidable,
we can construct in PTIME a labeled PN P’'=(P!,,h) and a marking p such that L*(P’, p) = L™(P £,0).
Then P is a finite model for £ iff L™ (P £,0) # 0 if L*(P’, p) # 0 iff 4 € R(P]). Therefore, FMCP(F) <primE
RP.

The following theorem now gives a framework for defining our set of predicates.

Theorem 3.1: If a set of predicates Q is RP-decidable and Q={—q | ¢ € Q} is RP-decidable, then
FMCP(L(Q.F X)) <prime RP.

Proof. We will show by induction on the structure of f € [Z(Q,F,X) that for any PN P, we can construct in

[

PTIME a labeled PN P’ and a submarking g such that for all n € N, L}(P’,(g,n)) = L™(P f;n). The theorem
will then follow from Lemma 3.2. Iff € Q U Q, this is trivial. Therefore, assume we have f;,1; € L£(Q,F.X)
such that for any PN P, we can construct in PTIME labeled PNs P}, P} and markings 1, i such that for
all n € N, L{(P},(1,0))=L"(P f1 ,n) and L (P,(p2,n))=L"(P,fz2,n).
Case 1: T=0H1A L.

We construct P’ from P and P} as follows. Let T1a (T24) be the set of all transitions labeled a in P}
(P}, respectively) for all a € T U {¢}, where & = {a1,...,am} is the alphabet of L™(P,f;n). We relabel all
transitions in P} and P} as ¢, and add m+1 new transitions and 2m+3 new places, as is shown in Figure
3.1. We define y as:

e u(pi;) = pi(py;) fori=12,j= 1,...k-1;

e 1(pir,) = O where p;z, is the marker for P{, 1= 1,2;
o plack;) =1fori= 12

e plen;;) =0fori=12,j=1,..m

Pmark is the marker for P’. It is not hard to see that foralln € N, 0 € LYP'(un)) iff ¢ € LY(PL,(p1,0)) N
L{(P4,(ua,n)) iff ¢ € L™(P,fy,n) N L™(P,fo,n) iff < P,on>kE fiAL iff 0 € L™(P,fn).

Case 2: f=fiv .
P’ nondeterministically chooses to simulate one of P} or Pj; the other, it brings immediately to its final
marking with a zero marker value. P’ can also transfer all tokens from the markers of P] and P} to its
marker. The details are left to the reader.

Case 3: { = Xfj.
P’ simulates P}, but in order to reach its final marking, it must subtract 1 from the marker.

Case 4: { = Ff;.

This is the same as Case 3 except that P’ can subtract more than 1 from the marker.

O

We are now ready to define our predicates. For a PN P = (P, T,p,0), p € P,t € T, ¢,;n € N, and a finite
firing sequence o, let:

e < P,on>kE ge(p,c) iff uo ot g and p(p) > ¢
e < P,on>kE fi(t) iff t is the (n+1)st transition in o;

oln]

< P,on>k Ip(p) iff go = p1, po = pa, and p1(p) < pa(p);

< P,on>E 2(p) iff po B 1, o %> pz, and 1 (p) = pa(p);
e < P,on>k co{p) iff g oln] p1 and there is a py € R(P,T,p, 1) such that us > p.

Let Q be the set of all of the above predicates for all places p and transitions t, and Q=1{q|-q€eQ}
We wish to show that FMCP(£(Q,F,X)) <prrme RP. From Theorem 3.1, we need only show that Q and
Q are RP-decidable. For most elements of Q U Q, this is straightforward. The main difficulty lies with

—co(y). In showing —co(y) to be RP-decidable, we will construct & PN that will in some sense produce all
markings from which no marking greater than or equal to z can be reached. In order to construct such a
PN, we first construct a modified Turing machine (TM) that accomplishes the same purpose. This modified
TM will be such that using Lipton’s construction [21], we can transform it to a PN. In order to define the
precise function of the modified TM, we introduce the following notation. Given an unmarked PN P =
(P,T,p), a marking p, and a positive ¢, let S(P,p) = {po | V&' > p, 1/ € R(P,T,pp,p0)}, and §'(P,puc) =
{Ho#zmnu . | o € S(P, 1)}, where n is the number of bits needed to encode P and p. Also, let S(P,) and
§/(P, p,c) denote the complements of S(P,) and S'(P, u,c), respectively. We now give two lemmas which
define the function of the modified TM and give its construction.

Lemma 32.3: There is a positive constant ¢ such that for any unmarked PN P = (P,T,¢) and marking
4, we can construct in PTIME a linearly bounded automaton (LBA) M that accepts the set §'(P, u,c).
Proof. For any fixed constant ¢, we can clearly verify deterministically in linear space whether the input is
syntactically correct and the number of #s is correct. From [29], if po =3 p1 > g, then po =3 pp > p such

that the length of o3 is no more than g2intos ™

for some constant d. Thus, any marking produced in this
firing sequence can be stored in size(o) + 2198 ™ bits for some constant ¢. §'(P, p,c) is therefore accepted
by an LBA M’ that can be constructed in PTIME. From [17], there is an LBA M that accepts S'(P, u,c).

An inspection of the proof in [17] reveals that M can be constructed from M’ in PTIME.

O

Lemma 3.4: Let P, g, and n be as in Lemma 3.3, and let k be the number of places in P. We can
construct in PTIME an O(2°"1°6™) space bounded TM M with no input tape, augmented with k unbounded
increment-only counters such that the set of final counter values in all accepting computations is S(P,u).
Proof. Let d be the constant from [29] mentioned in the proof of Lemma 3.3. We define a function g mapping
markings to markings such that

. =flog n]
g(1)(p) = p(p) if p(p) < 22°°
gp)(p) = 228715 therwise.

It follows from [29] that po € S(P, u) iff g(po) € S(P,). We can therefore construct M to operate as follows.
M first nondeterministically generates k nonnegative integers no larger than 22°" "1 304 stores them on its
worktape and on the k counters. If any of these values are exactly ga¢nfics=] , the corresponding counters may
nflog nl

be incremented arbitrarily many times. M then writes #2° on its worktape, where ¢ is the constant

from Lemma 3.3, and simulates the machine given by Lemma 3.3 on the contents of its worktape. The result

follows from Lemma 3.3.

O

We are now ready to show the main result of this section, that FMCP(E(Q,F,X)) is equivalent to RP.
From this result we will subsequently derive two refinements concerning logics developed' in [15]; these
refinements will be given in Theorems 3.3 and 3.4. We will then use Theorem 3.2 and its refinements in
Section 4 to show seven fair nontermination problems to be equivalent to RP. The reason we can use a

finite model checking problem to encode a fair nontermination problem is that [Z{Q,F,X) has the power to

express certain loops which may be iterated to produce an infinite “fair” path. Thus, Theorem 3.2 is an
umbrella under which powerful machinery is developed for proving certain fair nontermination problems to
be equivalent to RP.

Theorem 3.2: FMCP(£(Q,F, X)) =primr RP.
Proof. Let P = (P, T,p, o) be an arbitrary PN, and let p be an arbitrary marking of P. Clearly, u € R(P)

iff there is a finite firing sequence o such that

<P,0,0 > [Aep (ge(p.p(p)) Amge(p.p(P)+1)] V F [Apep (ge(p.u(p)) A-ge(p.u(p)+1))].

Thus, RP <prime FMCP(L(Q,F,X)).

In order to show that FMCP(L(Q,F,X)) <prime RP, we need only to show that Q and Q are RP-
decidable; the theorem then follows from Theorem 3.1. Let P = (P,T @, 10) be an arbitrary PN. We need
to show that for any element q of Q U Q, we can construct in PTIME a labeled PN P’ and a marking g/
such that for any n € N, L™(P,q,n) = L*(P’,(¢',n)). Since most of the cases are straightforward, we will
only show the cases ge(pi,c) and —co(y).

Case 1: g=ge(pi,c).

We construct P’ as shown in Figure 3.2. Let pf(ens) = 1, ¢/ (p) = 0 if p # eny and p # Pmark, Where pmars
is the marker. In order to reach {¢/,n}, P’ must pass through two phases. In the first phase, P’ simulates n
transitions of a firing sequence ¢ on two copies of P. In the second phase, the remainder of ¢ is simulated
on one of the copies. At any time, the transitions t;,,...,t;, ,t;,,...,t;, may fire. These transitions enable
no new transitions, but allow all places in both copies of P to be brought to 0 after the simulation of o.
Furthermore, t,. must fire exactly once, guaranteeing that p; is at least ¢ after o[n] is executed in P. It can
therefore be seen that L™(P,q,n) = L*(P’,(¢' ,n)).

Case 2: q = —co(p).

Before we construct P’, we will construct a PN P” with designated places pf,...,py, where k is the number of
places in P, and a submarking p’ on the remaining places in P”, such that for any marking p; of P, (1, ") €
R(P") iff p1 € S((P,T,¢),p). Let M be the machine given by Lemma 3.4 to compute S({(P,T,¢),x). Since the
worktape of M is bounded by O(2°"98™) space, it can be simulated by four O(22""'**") bounded counters;
furthermore, this construction can be done in PTIME. From [21], we can construct in PTIME a PN and a
marking p” such that any firing sequence yielding " simulates an accepting computation of M without its k
unbounded counters. Since the k unbounded counters are increment-only, they can clearly be implemented
by k places in the PN. We have therefore constructed P” and p”. The construction of P’ and ' from
P, P”, and p” is now similar to Case 1 and is shown in Figure 3.3. It should be clear that L™ (P gn) =
LY(P',(#' n))-

O

We now will examine two logics developed in [15]. We can show that the MCP for both problems can be
expressed as restrictions of FMCP(L(Q,F,X)). We will use these two logics in Theorems 4.2 and 4.6 to give
succinct reductions from various fair nontermination problems to RP.

Let Q) be the set of predicates ge(p,c) and fi(t) extended to infinite firing sequences, and let Q’ = {~q
| q € Q'}. MCP(L(Q,F,X)) was shown in [15] to be NP-complete for conflict-free PNs. (The logic in [15]

also included predicaies asserting that a transition t is enabled; this assertion and its negation can clearly

be encoded in £(Q',F,X).) Although £(Q',F,X) can only express loops in which the repeated markings are
explicitly stated, this is sufficient to encode several of the types of fairness given by Landweber [19] and
Carstensen and Valk [8]. We now show that MCP(£(Q',F,X)) for general PNs is equivalent to reachability.
Theorem 3.3: MCP(£(Q',F X)) =prims RP.
Proof. We will first show RP <prrme MCP(L(Q',F,X)). Let P be an arbitrary PN and p be an arbitrary
marking of P. We construct a PN P’ from P by adding a transition t that does nothing and is always
enabled. Clearly, p € R(P') iff 4 € R(P), and any finite firing sequence in P’ can be made infinite. Since
we can express reachability in E(Q’,F,X) as in the proof of Theorem 3.2, RP <prime MCP(E(Q’,F,X))‘
We will now show MCP(£(Q/,F, X)) <prrmz RP. We will reduce the MCP to FMCP(£(Q',F,X)); the
result will then follow from Theorem 3.2. Let P = (P, T,p, po) be an arbitrary PN, and let f be an arbitrary
wif in £(Q',F,X). Let { =fAF Apep Ip(p). It is a straightforward matter to show that P is a model for {
iff P is a finite model for f'.

O

One question left open in [15] was whether MCP(L£>(Q')) is decidable for conflict-free PNs. In Theorem
3.4, we will give a positive answer to this question by showing the problem with respect to general PNs to
be equivalent to RP. Again, Theorem 3.4 may be viewed as a refinement of Theorem 3.2. Clearly, £L%(Q’)
can be used to express fairness constraints for which a certain event must be repeated infinitely often. We
now define the following terminology. A set of wifs F is Q-pumpable iff there is a PTIME function g :
F — L(Q,F,X) such that

1. for any f € F, and any infinite firing sequence o in P, if < P,0,0 > GFf, then for any infinite set I
of natural numbers such that if i € I, then < P,0,i>k={, there is an infinite subset I of I such that for
anyij € ¥, i< < P,oljli>E g(f); and

§ 4

2. if P = (P,T,p, po) is such that < P, o,n>k g(f) for some finite ¢ = oln]o’, then py o] pr S S
such that <(P,T,p,p;),0'[1],0 >=ffor all j > L.

Before showing Theorem 3.4, we give the following lemma.

Lemma 3.5: The set of all positive Boolean combinations of predicates in Q'U Q' is Q-pumpable.
Proof. Let P = (P, T,p, ug) be an arbitrary PN. We will show by induction on the structure of { that we can
construct in PTIME a g(f) satisfying conditions (1) and (2) above.

Base Case 1: [= ge(p,c).

Let g(f) = ge(p,c) A /\p'e » Ip(p'). Let o be any infinite firing sequence such that < P,0,0 >k GFf, and let
I be any infinite set of natural numbers such that if i € I, then < P,o,i>k={. Let y; be such that ug ot e,
and let 8 be the sequence p;,, g, ... such that {i;,is,...} =T and iy <i; <.... Since ¢ is infinite, there must
be an infinite subsequence of #, &' = p;., pj,, ... such that g3, < p;, < ... Clearly, for any natural numbers
r and s such that r < s, < P, o4,]jr > g{f). Part (2) clearly holds.

Base Case 2: f = —ge(p,c).

g(f) = —ge(p,) A zl(p) A Apicp Ip(p) clearly works.
Base Case 3: f = fi(t).
g(f) = fi(t) AA,cp Ip(p') clearly works.

Base Case 4: { = —fi(t).

g(f) = ~Ai(t) AAyep Ip(p’) clearly works.

Now assume we have f; and f; for which conditions (1} and (2) hold.

Case 5: f= ;v f.

Let g(f) = g(f1) V g(f2). Let o be any infinite firing sequence such that <P, 0,0 >|= GF{, and let I be any
infinite set of natural numbers i such that < P,¢,i>f {. There must be some infinite subset I’ of I such
that either Vi€l < P,oi>Efi,or Vie l' < P,oi>kE f3. Assume without loss of generality that Vi€
I' < P,o,i>k fi. From the induction hypothesis, there is an infinite subset I of I' such that for any i,j €
", 1 <j, <P,oljli>kE g(fi). Then < P,ojli>E g(f).

Now suppose P=(P,T,p,u0) such that < P,en>k g(f) for some finite ¢ = o[nlo’. Then either
< P,oen>kE g(fi) or < P,o n>}= g(fz) Without loss of generality, assume the former. From the in-
duction hypothesis, po o] H1 L po 5 ... such that <(P,T,p,u;),0[1],0 >k f; for all j > 1. Therefore,
<(P,Tp,p;)0oll],0 > fivi =1

Case 6: = HAfy.

Let g(f) = g(f1) A g(f2). Let o be any infinite firing sequence such that < P,0,0 > GFf, and let I be
any infinite set of natural numbers i such that < P,oi>k f. Then for any i € I, < P,¢,i>}= fi. From the
induction hypothesis, there is an infinite subset I’ of I such that for any ij € I', i < j, < P,o[j],i>k g(f1).
Since I' C I, for any i € I, < P,o,i>k f3. From the induction hypothesis, there is an infinite subset I” of I
such that for any i,j € I, 1< j, < P,o[j],i>E g(f2). Consequently, < P, ¢[jli>F g(f).

Now suppose P = (P, T,p, ug) such that < P,o,n>k g(f) for some finite ¢ = o[n}e’. Then < P,on>f
g(f;) and < P,on>k g(fz). From the induction hypothesis, uo & I LA 12 7. .. such that
<(P,T,p,1;),0'[1],0 >= f; and <(P,T,p,u;),6'[1],0 >|=1; for all j > 1. Therefore, <(P,T,p,;),0'[1],0 >|=
fiAfy =1

Theorem 3.4: MCP(L®(Q")) =priue RP.
Proof. Let GFf € £*(Q’). We can construct in PTIME an f = f such that negations occur only on
predicates in . Let g be the PTIME function constructed in Lemma 3.5. It now follows immediately from
the properties of g that P is a model for { iff P is a finite model for g(f'). Thus, MCP(F) <prime RP. The
construction given in Theorem 3.3 shows RP <prime MCP(L®(Q')).

4 The fair nontermination problem

In this section, we examine the complexities of 24 fair nontermination problems. We use the machinery
developed in Section 3 to prove Theorems 4.2, 4.6, and 4.12, where a total of seven of these problems are
shown to be equivalent to RP. Particularly in the latter two theorems, this machinery provides for very
succinct reductions to RP, whereas “brute force” reductions are much longer and considerably more tedious.
In the remainder of the theorems in this section, most of the problems we study are shown to be either

equivalent to BP or Ti-complete. The results of this section are summarized in a table in Section 5.

10

The first notions of fairness we consider were defined in Landweber [19], and Carstensen and Valk [8].
These definitions of fairness are such that a fair firing sequence must visit certain predefined markings or
transitions infinitely often. It is worth mentioning that the notion of “enabledness” does not play any role
in these definitions (other than the fact that the definitions deal with firing sequences). Given an infinite
firing sequence o = tity..., we define inf” (o) (inf” (¢)) to be the set of markings (t;ran51t10ns) that occur
infinitely often in o (i.e., inf¥ (o) = {u | there are infinitely many i such that o o4 u} and inf? (o)={t; |
t; occurs infinitely often in o}). Let A be a finite set of finite nonempty sets of markings. An infinite firing

sequence o = titq... is said to be

] u € A (i.e., some marking reached by ¢ is in A).

e Mlfar iff 3A€ A JieN gy =
e MU/-fairif 3A€ A, VieN:yy = s pi € A (i.e., every marking reached by o isin A).
e M2-fair if 3 A € A, inf(¢) N A # 0 (i.e., some marking reached infinitely often by o is in A).

e M2-fair if 3 A € A, inf¥(s) # 0 and inf¥(0) C A (i.e., o reaches some marking infinitely often and

every marking reached infinitely often by ¢ is in A).

o M3-fair if 3 A € A, inf¥(s)=A (i.e., the set of markings reached infinitely often by ¢ is an element of
A).

e M3'-fair if 3 A € A4, A C inf¥(0) (ie., every marking in A is reached infinitely often by o).
Similarly, let A be a finite set of nonempty subsets of transitions. ¢ is said to be:
e Tl-fairiff 3A e A, Jie Nt : t; € A

e T1-fairif 3 A€ A, Vie Nt €A,

Tofair if I A € A infT(c) N A # 0.

@

T2'-fair iff 3 A € A, inf? () C A.

T3-fair iff 3 A € A, inf” (¢)=A.

e T%-fair iff 3 A € A, A C infT (o).

We will now investigate the complexity of the nontermination problems with respect to the above fairness
constraints. The first theorem gives an exception to our general classification scheme due to the fact that
for M1'-fairness the entire allowable reachability set is given as input to the problem.

Theorem 4.1: NTPM!' is NLOGSPACE-complete.

Proof. The proof method here is similar to the proof used in [15] to solve a similar problem for conflict-free
Peiri nets. For the sake of completeness, we sketch the proof in what follows. To show the problem to be
in NLOGSPACE, we first guess an A in 4. Next, we check to make sure that the initial marking is in A.
During the entire procedure, we will maintain a pointer to keep track of the current marking. (Note here
that the amount of space needed to maintain such a pointer is logarithmic in the size of the input.) Initially,
the pointer points to the initiai marking. We then repeatedly guess a transition t and a marking g in A and

verify that p can be produced by firing t in the current marking. If so, u becomes the current marking. If the

11

above procedure can be performed for more than [A] times, then there is an M1'-fair computation. Clearly,
the above procedure is in NLOGSPACE. The problem was shown to be NLOGSPACE-hard for conflict-free
PNs in [15]; thus, it must also be NLOGSPACE-hard for general PNs.

0

In showing the following theorem, we make use of the temporal logic results given in Theorems 3.3 and
3.4. This machinery makes the proof very succinct; however, this particular theorem is not exceedingly
difficult to prove without using these results. The real power of our logic will be exploited in Theorems 4.6
and 4.12.

Theorem 4.2: NTP? =pr;yr RP, for x € {M1, M2, M2’, M3, M3'}.

Proof. We first show RP <pprye NTP®. We use a technique from [15]. Let P = (P,T,p, uo) be an arbitrary
PN and p be an arbitrary marking of P. We now construct a Petri net P’ and a set A such that g € R(P)
iff there is an x-fair computation with respect to .4 in P’. The new Petri net P’ is identical to P except that
it has an additional transition that is always enabled and does nothing. Now let A={{u}}. Clearly, u €
R(P) iff P’ has an x-fair computation with respect to A, where x € {M1, M2, M2, M3, M3’} Furthermore,
the reduction can be done in polynomial time.

We will now show NTP® <pryjup RP for x € {M1, M2, M2, M3, M3'}. Let P = (P,T,p,10) be an
arbitrary PN, and let A be a finite set of nonempty finite sets of markings. For each element A of 4, let A =
{1ta1, a2, - bak, }- We will give for each x a wif f; such that P has an infinite x-fair path iff P is a model
for f,; furthermore, f, will be in either £(Q',F,X) or £L®(Q'). The theorem will then follow from Theorems
3.3 and 3.4. We define:

o eq(p) = Apep lge(p.n(p)) Amge(p.p(p)+1)];
e in(A) =V e ea(n);

e far1 = Vaca (in(A) V Fin(A));

e f112 =V e4 GFin(A);

o faror =V e Fin(A) A X(in(A) A X(in (A) ... X(in(A)) ...))
(there are k4 X operators);

e fira = Vaea Flea(par) A Fleq(paz) A A Fleq(par,) A Feq(pai)) -)

For M3, we first construct A’ = {A | A € A and there is an infinite M1'-fair firing sequence for {A} in
(P, T,p,p241)}. From Theorem 4.1, A’ can be constructed in PTIME. We now define:

o fars = Vaeu Fealpar)
It should be clear that for each x, there is an infinite x-fair firing sequence in P iff P is a model for {,.

0

We now turn our attention to the 8 transition-related fypes of fairness. The NTP®, for x €
{T1,T1,72,T2',T3,T3}, has been shown to be decidable in [34]. However, no complexity analysis was

given there. In what follows, we show that these problems are equivalent to the BP. The proofs require

12

showing the fact that if an infinite x-fair computation exists, then there must be a short “witness” to this
fact. The proof of such a fact, generally speaking, is based on the method that Rackoff used in the complexity
analysis of the BP in [29] (see also [30]).

A finite firing sequence oo’ is self-covering iff yo 2 s 2 p; and p; > p;. (Note that ¢’ can be executed
infinitely many times.) We define T(s)={t | transition t occurs in ¢}. (Similarly, T(¢")={t | transition ¢
occurs in ¢’}.) Then we have the following easily shown lemma:

Lemma 4.1: Given a Petri net P and a finite set A of finite nonempty sets of transitions, there is an
infinite x-fair firing sequence, where x € {T'1,T1',T2,T2',T3,T3'}, iff there is a self-covering firing sequence

oo’ such that

1. (T1-fair) A € A, A N T(o) # 0.

[

. (T1'-fair) I A € A4, T(c) U T(¢’) C A.

(]

. (T2-fair) A € A4, ANT(') #0.

e

. (T2'-fair) 3A € A, T(¢') C A.
5. (T3-fair) 3A € A, T(¢') = A.
6. (T3'-fair) A € A, A C T(o").

We now give a lemma that allows us to derive an upper bound on the space complexity of NTP®, where
x € {T1, TV, T2, T2/, T3, T3}. The proof closely parallels the proof of Rackoff [29]; hence, it is omitted.

Lemma 4.2: Given a transition t and a set of transitions B, the length of the shortest self-covering firing
sequence oo’, where t€T(e) and T(¢’)=B, is bounded by 2% 8" for some constant ¢ independent of t, B
and n.

In order to derive lower bounds for NTP®, x € {T1, TV, T2, T?, T3, T3}, we define the following
problems, which are equivalent to BP with respect to PTIME many-one reductions. (Note that these
equivalences are not known to hold for LOG/LIN many-one reductions.)

e INF:
Instance: Given a Petri net P,

Question: Is there an infinite firing sequence?

e CP:
Instance: Given a Petri net P and a marking p,
Question: Is there a p' € R(P) such that g < p'?

The following lemma follows from results of Rackoff [20] and Lipton [21].
Lemma 4.3: INF =priyr CP =p7rryugr BP.

We can now show
Theorem 4.3: NTP® =pr g BP, for x € {T1, TV, T2, T?, T3, T3'}.
Proof. To show the NTP? <priume BP, we note that by applying Lemmas 4.1 and 4.2, we have an

13

NSPACE(2°"!°8") upper bound for each problem. Since the BP is hard for NSPACE(2F°Y) with respect to
PTIME many-one reductions [21], NTP? <prrmg BP.

We now show BP <prryre NTP? for each x. Let P = (P,T ¢, o) be an arbitrary PN, and let .A = {T}.
Clearly, P has an infinite x-fair firing sequence for x € {T1, T1’, T2, T2/, T3} iff it has an infinite firing
sequence. Thus, BP <prime INF <priyp NTP® for x € {T1, TV, T2, T?, T3}

To show BP <prime NTPT2, we will use the fact that CP =prryg BP. Let P be an arbitrary PN, and
let u be an arbitrary marking. We construct P’ by adding to P a new transition t which does nothing but
which is only enabled at markings p' > p. Let A = {{t}}. Clearly, P’ has an infinite T3-fair firing sequence
iff there is a y/ € R(P) such that u < u'. Thus, BP <primp CP <prims NTPT3.

i

We now examine the NTP with respect to several notions of fairness in which the constraints are imposed
in an implicit fashion, instead of by an explicit listing the markings and/or transitions that a “fair” firing
sequence must visit. We will first examine three types introduced by Lehman, Pnueli, and Stavi [20] and
two extensions given by Carstensen [7]. (See also Carstensen and Valk [8].) Given a Petri net P and a set

of subsets of transitions 7, an infinite firing sequence ¢ is said to be:
e impartial iff every transition in P occurs infinitely often in o.
e just iff every transition that is enabled almost everywhere in & occurs infinitely often in o.
e fair iff every transition that is enabled infinitely often in ¢ occurs infinitely often in 0.

e fdp with respect to T (fdp-7) iff for every T € 7, if almost everywhere in o some t in T is enabled,

then some t' in T occurs infinitely often in ¢. {(Here, fdp stands for finite delay property.)

e fair with respect to T (fair-7) iff for every T € 7, if some t in T is enabled infinitely often in o, then

some t/ in T occurs infinitely often in o.

Theorem 4.4: NTP™ =pr;r BP.
Proof. Tt is not hard to see that NTP*™? is a special case of NTP73 (by letting A contain only the set of
all transitions); hence, from Theorem 4.3, NTP*™? <pry g NTPT® <pryume BP. In order to show that BP
<prrme NTPI™P we will use the fact that CP =priyg BP. Let P = (P, T,p, yo) be an arbitrary PN, and

let g be an arbitrary marking. We construct P’ = (P, T',¢’, uo) by adding to P a new transition t’ such
that:

e o(p,t') = pu(p) for all p € P; and
e o(t',p) = p(p) + 2 ser pl(p,t) forallp € P.

Clearly, there is an infinite impartial firing sequence in P’ iff there is a ¢’ € R(P) such that g’ > p.

O

In order to show the next theorem, we define the single-place zero-reachability problem, which is equiv-
alent to RP.

14

e RP-S0:
Insiance: A PN P with a designated place p,
Question: Is there a p € R(P) such that p(p) = 07

The following lemma is well known; see, e.g., [26].

Lemma 4.4: RP-S0 =prryg RE.

At this time, we do not know whether NTP/¥s* or NTP/ dp-T is decidable. The main difficulty, we feel,
is due to the fact that these fairness properties are nonmonotonic in the sense that the existence of a just
(fdp-7 , respectively) firing sequence starting in p by no means guarantees a just (fdp-T) firing sequence
starting in any y', where g’ > p. At the same time, we are unable to enforce zero-testing using either of
these properties. However, we are able to show the following three theorems.

Theorem 4.5: RP <priye NTP/#-T even if T = {{t}} for some transition t.

Proof. We will use the fact that RP-S0 =prryme RP. Let P = (P, T,p,p0) be a PN with a designated place
pi. We will construct P’ as shown in Figure 4.1. There is clearly no infinite firing sequence in P’ in which
t fires. Thus, in any infinite firing sequence that is fdp with respect to {{t}}, t must be disabled infinitely
often; i.e., a marking p must be reached such that p(p;) = 0. On the other hand, if o Z p,p(p;) = 0, then
ot't't/... is fdp with respect to {{t}}. Therefore, RP <prryg RP-S0 <priyg NTP/#-T,

O

In [7], Carstensen showed that NTP/9~7 is decidable if | 7 | = 1. We are able to improve upon this
result by showing the problem to be equivalent to RP. In this proof, as opposed to Theorem 4.2, the real
power of the machinery developed in Section 3 is exploited. Without the umbrella of Theorem 3.2 and
its subsequent refinement in Theorem 3.4, this proof would have been much longer and considerably more
tedious. As it is, we are able to give a very succinct proof of an unobvious theorem.

Theorem 4.6: NTP/%~7T =pr e RPIf | T | = 1.

Proof. From Theorem 4.5, we need only show that NTP/%®-T <priyp RPif | T | = 1. Let P = (P, T,p, it0)
be an arbitrary PN, T/ C T, and 7 = {T'}. An infinite firing sequence o is fdp with respect to 7 iff

< 73: ‘750 >§= GF[(A:QT’ “(/\pep ge(p>¢(p1t)))> v (VtGT’ ﬁ(t))}
Thus, from Theorem 3.4, NTP/%-T <ppriyp RPif | T | = L.

The following theorem gives a lower bound for NTP/%#%,

Theorem 4.7: RP <prryr NTP/#?,
Proof. We will use the fact that RP <ppryg NTP/%~{{t}}. Let P = (P,T,p,u0) be an arbitrary PN, and
let t; be an arbitrary transition in T. We construct P’ as shown in Figure 4.2. Suppose ¢ is an infinite path
in P that is fdp with respect to {{t;}}. We construct ¢’ by inserting infinitely often in ¢ t;t} for 2ll j #
i, 1 <j < m; since en is incremented infinitely often, this can clearly be done. Clearly, ¢’ is an infinite
firing sequence in P’ that is fdp with respect to {{t;}}. Furthermore, for all j # i, 1 < j < m, t; and t fire
infinitely often, and t; is disabled infinitely often. Therefore, o’ is just.

Now suppose & is an infinite just firing sequence in P’. In order for ¢ to be infinite, there clearly must be

infinitely many occurrences of transitions from T. Therefore, by deleting all occurrences of transitions not

15

in T, we construct an infinite firing sequence o’ that is fdp with respect to {{t;}}. Therefore, RP <primz
NTP/ 4~} <pryyp NTPIUE,

0

In [7), Carstensen showed the NTP/%" and the NTP/*"=7 to be undecidable. In what follows, we
improve this result by showing both to be complete for £} — the first level of the analytical hierarchy. We
will later use these results to show a third version to be Ti-complete. Our proofs involve certain generalized
counter machines. We define an infinite-branching counter machine (ICM) to be a counter machine with the
added capability to nondeterministically add to a counter any natural number in one step. The following
lemma follows from Chandra [9].

Lemma 4.5: The set of all ICMs that contain an infinite computation on ¢ is Li-complete.

We are now ready to show that NTP/%" and NTP/%"=7 are Ti-complete.

Theorem 4.8: NTP/%7~7 is Tl-hard even if 7 contains only singleton sets.

Proof. Let M be an arbitrary ICM. We will construct a PN P = (P,T,p, y1o) and a set 7 of singleton subsets
of T such that P has an infinite firing sequence that is fair with respect to 7 iff M has an infinite computation
on ¢. P must be able to simulate infinite-branching and zero-testing. The way we construct P, zero-testing
will be guaranteed to be correctly simulated only after some finite (but unknown) amount of time. Hence, we
will first construct an ICM M’ to simulate M such that for any configuration I of M’ (whether reachable or
not), any infinite computation of M’ from I simulates an infinite computation of M. We will then construct
P to simulate M'.

We construct M’ to repeatedly simulate finite subcomputations of M as follows. M’ will have one set of
counters to simulate M, one set of counters to store the final counter values from the previous simulation
of M, two counters to simulate a clock (one for time remaining, the other for the initial value), and a fixed
number of scratch counters. The finite-state control of M’ will store the state of M in the current simulation
and the final state from the previous simulation. Initially, the previous final configuration is the initial

configuration of M, and the clock value is zero. M’ iterates the following loop:
1. Let n be the value of the clock.
2. Simulate M for n steps; halt if M does.
3. If the final configuration of M differs from the previous final configuration, then halt.
4. Simulate M for one more step.
5, Save configuration of M.
8. Reset clock ton + 1.
7. Restore M to initial configuration.

Suppose M’ starts in some arbitrary configuration I, and suppose there is an infinite computation ¢ from
1. Clearly, each of the seven steps above must terminate, so each step occurs infinitely often in o. Eventually,

o must reach Step 7. After this, when it reaches Step 2, it simulates a computation ¢’ of M for n steps,

16

where 1 is some natural number. Since o is infinite, it will not halt in Step 3. Each subsequent execution of
Step 4 extends o' by one move; hence, o simulates an infinite computation ¢’ of M.

We now construct P to simulate M’ using places to simulate states and counters in the obvious way, and
transitions to simulate all moves except those of the form “q;: if ¢; = 0 then go to g3” and “q;: add some
natural number to ¢; and go to gs.” Carstensen [7] has shown how these moves can be implemented; the
constructions are shown in Figures 4.3 and 4.4, respectively. Regarding Figure 4.3, since {t3} € 7, t; can
be fired while ¢; > 0 only finitely many times in any firing sequence that is fair with respect to 7. Likewise,
for Figure 4.4, if t5 is enabled, it must eventually fire in any infinite firing sequence that is fair with respect
to T. Clearly, if M has an infinite computation on ¢, then P has an infinite firing sequence that is fair with
respect to 7. Suppose, on the other hand, that P has an infinite firing sequence ¢ that is fair for 7. After
some point in ¢, o correctly simulates M’ from some initial configuration 1. Since this simulation is infinite,

M must have an infinite computation.

Theorem 4.9: NTP/%" and NTP/%"~7T are Di-complete.

Proof. NTP/%"~T was shown to be Ti-hard in Theorem 4.8. Carstensen [7] gives a reduction from
NTP/eir—{{t}} to NTP/%"; this reduction easily generalizes to NTP/%"~7 <prrpp NTP/4" if T con-
tains only singleton sets. Thus, from Theorem 4.8, NTP/¢" is also Ti-hard. See the proof of Theorem 4.10
below for an even more general version of this reduction.

Since NTP/%" ig a restriction of NTP/¢"~7 we only need to show that NTP/¢"'~7 ¢ %l Let P =
(P, T,p,p0) be an arbitrary PN, and let 7 be a set of subsets of T. Clearly an infinite firing sequence ¢ is
fair with respect to 7 iff it can be divided into a sequence of finite firing sequences soo;... such that for
some subset 7’ of 7, every set in 7’ has at least one element in each o, 1 > 1, and no transition in any
set in 7\7' is enabled at any time in ¢ after 65. We therefore construct an ICM M to nondeterministically
generate o as follows. M first guesses 7’. It then guesses (in one step) np, the length of op. Next, M
nondeterministically generates a firing sequence g of length ng. For i = 1,2,..., M then guesses n;, the length
of oy, and generates oy, verifying that it satisfies the conditions outlined above. Clearly, M has an infinite
computation iff P has an infinite firing sequence that is fair with respect to 7. Therefore, NTP/¢" and
NTP/¢"~T are Ti-complete.

O

In [7], Carstensen also considered fairness for bounded PNs. Given a PN P, we say an infinite firing

sequence o is
e bd-fairif P is bounded and o is fair.

Although NTPY4-J4i" ig clearly decidable and as hard as BP, no tighter bounds have been given for the
problem. We now show the problem to be nonprimitive recursive.
Theorem 4.10: NTP?¥-7%" ig not primitive recursive.

Proof. We first define the following functions:

fi(n) = 2n,
fi(n) = £7,(1) for i > 1,

17

(n) = fa(n)

where f?_’)l denotes the nth-fold composition of f;_1. It can be shown that {is not primitive recursive. Let M
be an arbitrary f(n) time bounded TM, and let x be an arbitrary input for M. Clearly, we can construct in
PTIME a 2-counter machine M’ that simulates M in f(cn) time for some constant c. Carstensen [7] gave a
PTIME construction of an unbounded PN P with a designated transition t such that P had an infinite firing
sequence that was fair with respect to t iff M’ halted on x. (In his construction, P simulated an arbitrary
2-counter machine.) P operated by first guessing m, the number of steps executed by M, then repeatedly
simulating M on x. If M did not halt in m steps, P would halt. P contained three potentially unbounded
places: the one containing m and two containing counter values. Clearly, since M’ is f(cn) time bounded,
these places need not exceed f(cn) to simulate M. In [16], we gave a PTIME construction of a bounded PN
which could produce a value of f(cn) in a designated place (see also [24]). We can clearly use this construction
to bound the three places in question by some number at least f(cn). The details are left to the reader.

We will now show that given a bounded PN P and a set 7 of singleton subsets of transitions, we can
construct in PTIME a bounded PN P’ that has an infinite bd-fair firing sequence iff P has an infinite firing
sequence that is fair with respect to 7. This construction is a generalization of one given in [7], and is shown
in Figure 4.5. Note that the added places, pi,...,Pj, ,PY P2, must always contain a total of three tokens;
hence P’ remains bounded. Suppose P has an infinite path o that is fair with respect to 7. Prior to each
occurrence of ; in o, 1 < i < j, we can insert the sequence t},t}; for some i, and prior to each occurrence
of t;, j + 1 < 1 < m, we can insert the sequence ttit} t} for some i’. It is easy to see that this new firing
sequence is bd-fair. On the other hand, suppose there is an infinite firing sequence o in P’ that is bd-fair.
Since pj must be positive before any transition in P can fire, by removing all occurrences of transitions not

in P, we clearly get an infinite firing sequence that is fair with respect to 7.

0

In [5], Best extended the definition of fairness using the notions of ¢ (co) -enabledness. A transition t is
said to be i-enabled (or co-enabled if i = 00) at a marking p if there is a firing sequence ¢ no longer than i

transitions such that g = p, and t is enabled at /. For 1 < i < oo, an infinite computation ¢ is said to be:

e i-fair iff for every transition t, if t is i-enabled in infinitely many markings in o, then t occurs infinitely
often.

(Note that “0-fairness” coincides with “fairness” as defined in [20]. Also, an equivalent definition for co-

fairness was given in Queille and Sifakis [28].)

In what follows, we show that NTP{=/%" 0 < i < oo, is Ll-complete, but that NTP®~/9" ig equivalent
to RP.

Theorem 4.11: For every i, 0 < i < oo, NTP~/%" ig Tl.complete.
Proof. To show the lower bound, we will use a reduction from NTP/%". Let P be an arbitrary PN. We
construct P’ as shown in Figure 4.6. Clearly, P has an infinite fair firing sequence iff P/ has an infinite i-fair

firing sequence. To show the upper bound we can clearly employ a similar strategy to that of the upper

bound in Theorem 4.9, since i-enabledness is clearly a decidable property.

18

The following theorem is the last in which we use the machinery developed in Section 3. In this theorem,
we use Theorem 3.2 directly to give a succinct reduction to RP. As in Theorem 4.6, a direct reduction to
RP would have been much more tedious.

Theorem 4.12: NTP® /2" =prr0re RP.

Proof. We first show NTP®~/%" <pr;3rp RP. Let P = (P, T,p,10) be an arbitrary PN. For each t € T, let

¢ be the minimum marking in which t is enabled. Consider the wff

f= F[/\:eT (—eo(p:) VF fi(t)) /\/\pep Ip(p)]

Clearly there is an infinite oo-fair firing sequence in P iff P is a finite model for f. Thus, from Theorem 3.2,
NTP®~f%" <priyp RP.

We will now show RP <pryuz NTP®~/%" We will use the fact that RP-S0 =prryrg RP. Let P =
(P, T,p,0) be an arbitrary PN with a designated place p;. We construct P’ as shown in Figure 4.7. Suppose
P’ has an infinite co-fair firing sequence. Since t} is enabled until it fires, it must eventually fire. Clearly,
t4 cannot fire in any infinite co-fair firing sequence. Therefore, there must be a 1 € R(P) such that u(p;) =
0. Suppose, on the other hand, that there is a marking g € R(P) such that u(p;) = 0. Let & be such that

po = p. Then the firing sequence ot} ththt)... is clearly co-fair.

O

Queille and Sifakis [28] have extended fairness in two other ways, namely, feir choice from steles, and
fair reachability of predicates. Applying these notions of fairness to Petrl nets, we have that for a PN P =
(P,T,p,10), an infinite firing sequence o satisfies:

e fair choice from slates (state-fair, for short) iff for any marking g reached infinitely often by o, every

transition enabled at y is executed infinitely often from p in o.

e fair reachability of predicates (pred-fair, for short} iff for any (finite or infinite} set of markings M, if
there are infinitely many i such that pg ot B % i, € M for some ¢}, then there must be infinitely
. alj]
many j such that gy = p; € M.

At this time, we are unable to establish tight bounds for either NTP®!@¢te—/air o NTPprred—fair
NTP2?ete—/ai" geems to be related to the problem of finding a home state, that is, a marking that is reachable
from any reachable marking (see [11], where a decision procedure was given to determine whether a given
marking is a home state). Because the definition of pred-fair is quantified over all sets of markings, it appears

to be a very difficult problem. The next three theorems give the bounds we are able to derive for these two

problems.
Theorem 4.13: NTPete~feir i5 decidable.

Proof. Let P be an arbitrary PN. We first determine whether P is bounded. If P is unbounded, there is
an infinite firing sequence & which reaches each marking at most once. o is clearly state-fair. On the other
hand, if ¢ is bounded, we can construct the reachability graph. Then there is an infinite state-fair firing
sequence iff the reachability graph contains a strongly connected component from which there is no exit.

O

We now define the following problems, which will be used in giving our lower bound for NTPpstete-fair

19

¢ BRP:
Instance: Given a bounded Petri net P and a marking g,
Question: Is p € R(P)7

e BRP-S0:
Instance: Given a bounded Petri net P with a designated place p,
Question: Is there a u € R(P) such that u(p) = 07

The following lemma can be shown in a similar manner as Lemma 4.4.

Lemma 4.6: BRP-S0 =p7;arg BRP.

Although it follows from [29,21] that BP <priue BRP <prime RP, we do not know whether either of
these reductions can be strengthened to equivalences.

Theorem 4.14: BRP <pryyp NTP2iste—fair,
Proof. We will use the fact that BRP-S0 =priyp BRP. Let P = (P,T,p, ug) be an arbitrary bounded PN
with a designated place p;. We construct P’ as shown in Figure 4.7. Suppose there is a ¢ € R(P) such
that u(p;) = 0. Let o be such that go — p. Then the sequence otiththth... in P’ is clearly state-fair. Now
suppose there is an infinite state-fair path o in P’. Since P is bounded, P’ is clearly bounded. Since t} is
enabled until it is fired, it must be fired in o; otherwise, there would be some marking reached infinitely
often by ¢ in which t{ is enabled. Since t} fires, t5 cannot fire; hence, there must be a marking p € R(P)
such that p(p;) = 0. Therefore, BRP <primr BRP-S50 <priyg NTPstete-Sair,

Theorem 4.15: RP <ppiyp NTPPred—soir,

Proof. We will use the fact that RP-S0 =prrue RP. Let P = (P, T,p,p0) be an arbitrary PN with a
designated place p;. We again construct P’ as shown in Figure 4.7. Suppose there is a p € R(P) such that
p(ps) = 0. Let o be such that go = p. We claim that ¢’ = ot}ththt)... is pred-fair. To see this, first note
that after t{ fires only one marking is reachable. Since this marking is reached infinitely often by ¢’, ¢’ must
be pred-fair. Now suppose that there is an infinite pred-fair firing sequence ¢ in P’. Let M = {u | u(p}) =
0 and p(py) = 0}. Since no marking in M can be reached in an infinite firing sequence, there must be some
i € N such that yo i ', such that no marking in M is in R(P,Tp,n’). Clearly, t§ cannot occur in oi],
nor can it be enabled at p’. Therefore, there must be some x € R(P) such that u(p;) = 0. Thus, RP-S0
<prime RP <prryp NTPrred-feoir,

|

Finally, we examine eguifairness as defined by Francez [12]. Given a Petri net P and an infinite firing

sequence o, ¢ is said to be

e egquifair iff there exist infinitely many i’s such that all transitions occur the same number of times in

o[l

We will show this problem to be equivalent to the BP. In order to show this, we must introduce some
terminology from [29] (see also [30]). Let P = (P,T,p, uo) be a PN. A generalized marking is a mapping u : P

-+ Z, where Z is the set of integers. A generalized firing sequence from po is any sequence of transitions. We

20

then extend the notation u i ' to generalized markings. An i-loop is a nonempty sequence o of transitions
po — po such that there are i places p1,...,p; such that for any j < n, where n is the length of o, po o 5
and p;(ps) = 0 for 1 <1 < i. Using a strategy similar to that of Rackoff [29], we can show the following
lemma.

Lemma 4.7: Given a PN P = (P,T,0,10) and an i <[P|, we can decide in space 2°*'°8" for some
constant ¢ whether there is an i-loop in P.

We can now show

Theorem 4.16; NTPeeuifair = ...~ BP.

Proof. We first show NTP®e4ifoi" <priarp BP. Let P = (P, T,p, po) be an arbitrary PN. We construct P’
as shown in Figure 4.8. Clearly, P’ has a |P}-loop iff P has an infinite equifair firing sequence. Therefore,
from Lemma 4.7 and [21], NTP##/%" <pripp BP.

We now show BP <prrare NTP%/%ir We will use the fact that CP =p71arp BP. Let P be an arbitrary
PN, and let p be an arbitrary marking. We construct P’ as in Theorem 4.4. Clearly, if P’ has an infinite
equifair path, there is a 4’ € R(P) such that ' > p. Suppose, conversely, that po = p' > p. (Here, ¢ is a
firing sequence, as opposed to a generalized firing sequence.) Let i be the maximum number of occurrences of
any transition in ¢. Clearly, o followed by i occurrences of t/ is a firing sequence in P’. This firing sequence
can then be followed by enough occurrences of each transition so that each transition occurs exactly i times.

This can then be repeated infinitely many times. Therefore, BP <priye CP <priyg NTPeIuifeir

5 Conclusion

We have exhibited a temporal logic powerful enough to express certain fairness constraints, yet whose
FMCP is equivalent to the reachability problem for PNs. This logic was instrumental in showing seven fair
nontermination problems to be equivalent to RP. In developing this logic, we were able to answer a question
left open in [15], namely, is there a decision procedure for £°(Q)? We were able to give a positive answer
to this question and show that the problem is equivalent to reachability. One question that remains open is
whether there is a decision procedure for £~(Q' ,GF); Le., wils including predicates from Q' and the operators
GF, A,V, and =, where — is allowed only on predicates.

The following table summarizes the fairness results of this paper.

21

[NTP | complexity || NTP | complexity ||

M1 RP mp BP

M1 | NL Just >RP

M2 | RP fair . b

M2 | RP bd-fair NPR

M3 | RP fp-7 | SRP

M3’ | RP fdp-T RP

T1 | BP Tair? | oI

T | BP i-fair b3

T2 BP oo-fair RP

T2 | BP state-fair | D, >BRP
T3 BP pred-fair | >RP

T3 BP equifair BP

e >BRP: as hard as the BRP,

e >RP: as hard as the RP,

e NPR: decidable, but not primitive recursive,

e D: decidable,

e fdp-T: fdp-7 with | 7T | = 1.

Most of the problems examined have been shown to be either equivalent to boundedness, equivalent to
reachability, or £i-complete. Two exceptions to this general rule are NTPMY' apnd NTPPe-fair, NTPMY
can be decided in nondeterministic logspace because the entire allowable reachability set is explicitly given
as input. Using the fact that bounded PNs can generate very large numbers, we were able to show that
NTPYd—79i7 ig not primitive recursive. Aside from the fact that the precise complexity of RP is still unknown,
the precise complexities of four of the fair nontermination problems we have examined remain open. Two
of these, NTP/¥** and NTP/%~7 are particularly interesting because they are related to the open temporal
logic question mentioned above; i.e., they are both expressible in L(Q,GF).

Acknowledgment: We would like to thank Prof. H. Carstensen for his suggestions and encouraging
comments. In particular, we thank him for suggesting that model checking with respect to general PNs
might be decidable for £(Q,F,X).

References

[1] K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems. Information
Processing Letters, 22:307-310, 1986.

[2] K. Apt and E. Olderog. Proof rules and transformations dealing with fairness. Sci. Comput. Prog.,
3:65-100, 1983.

[3] K. Apt, A. Pnueli, and J. Stavi. Fair termination revisited with delay. In Proceedings of the 2nd Confer-
ence on Foundations of Sofiware Technology end Theoretical Compuier Science (FST-TCS), pages 146—
170, 1982.

[4] H. Baker. Rabin’s proof of the undecidability of the reachability set inclusion problem of vector addition
systems. MIT Project MAC, 1973. CSGM 79, Cambridge, MA, 1973.

[5] E. Best. Fairness and conspiracies. Informalion Processing Lelters, 18:215-220, 1984. Addendum, Vol.
19, page 162, 1984,

22

[6] G. Brams. Reseauz de Petri: Theorie et Pratigue — Tome 1: Theorie el Analyse. Masson, Paris, 1983.

[7] H. Carstensen. Decidability questions for fairness in Petri nets. In Proceedings of the {th Symposium
on Theoretical Aspects of Compuier Science, pages 396-407, 1987. LNCS 247.

[8] H. Carstensen and R. Valk. Infinite behaviour and fairness in Petri nets. In Advances in Peiri Nets
1984, pages 83~100, Springer-Verlag, 1985. LNCS 188.

[9] A. Chandra. Computable nondeterministic functions. In Proceedings of the 19th IEEE Symposium on
the Foundations of Compuier Science, pages 127-131, 1978.

[10] E. Emerson and C. Lei. Modalities for model checking: branching time logic strikes back. To appear
in Science of Compuier Programming. Some of these results were presented at the 18th Annual Hawaii
International Conference on Sysiem Sciences and at the 12th Annual ACM Symposium on Principles

of Programming Languages.

[11] D. Escrig. A collection of algorithms to decide liveness and other related properties of a place transition

system. Unpublished manuscript.
[12] N. Francez. Fairness. Springer-Verlag, 1986.

[13] M. Hack. The equality problem for vector addition systems is undecidable. Theoret. Comp. Sci.,
2:77-95, 1976.

[14] D. Harel. Effective transformations on infinite trees, with applications to high undecidability, dominoes,
and fairness. JACM, 33:224-248, 1986.

{15] R. Howell and L. Rosier. On questions of fairness and temporal logic for conflict-free Petri nets. In
Proceedings of the 8th European Workshop on Applications and Theory of Peiri Neis, pages 197-214,
1987.

[168] R. Howell, L. Rosier, D. Huynh, and H. Yen. Some complexity bounds for problems concerning finite
and 2-dimensional vector addition systems with states. Theoret. Comp. Sci., 46:107-140, 1986.

[17] N. Immerman. Nondeterministic space is closed under complement. Unpublished manuscript.

[18] R. Kosaraju. Decidability of reachability in vector addition systems. In Proceedings of the 14th Annual
ACM Symposium on Theory of Compuling, pages 267-280, 1982.

[19] L. Landweber. Decision problems for w-automata. Math. Sysi. Theory, 3:376-384, 1969,

[20] D. Lehman, A. Pnueli, and J. Stavi. Impartiality, justice, and fairness: the ethics of concurrent termi-
nation. In Proceedings of the 8th International Colloguium on Auilomaia, Languages, and Programming,
pages 264-277, 1981. LNCS 115.

[21] R. Lipton. The Reachability Problem Regquires Exponential Space. Technical Report 62, Yale University,
Dept. of CS., Jan. 1976.

23

[22] Z. Manna and A. Pnueli. The modal logic of programs. In Proceedings of the 6ih International Collo-
guium on Auiomais, Languages, and Programming, pages 385—410, 1979. LNCS 71.

[23] E. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. Comput., 13(3):441-460,
1084. A preliminary version of this paper was presented at the 1312 Annuel Symposium on Theory of
Computing, 1981.

[24] H. Miiller. Weak Petri net computers for Ackermann functions. Elekironische Informationsverarbeitung
und Kyberneiik, 21:236-244, 1985.

[25] E. Olderog and K. Apt. Transformations realizing fairness assumptions for parallel programs. In

Proceedings of STACS 84, pages 20—42, 1984. LNCS 166.
[26] J. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood Cliffs, NJ, 1981.

[27] A. Pnueli. The temporal logic of programs. In Proceedings of the 19th Annual Symposium on Founda-
tions of Compuier Science, 1977.

[28] J. Queille and J. Sifakis. Fairness and related properties in transition systems — a temporal logic to
deal with fairness. Acta Informatica, 19:195-220, 1983.

[268] C. Rackoff. The covering and boundedness problems for vector addition systems. Theoret. Comp. Sci.,
6:223-231, 1978.

[30] L. Rosier and H. Yen. A multiparameter analysis of the boundedness problem for vector addition
systems. J. of Compuler and Sysiem Sciences, 32(1):105-135, 1986.

[31] A. Sistla and E. Clarke. The complexity of propositional linear temporal logic. JACM, 32:733-749,
1985.

[32] A. Sistla and S, German. Reasoning with many processes. In Proceedings of IEEE Symposium on Logic
in Compuler Science, pages 138-152, Ithaca, New York, 1987.

[33] 1. Suzuki. Fundamental properties and applications of temporal Petri nets. In Proceedings of the 19th
Annual Conference on Information Sciences and Systems, pages 641-646, 1985.

[34] R. Valk and M. Jantzen. The residue of vector sets with applications to decidability problems in Petri
nets. Acia Informatica, 21:643-674, 1985.

24

e

p2K2

P21

€y,

Pix 1

P11

t mark

<E>

P mark

Figure 3.1: P'for f M f 5.

€Iy

<g>

t phase

pmark

e mm mm o G g wR WR e ow o us mSiowm W me M SR Wn Gp SR SR R SR WO @9 MR W e

Figure 3.2: P for ge(p ;. c).

“| O Of=

<&>

Y1 Pker Pi t,

o o °

L 2 L4

o O Ot

o, Pk Pk Yic
-

T'

Figure 3.3: P for = coly).

P1

Pi l'—""

=i

Pk

Figure 4.1: 7 for fdp-7, T= {{t}}.

en

O~ =0

Pk

pl tn
t; 1
[
|
ti
@
H tiy
: (o]
tTn P'm tm

Figure 4.2: 7 for justice.

o O

Figure 4.3: Implementation of zero-testing for fair-7.

q2© tale?

Figure 4.4: Implementation of infinite-branching for fair-7.

Figure 4.5: P for bd-fairness.

Figure 4.6: 7' for i-fair.

O
JF

P1 t

Pi I'—""

Pk

Figure 4.7: P’ for «-fair, state-fair, and pred-fair.

P1

Pk

Figure 4.8: ' for equifairness.

