A GENERAL APPROACH TO
MULTIPROCESSOR SCHEDULING

Sung Jo Kim
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-88-04 February 1988

A GENERAL APPROACH TO MULTIPROCESSOR SCHEDULING

ABSTRACT

As a variety of general-purpose multiprocessor systems have been recently
designed and built, multiprocessor scheduling is becoming increasingly important.
Multiprocessor scheduling is a technique to exploit the underlying hardware in a
multiprocessor system so that parallelism existing in an application program can be
fully utilized and interprocessor communication time can be minimized. Tradition-
ally, most research on multiprocessor scheduling has focused on the development
of specific scheduling strategies to take advantage of unique characteristics of a
specific multiprocessor system or application program. In this thesis, we define
and characterize scheduling techniques and related heuristic mapping algorithms
which are applicable to a spectrum of multiprocessor systems and a broad class of
application programs.

The fundamental idea we use is that multiprocessor scheduling can be
regarded as a series of mappings from a computation graph (representing an appli-
cation program) to a virtual architecture graph (representing an optimal architec-
ture for the program) and eventually to a physical architecture graph (representing
a target multiprocessor system). We propose linear clustering and linear cluster
merging as effectual heuristics. After linear clustering and merging, the computa-
tion graph is transformed into a virtual architecture graph. This graph represents an
optimal architecture which compromises between two conflicting goals, minimiza-
tion of interprocessor communication and maximization of potential parallelism,
and satisfies the other goals, throughput enhancement and workload balance, rela-
tively well. Then we develop two efficient scheduling algorithms which map the
optimal architecture graph onto a physical architecture graph which may represent
either a homogeneous or a heterogeneous multiprocessor system. These algorithms

rely not only on local information but also on limited global information. Finally,
we present the result of performance evaluation of the mapping algorithms on an
Intel iPSC with 32 processors and a Sequent Balance with 10 processors.

ii

Table of Contents

ADSITACT evvveiiiinnereeiniiinierensnnanescsscssonsassscnses
Chapter 1. Introductioncccecceereeceennne
1.1. An Overview of the Thesis
1.1.1. Problem Statement
1.1.2. Approachcccceveccvecennnnnnnn.

..

..

...................... 95320003095 605002968022066000006000

..

........................ 9090206269096 92000490050802800

1.1.3. Results: Theoretical and PractiCal ..oooovevveiiivireeiririemmsciosssieresevesssnans

1.2. Organization of the Thesis

..

Chapter 2. Multiprocessor Scheduling Problemccccccccevvecrinicnencnirenneanne.

2.1. Multiprocessor Scheduling Strategiesc..covvecveeerrecrnerrneeeniereersenannne

2.2. Review of Previous Multiprocessor Scheduling Strategiesccceceeeu.

2.2.1. Scheduling Strategies for Loosely-Coupled Systemsccveeunenns

2.2.2. Scheduling Strategies for Tightly-Coupled Systems

.....

2.2.3. Cost Functions in Previous Approachesccveeeeeerrenvennen. cereenne

2.2.4. Discussion on Previous Strategiescccvevvvceivessvenevennnenns RS

2.3. Complexity Issues of Multiprocessor Scheduling Problems

Chapter 3. The Models for Multiprocessor Schedulingc.o...... vereeeeenaes

3.1. The Graph Models for Multiprocessor Scheduling reeesreesnaeebaaaenaas
3.1.1. The Model for Computation Graphsccceu.u. eeeiareesae s eseaesnne
3.1.2. The Model for Architecture Graphscccceeceveeerrveerisiriennesreennns

3.2. The Conceptual Model for Generalized Multiprocessor

Schedulingccceevveeveeenen. croeeseneneses
3.2.1. Generalized Multiprocessor Scheduling Model

3.2.2. Logical and Physical Mappings

.......... 9880063509005 59560523093000084095380000088%0

.............................

...

ek o

D 00 N b N e

14
14
16
19
20
21
25
25
26
31

33
34
37

Chapter 4. Multiprocessor Scheduling Based on Linear Clustering and

METZINE woocviiciieciirierrereneenreienraeseacneenne

4.1. Linear CIusteringcceccevvveereecrecnneraneesneans
4.1.1. Characterization of Linear Cluster
4.1.2. Justification of Linear Clustering
4.2. Linear Cluster Merging and Its Optimality
4.2.1. Level Number and Related Definitions
4.2.2. Linear Cluster Mergingccccccevevernene
4.2.3. Merging Conditionsc....... reveenaeanne

4.2.4. Properties of Linear Clustering and Merging

4.3, Iterative Refinement of Linear Cluster
4.4. More Clarification on Linear Clustering
4.4.1. Definitionsccoveveeene vreseesarseeseeesenstsnnns

4.4.2. Hierarchical Expansion

.......................

4.4.3. Overlapped Nodes and Overlapped Computation Graph

4.4.4. Preclustering

..

4.4.5. Linear Clustering of Cyclic Computation Graphs

Chapter 5. Physical Mappingcccccvevinvcrvicneanns
5.1. Dominant Request Treecccoecvecvieneennennn.
5.2. Homogeneous Mappingcceceeneen.
5.2.1. Homogeneous Mapping Algorithms
5.2.2. DISCUSSION veceerevvrireacrenieneenrossenessenes
5.3. Heterogeneous Mapping

............................

5.3.1. Characterization of Resourcesoreunn.

5.3.2. Dominant Service TTee ..oviviieerieecresrnens

5.3.3. Overview of Heterogeneous Mapping

iv

...

................................... bacssesa

...

...

........................... ess60000s0s00s00

..

.......... 569890580000 060409005058 000000080

..

........... 4962090000000000¢0802c00a08000000

..................... 40nc0secsecacsssanacae

............. 56506000049090900000408u 0880908

...

...............

...

.........................

....... $460000000690000698000060500380b00as

...

.................... 906600008000 0800080s00s

..

......... 200000066062 0560205030925000000048%

...

...

...

..

38
38
38
41
46
46
50
51
55
59
63
64
65
70
74
76
78
79
82
83
93
95
95
97
98

5.3.4. Issues on Heterogeneous Mappingsccceeeeviennnenns reneveeeneneeesnaene 101
5.3.4.1. Mapping Orderccoue.n. creeeineecesesneeeeeneeeeesanessnasaneeesisnaessnss 101

5.3.4.2. Node Informationcccccceeeemeeerorinneensueriserisnistesionanss e 103
5.3.4.3. Scheduling with Resource Constraints ceresessnneesnn veevenen 105

5.3.5. Heterogeneous Mapping AIgorithmscocccnininiiniinninininn, 106
5.3.6. DISCUSSION .iieviiiiriieriiirereisieresssrseeessasecesssenescsseceseissmssessssnsessossssssssans 117
Chapter 6. Performance Evaluationcceiiiiiinienienneinniensesecnes 118
6.1. Experimental ENvIrONmentsc.cooveieiniiiriniiniiisiniesissnnsssnessssessens 119
6.2, Performance MEITICS .iiiiriirreeimeercecramecioimseriiosoinsiniisssersosessissssas 120
6.3. Calculation of Prime NUmbersc..ccecervveerneennnens rreenreeraearaeseessneesneenne 121
6.4. Forward Elimination of MatriCescccccccvvvvcimnnmimiinnnininiiiniinmen, .o 127
6.5. Synthetic PrOZramcccevererrecennenniinienioniiisiiirss s s aresns 133
Chapter 7. Concluding Remarks freeaeete et e e s e cane e bt et s sa b s s e s s e saaes 138
Bibliographyc.ece... Ceeterreereessretiseeesteetesateesseessne e nraeeasnas e nateenaee sentae s stasenstoernn 141

CHAPTER 1

INTRODUCTION

For the past several years, we have witnessed a surge of new general-purpose
multiprocessor systems unequaled since the first generation multiprocessors like
the CMU C.mmp [MAS82] and the BBN Pluribus [KAT78] were built around the
early 1970’s. This is a natural approach to solve computationally intensive prob-
lems as hardware technologies approach physical limitations.

Depending on the degree of coupling among processors (i.e., the amount of
time it takes to move data from one processor to another or to initiate an action on
one processor from another), there is a spectrum of multiprocessor systems from
loosely-coupled to tightly-coupled systems. On one extreme, a shared-memory
architecture like the Sequent Balance [SEQ86] is an example of a tightly-coupled
multiprocessor system. On the other extreme, a wide area network like the
ARPANET [HEA70] can be regarded as a loosely-coupled multiprocessor system.
Between these two extremes lie most architectures like the IBM RP3 [PFI85], the
BBN Butterfly [BBN85a], the NYU Ultra [GOT83a], the Flex/32 [MATS&S5], the
Intel iPSC [INT87], the Ncube/ten [NCUS8S5], and the Connection Machine
[HIL85]. Note that general-purpose multiprocessor systems we deal with are
assumed to employ MIMD (multiple-instruction and multiple-data stream) type
architectures. Consequently, an array processor like the Illiac IV [BOU72] will not

be considered as a multiprocessor system by itself, but as a processor component of
a multiprocessor system.

Even though an enormous amount of theoretical work has been done td find
optimal solutions of multiprocessor scheduling problems, no practical, generally
applicable polynomial-time algorithm has yet been found. The obvious approach
then is to concentrate on the development of polynomial-time algorithms that pro-
vide sub-optimal solutions in many cases. This thesis reports research on the

1

development of scheduling techniques and related scheduling algorithms based on
heuristics which are applicable to a spectrum of general-purpose multiprocessor
systems mentioned above.

In this chapter, we overview and outline this thesis. From here on we use the
term task and schedulable unit of computation, which corresponds to a node in a
computation graph, interchangeably.

1.1. An Overview of the Thesis

In this section, we address the problem we tackle and our approach to the
problem, and summarize our results and contributions.

1.1.1. Problem Statement

Optimal scheduling of parallel computations to multiprocessor systems
requires the optimal assignments of processors to computations and communica-
tion resources to the implementations of dependency relations between the
schedulable units of computation in order to minimize total execution time for the
computations. The assignment of computational work to processors must take into
account both balancing the workload assigned to processors and minimizing the
communication cost among processors.

A parallel computation can be represented by a direct acyclic graph G =
(N¢, Ec), where Ne = {ny, n,, -+, n} is a set of schedulable units of computa-
tion to be executed, and E. specifies scheduling constraints defined on No. A
multiprocessor system can be represented by an undirected graph Gp = (Np, Ep),
where Np = {p1,P2, -, Pn} is a set of processors, and Ep specifies interconnec-
tion network among the processors. The basic problem that we are attempting to
solve is to find a mapping of G, onto Gp which minimizes the schedule length (or
makespan) defined as:

max 3, (comp;+commy;),

15!(55‘ istQE

where ¢ = {¢1,05, . .., 0, } represents a set of paths from the root node to the leaf
node in G, node n ; (assigned to processor pyENP (1y<m)) is a direc;c descen-
dant of node »; (assigned to processor p,€ Np (1Sx<m)) in G¢, comp; is computa-
tion time of n;, and comm;; is communication time from r; to n; (comm;; = 0if p,

= p, or n; has no direct descendants).

An optimal schedule is one which meets the criteria of the minimum schedule
length for a single parallel computation structure or the maximum total throughput
for a set of simultaneously executing parallel computation structures. It must
integrate scheduling of computations and dependency relations to resources. An
approach which integrates consideration of all the interacting factors is one which
maps a computation graph defining the computation structure (including the
resource requirements for execution of each element of the computation structure)
onto an architecture graph which defines the capability and capacity of the resource
set of the execution environment.

This integrated approach is a substantial advancement in scope over the
current state-of-the-art. Some research in multiprocessor scheduling dealt with
only one of the interacting factors, usually the computation time [GOT83a,
BBNS85a], the workload balance [STA84, VAN84, WANSS, EAG86] or the imple-
mentation cost of dependency relations between the schedulable units of computa-
tion [HAES80, BIA85]. Other research which has considered integrated scheduling
was primarily concerned with the development of the concepts rather than applica-
ble methodologies or else were applicable only to specific configurations of
resources or specific problems [FOR78, LIU78, SOL79, WIT80, BRY81, CHOS&2,
DEG81, GOT83a, BER84, SHE85, BBN85a, LEE&T].

The integrated approach defined and characterized herein requires three ele-
ments:

« A graph representation of a computation structure which integrates the
specification of dependency relations and resource requirements of each
schedulable unit of computation;

» A graph representation of an execution environment which includes the
specification of the capabilities and capacities of the resource set;

+ Algorithms for mapping from a computation graph to an architecture graph.

The research defined and described in this thesis is a first attempt at such an
integrated and generally applicable approach to scheduling of parallel computation
structures on multiprocessor systems. The difficulty of attainment of a fully
integrated, broadly applicable and truly optimal scheduling methodology is not
underestimated. In this research, we attempt to extend the state-of-the-art to
include simultaneous consideration of the important elements of the multiprocessor
scheduling problem. The critical element of this approach is the establishment of a
general framework in which to evaluate integrated scheduling methodologies rather
than the development of individual mapping algorithms which are suitable for
individual applications and a specific multiprocessor system. We develop a gen-
eralized multiprocessor scheduling methodology which is applicable to a spectrum
of multiprocessor systems and a broad class of application programs.

The fundamental idea on which this research is based is that multiprocessor
scheduling can be regarded as a mapping between graphs. To be specific, one will
take a representation of a computation as a computation graph and a representation
of a multiprocessor system as an architecture graph and then formulate the problem
of scheduling as the mapping of one graph onto another graph subject to specific
scheduling constraints [BRO86]. In fact, we consider a series of mappings
between a computation graph and an architecture graph including a direct mapping
of the former onto the latter as illustrated in Fig. 1-1.

As can be seen in Fig. 1-1, a computation specification of a parallel computa-
tion structure and a resource specification of a target multiprocessor system are
transformed into a computation graph and a physical architecture graph, respec-
tively. We have designed two interface specification languages (ISL’s) [KIM86a]:
one for computation graph generation and the other for physical architecture graph
generation. The most important motivation for designing an interface specification
language for computation graphs is to create a language which defines the interface
specification of the computation structures and dependency relations, including
resource requirements of the structures and the relations. The nodes and directed
edges in a computation graph (restructured to acyclic direct graphs, if necessary)
represent respectively the bindings of operations to data and the dependency

relations between the computations executed at the nodes [BRO85]. Since in gen-
eral the bindings can occur dynamically at runtime, a computation gra;;h can be
dynamic as well. In this research, however, we assume that all the bindings are
fixed prior to runtime in the sense that there are no runtime bindings of operations
to data objects which modify the structure of the computation graph. Conse-
quently, a computation graph is stazic .

Computation
Specifications
(using ISL)

Computation
Graph

Virtual
Architecture
Graph

1 Mapping
Transformation : (based on
(using translators) : scheduling constraints
I and cost functions)

Virtual
Architecture
Graph

Resource
Specifications
(asing I8L)

Physical
Architecture
Graph

Figure 1-1 General Overview of Our Approach

There are two types of architecture graphs: virfual architecture graphs and
physical architecture graphs . Both architecture graphs are undirected. A physical
architecture graph represents a real multiprocessor system, and a virtual architec-
ture graph represents an abstract multiprocessor system which is regarded as an
optimal architecture for a given computation. Except in the case of direct mapping
of a computation graph onto a physical architecture graph, scheduling algorithms
make use of virtual architecture graphs for the initial mapping as well as the inter-
mediate mappings. The intermediate mappings, including the initial mapping, are
called logical mappings. At the final stage of the mapping, one of the virtual
architecture graphs is mapped onto the physical architecture graph. This mapping
is called physical mapping .

A restricted case of the general graph mapping problem is the graph isomor-
phism problem. It has been shown [BOK81] that the general mapping problem is
computationally equivalent to the graph isomorphism problem. Unfortunately,
there is no known polynomial time algorithm for solving even this restricted prob-
lem [GAR79]. Furthermore, precedence constrained scheduling problem which is
a subproblem of the general scheduling problem has been proved to be
NP —complete [ULL75]. As aresult, it is clear that in order to stay in the realm of
practicality, we should either rely on efficient heuristics as in [KER70, BARS1] or
develop algorithms which give optimal solutions only for restricted cases [KERT7I,
RAM72, LUK7S, LLO80, CHI84, LO85]. We concentrate on the development of
multiprocessor scheduling techniques and related heuristic algorithms based on
graph mapping that supply efficient approximate and computationally feasible
solutions. Most importantly, they are applicable to a spectrum of multiprocessor
systems from loosely-coupled to tightly-coupled systems.

1.1.2. Approach

One of the contributions of this thesis is to propose new multiprocessor
scheduling techniques based on linear clustering. A linear cluster is a connected
subgraph of a computation graph which is in the form of a linear list of schedulable
units of computation. Linear clustering is an effectual heuristic to compromise

between two conflicting goals of multiprocessor scheduling, minimization of inter-
processor communication and maximization of potential parallelism, and to satisfy
the other goals, throughput enhancement and workload balance, relatively well.
The underlying idea of linear clustering is that the schedulable units of computa-
tion that are sequentially dependent on each other are to be assigned to one proces-
sor, while those that are mutually independent are to be allocated to separate pro-
cessors. The critical restriction of linear clustering is that it expects a computation
graph to be acyclic. In order to relieve this restriction, we identify cases in which

cyclic computation graphs can be transformed into acyclic graphs in a straightfor-
ward manner.

A computation graph is transformed into a virtual architecture graph by linear
clustering. The virtual architecture graph in fact represents an optimal multipro-
cessor system for the computation graph. The optimal multiprocessor system may
provide one processor to every linear cluster so that mutually independent tasks
belonging to different linear clusters can be executed in parallel as long as possible.
Furthermore, direct communication links are always available for any adjacent
linear clusters in the optimal multiprocessor system. The virtual architecture graph
may be transformed into another virtual architecture graph by merging two or
more linear clusters into one cluster. Two linear clusters K ; and K , are combined
into one if K , may start only after K ; finishes or may be executed only while Ky is
idle. It contributes to further balancing the workload of processors, and further

reducing the amount of resources to be utilized and interprocessor communication
overhead.

Virtual architecture graphs can be constructed independently of the target
multiprocessor system. As a result, the characteristics of the target system matter
only during physical mappings. After constructing a virtual architecture graph
which represents the optimal multiprocessor system for a given computation graph,
we just need an optimal mapping of the virtual architecture graph onto a physical
architecture graph which represents the target multiprocessor system. We develop
homogeneous and heterogeneous mapping algorithms for homogeneous and
heterogeneous multiprocessor systems, respectively. ‘

These algorithms rely on not only local information but also on limited global
information. The key issue is then how to reduce the mapping comple){ity while
sacrificing the optimality as little as possible. A dominant request tree is a maxi-
mal spanning tree of a virtual architecture graph. It provides limited global infor-
mation on the virtual architecture graph such as the mapping order of the nodes and
the edges whose adjacency should be maintained. Both mapping algorithms
utilize dominant request trees, but take guite different approaches to mapping
the trees onto physical architecture graphs. Most importantly, in the case of homo-
geneous mappings, the trees are directly mapped onto physical architecture graphs.
On the other hand, in the case of heterogeneous mappings, they are mapped onto
dominant service trees. A dominant service tree is a maximal spanning tree of a
physical architecture graph. For heterogeneous mappings, one of the important
issues is how to identify and utilize resources with high performance as much as
possible. A dominant service tree provides such information.

1.1.3. Results: Theoretical and Practical

The problem of scheduling of general static computation graphs to general
multiprocessor architectures is expressed as a sequence of transformations on com-
putation graphs and architecture graphs, and a series of mappings among the
graphs. Explicit consideration is given to both homogeneous and heterogeneous
multiprocessor architectures. Algorithms for these transformations and mappings
are given and are characterized by their computational complexity. Bounds on the
number of processors needed to attain maximum parallelism at a given level of task
granularity are derived. It is shown by analysis and by experimental demonstration
that the scheduling methodology developed, while known in general to produce
sub-optimal schedules, does produce effective schedules with reasonable effort.

New schemes for transformation of the computation graphs of a large class of
loop structured programs into a form to which the general scheduling methodology
applies are defined and described. In addition, they are integrated into the transfor-
mation process.

Experiments are conducted on both a distributed memory architecture, an
Intel iPSC with 32 processors and a shared memory architecture, a Sequent Bal-
ance with 10 processors. The computation graphs used in the experiments include
a regular graph with a cycle, a regular graph without a cycle and an irregular graph.
The Intel Hypercube is turned into a heterogeneous multiprocessor system by deli-
berate manipulation of the computation times and communication times of the
nodes and edges of the irregular computation graph, respectively. The results of
the experiments reveal substantial performance enhancement after linear clustering
and linear cluster merging of the computation graphs through application of the
general scheduling methodology and sub-optimal results in some cases where
optimal execution times can be derived.

1.2. Organization of the Thesis

We begin in Chapter 2 by taxonomizing general-purpose multiprocessor sys-
tems. Next, we discuss various multiprocessor scheduling strategies: ad-hoc,
manual, automartic and restricted schedulings. Traditionally, depending on the
degree of coupling among processors, there have been two main multiprocessor
scheduling: one for loosely-coupled systems and the other for tightly-coupled sys-
tems. After reviewing the previous strategies and cost functions, we discuss their
weaknesses.

The graph models described in Chapter 3 are concerned with the properties of
graphs we deal with for multiprocessor scheduling. This chapter introduces two
types of graphs: computation graphs and architecture graphs. In fact, we make use
of the same graph model to represent two different types of architecture graphs:
virtual and physical architecture graphs. This chapter also introduces the concep-
tual model for a generalized multiprocessor scheduling. We use this model to real-
ize the different scheduling strategies mentioned in Chapter 2.

In Chapter 4, we propose a new multiprocessor scheduling technique based on
linear clustering and linear cluster merging. The ideas of linear clustering and
merging are explained and justified. Then we identify the cases that cyclic compu- -
tation graphs may be transformed into acyclic graphs in a straightforward manner.

In this chapter, we also establish some interesting properties of linear clustering
and merging. '

The main subject of Chapter 5 is to describe efficient heuristic, polynomial-
time mapping algorithms for the different types of multiprocessor systems: homo-
geneous and heterogeneous systems. We explain each mapping algorithm and dis-
cuss the time complexity of each. We also propose and justify transformations of

virtual architecture graphs and physical architecture graphs into dominant request
trees and dominant service trees, respectively.

In Chapter 6, the performance of the proposed mapping algorithms is meas-
ured and analyzed. After summarizing our experimental environments, we
enumerate the performance metrics being considered in the experiments. Then, we
discuss the implementations and the results of performance evaluation in order to
show how the proposed mapping algorithms behave on the different types of mul-
tiprocessor systems and computation graphs.

Finally, concluding remarks are contained in Chapter 7. In this chapter, we
summarize our research and suggest the future research directions.

10

CHAPTER 2

MULTIPROCESSOR SCHEDULING PROBLEM

General-purpose multiprocessor systems can be classified into four categories
based on the level of couplings among processors and memory modules as follows:

 very tightly-coupled systems;
e tightly-coupled systems;
» loosely-coupled systems;
= very loosely-coupled systems.

The first category includes systems like the Sequent Balance 21000 [SEQS86]. It
has one global memory shared by all the identical processors, all of which are con-
nected by one global bus. The second category includes the IBM RP3 [PFI85], the
NYU Ultracomputer [EDL85a, EDL85b] and the BBN Butterfly [BBN85a]. Each
processor in these systems has a local memory which can be shared efficiently by
the other processors through a switching network. In particular, the RP3 also sup-
ports software-controllable shared-memory. As a result, a single system like the
RP3 may realize a spectrum of the coupling among its processors. This category
also includes the Flex/32 [MATSS] in which each processor has its own local
memory, and all processors can share a global memory through a global bus. The
Intel iPSC [INT87] belongs to the third category. The processors, each of which
has local memory, are connected by asynchronous communication links. Since
there is no shared memory in the iPSC, the processors communicate with one
another by message passing. Finally, a wide area network like the ARPANET
[HEA70] or a local area network based on the Ethernet [MET76] can be regarded
as a very loosely-coupled system.

Scheduling strategies for multiprocessor systems can be discussed in terms of
the following factors:

11

» The time (hardware design time, compile time, load time and runtime) at which
mappings are fixed and elements of the computations are bound to resources;

« The degree of automation of mappings and bindings;
» The degree of coupling among resource sets;
» The cost metrics or cost functions used as decision variables.

In this section, we first discuss multiprocessor scheduling strategies in terms
of the four factors. After reviewing previous approaches to multiprocessor
scheduling and cost functions, we discuss their weaknesses. Finally, we discuss the
complexity of multiprocessor scheduling problems being investigated in this thesis.

2.1. Multiprocessor Scheduling Strategies

For a given multiprocessor system having a certain degree of coupling,
depending on the degree of automation of mappings and bindings provided for the
user, there is a spectrum of multiprocessor scheduling strategies. These range from
leaving the user the entire burden of managing processors in the system to simply
requiring the user to define tasks and specify dependency relations among tasks.
The degree of automation in fact depends on the level of visibility of multiproces-
sor systems exposed to the user. There are four classes of multiprocessor schedul-
ing strategies in the spectrum:

e Ad-hoc multiprocessor scheduling: This is suitable for multiprocessor systems
like systolic arrays [KUN82] whose configurations and operational characteris-
tics should be unfolded as low as the hardware gate level to the user. As a
matter of fact, there is virtually no resource scheduling by the operating system,
because the user is fully responsible for allocation of processors in the system
and synchronization between them; it is even required to specify the complete
timing of all instructions for all the processors in the system. The binding of

processors to tasks is fixed at hardware design time or possibly at compile time
[KUN&g4].

* Manual multiprocessor scheduling: This strategy aims at handling multiproces-
sor systems whose physical configuration of resources and status are partially

12

visible to the user (e.g., the number of active processors, the connectivity of
processors, the communication costs, the characteristics of resourcés, etc.).
The user can make use of such visibility for the actual resource scheduling. For
example, he may specify statically process working sets or may designate a
specific processor to execute a particular task as in the Medusa operating sys-
tem [OUS80, OUS82] for Cm* [JON8O]. The processors are bound to tasks at
compile time or possibly at load time.

o Automatic multiprocessor scheduling: The actual allocation of resources is hid-
den from the user and is done by the operating system of a multiprocessor sys-
tem. Nothing related to physical resources is visible to the user; however, he is
responsible for the specification of dependency relations among tasks as in the
Uniform System [BBN85b] for the Butterfly system [BBN85a] or as in Dynix
for the Sequent Balance [SEQ86]. In the Uniform System, the binding of pro-
cessors to the tasks can be done either before or at runtime. Because of the
flexible binding time, the tasks may be migrated dynamically to other proces-
sors to balance the workload of each processor or to bypass failed processors.
The Dynix system allows both static and dynamic schedulings. The latter is
useful for workload balancing among processors.

» Restricted multiprocessor scheduling: This is a variation of the preceding two
strategies. It may restrict utilization of full resources available in a multipro-
cessor system or the way they can be used. For example, the Cedar system
[GAJ83] and the IBM RP3 [PFI85] may be partitioned into subsystems so that

each subsystem can be assigned to a different application program to improve
the total throughput.

Depending on scheduling objectives, we can define a variety of cost functions
which may be expressed in terms of various cost metrics. In fact, those functions
are utilized as decision variables for reducing the solution space during mapping.
As a result, multiprocessor scheduling strategies (more specifically, mappings) are
significantly influenced by the cost functions. The most important and frequently
used cost metrics are the computation cost and the interprocessor communication
cost. We will discuss them in detail in the following section. '

13

2.2. Review of Previous Multiprocessor Scheduling Strategies

Basically, there have been two main streams of research on multiprocessor
scheduling strategies: one for loosely-coupled systems and the other for tightly-
coupled systems. In this section, we discuss scheduling strategies for each system.
We also discuss cost functions and metrics considered in the previous research.
Note that the visibility of a multiprocessor system exposed to the user (which
determines the degree of automation of scheduling) has not been considered expli-
citly in any previous study of multiprocessor scheduling strategies.

2.2.1. Scheduling Strategies for Loosely-Coupled Systems

Several approaches to scheduling strategies in loosely-coupled systems have
been suggested in the past. They can be roughly classified into three categories,
namely, graph theoretic [STO77, STO78], mathematical programming [LEE77,
CHU80, MA82], and heuristic methods [GYL76, BOK81, EFE82, MAS2, KAS84,
PAT84, STA84, VAN84, CAMSS, SHES8S, LEES7, SADS87].

The graph theoretic approach uses a computation graph to represent an appli-
cation program and applies the minimal-cut algorithm [STO77] to the graph. The
goal of this scheduling is to minimize the total execution cost, defined as the sum
of the computation cost and the interprocessor communication cost. In this
approach, in order to minimize the total cost, a computation graph is modified so
that each cutset in the modified graph corresponds in a one-to-one fashion to a task
allocation, and the weight of the cutset is the total execution cost for that alloca-
tion. With this modification, 2 maximum flow problem [FOR64] is solved on the
modified graph. The minimum weight cutset obtained from this determines the
task scheduling which is optimal in terms of the total cost.

Even though the min-cut max-flow algorithm adopted by this approach
guarantees an optimal solution, it is only practical for finding a minimum cost allo-
cation between two or three processors. Moreover, it does not deal with such
issues as workload balancing, resource constraints (e.g., memory size), and depen-
dency relations among tasks. Rao et al. [RAO79], however, have tried to find a

14

minimum feasible allocation of tasks to two processors, one of which has limited
memory, as an attempt to include limited scheduling constraints.

In the mathematical programming approach, the scheduling problem is formu-
lated as an optimization problem and solved with linear programming techniques.
This approach has been applied with some success to the file allocation problem
[CHUG69] in a loosely-coupled multiprocessor system. For multiprocessor schedul-
ing purposes, it can be used to minimize the total execution cost subject to some
given scheduling constraints. The objective function is the total cost which is also
a sum of the computation cost and the interprocessor communication cost. The
constraints might be a memory size restriction on each processor or response time,
for example.

As in the previous approach, this approach gives us an optimal solution. It is
more flexible than the previous one, however, since it allows various scheduling
constraints to be introduced into the model. This is difficult or impossible with the
graph theoretic approach. Since this approach suffers the problem of increased
complexity as the dimension of the problem becomes larger, it is not suitable for
time-critical applications. It was reported in [CHUS8O0] that it typically took a CDC
6000 series computer two to three minutes to schedule 25 modules onto 15 proces-
sors. As a result, it is not practical to specify more than a couple of constraints.
Furthermore, there is no provision for specifying dependency relations.

The heuristic approach, in general, provides an approximate solution for mul-
tiprocessor scheduling. Even though the two previous approaches provide us with
optimal solutions, it is unlikely to find efficient exact algorithms based on them for
the general mapping problem within the reasonable time constraints. The heuristic
approach is very useful when an optimal solution is not required, not obtainable, or
can not be obtained within time limits. Note that heuristic approaches may be
based on a combination of the previously described approaches.

As a result, for more flexible multiprocessor scheduling, it is imperative to
rely on heuristic algorithms which are computationally tractable. In general,
heuristics will not guarantee optimal solutions, but may allow the specification of
much more scheduling constraints than the previous two approaches, since they are

15

less sensitive to the magnitude of the scheduling problem.

2.2.2. Scheduling Strategies for Tightly-Coupled Systems

There are not as many distinct scheduling approaches for tightly-coupled sys-
tems as for loosely-coupled systems. Scheduling strategies for tightly-coupled sys-
tems may be categorized based on the degree of visibility of underlying multipro-
cessor architectures; the more visible the architectures are, the more responsible the
user is for resource scheduling.

Ousterhout [OUS82] proposes a multiprocessor scheduling strategy for Cm*
which is appropriate for a tightly-coupled environment! in which some characteris-
tics of the architecture are known to the user. That is, the configuration of the mul-
tiprocessor system is partially exposed to the user. As a result, processor schedul-
ing may rely on the user’s ingenuity. For example, the user can designate a proces-
sor to which he prefers to allocate a task. He also should know the number of
active processors in the system (more preferably, in the same cluster) so that all of
the tasks contained in a task force T are guaranteed to be coscheduled (i.e., exe-
cuted concurrently on different processors). Coscheduling is based on the observa-
tion that the duration of a busy-waiting time is usually less than two context
switching times. It may prevent the possibility of process thrashing and deadlock.

Recently, several multiprocessor scheduling strategies have been proposed
under the assumption that the configurations of multiprocessor systems are almost
concealed from the user. Those are the Uniform System approach [BBN85b] in the
Butterfly system [BBN85a], the self-scheduling approach [LUS85, TANSS5] in the
Cedar system [GAJ83], the self-service approach [EDL85b] in the Ultracomputer
[GOT83a], and the Dynix approach in the Balance [SEQ86]. The Uniform System
treats each processor as able to execute any task. The user is required to supply
task generators which generate the next tasks that will be allocated to any available

1 Even though Cm™* has no central, shared memory in the sense of C.mmp [FUL73], lo-
cal memory of each processor can be shared by other processors with some degraded
performance. See [HAY82] for the cost ratio for different types of memory references.
11 A task force can be defined as a set of heavily interacting tasks.

16

processor. Self-scheduling is a non-preemptive, distributed scheduling strategy
that allows processors to schedule themselves without intervention from the operat-
ing system. Self-service is a centralized strategy, in which a single central queue
of ready tasks is shared by all processors. Depending on scheduling purposes,
Dynix provides three different strategies: prescheduling, static scheduling and
dynamic scheduling. In order to run a different task on each processor, we should
rely on the first one. On the other hand, the others are useful if we have identical
tasks to execute. If a program can be partitioned into tasks in such a way that each
has the same computation time, static scheduling is better than dynamic schedul-
ing. No matter which type is chosen, it is not necessary to perceive the underlying
architecture. It will be informative (but not imperative) to know the maximum
number of available processors. Since scheduling strategies in these systems are
basically identical and have similar problems, we will discuss only the Uniform
System in detail.

The Butterfly parallel processor is a tightly-coupled, shared-memory, homo-
geneous system. The Uniform System implements a methodology for task schedul-
ing in the Butterfly system. It achieves parallel processing by utilizing any active
processor as soon as it becomes available. A similar approach has been adopted by
the HYDRA for C.mmp [MASS82], by Dynix’s dynamic scheduling scheme for the
Balance [SEQS86] and by the operating system for the Pluribus [KAT78]. While
the system automatically allocates tasks to processors, the user is responsible for
supplying a task generator procedure to generate next tasks to run. Since the
details of machine configuration are hidden from the user, he is not burdened with
dynamic machine reconfiguration. Consequently, its configuration can be changed
dynamically according to the availability of its processors without interfering with
execution of the user’s programs.

There are several drawbacks to the approach taken by the Uniform System.
In fact, the other approaches also have similar problems. First of all, task genera-
tors contain any number of internal critical regions through which processors must
proceed one by one. For example, the regions usually include the following opera-
tion:

index = Atomic_add(p ;, 1).

17

This operationdf atomically fetches and adds 1 to the location pointed to by p ;
to generate the next index value. Since processors must proceed through the criti-
cal region in a certain serial order, the region will limit the maximum number of
processors that can be utilized simultaneously, no matter how small the region is
[BBN85b]. Furthermore, it may force the user not to choose a smaller size of task,
because the size may increase the overhead of the critical region in inverse propor-
tion to the task size. In order to reduce the overhead, the notion of chunking
[EDL85b] may be useful.

Secondly, the Uniform System approach may increase computation overhead
(e.g., the amount of interprocessor communication) unnecessarily. For a given
computation, because of data dependencies among tasks, there is always a
minimum time span to complete the computation even if an unlimited number of
processors is available. Therefore, there is an optimal number of processors
required to complete the computation in the minimum time. The Uniform System
may utilize more processors than optimal whenever there are available processors
and one or more tasks waiting for the processors. This use of additional processors
may not increase the performance of the system at all. Instead, it may increase
overhead such as amount of interprocessor communication, remote memory access
time and task creation time, because of unnecessary (or excessive)
creation/distribution of tasks.

The next problem of the Uniform System is that for parallel processing it does
not allow multiprogramming; in other words, it allows only a single user program
to execute and only one task per processor in the system. This is a serious restric-
tion, since it prevents the user from parallel processing more than one task or appli-
cation program simultaneously. In spite of the potential for waste in busy-waiting,
what we gain from this simple restricted scheduling is that unnecessary context
switchings can be eradicated.

+ The NYU Ultracomputer and the Cedar multiprocessor system have similar synchroni-
zation primitives. The former provides Fetch-and-Add [GOT83b] and the latter provides
more general primitives such as {variable, test condition, operation on key, operation on
data} [TANES].

18

The final problem of the Uniform System is that each processor may be forced
to be idle longer than necessary. As soon as a processor becomes available and as
long as there are tasks yet to be executed, the task generator residing on the proces-
sor generates a next task and executes it. Even after a task is allocated to the pro-
cessor, however, it may be forced to remain idle further until some sequencing con-
straints are satisfied. Since the Butterfly system allows each processor to run no
more than one task for parallel processing, the power of the processor may be
wasted. On the other hand, if we consider a multiprocessor system which allows
multiprogramming, we need more coordinated scheduling to prevent premature
occupation of a processor and waste of its processing power. For example, alloca-
tion of a task which prematurely occupies the processor may be deliberately
delayed until all the necessary sequencing constraints are satisfied. During that
time, the processor may execute another task which can be executed immediately,
rather than being idle.

2.2.3. Cost Functions in Previous Approaches

In the previous research, many cost functions using a variety of cost metrics
have been proposed especially for loosely-coupled multiprocessor systems. The
most basic cost metrics are the computation cost and the interprocessor communi-
cation cost. Assuming that A is an allocation matrix (g;;) of ¢ tasks to p proces-
sors, a cost function to evaluate the total execution cost can be formulated as the
sum of the two cost metrics [CHUS80, MA82, SHESS]:

i p I p
2 2 (m'aikthomp;k + 2 20 'ajl'Tcomzn;}-)'
i=1k=1 isilsk

Allocation matrix A is defined as follows:

1, if task i is assigned to processor k;
%k =30, otherwise.

T omp,, 1s the computation cost for task i on processor k. Similarly, T, is the

comimy;

communication cost between task i and task j. The scale factor ® is used to nor-

19

malize different cost metrics. Because the time complexity to find an optimal allo-
cation, A, increases rapidly as the number of processors increases, either various
scheduling constraints or heuristic information has typically been employed to
reduce complexity. For example, Ma et al. [MA82] proposed a branch and bound
technique using allocation constraints; Shen and Tsai [SHE85] made use of the A*
algorithm to reduce the feasible solution space.

Another interesting cost metric proposed in [BOKS81] is cardinality, which is
the number of edges connecting tasks which are mapped onto adjacent processors.
In this case, the optimal scheduling is one that maximizes cardinality. Stankovic
and Sidhu’s adaptive bidding algorithm [STAB84] takes into account various param-
eters. They propose interesting cost metrics based on memory utilization, proces-
sor workload, task distribution/cluster, and others. The wave scheduling strategy
proposed by van Tilborg and Wittie [VAN84] makes use of a unique cost metric:
total CPU time to schedule a task group of size S successively. Efe [EFE82] pro-
posed a cost metric to measure processor workload: assuming p is the number of

i

processors in a multiprocessor system, the workload g; is represented by

k4
avg

p I
where [; is the queue length in processor i and /,,, is defined as Z—f—. The other
i=1
cost metrics proposed include speedup [AES82], turnaround time [NI81] and
scheduling length [KAS84].

2.2.4. Discussion on Previous Strategies

Previous approaches have focused mainly on the development of specific
scheduling strategies based on the coupling factors of processors in multiprocessor
systems. Some of them also attempt to take advantage of the unique hardware
characteristics such as interconnection topologies of multiprocessor systems under
consideration. Since each strategy is usually an ad-hoc scheme, it is in most cases
applicable to some limited class of multiprocessor architectures (e.g., tightly-
coupled homogeneous systems [GOT83a, BBN85a], loosely-coupled homogeneous
systems [SOL79, WIT80], loosely-coupled heterogeneous systems [FOR78,

20

CHO82], and multicomputers connected in point-to-point fashion [BRY81}).

Moreover, various simplifying assumptions are common. For example,
Bokhari [BOKS81] studies the assignment of tasks to processors with the restriction
that the number of tasks should be less than or equal to the number of processors.
Shen and Tsai [SHE85] propose a graph matching approach for solving task
assignment to processors, but ignore dependency relations among tasks. Some
approaches have limited scheduling objectives; they find the best schedule with
respect to either the total computation time [GOT83a, BBN85a] or interprocessor
communication time [HAE80, BIA8S]. Other approaches are interested in balanc-
ing the workload of the total multiprocessor system [STA84, VAN84, WANSS,
EAGS86].

In most scheduling strategies for tightly-coupled systems, specific intercon-
nection networks are assumed such as the Butterfly switch, the Omega network, the
SW-Banyan network or even a composition of them [PFI85]. On the other hand,
most of them do not take into account scheduling constraints, resource limitations,
and the current workloads of processors in the system. It is also assumed that each
processor is identical (i.e., all have the same processing speed and memory capa-
city). Furthermore, some multiprocessor systems such as the Butterfly allow allo-
cation and execution of only one task on a processor at a time; each task is
nonpreemptive and occupies the processor until its execution is completed.
Finally, while most scheduling strategies make heavy use of busy-waiting as a syn-
chronization mechanism, there is little attempt to reduce or avoid using it.

All in all, there are a myriad of multiprocessor scheduling strategies which
can be applied to specific multiprocessor systems. On the other hand, there is little
research which attempts an integrated approach to multiprocessor scheduling
which could be applicable to various multiprocessor systems regardless of underly-
ing architectural characteristics.

2.3. Complexity Issues of Multiprocessor Scheduling Problems

In this section, in order to justify the development of heuristic algorithms, we

21

discuss the complexities of three multiprocessor scheduling problems to be investi-
gated in this thesis: '

SP1) Given a minimum schedule length L, what is the minimum number of
fully-connected identical processors in order to finish a parallel computa-
tion within L, which consists of a set S = {5, 59, - -, 5,,} of mutually
independent schedulable units of computation with arbitrary computation
times ?

SP2) What is the minimum schedule length of a parallel computation consisting
ofasetof S = {5,584, -, 5,} of mutually dependent schedulable units
of computation with arbitrary computation times and zero communication
times on the fixed number of p (=2) fully-connected identical processors ?

SP3) What is the minimum schedule length in SP2, if the unlimited number of
fully-connected identical processors are available 7

We first prove that the decision problems DP1 and DP2 corresponding to the
first two optimization problems SP1 and SP2, respectively, are NP —complete . We
then discuss the complexity of the third problem.

Theorem 2.1: DP1 is NP —complete .

Proof: In order to get a "yes-no" answer for DP1, we just need a nondeterministic
Turing machine which makes a guess at a set of partitions of schedulable units of
computations in S and checks in polynomial time whether that the length of each
partition and the number of the partitions in the set satisfy the given bounds,
respectively. So, this problem is in NP.

We now show that DP1 is polynomially reducible from Bin-Packing problem.
For a finite set U = {uq,uy,...,u,} of items, a size o(u) € Z¥ (where Z*
represents the positive integers) for each ¥ € U, a bin capacity C € Z¥, and k €
Z*,B = {U,U, ...,Ug, C} is a given instance of bin packing of U such that

{n;ui% U;l £C, where 1U;1 = 3 o(u). Aninstance of DP1 can be trivially con-
Sis ue U;

structed in polynomial time from the instance of bin packing as follows: Given U =

22

{uy, o * .Uy}, weconstructaset S = {sy, 5, -, 5,]} of mutually indepen-
dent schedulable units of computation by replacing each u; € U with a schedulable
unit of computation s; with a length I(s;) = o(u;) for 1<i<m, and create a
(dummy) schedulable unit of computation s, such as [(s,, ;) = C, where C is
the bin capacity.

We now need to show that there exists a partitioning {U,U,, -+, U} of U

into minimum possible & disjoint subsets such that meugc (1U;1) £ C if and only if
1si<

there exits a partitioning {S, S, -, S, Sga1) of S U {s,,4;} into minimum

possible k+1 disjoint subsets such that ina);(lSil) <I(s,,41) =L, where I§;1 =
<i<

3 I(s) and Sp,; = {5,,41). First, suppose that {U ,U, ..., U} is a partitioning
seS;

of U with the minimum possible & such that §na)§c (1U; 1) £ C Since I(s;) = o(u;)
<i<

for 1<i<m and I(s,,,1) =C, {51, 89, ** ", Sy, Sp41) can be partitioned into {S,
8. s Sk Sger} such that S; = U{s;) for 1<i<k and Sy = {5,,4;}, where U; =
i

U(u;} and I(s;) = o(u;), Therefore, {§, S5, * -+, Spsq} is a partitioning of § U
j

{S,+1} With the minimum possible k such that rx<1z:1<)§c (18; 1) £1(s,,41)- Conversely,

suppose that {S{, S5, * -, Si, Sg.1} is a partitioning with the minimum possible £

such that . <m<z}cx1(lS,-) < L. Since all 5; (1<i<m) are mutually independent, a
<igk+ .

minimum schedule length L becomes . max 1(l (s;)) = C. Without loss of general-
<i<m+

ity, let Sgyq = {841} Since I(s;) = o) for 1<ism and L = C, {uy, u,, -,
U, } can be partitioned into {Uy, Uy, -+, U} such that U; = U{y;} for 1<i<k,
J
where S; = u{sj} and G(uj) = l(sj). Therefore, (U, Uy, - -+, U, } is a partition
J

of U with the minimum possible k£ such that ma)i (y;hHC.
1<i<

O
Theorem 2.2: DP2 is NP —complete .

Proof: First, it is trivial to see that this problem is in NP, since we just need a non-
deterministic Turing machine, which makes a guess at a set of partitions of

23

schedulable units of computation in S and checks in polynomial time whether that
the length of each partition and the number of the partitions in the set satisfy the
given bounds, respectively.

We can easily show the NP —completeness of DP2 by showing that DP2 con-
tains as a special case Precedence Constrained Scheduling (PCS) which has been
known an NP —complete problem [ULL75]. To be specific, if we allow only
instances of DP2 in which all the schedulable units of computation in § happen to
have the unit computation time, then we obtain a problem identical to the PCS
problem. As aresult, DP2is an NP —complete problem.

O

We now consider a slightly general version of SP2, which allows a nonzero
communication time on each edge. Since this is another general case of PCS prob-
lem as long as the sum of the communication times does not exceed the unit time,
this problem is also NP ~complete .

Finally, we discuss the complexity of SP3. General Scheduling Problem
(GSP) is to identify a schedule which minimizes schedule length of a parallel com-
putation of schedulable units of computation with arbitrary computation times and
arbitrary scheduling constraints under the assumption that a variable (but limited)
number of identical processors are available. It is well know that GSP is
NP —complete in the strong sense [KAR72, KAS84]. Even in the case that each
schedulable unit of computation has the unit time, finding the minimum schedule is
an NP —compete problem [ULL73, LLOS80]. Since SP3 is more general version of
GSP, it also appears to be an intractable problem.

24

CHAPTER 3

THE MODELS FOR MULTIPROCESSOR SCHEDULING

The fundamental idea of our approach is that multiprocessor scheduling is
equivalent to mapping of a computation graph onto an architecture graph. In this
chapter, we first present the models of computation graph and architecture graph,
and we then discuss the conceptual model of a generalized multiprocessor schedul-
ing strategy based on a series of graph mappings.

3.1. The Graph Models for Multiprocessor Scheduling

This section presents the models for computation graphs and architecture
graphs. Computation graphs are directed and acyclic, while architecture graphs are
undirected. The former describe parallel computation structures, and the latter
specify multiprocessor computer systems.

The computation graph model described provides a framework within which
various classes of parallel computation structures can be represented. A computa-
tion graph itself contains all necessary information to define the sequences of
events of a modeled computation. This leads to determinism in computation graph
execution. The computation graph is also labeled with information necessary for
scheduling the graph on a target multiprocessor system. Finally, we consider only
static computation graphs.

On the other hand, an architecture graph represents a target multiprocessor
computer system onto which a computation graph is to be mapped. There are two
types of architecture gféphs: virtual architecture graphs (VAG's) and physical
architecture graphs (PAG’s). A VAG depicts a desirable abstract multiprocessor
system for the execution of a computation graph; A PAG depicts a real multipro-
cessor system on which the computation graph is to be scheduled.

25

3.1.1. The Model for Computation Graphs

Karp and Miller [KARG66] first proposed a computation graph as the graphical
model to specify parallelism existing in computations. Browne [BRO86] also pro-
posed a directed graph as a representation basis of a parallel computation, in which
the nodes represent the bindings of operations to data and the edges represent
dependency relations between schedulable units of computation executed at the
nodes.

Our computation graph model is a triple (G, £, &™), whose first com-
ponent G, = (N,, E,) specifies a parallel computation. Computation graph G, is a
directed acyclic graph and defined as follows:

(i) AnodesetN.={ny,n, = ,mh

() AnedgesetE. ={ey, ey ', ¢}, where any given edge ¢, = (n;, n;) is
directed from node #; to node n;.

To be specific, graph G, defines computation steps by the nodes and sequenc-
ing among the steps by the edges. The remaining components provide information
necessary for mapping the computation graph onto a target system. The second
component f " is a function which maps each node in N, onto a positive integer
which is the expected computation time used by the schedulable unit of computa-
tion corresponding to the node. The next function f 7" maps each edge (;, n;)
in E_ onto a nonnegative integer which is the expected amount of interprocessor
communication from node #; to node n;. For example, if f;°""(e,) = Npy,, for
e, = (n;,n;), then the total length of messages sent from node »; to node n; is
Npyses bytes. We denote n; < n; if f;°""(e,) # 0 where ¢, = (n;, n;). We call ;
and n; a source node and a destination node, respectively.

In general, a computation can be specified in terms of schedulable units of
computation which may be realized as arithmetic expressions, arbitrary collections
of statements or procedures in a higher-level programming language such as For-
tran, ADA or Pascal, and in terms of dependency relations between these schedul-

able units. The amount of computation at any node represents the granularity of a

26

computation graph which, in turn, determines the structure of the graph. Note that
since each schedulable unit of computation is assigned to a unique node we will

use the terms node, task and schedulable unit of computation interchangeably.

In order to implement a meaningful computation, units of computation should
be executed in some coordinated order. Sequencing establishes the ordering rela-
tionships between primitive units of computation to form schedulable units and
between schedulable units of computation to form parallel computation graphs
[BROS86]. In our model, sequencing inside a schedulable unit of computation is of
any form. For example, it may be nondeterministic, and even back edges may be
embedded. On the other hand, sequencing between schedulable units of computa-
tion is fixed and deterministic. Furthermore, each schedulable unit of computation
is not allowed to be embedded in any do-loops. This can be achieved by unrolling
every do-loop existing in a computation graph. In this case, we need to adjust the
computation and communication times of the unrolled nodes and edges accord-
ingly.

An edge is an abstract representation of a dependency relation between
schedulable units of computation; synchronization and communication are realiza-
tions of such dependency relations. A directed edge between a pair of nodes not
only represents the transfer of information but also carries the sequencing informa-
tion between the nodes. In our model, however, sequencing is assumed to be sub-

sumed by communication primitives as in a data flow model of computation.

Interprocessor ~ communication is based on the asynchronous-
send [synchronous -receive communication model. Whenever needed, a node may
send messages to its destination nodes in the order specified by its outgoing edges.
A send primitive will not be blocked whether its destination node actually receives
the messages or not. Each time a node sends a message to another node, the mes-
sage is assumed to be placed in a queue on the edge between the two nodes. On
the other hand, when a node requests a message from the other node, it is blocked
from further execution until the message actually arrives at the appropriate input
channel. The node also expects input messages to arrive in the order specified by
its incoming edges.

27

As alluded to in the preceding paragraph, our graph model provides more
flexible interpretation of dependency relationships than the precedence graph
model. For two nodes ; and n; in a precedence graph, if n; <n;, n; can not begin
until n; has been completed. On the other hand, in our model, once n; sends a
message requested by n; and has no outstanding requests for messages from the
other source nodes, n; may begin execution. For example, node n; in the computa-
tion (sub)graph shown in Fig. 3-1 functions as follows. Upon being assigned to a
processor, a schedulable unit of computation represented by n; may be triggered
and be executed until it needs a message from its first input message from n;, . As
soon as it receives the requested message, it immediately resumes its execution
(whether or not n;, has been completed) until it runs into the next receive primi-
tive from n;,. The input edges may be also considered as synchronization points
during execution of node n;. The output edges from n; to n; , n; , and n;, simply
specify the fact that there are three send primitives from #; in the order of the out-

going edges.

Figure 3-1 A Subgraph of Computation Graph

28

The exact order of communication primitives (i.e., the send andb receive)
issued by a node can not be determined uniquely from a computation graph. Asa
matter of fact, a given graph may have many feasible orders. More specifically,
when a node receives messages from more than one direct ancestor, it expects the
messages to arrive in the relative order of its incoming edges (i.e., from left to
right). Similarly, when the node sends messages to more than one direct descen-
dant, it sends the messages in the relative order of the outgoing edges (again, from
left to right). Any interleaving of the send/receive primitives for a node may be
regarded as correct as long as the relative orders within the send and receive prim-
itives are maintained. For example, any number of the send primitives may pre-
cede any number of receive primitives. Table 3-1 shows examples of the
send [receive orderings which may and may not be represented by node n; and by
its two incoming and three outgoing edges shown in Fig. 3-1. Note that the send
and receive primitives are defined as follows:

» send(n s message) - send a message to node n;;

* receive (n,, message) - receive a message from node ;.

The incorrect order in Table 3-1 can not be an issue order specified by node n;,
since it fails to maintain the relative order between the receive primitives of node
n;. If only receive(n;, , message) precedes receive(n,, message), the order

becomes one of 10 correct orders represented by Fig. 3-1.

A Correct Urder An Incorrect Urder

receive (n, , message) | receive(n, , message)
send (n;,, message) send (n;,, message)
send (n g message) send (n i, IMEssage)
receive (n,, » message) | receive (n, ,» Imessage)

send (n .0 MeEssage) send (n ;,» message)

Table 3-1 Correct/Incorrect Orderings of Communication Primitives

29

Our computation graph is a restricted model in several ways, some of which
have been briefly mentioned above. The critical restriction that makes the model
inappropriate for representing some computations is that sets of edges entering and
leaving a given node may not be joined by or conditions. This prevents us from
embedding nondeterminism inside computation graphs. A second restriction is that
computation graphs may not have any back edges. This forces us to unroll all the
existing cycles so that computation graphs become cycle-free. Also, an edge
represents one-way communication channel from one node to the other. That is, it
is directed and associated with exactly two nodes, and, as such, there exists exactly
one unidirectional channel between a pair of communicating nodes (if any).
Finally, computation graphs are required to be static; neither new nodes nor new
edges can be created during runtime. The main reason for these restrictions is to
avoid ambiguity in determining the computation and communication requirements
of the nodes and edges in a computation graph. It should be also mentioned here
that we assume that a computation graph has one root node and one terminal node
without loss of generality.

Some of the restrictions may be relaxed with a little difficulty. For example,
the first restriction can be lifted if we enhance algorithm LinearCluster (cf. Section
4.1.1.) so that it is able to take into account dynamic information to select paths
with the highest probabilities of execution as trace scheduling [FIS84]. From a
practical point of view, it may not be always feasible to unroll every do-loop. We
discuss how to avoid full expansion of do-loops by removing back edges in some
special cases in Section 4.4.

The differences in parallel programming methodologies can be isolated to
specifying dependency relations between schedulable units of computation. These
methodologies differ mainly in their interprocess communication mechanisms and
in the amount of internal parallelism allowed inside a schedulable unit of computa-
tion. The dependency relations may be resolved to message or shared memory
synchronization operations depending on target multiprocessor systems. In spite of
some restrictions, our model can represent a variety of communication model for
parallel processing like the message-based communication model (e.g., Hoare’s
CSP model and ADA’s rendezvous model), the shared-memory model and the data

30

flow model among others, if their nondeterminism may be ignored. To be specific,
both CSP and rendezvous models establish precedence constraints by suspending
either source or destination nodes until the other also executes the corresponding
send /receive primitives. Our model may establish this kind of communication
mode by blocking the sender until a message from the sender has been actually
received by the receiver. Communication paradigms based on shared-memory
allow communicating nodes to exchange messages through shared variables. A
dependency relationship in the shared-memory model is nothing but a synchroniza-
tion constraint that must be met in order to produce the correct results. Edges in
our computation graph model, in fact, specify such synchronization constraints. A
static, data-driven data flow model is also a special case of our model. It can be
implemented by not triggering (or firing) the execution of a node until all the
necessary messages have been received. Finally, it should be mentioned here that
even though the model of communication allows sending of messages during exe-
cution, the algorithms for linear clustering treat computation graphs as pure pre-
cedence graphs for easy identification of linear clusters, where the messages are
sent only at the completion of each node.

3.1.2. The Model for Architecture Graphs

The model for architecture graphs provides a representation basis for the
structural description of multiprocessor systems. There are three types of resources
which are currently considered: processor, communication link and memory. An
architecture graph is an undirected graph in that each architecture edge is bidirec-
tional. It is also assumed that an architecture graph is static; the resource
configuration of a physical multiprocessor system will not be changed dynamically
during runtime. Moreover, it maintains the exact current status of the system. The
status includes the information on which processors are currently active/inactive,
which communication links are currently available and what is the current memory
capacity available in each processor.

Our architecture graph model is also a triple (G, f 7%, f5°™™), whose first
component G, = (N, E,) is an undirected graph defined as follows:

31

(i) An architecture node set N, = {an, an,, - ,an};

(ii) An architecture edge set E, = {ae, ae,, - , ae,}, where any architecture

edge ae, = (an;, an j) is undirected.

In an architecture graph, an architecture node represents a processor as well as
a memory module, and an architecture edge represents a communication link
between two processors. The second component f 2% is a function which maps
each architecture node in N, onto a pair of positive integers which denote the level
of computing power of a processor relative to the others in the system and the
current local memory size. A common global memory may be specified by a
dummy architecture node which is fully-connected with the other architecture
nodes. The next function f -°™” maps an architecture edge (an;, an ;)in E, onto a
positive integer which represents the bandwidth of communication link from archi-
tecture node an; to architecture node an; and vice versa.

There are two types of architecture graphs: virtual architecture graphs
(VAG’s) and physical architecture graphs (PAG’s). A VAG is an architecture
graph which defines a desirable abstract multiprocessor system for the execution of
a computation graph, regardless of the operational characteristics of the
corresponding real multiprocessor system. A PAG is another type of architecture
graph corresponding to a real target multiprocessor system on which the computa-
tion graph is to be executed.

It is the most desirable for a parallel computation structure if a multiprocessor
system is available which has a sufficient number of processors with an unlimited
amount of memory and enough communication links so that every schedulable unit
of computation can be assigned to a separate processor, and the adjacency between
schedulable units of computation can be maintained after the mapping. In fact, it is
a goal of silicon compiler research to implement directly such abstract architec-
tures on VLSI chips. While it may be possible to reach this goal, it would not be
always feasible to pursue it for every computation graph. A virtual architecture
graph representation provides a basis for specifying such an abstract multiprocessor
system which is expected to be the best for a given computation graph in terms of
performance. Depending on the information available on the target system in the

32

course of a series of mapping, a VAG may be transformed into another VAG .

PA

Figure 3-2 Physical Architecture Graph for the Butterfly System with 4 Processors

A physical architecture graph represents an operational view of the actual
resource configuration of a multiprocessor system. It may or may not be exactly
the same as the real resource configuration of a multiprocessor system. Fig. 3-2
depicts a physical architecture graph for the Butterfly system with four processors.
In fact, the PAG does not depict exactly the Butterfly system which utilizes the
Butterfly switch. The exact representation of physical resources is in fact not
important for the scheduling itself as long as those two have the same operational
behavior. For example, although the Butterfly switch does not provide dedicated
paths between each pair of processor nodes, there is a path through the packet
switching network from each processor node to other nodes. That is, the Butterfly
switch operates as if there were fully-connected direct communication links
between processors. The PAG in Fig. 3-2 describes such an operational behavior
of the Butterfly system.

3.2. The Conceptual Model for Generalized Multiprocessor Scheduling

This section introduces the model for generalized multiprocessor scheduling
and the mapping strategies based on this model. Also explained are logical and
physical mappings and their differences.

3.2.1. Generalized Multiprocessor Scheduling Model

We mentioned in Section 2.1 that the degree of automation of the mappings
and bindings is determined by the level of visibility of a multiprocessor system
exposed to the user. In this section, we introduce a model for generalized multipro-
cessor scheduling based on the level of visibility.

Various scheduling strategies (from ad—hoc to restricted) can be accom-
plished by utilizing virtual architecture graphs and the mappings between them. A
VAG is mapped onto another VAG which represents the physical resource
configuration of a multiprocessor system more accurately or gives more detailed
resolution of the physical architecture. Given n levels of visibility, assume that a
VAG graph at level 1 represents a multiprocessor system whose physical resource
configuration is not visible to the user at all. Since nothing related to physical
resources is visible, it is reasonable to assume that the VAG at level 1 represents a
multiprocessor system with unlimited amounts of resources. Virtual architecture
graphs at intermediate levels rtepresent multiprocessor systems whose
configurations are partially visible. At the other end, a VAG at the level n
represents a multiprocessor system whose configuration is completely visible to the
user. Fig. 3-3 describes the conceptual model of scheduling strategies for multipro-
cessor systems. Assumed here are three levels of visibility among VAG's. It makes
it easy to illustrate the basic principles of our model; however, there is no reason to
limit the number of levels of visibility.

A physical architecture graph represents a real multiprocessor system. More-
over, it maintains the exact current status of the system. The status includes the
information on which processors are currently active/inactive, which communica-
tion links are currently available, the current workload of each processor and each
communication link, the size of each memory module currently in use (conversely,
not in use), and others. A VAG at level n and a PAG are common in that both of
them represent a real multiprocessor system. While the former maintains a status of
resources which is not necessarily up-to-date, the latter keeps the most up-to-date
status of all the resources in the system.

34

Level of Visibility

Levell Ievelz Level3

Ad-hoc
Scheduling

%?{é%%&ing

@(%ggﬂlﬁ&cg C ¢ Cz Cs
§gﬁgﬁ$ﬁ?g g D D, Dy
Legend:

O Computation Graph
D Virtual Architecture Graph

* Mapping

Figure 3-3 Conceptual Model of Multiprocessor Scheduling Strategies

We now explain how different multiprocessor scheduling strategies can be
realized in our model depicted in Fig. 3-3. First, in the case of ad-hoc multiproces-
sor scheduling, there is no intermediate mapping between computation graph A
and the PAG ; the computation graph can be directly mapped onto the PAG. This
implies that the characteristics of physical resources are completely exposed to the
user. Therefore, he can take advantage of this visibility to get the maximum per-
formance out of the system. The operations to manipulate all processors in the sys-
tem may be specified at every single time step. As a result, the user is left with the
entire burden of deriving a schedule by which all data dependency constraints are

35

satisfied. The approach taken by systolic arrays [KUNS82] is an example of this
kind of model.

In the case of manual multiprocessor scheduling, there exist two intermediate
mappings before computation graph B is eventually mapped onto the physical
architecture graph. At the first stage of mapping, the computation graph is mapped
onto virtual architecture graph B, at level 2, which represents a partially visible
multiprocessor system. Due to the partial visibility of the multiprocessor system,
the user may construct parallel computation structure so that resources in the sys-
tem can be utilized more efficiently than in automatic multiprocessor scheduling
(but not as much as in ad-hoc scheduling). This type of scheduling also takes
advantage of the partial visibility of the physical multiprocessor system to deter-
mine better mappings. Medusa [OUS80, OUS82] is based on this kind of schedul-
ing model.

The next model is automatic multiprocessor scheduling. In this case, since a
physical multiprocessor system is completely invisible to the user, computation
graph C is mapped onto virtual architecture graph C; at level 1 and eventually
mapped onto the physical architecture graph after one or more intermediate map-
pings. During these mappings, more and more accurate information pertaining to
the physical system becomes available. Most scheduling strategies [BBN85b,
EDLS85b, TAN8S] for tightly-coupled systems are based on this model. Even
though they provide a limited version of manual scheduling strategy as well

[BBN85b, PFI8S5, SEQS86], they try to make the architectural details invisible to the
user as far as possible.

A variation on the previous two strategies are restricted automatic scheduling
strategies. In this case, even at the final stage of the mapping (e.g., from virtual
architecture graph D , to the physical architecture graph), the physical multiproces-
sor system is only partially visible to the user; the actual physical multiprocessor
system is masked in such a way that the user is allowed only to make use of a part
of the available resources in the system. This makes it possible for physical
resources to be partitioned into different clusters (which are not necessarily mutu-
ally disjoint). This partitioning may affect the utilization of some resources, reduce

36

the complexity of the scheduling and enforce some specific scheduling constraints.
This scheduling model can represent the multiprogramming paradigm in the Cedar
system [GAJ83], which is physically partitioned into clusters of one or more pro-
cessors to run a number of different application programs. The IBM RP3 [PFI85]
can also be partitioned into completely independent clusters through bounds regis-
ters. Such a partitioning can be easily supported by this restricted scheduling
model as well.

3.2.2. Logical and Physical Mappings

A series of mappings from a computation graph to a physical architecture
graph can be decomposed into two distinct mappings: logical mapping and physi-
cal mapping. A computation graph is first mapped onto a virtual architecture
graph in most cases. Then the VAG is successively mapped between pairs of
VAG’s until it is mapped onto the physical architecture graph. These mappings of
a computation graph onto a VAG and its subsequent mappings onto the other
VAG’s are called logical mappings. During logical mappings, it is assumed that
the whole system is available to a single application program.

At the time when one of the virtual architecture graphs is finally mapped onto
the physical architecture graph, the actual allocation of tasks to processors occurs.
This final mapping is called physical mapping. This mapping takes into account
the current status information on physical resources (e.g., active/inactive proces-
sors, available memory size, channel connectivity and capacities, etc.) and the
workload of each processor in the system. Note that ad-hoc scheduling requires
only one physical mapping.

37

CHAPTER 4

MULTIPROCESSOR SCHEDULING
BASED ON LINEAR CLUSTERING AND MERGING

Clustering techniques have been used in a variety of areas in computer sci-
ence [CHI84, BANG&7]. In this chapter, we propose a new multiprocessor schedul-
ing technique based on linear clustering and linear cluster merging. We first
characterize and justify linear clustering under the assumption that computation
graphs are acyclic. We then discuss linear cluster merging and its properties. We
also propose algorithms for iterative refinements of linear clusters (if necessary) for
the minimization of schedule length. Finally, we propose a set of schemes to
transform cyclic computation graphs into acyclic ones in order to make linear clus-
tering be applicable to a broader class of parallel computation structures. Note that
we use the terms computation graph and computation interchangeably in this
chapter.

4.1. Linear Clustering

Linear clustering is a fundamental idea of multiprocessor scheduling algo-
rithms discussed in Chapter 5. In this section, after characterizing linear cluster,
we introduce algorithm LinearCluster to identify linear clusters from an acyclic

computation graph. Then we justify why this idea is efficient for multiprocessor
scheduling.

4,1.1, Characterization of Linear Cluster

Given a computation graph G = (IV, E) with node set N and edge set E, a

38

clustering of G is defined as a cutting of G into a set of nonempty and disjoint con-
nected subgraphs by removing some edges in G. In other words, a clustering is an
assignment function which assigns a weight of either Oor 1 to each edge of E. A
graph is said to be connected if there is a path between any of its two nodes (when
the directions of edges are ignored).

A cluster of G is called a linear cluster K if it satisfies the following condi-
tions:

e K is nonempty;
« K is a connected subgraph of G ;
» Both indegree and outdegree of every node in K is less than or equal to 1.

Linear clustering is a special case of general clustering in that a linear cluster
is a degenerate tree in which each node has at most one direct ancestor and/or one
direct descendant, while a cluster, in general, is an arbitrary graph. Note that the
root and leaf nodes of the tree are called the header and trailer nodes, respec-
tively. Scheduling algorithms based on general clustering are not appropriate for
multiprocessor scheduling since they do not take into account potential parallelism
among tasks when finding clusters. However, general clustering may be useful for
identifying a set of clusters which minimize intercluster communication overhead.

The following algorithm LinearCluster illustrates how to identify linear clus-
ters:

LinearCluster (G ,K)

/* G is a (cycle-free) computation graph. */
/* K is a set of linear clusters. */

Begin
LetK ={J;
Find a longest path P from the root to a leaf node in G;
During traversing path P backward from the leaf to the root node,
cut all the incoming and outgoing edges except the one belonging to P;
For each connected subgraph S of G,

39

If both indegree and outdegree of each node in § is less than or equal to 1,
Then ’
K=K S§
Else Do
LinearCluster (S, K");
K=K UK .
End Do;

End LinearCluster.

Apath(ny,eq,ny,..., €1, ny) of graph G = (N, E) such that n; € N and
e; € E is considered the longest path if it maximizes the following objective func-
tion:

-1
Z(wl'Tcomp; + (l"ml)'(mecomm + (1—(’32)'27160,,1,,&].)),

i=1
where T, is the computation time of node 7;, T, is the communication time

corm;

of n; with adjacent node ngg;, and T,
J

is the communication time of n,y; with

its neighbors other than n;. ®; and ®, are normalization factors. We explain the
motivation behind the cost function in detail in Section 5.1. A longest path P may
vary with input data and initial state of computation. A path which is expected to
be the longest may not even be executed for some input data. In order to determine
a longest path uniquely, we restrict ourselves to a graph, all of whose edges are
actually traversed. Furthermore, the nodes and edges in the graph are labeled with
appropriate information such as computation and communication times as defined
in Chapter 3.

We find a longest path based on a simple modification of Dijkstra’s algorithm
[AHOS83] for the single source shortest paths problem. The time complexity to
identify all linear clusters in a graph at the worst case is O ({ %), since Dijkstra’ s
algorithm takes O ({ 2) for each subgraph, where [is the number of nodes in the

graph.

40

4.1.2. Justification of Linear Clustering

There are three types of multiprocessor scheduling techniques which have
been frequently referenced in the past: list scheduling, critical path scheduling and
Coffman-Graham scheduling. Prior to justifying linear clustering, we compare
briefly those scheduling techniques to motivate our technique. All in common con-
struct a priority list L for tasks in computation graph G in some order. In list
scheduling , L is constructed in an arbitrary order. Then the tasks are scheduled as
follows: As soon as a processor becomes idle, it searches list L from its beginning
until it finds the first task T', all of whose direct ancestors have already been com-
pleted. After being removed from L, the task is assigned to the processor. If it
fails to locate such a task, the processor remains idle.

The other two scheduling techniques are based on level number, which is
defined as the length of a longest path from a task to a terminal task (i.e., a task
with no descendants). They only differ in how to construct the priority list L. In
critical path scheduling [COF76], the tasks are included in list L in descending
order of their level numbers. This scheduling technique tries to minimize the total
execution time by first executing tasks far from terminal tasks. In
Coffman—Graham scheduling [COF72], the list also contains tasks in descending
order of their level numbers as critical path scheduling. If more than one task has
the same level number, the scheduling gives priority to the task which has more
direct descendants than others rather than choosing one randomly as in critical path
scheduling. A similar idea may be used if any scheduling information is not avail-
able or very difficult to estimate.

A list constructed by Coffman-Graham scheduling is a special case of critical
path scheduling, which in turn is a special case of list scheduling. As a result, criti-
cal path schedules are a subclass of list schedules, and Coffman-Graham schedules
are a subclass of critical path schedules. Particularly, Coffman-Graham schedules
are guaranteed to be optimal in the limited case that each task has unit execution
time, and the number of processors is two, while list and critical path schedules do
not necessarily yield optimal schedules for any cases.

41

These simple scheduling techniques make it possible to maximize potential
parallelism by utilizing idle processors as long as there are any ready tasks whose
precedence constraints are satisfied. On the other hand, they completely ignore
interprocessor communication overhead. None of them takes into account the rela-
tionship among tasks when assigning them to processors. For example, for two
adjacent tasks Ty and T,, suppose that T; has been assigned to processor Pr .
According to these techniques, T, may be assigned to any idle processor whether
or not it is adjacent to Pr . List schedules may be effective for tightly-coupled
homogeneous systems (e.g., the Sequent Balance [SEQ86] or the Encore Multimax
[ARGS86]). On the other hand, they will not work well for loosely-coupled systems
(e.g., the Cosmic Cube [SEI85]) unless tasks are mutually independent. If we are
only interested in minimizing the total communication overhead, we could rely on
general clustering and find clusters which minimize intercluster communication.
However, it may prevent tasks executable in parallel from being executed con-

currently in most of cases since two mutually independent tasks may be contained
in the same cluster.

Therefore, the fundamental problem for multiprocessor scheduling is how to
compromise between potential parallelism and interprocessor communication and
synchronization overhead so as to minimize the total execution time of a computa-
tion graph. This leads to four goals for an optimal multiprocessor scheduling:

e Minimization of interprocessor communication by allocating tasks that are seri-
ally dependent on one another to the same processor;

« Maximization of potential parallelism by allocating tasks that can be execut-
able in parallel to separate processors;

e Throughput enhancement by executing as many computation graphs as possible
simultaneously;

e Workload balancing among processors.

We claim that linear clustering is an efficient heuristic to accomplish these
goals; it compromises between the first two conflicting goals and satisfies the other

two goals relatively well. First of all, it attempts to minimize communication

42

overhead by allocating all the tasks in a linear cluster to one processor. By the
nature of linear clusters, since all of the tasks are serially dependent, they should be
executed in a sequential order. Even though we allocate them to separate proces-
sors, only one of the processors is active at a time. As a result, it should be much
more efficient to allocate all the tasks in the linear cluster to a single processor than
to allocate them to two or more processors (disregarding workload balance). The
unnecessary task distribution should incur the extra communication overhead
caused by interprocessor communication, which takes many more clock cycles
than intraprocessor communication.

Furthermore, regardless of the amount of hardware resources available to a
given computation graph, there exists a linear sequence of tasks whose execution
time is no less than the total execution time of a computation graph. The sequence
is called the critical path. Since tasks on the critical path are serially dependent,
the only way to reduce the critical path length (i.e., to reduce the total execution
time) is to minimize interprocessor communication overhead among the tasks.
Theoretically, linear clustering makes it possible to achieve the minimum execu-
tion time that is equivalent to the sum of computation times of tasks on the critical
path.

After linear clustering, the original computation graph is transformed into a
virtual architecture graph. Since the latter usually has many fewer nodes and edges
because it is transformed into a simplified graph, we have a better chance to main-
tain the node adjacency of the latter than the former during mapping onto a physi-
cal architecture graph. All these factors contribute significant reduction of the total
communication overhead. Note that due to the simplified graph, the complexity of
mapping algorithms should be also reduced.

Secondly, linear clustering attempts to maximize potential parallelism by
clustering a given computation graph into disjoint linear clusters in such a way that
tasks executable in parallel are assigned to different clusters. As long as they are
assigned to separate processors, they can be executed in parallel. Since each pro-
cessor component in a multiprocessor system is assumed to be a sequential engine,
it is better not to assign two tasks that potentially can be executed in parallel to the
same Processor.

43

In order to identify potential parallelism among tasks, we may rely on a tran-
sitive closure algorithm. Two tasks can be executed in parallel unless they are
directly connected in the transitive closure of the graph. Warshall developed an
O (n>) transitive closure algorithm [WARG2], which is impractical for large com-
putations. The important observation is that no matter what algorithms we make
use of to identify parallel tasks, we can accomplish maximum parallelism if any
task can start execution as soon as all of its dependencies are satisfied. To be
specific, all direct descendants of a task can be potentially executed in parallel if
each descendant has identical communication overhead with the task and any des-
cendant task is neither a direct nor an indirect child of another descendant task. If
the direct descendants are allocated to separate processors, we can possibly maxim-
ize potential parallelism existing in a computation. Algorithm LinearCluster gen-
erates clusters of tasks so that direct descendants of a task always belong to dif-
ferent linear clusters. Assuming that the number of processors is greater than or
equal to the number of linear clusters, we can allocate different linear clusters to
separate processors; consequently, all the descendant can possibly be executed in
parallel.

Next, linear clustering attempts to increase the throughput of multiprocessor
systems. As briefly mentioned above, because of data dependencies among tasks
in a parallel computation, there is always a minimum time span to complete the
computation even if an unlimited amount of resources is available. Even if more
processors than necessary can be involved in the computation (whenever there are
idle processors and ready tasks), it may not reduce the execution time of the com-
putation at all. On the contrary, it may increase overhead caused by interprocessor
communications and remote memory accesses due to unnecessary (or excessive)
distribution of tasks. It may turn out to be counter-productive if we assign each
task to a processor only because the processor is idle. This phenomenon is similar
to one of four multiprocessor abnomalities observed by Graham [GRAG9]: the
total execution time of a given parallel computation can increase as the number of
processors involved in the computation increases.

Therefore, there should be an optimal number of processors for executing the
computation in the smallest time. We prove in Section 4.2.4. that the sufficient

44

number of processors for the computation is always less than or equal to the
number of linear clusters. After linear clustering, it is reasonable to expect that we
need fewer processors to execute the clustered graph without affecting potential
parallelism at all than to execute the original graph as it was. If the number of
linear clusters is less than the available processors in a multiprocessor system,
since the rest of processors in the system can be utilized for the execution of other
computation graphs, the throughput of the system can be improved.

Finally, linear clustering attempts to improve the workload balance of each
processor. In some cases, the execution time of two clusters K ; and K , assigned to
separate processors are not overlapped at all. To be more specific, K, may start
only after K ; finishes, or it is executed only while K ; is idle. Merging those linear
clusters should not affect the total execution time, but should reduce the idle time
of processors and the number of processors necessary for a computation.

There are other advantages of linear clustering. Using linear clusters gen-
erated by algorithm LinearCluster , we can construct a virtual architecture which is
the most suitable for a given computation graph. No matter what the target archi-
tecture will be, this virtual architecture may be regarded as an optimal one for the
computation graph in the sense that the execution time of the graph can be minim-
ized on the virtual architecture. The reason for the minimization is that linear clus-
ters of mutually independent tasks are assigned to separate processors so that the
tasks can be executed in parallel as long as possible, and the adjacency among clus-
ters is always to be maintained so that intercluster communication overhead can be
minimized. As a matter of fact, it has been observed by experiments in [DEM82]
that an almost linear speedup might be obtained if a computation graph
corresponds well to an architecture graph.

Above all, linear clustering is very suitable for generalized multiprocessor
scheduling. What we are really looking for, at the stage of linear clustering, is
which path in a computation graph takes the longest time to complete. Due to the
characteristics of the computation graph model defined in Chapter 3, we can
uniquely determine the critical path in the computation graph. Furthermore, we

always assign all the tasks on the critical path to a single processor. As a result,

45

virtual architecture graphs can be constructed independently of target architectures.
If we do not apply linear clustering to the computation graph, then especially in the
case of a heterogeneous system, it is impossible to figure out the critical path. This
is because it is calculated based on the estimated execution times of tasks and the
execution times in fact depend on which processors the tasks are assigned to. Con-
sequently, we do not know which path is the critical path until all the tasks are
bound to physical processors.

After identifying an optimal architecture based on linear clusters, we just need
to search for an optimal mapping of the architecture onto target architectures.
Whether it is homogeneous or heterogeneous, the characteristics of the target archi-
tecture actually matter only during physical mappings. Furthermore, we can iden-
tify which target architecture is the best for a given computation graph prior to
actually running the program on the target architectures by comparing the results of
mapping the virtual architecture onto them.

4.2. Linear Cluster Merging and Its Optimality

In this section, we investigate a means to merge two or more linear clusters
into one without affecting potential parallelism existing in a computation graph. It
may contribute to further balancing the workload of processors. It may also contri-
bute further reducing the amount of resources to be utilized and interprocessor
communication overhead. Then we find the sufficient number of processors to
exploit all potential parallelism and to minimize the total execution time of a given
computation graph. In order to support our claim, we make use of the level
number of a node.

4.2.1. Level Number and Related Definitions

The level number concept has played an important role in multiprocessor
scheduling in the past. Depending on node labeling methods, the level number of a
node can be uniquely determined in a computation graph. The level number of a
node, however, can not uniquely identify the node; the nodes with the same level

46

47

number are not necessarily the same node. There are two approaches to assigning
a level number to each node: bottom—up and top—down. In the bottom-up
approach, the level number of a node is defined as the length of the longest path
from that node to a terminal node:

level (T)=1if T is a leaf node;

= [max (level (D) for each direct descendant D of T')}+1,
otherwise.

In the top-down approach, the level number of a node is the length of the longest
path from a root node to that node:

level (T)=11if T is a root node;

= [max (level (A) for each direct ancestor A of T)]+1,
otherwise.

1)1(6)

<>\}a
3(4)®3(4) g

8)4)
(se)
(s

Figure 4-1 Level Numbers (Top-Down vs Bottom-Up)

2(4)

3(2)

Three multiprocessor scheduling techniques proposed in the past [LLOZ0]
utilized the level numbers to determine the order of task execution based on the

bottom-up approach. In our research, we make use of them in a different way. As
observed in [PAT84], these level numbers may be used to identify potential paral-
lelism in a computation graph if the top-down approach is adopted. When the level
numbers are assigned from top to bottom, the same level number implies mutual
independence. To be more specific, if a group of tasks have the same level
number, they are mutually independent and may be simultaneously executable. If
there exists any data dependency between two tasks, they will have different level
numbers. On the other hand, when the bottom-up approach is utilized, tasks which
can be executed in parallel may be given different level numbers. As an example,
consider Fig. 4-1. Note that the number inside each node represents its node
number, while the number beside each node represents the level number based on
either the top-down or bottom-up (if in parenthesis) approach. When the level
numbers are assigned from bottom to top, the nodes 2, 3 and 4, which are the direct
descendants of node 1, have different level numbers, even though they can be exe-
cuted simultaneously. From here on, we assume that level numbers are assigned
using the top-down approach.

If every task in a computation graph has the identical computation time and
the same amount of communication overhead with its adjacent tasks, then tasks
with the same level number can be always executed in parallel. Otherwise, they
may not always be executable in parallel. For example, if they have different com-
munication overheads with their common direct ancestor, they can not be triggered
simultaneously. If they have a non-identical set of direct parents (e.g., nodes 6 and
7 in Fig. 4-1), depending on the computation times of their parents, they may or
may not be executed in parallel. If that is not the case, their execution may be par-
tially overlapped. It should be noted here that even two tasks with different level
numbers can be also computed in parallel if there is no path between them (e.g.,
node 8 and node 9). It requires exact estimation of computation and communica-
tion times and tedious analysis of timing to identify idle periods of linear clusters.
In this research, we are not interested in merging which utilizes such idle periods.

We now define some terminology and notation which are frequently refer-
enced in this section. Let L; represent a set of level numbers assigned to tasks in
linear cluster K;. Two linear clusters K; and K; are said to be sequentially

48

strong —dependenst if they satisfy the following conditions:

2) The trailer node of linear cluster K; precedes the header node of linear cluster

K;.

Condition 2) above implies that the first task in K; can be triggered only after the
last task in K is completed. In this case, linear clusters K; and K; are called mas-
ter and slave clusters , respectively, if the latter depends on the former. More than
two linear clusters are said to form a sequentially strong-dependent group if every
pair of them are sequentially strong-dependent.

Two linear clusters K; and K; are said to be mutually sirong —dependent if
they satisfy the following conditions:

1) ;L=

2) For two tasks Ty and T 5 in K}, T'; is a direct ancestor of T 5, where the former
is one of direct ancestors of the header node of K; and has the largest level
number among the direct ancestors, and the latter is one of direct descendants
of the trailer node of K; and has the smallest level number among the direct
descendants.

More than two linear clusters are said to form a mutually strong-dependent group,
if every pair of slave clusters is mutually strong-dependent or sequentially strong-
dependent. Note that a linear cluster in a mutually strong-dependent group is
called a master if it has the smallest and the largest level number among linear
clusters in the group. The other clusters are called the slaves.

The other notations we need to define are as follows:

¢« M;: Theith set of linear clusters which are mutually strong-dependent;
e |M; |: The cardinality of M;;

*S;: The i th set of linear clusters which are sequentially strong-dependent;

49

50

e |S;1: The cardinality of S;;

&

wsd. The number of sets consisting of linear clusters which are mutually
strong-dependent and merged eventually;

e Noz: The number of sets consisting of linear clusters which are sequential
strong-dependent and merged eventually;

¢ N;.: The number of linear clusters generated by algorithm LinearCluster .

4.2.2, Linear Cluster Merging

Algorithm LinearCluster (cf. Section 4.1.1.) recursively partitions a computa-
tion graph in such a way that direct descendants of a task are assigned to separate
linear clusters. Based on the observation made in the previous section, we now
introduce another algorithm MergeCluster which merges linear clusters if they are
not executable in parallel.

MergeCluster (K)
/* K is a set of linear clusters. */
Begin

Do
For each pair of linear clusters K; and X; inK
in the order o’ intercluster communication overhead,
IfL;N"L; =2,
Then
If K; and K; are mutually strongly-dependent and/or

sequentially strong-dependent,

Then
Merge them into one cluster Kj;;
Until no clusters are merged;

End MergeCluster.

Since the order of merging is important by Lemma 4.2.3 and Lemma 4.2.4
(cf. Section 4.2.4.), when there are a set of linear clusters, any pair of which can be
merged, we first need to choose a pair of clusters which reduces the total communi-
cation overhead the most after merging. This selection procedure takes O (I 2 at
the worst case, where [represents the number of linear clusters prior to merging.
Since the number of linear clusters may be decremented by one at a time during
every iteration at the worst case, the complexity of algorithm MergeCluster is
o).

4.2.3. Merging Conditions

In this section, we discuss two merging conditions mentioned in algorithm
MergeCluster . Once assigned to separate processors, linear clusters can be exe-
cuted potentially in parallel if data dependencies among them are satisfied. In cer-
tain cases, however, even when they are assigned to separate processors, they may
not be executed simultaneously.

S

Figure 4-2-a Computation Graph

(D—Cr——©

Figure 4-2-b Virtual Architecture Graph after Linear Clustering

As a pathological example, consider the computation graph in Fig. 4-2-a.
Suppose that algorithm LinearCluster partitions the graph into four linear clusters

51

52

as shown in Fig. 4-2-b. Notice that no processor can be utilized concurrently with
other processors, even after each cluster is assigned to separate processor. The rea-
son is that the linear clusters, which are mutually strong-dependent, are assigned to

separate processors.

Suppose that two linear clusters K; and K; are mutually strong-dependent.
By the definition of mutual strong-dependency of linear clusters, L; NL; =@, i.e,
no tasks in the clusters share the same direct ancestor. Next, as shown in Fig. 4-3,
there should be a direct path from T ; to T,,, where T is a task which has the larg-
est level number among direct ancestors of T, in K;, and T, is a task which has the

smallest level number among direct descendants of T, _; in K.

Figure 4-3 Mutually Strong-Dependent Linear Clusters

Furthermore, neither can the execution of 7, be triggered until (at least) all the
tasks of linear cluster K; are completed nor can the execution of T, be triggered
until (at least) T, is completed. There is no reason to assign K; and K; to separate
processors. As a result, we can merge them into one cluster without sacrificing
potential parallelism at all. Note that this is true independent of the data dependen-
cies of these linear clusters on other linear clusters. Assuming there are ;. linear
clusters before merging, N,. processors should be more than sufficient when there

exists at least one pair of linear clusters which are mutually strong-dependent.

In order to demonstrate how to merge mutually strong-dependent linear clus-
ters, we make use of the computation graph shown in Fig. 4-4-a. It is assumed that
the graph has been partitioned into four linear clusters: {K;=(1-3-9-12),K,
= (2—5—8—11), K3 = (4—27-10), K, = 6}.

Figure 4-4-b Virtual Architecture Graph before Any Merging

53

Based on these linear clusters, we can construct a virtual architecture graph which
represents an optimal architecture for the computation graph as shown in Fig.
4-4-b. Linear cluster K ; has two clusters, K5 and K4, as its slave clusters; i.e.,
both of them are mutually strong-dependent on K ;. Assuming that K'; has greater
communication overhead with K 5 than with K4, K and K 3 can be merged into

one cluster (K {3) as follows:

Figure 4-4-c Virtual Architecture Graph after Merging
Mutually Strong-dependent Clusters

In Fig. 4-4-c, there are two sets of linear clusters {K 13, K} and {K 3, K 4} which
seem to be mutually strong-dependent. However, neither can we merge K 43 and
K ,, since L3N L, # &, nor can we merge K 13 and K 4, since there is no direct
path between task 3 and 9 any more after K; and K 3 have been merged into K 43
(even though L3 "L, = &). Fig. 4-4-c shows a virtual architecture graph after

merging mutually strong-dependent linear clusters.

In general, a master cluster may have more than one slave cluster, as Ky in
Fig. 4-4-b. After the master cluster and one of its slave clusters are merged into
one cluster, some of the other slave clusters may not remain as slave clusters any
more. Consequently, depending on the order of merging, different virtual architec-
ture graphs may be generated. In order to reduce interprocessor communication
overhead as much as possible, the master cluster is merged with the slave clusters
in decreasing order of the communication overhead with them. When there are
N,..; groups of linear clusters which are mutually strong-dependent and merged

eventually, the reduction in the total number of linear clusters achieved by merging
Nipsat

is(Y (IM;1 = 1)
i=1

We are now concerned with linear cluster merging based on sequential

strong-dependency. Suppose that two linear clusters K; and K; are sequentially '

54

strong-dependent. By c}eﬁnition, LinL; = @. Next, the trailer task of one linear
cluster (say, K;) precedes the header task of the other linear cluster (say, K;).
Since a processor assigned to K; will be idle while the tasks in K; are being exe-
cuted, we can also merge them into one cluster without sacrificing potential paral-
lelism at all. Suppose that |S; | linear clusters are sequentially strong-dependent.
Then they can be merged into one linear cluster without sacrificing any potential
parallelism. Such a merger reduces the number of the clusters by [S;1 —1. When

there are N, groups of such linear clusters that are merged eventually, the reduc-
Ns.vd

tion in the total number of linear clusters achieved by merging is 3 (1§;1 —1).
i=1

4.2.4. Properties of Linear Clustering and Merging

Based on the discussion in the previous section, Lemma 4.2.1 shows how
many processors are sufficient to fully exploit potential parallelism available in a
given computation graph. In the following lemmas, we assume that the number of
available processors is always greater than the number of tasks executable in paral-
lel.

Lemma 4.2.1: It is sufficient (but may not be necessary) to utilize IV, —
de Nssd
Y (ID;1 =1) = % (IS;1 ~1)) processors to fully utilize potential parallelism

=1 i=1

available in a computation graph on a given physical architecture graph.

Proof: First we observe that any two tasks (whether or not they are direct descen-
dants of a task) can be executed in parallel when neither direct nor indirect paths
exist among them. In order to find out the sufficient number of processors to
exploit fully the potential parallelism available, we need to identify a maximal set
of tasks which have neither direct nor indirect paths with any other tasks in the set.

As mentioned in the above, there are two cases in which two tasks can be
merged without affecting potential parallelism: when they are mutually strong-
dependent and/or sequentially strong-dependent. If two tasks satisfy at least one of

the two cases, they can not be executed in parallel, even if they are assigned to

separate processors. Among N, linear clusters generated by algorithm Linear-
Nmsd

Cluster, we can first reduce the number of linear clusters by > (ID;l —1) by
i=1

merging mutually strong-dependent linear clusters. It generates a new set of linear

clusters. Then we can further reduce the number of linear clusters by

m

3 (1S;1 — 1) by merging sequentially strong-dependent linear clusters. The order

i=1

of merging by mutual strong-dependency and sequential strong-dependency is not

important, as proved below in Lemma 4.2.5.

Now that we have merged all the linear clusters which can not be executed in
parallel at any time during execution, we can maximize parallelism if we assign the

remaining clusters to separate processors. Consequently, the sufficient number of
Nmm’ Nssd
processors is (N, — 3, (I1D;1 = 1) = 3 (1S;1 = 1)).
i=1

=]

O

Next, Lemma 4.2.2 gives the sufficient number of processors to guarantee that
the total execution time of a computation graph is not longer than the execution
time of the critical path length of the graph. In the lemma, we assume an ideal
multiprocessor system in which there is no communication overhead other than the
actual transmission overhead of messages. To be specific, it is assumed that every
message is transmitted to its destination without any queuing delay on communica-
tion links.

Lemma 4.2.2: Assume that there are no queuing delays on communication links.
Nmsd
It is sufficient (but may not be necessary) to utilize (N, — 3 (ID;1—-1)

i=1
N.vsd
- ¥, (18;1 = 1)) processors to execute a computation graph on a given physical
i=1

architecture graph, which guarantees that the total execution time is at most the
critical path length of the computation graph.

56

Proof: First assume that we are given a virtual architecture which has exactly the
same configuration as a given computation graph. Then there exists a one-to-one
onto mapping between the edges and nodes in the two graphs. Suppose that the
actual execution time of the computation graph can be longer than the critical path
length. This can only happen if a task on the critical path is forced to be idle until
its data dependency on its direct ancestor(s) other than on the direct parent task on
the critical path are satisfied. Now, we will show that this can not occur.

Let SPy be the connected subpath of the critical path from a root node to
node N in Fig. 4-5. For each node N on the critical path, which has more than one
path from a root node, we need to show that the length of subpath SPy should

never be longer than other subpaths.

root

critical path—=

i
1
;

Figure 4-5 Computation Graph

For ease of exposition, assume that node B delays the start of execution of node A
in Fig. 4-5. This implies that there exists an alternative path from the root node to
node A through node B whose length is longer than that of the subpath SP,. If so,
the alternative path should be a part of the critical path. No matter which path is to
be taken from the root to node A, the rest of the critical path is identical from node
A to a leaf node. This contradicts the assumption that subpath SP is a part of the

critical path. The above argument holds for any node on the critical path.

57

Therefore, there is not any single task on the critical path which is forced into
being idle by other tasks on non-critical paths.

In reality, node A in Fig. 4-5 may be forced into waiting for data from node
B. Because all the tasks on the critical path are to be assigned to the same proces-
sor, their intertask communication overheads can be ignored. The actual waiting
time depends on linear clustering of the computation graph; however, regardless of
the linear clustering, the waiting time of each task will not be longer than the
length of SP, minus the actual execution time of SP, (when intertask communica-
tion overhead ignored). Consequently, the total execution time will not be longer
than the critical path length of the original computation graph.

Furthermore, we have shown in Lemma 4.2.1 that we can partition the graph

i m
into (k — 3 (ID;1 =1) — % (1S;1 = 1)) clusters without affecting the length of
i=1 i=1
n n
the critical path. Therefore, we just need (k — 3 (1D;1 —-1) =3 (1§;1—-1)
i=1 i=1
PrOCESSOTS.

O

We mentioned above that two or more linear clusters may be merged into one
cluster, if they are mutually strong-dependent or sequentially strong-dependent.
The following three lemmas are concerned with the order of merging of linear clus-
ters.

Lemma 4.2.3: When a linear cluster is mutually strong-dependent with more than
two linear clusters, the order of merging is important.

Proof: For three linear clusters K, K, and K3, suppose that K ; is mutually
strong-dependent with K 5 as well as with K3. Then L1 ML, = Gand L, NL;=
@. Unless L, N Ly =, after L, is merged with one of the others (say, L), (L ¥
L, N Ly#@. Conversely, if L is first merged with L3, then (L, U L)NL,=
. Hence, the order of merging is important.

O

Lemma 4.2.4: When a linear cluster is sequentially strong-dependent with more

58

than two linear clusters, the order of merging is important.

Proof: The proof is similar to that for Lemma 4.2.3.
O

Lemma 4.2.5: Assums that linear cluster K ; is mutually strong-dependent on
linear cluster K , but not on K 3, and also sequentially strong-dependent on K3 but
not with K ,. Then the order of merging of K ; with K, and K 5 is not important.

Proof: Since K; is mutually strong-dependent on K, and sequentially strong-
dependent on K 5 simultaneously, L, N L3 = @. After first merging K ; with K,
into cluster K 15, K 5 is still strongly in linear order of execution with Ky, since the
trailer node K ; remains as direct ancestor of the header node of K. Similarly,
after merging K ; and K 5 into K 13, K 5 is still mutually strong-dependent on K 3.
Hence, the merging order is not important.

O

As a result, if a linear cluster is mutually strong-dependent or sequentially
strong-dependent (but not both) on more than one linear cluster, we should deter-
mine the order of merging based on the scheduling objectives. On the other hand,
we may disregard the order when we merge linear clusters, one of which is mutu-
ally strong-dependent on one cluster and sequentially strong-dependent on the
other cluster.

4.3. Iterative Refinement of Linear Cluster

In the previous sections, we discussed how to transform a computation graph
G into a virtual architecture graph by linear clustering and merging. It is expected
that linear cluster consisting of schedulable units of computation on the critical
path of G takes the longest time to finish in the VAG in most cases. In this case,
we can make use of the VAG for the mapping onto a physical architecture graph.
Otherwise, we may need to identify better (linear) clustering by iterative
refinement of linear clusters in the VAG. In this section, we propose new algo-

59

rithms for iterative transformations of the VAG into another VAG’s so that we can
further reduce the total length of schedule prior to mapping. It consists of two
steps:

« Linear cluster labeling;

» Linear cluster refinement.

Algorithm LinearClusterLabeling labels edges in a computation graph G =
(W, E). The level number level,;,, of edge e;; = (n;,n;) may be defined as fol-
lows:

level 400 (€;;) = Wrcomp ;+(1-w)-comm;;+evel,,q. (n;),

where level, 4, (n;) is the level number of node n;, comp; and comm,; are compu-
tation time of » j and communication time from n; to n s respectively, and ® is a

normalization factor. Note that level, ,, (n;) is defined as ’Izneag (leveledge)
€D

where D; is a set of direct descendants of node n;. These edge labels allow us to

identify the longest path to be considered for the minimization of the total schedule
length in a VAG.

LinearClusterLabeling (V, level, ;. (N))

/* N is a node. */

/* level,, . (N) is the level number of N . */

/* The level numbers of all nodes are initialized to zero. */
/* ® is a normalization factor. */

Begin

For each direct ancestor A of N,
If nodes A and N are in the same linear cluster,
Then
commy y =0;
level,go (€4 n) = level,,q, (N) + 0rcompy + (1-0)-commy y;
level,, . (A) = max(level, ; (A), level edge (€4 N));

60

61

If all the edges to direct descendants of A are labeled,
Then
LinearClusterLabeling(A , level, ;. (A));
End For;

End LinearClusterLabeling.

After linear cluster labeling, we can determine if there are paths through a vir-
tual architecture graph, each of whose length is longer than the total computation
time of linear cluster corresponding to the critical path of the original computation
graph G . If there are such paths, the following algorithm LinearClusterRefinement
is invoked to further reduce the total schedule length through iterative refinements
of linear clusters.

LinearClusterRefinement (G, VAG)

/* G is the original computation graph. */
/* VAG is a virtual architecture graph to be transformed. */
/* 1P denotes the length of path P. */

Begin

Do
Let ¢ = {$1,05, . ..,0,} represent a set of paths
from the root node to the leaf node in G;
Let ¢; (1<I<n) be the current longest path in VAG;
Choose a cut edge (n,45,, 1,45,) On O

which minimizes max 3 (@-comp;+(1-w)-comm;),
1<k<n ;

Ljed;
where node n | is a direct descendant of node #;,
by comparing all possible refinements of linear clusters
after temporarily merging nodes n,4;, and n,4; into one;
Let ¢,, (1<m<n) be the new longest path;
Iflg,! <ie;l,
Then Do

Modify VAG based on the selected refinement;
LinearClusterLabeling(n,4;,, level, g (44i,));
End;
Until no more reduction in max (1, !) is possible;
1gksn

End LinearClusterRefinement.

(a) (b) ©

Figure 4-7 Possible Refinements of Linear Clusters

The basic idea of this algorithm is to locate a cur edge (n;,n;) on the longest
path and to reduce the length by merging nodes n; and n; (belonging to separate
linear clusters) into one. In Fig. 4-6, let us assume that the longest path is passing

62

through nodes n; and n;, i.e., the longest path is (-, n;, n;, -~ +). We also
assume that nodes n; and n; belong to different linear clusters in such 4 way that
the former is in a linear cluster represented by path (---, n;, ny, -+) and the
latter is in another linear cluster represented by path (- -, ng, n;, - -+). After the

two nodes n; and n; are merged, linear clusters shown in Fig. 4-6 can be refined as
shown in Fig. 4-7. In Fig. 4-7-a, we merge n; and n; into one cluster, and cut the
edges like ¢;; and ey; so that all the clusters remain as linear clusters. In Fig. 4-7-b
and Fig. 4-7-c, however, we merge them, but leave one of the edges uncut while
we cut the other edge. This type of refinement may force us to sacrifice some
potential parallelism since two or more nodes (e.g., n; and #n; in Fig. 4-7-b) execut-
able in parallel are to be assigned to the same cluster. Nonetheless, it is worthwhile
to merge two linear clusters in this way if interprocessor communication overhead
from n; to n; is larger than the extra computation time overhead caused by sequen-
tial execution of tasks (e.g., n; and »; in Fig. 4-7-b). Fig. 4-7-c shows another way
to merging linear clusters.

As mentioned previously, linear clustering requires three algorithms: Linear-
Cluster, LinearClusterLabeling and LinearClusterRefinement. For a given com-
putation graph G = (N, E) such that IN| = n and |E| = e, the first algorithm
takes O (n 3) for the initial identification of linear clusters while the next one takes
O (e) since we need to visit each edge just once. The complexity of the third algo-
rithm is O(n-e 3). It takes O(n-e 2) to find a cut edge connecting two adjacent
nodes on a longest path which minimizes the schedule length after merging the
nodes and refining linear clusters. The worst case occurs when we have to check
all the edges in G for the refinement. As a result, the overall time complexity of
linear clustering is O (n-e 3.

4.4, More Clarification On Linear Clustering

Up to this point, we have not imposed any restrictions other than acyclicity on
computation graphs to which we have applied linear clustering. In order to gen-
erate an acyclic computation graph, each computation graph generated by an arbi-

63

trary program is supposed to be fully expanded whenever necessary. One of the
important issues related to linear clustering which we need to scrutinize-is how to
keep computation graphs from being expanded to impractical size by unrolling do-
loops in order to generate acyclic computation graphs. In this section, we investi-
gate how to avoid full expansion of all existing do-loops to allow identification of
linear clusters from computation graphs.

For a given cyclic computation graph, Martin and Estrin [MARG67] have pro-
posed a couple of transformations of computation graphs, which replace cyclic
graphs by mean-value equivalent acyclic ones. Their basic idea is, using the est-
mation of computation times and branching probabilities at each node, to remove
back edges under certain restrictions after adjusting the total computation time of
each node.

In this section, following a similar approach, we propose new schemes to con-
tract cyclic graphs into cycle-free graphs in a straightforward manner, if they meet
certain properties, based on the following ideas:

e Hierarchical Expansion;
o Overlapped Nodes and Overlapped Computation Graph;
» Preclustering.

Note that we are only interested in the expansion of nested loops which are
executable in parallel. If a loop is not executable in parallel, we regard it as a sin-
gle schedulable unit of computation.

4.4.1. Definitions

We first define some terminology used in this section. In general, each loop
except the innermost one may contain one or more nested loops. The depth of a
nested loop L is the number of outer loops in which it is embedded. By conven-
tion, the depth of the outermost one is 0. Next, we define a maximal computation
graph. Assume that G; = (N;, E;) is a computation graph generated during the i th
iteration of L, where 1 £ i </ and / is the maximum iteration count of a nested
loop L. A computation graph G = (N, E) is called a maximal computation graph

64

(MCG), whenn € N;ifandonlyifn € N,and e € E; if and only if e € E for all
i. During every iteration, a nested loop may repeat either its maximal computation
graph or an arbitrary subgraph of the maximal computation graph. During each
iteration, it is assumed that the relative orderings of computation and communica-
tion requirements among nodes and edges, respectively, are maintained. For exam-
ple, for two nodes A and B, if A requires more computation time than B for one
iteration, it is supposed to do so for every iteration. A nested loop is called regular
if there are no conditional exits from the loop, and there is one join point at the end
of every iteration. A cyclic graph, representing a nested loop, is also called regu-
lar if it is regular. We may apply algorithm LinearCluster to a subgraph of a com-
putation graph, independent of other portions of the graph. Linear clusters gen-
erated from the subgraph are called preclusters . Among these preclusters, the one
which corresponds to the critical path of the subgraph is called the Most Dominant
Precluster (MDP). A cyclic computation graph can be transformed into an acyclic
graph by contracting each cyclic subgraph into a single node (called a
contracted node). Once all cyclic subgraphs are replaced with single nodes, the
graph is called a contracted graph. A critical path of a contracted graph is called
the global critical path, and linear clusters generated from a contracted graph are
called global linear clusters. Finally, a cyclic computation graph is called a fully
expanded graph (FEG) if all the existing nested loops are unrolled.

4.4.2. Hierarchical Expansion

It is a primary goal of multiprocessor scheduling to fully utilize potential
parallelism available in a given computation graph. Whenever there is more than
one task which is executable in parallel, they should be assigned to separate proces-
sors. The number of linear clusters after applying algorithm LinearCluster to a
fully expanded graph may be much larger than the number of available processors.
Such a phenomenon occurs when the level of granularity of the minimal schedul-
able unit of computation is not appropriate to a target architecture. It may be an
impractical attempt to assign a large number of tasks with fine granularity, such as
one-statement tasks to separate processors. If that is the case, algorithm

65

MergeCluster will normally combine mutually and sequentially strong-dependent
linear clusters into one until the number of linear clusters becomes not larger than
the number of available processors. The basic motivation of hierarchical expan-
sion is to determine the appropriate level of granularity in order to avoid subse-
quent merging of linear clusters after identifying linear clusters from a fully
expanded graph. Sarkar and Hennessy [SAR86] have proposed graph expansion
and internalization techniques to identify schedulable units of computation with the
optimal granularity at compile-time. They utilized an objective function F (%) for
partition 7, which expresses the trade-off between parallelism and communication
overhead. In our approach, the number of available processors will play an impor-
tant role in determining the level of granularity of schedulable units of computa-

tion.

In order not to generate an impractically large computation graph from an
application program (before even trying to find linear clusters), we initially gen-
erate a computation graph based on coarse granularity; the subroutine level seems
to be appropriate. Hierarchical expansion of a computation graph allows a con-
tracted node to be expanded further into another computation graph with finer
granularity and to be replaced by a set of new nodes. This expansion occurs only
when a sufficient number of processors are available for the expanded nodes.
Since a contracted node representing a nested loop may be expanded into a graph
representing different iterations of the loop, we need a scheme to replace the
expanded graph into another straightforward occurrence. It is difficult, however, to
replace general cyclic computation graphs (for example, generated by pairs of if
and goto statements) with equivalent acyclic computation graphs. We focus our
attention on how to unroll regular nested do-loops.

A multiply-nested do-loop structure can be considered as an arbitrary combi-
nation of sequential code blocks (S) and parallel code blocks (P). Each embedded
block can be defined recursively as another nested loops. Recursive expansion ter-
minates when there are neither any available processors nor any embedded parallel
code blocks. There are four types of relationships of a nested loop with its immedi-

ately nested loops: SS—type, SP—type , PS—type and PP —type. By convention,

XY —type denotes that X and Y are the types of the outer and inner code blocks in a

66

nested loop, respectively. We explain below the rules to unroll the outer loop for
each type. By applying these rules to a nested loop recursively, we may unroll as
many outer loops of a nested loop with arbitrary depth as needed.

i | g =3
l H H ' i
t i ; £
H i i
O o} O 5 o)
2 \) . i s /" \\
¢ ¥ X Lo ! ¥ ¥
JQ © . dQ ©
\\\\ ,’ 1 \\ \\ ,/
W ' N
Ay S
A,
(@) (b) © (@)

Legend:

= Sequential Execution

===~ Pgrallel Execution

Figure 4-8 Types of Nested Loops

« SS—type: This type represents a sequential iteration of a sequential code block.
Fig. 4-8-a shows a graphical representation of this type. Since there is no paral-
lelism to be exploited, after merging all the sequential iterations of the inner
sequential block into one node, we may remove the back edge from the graph.

« SP-type: This type represents a sequential iteration of parallel code blocks.
There is a join point at the end of every iteration as shown in Fig. 4-8-b.
Because of the join point at the end of each iteration, we can remove the back
edge from the graph. We will explain in detail how to remove it in next sec-
tion. This type may also represent parameterized invocation of inner block as
described in Fig. 4-9.

67

e PS—type: This type represents a parallel execution of a sequential code block
as shown in Fig. 4-8-c. It can be regarded as a parallel execution of mutually
independent sequential code blocks with different parameters like loop indices.
The outer loop of this kind of nested loop can be simply unrolled in such a way
that sequential code blocks are assigned to separate nodes as long as there are
processors available to be utilized.

o PP —type: This type represents a parallel execution of parallel code blocks as
shown in Fig. 4-8-d. It corresponds to parallel execution of mutually indepen-
dent do-loops. Depending on the number of available processors, we may
unroll the outer loop by assigning independent do-loops or nodes in the do-
loops to separate processors.

Figure 4-9 Parameterized Invocation of a Nested Loop

As a matter of fact, except for SP —type do-loops, we can remove back edges
by coalescing all nodes into a single code block ($S—z#ype), or by hierarchically
expanding it (PS —type and PP —type) as long as the number of expanded nodes is
not greater than the available number of processors.

We now discuss an observation related to hierarchical expansion. A node in a
computation graph with coarse granularity may represent a nested loop as a whole;
its computation time is the duration for executing all the iterations. On the other
hand, when we consider a computation graph with finer granularity, each node may
represent a statement, a set of statements or another nested loop which is expected
to be executed during each iteration; its computation time is the duration for exe-
cuting a single iteration of the loop. We observe that the critical path may vary as
we unroll nested do-loops. In order to exemplify such a case, we consider the

68

graphs shown in Fig. 4-10.

Depending on the characteristics of the loops (e.g., the number of iterations,
the duration of one iteration, etc.), even though the total duration of one loop is
longer than that of the others, the longest duration of its single iteration may be
shorter than that of the others. In Fig. 4-10-a, we assume that the communication
requirements of two paths (e.g., 1-3-5-8 and 1-3-6-8) are equal while the computa-
tion requirement of node 6 is larger than that of node 5. In addition, we assume that
the critical path is (1-3-6-8-10-11) in Fig. 4-10-a. Fig. 4-10-b shows the computa-
tion graph after expanding nodes 5, 6, and 7 in Fig. 4-10-a. Suppose that one of the
paths in the expanded graph of node 5 is longer than any path in the expanded
graphs of node 6 and 7. Then the critical path becomes (1-5-8-10-11) in Fig.
4-10-b.

(a) ®

Figure 4-10 Computation Graphs with Coarse and Finer Granularity

As shown above, with nested do-loops being unrolled, we may get different
critical paths. In order to make hierarchical expansion be applicable to loop

69

unrolling, all edges and nodes except the node to be expanded on the critical path
should remain as the subpath of the critical path even after expanding.the node.
For example, if path (1-3-6-8-10-11) is the critical path in Fig. 4-10-a, it should
remain as the critical path after node 6 is expanded. This leads to the principle of
global critical parh. The principle requires that any subpath of the global critical
path in a contracted graph remain as a subpath of the critical path after expanding
contracted nodes. Suppose that a cyclic computation graph satisfies the principle
of global critical path. In order to identify proper linear clusters, we first generate
the computation graph based on a coarse granularity. Then we identify linear clus-
ters from the graph. After that, for each node having enough parallelism to be
exploited, we may expand it into another graph if there are more processors avail-
able.

4.4.3. Overlapped Nodes and Overlapped Computation Graph

Each computation graph corresponding to an iteration of a nested loop can be
regarded as a subgraph of its maximal computation graph. Some of nodes and
edges in the maximal computation graph may be dummies in the sense that compu-
tations and communications represented by the nodes and edges in fact are not
invoked during a particular iteration. The expanded graph could be represented by
as many repetitions of the identical maximal computation graph as the iteration
count. Furthermore, if it is regular, then it can be represented by a single maximal
computation graph. Each node in the graph may represent one or more invocations
of the same computation mainly with different loop indexes. Such a node is called
an overlapped node. The computation and communication times of an overlapped
node should be the sum of computation and communication times of the different
invocations of the node during iteration.

These overlapped nodes make it possible to contract cyclic computation
graphs to straightforward occurrences independent of the number of iterations. A
computation graph which consists only of overlapped nodes is called an over-
lapped compusation graph (OCG). The OCG in Fig. 4-11 corresponds to the
FEG in Fig. 4-9. In the following SP —type nested do-loop:

70

Forindexl=1,n
ParFor index2 = 1, index1

End ParFor;
End For;

an arbitrary node i will be executed (n—i+1) times. Based on the number of itera-
tions of each node, we can estimate the total computation and communication
requirements of each node and contract the expanded graph to the overlapped com-
putation graph as in Fig. 4-11. The only difference between the OCG and the
FEG is that the latter represents the exact computation pattern of a nested loop
while the former overlaps different invocations of the same computation onto one

node because of the sequential nature of the execution order of the outer loop.

-~ ~
€ F

74

g oo T

@ ®

~ 3 -
\Q‘Ci

Figure 4-11 Overlapped Computation Graph

e

&

@

Lemma 4.4.1 claims that it is sufficient to replace a cyclic subgraph G- =
(N¢, E) representing a do-loop in a computation graph with an overlapped com-
putation graph G, = (Np, Ep) if G satisfies the following conditions:

« G represents a sequential execution of parallel code blocks (i.e., SP—type
do-loop);

s G has a single join point at which all the parallel code blocks should be syn-

71

chronized at the end of every iteration;
« Any computation subgraph Go. = (N, Ec,) which represents an iteration of

the do-loop (represented by G) is isomorphic to a subgraph of G .

Lemma 4.4.1: Given a cyclic computation graph, which satisfies the previous con-
ditions, linear clusters generated from a consecutive application of algorithms
LinearCluster and MergeCluster to a FEG are identical to those generated from
only application of algorithm LinearCluster to the OCG corresponding to the
FEG.

Proof: We first apply algorithms LinearCluster and MergeCluster to the FEG .
Since a cyclic graph to be expanded is regular, there always exists a join point at
the end of each iteration where all tasks executable in parallel should be synchron-
ized. Due to the existence of such join points in the FEG , the nodes corresponding
to simultaneous invocations of a sequential code block with different do-loop
indices are assigned to separate clusters by algorithm LinearCluster. Since the
nodes representing the join points must belong to the critical path, the other nodes
which are not on the critical path form different linear clusters. Moreover, based
on do-loop indices, we can identify (/—1) groups of sequentially strong-dependent
linear clusters when / is the maximum iteration count. Then algorithm MergeClus-
ter eventually combines all sequentially strong-dependent linear clusters into one
cluster for each loop index.

We now apply algorithm LinearCluster to the OCG . Since the given compu-
tation graph is regular, the critical path of the OCG represents all the nodes in the
critical path of the FEG. Similarly, other clusters also represent the groups of
tasks which have the same do-loop index. These clusters trivially corresponds to
those generated from the FEG by algorithm MergeCluster. Consequently, we
have the identical set of linear clusters.

O

72

Step O

Step 1 Step 2 Step 3
O
//! \\ 1
4 \é>
Q- 2
A ’
\Q\;;’ 5
Ro
¥
/ﬂ\
/

4 Ay D o
s
sy \\
VN 4 \(i
AN 3 Vs
N N \ 7

Legend:
1 ={1,11")
2 ={222%
3 =333
4 ={444")
5 ={555"

Figure 4-12 Transformations of an Expanded Computation Graph

Step 4

© ©

73

Using Lemma 4.4.1, we can transform nested do-loops with arbitrary depth
into an OCG by unrolling outer loops one at a time as long as they are regular.
After unrolling the outermost do-loop, we may transform it into an OCG by
Lemma 4.4.1, leaving the contracted nodes (representing embedded nested loops)
intact. We keep unrolling the current outermost do-loop and transforming it into
another OCG until we have enough processors to support the finer granularity of
scheduling units of computation.

Fig. 4-12 describes how we generate the same virtual architecture graphs
(shown at Step 4) from the FEG and the OCG (shown at Step 1) of a SR —type
regular cyclic computation graph (shown at Step 0). In order to simplify the
description, we limit the number of iterations and tasks executable in parallel dur-
ing each iteration to be 3. We first assume that path (1-2-5) takes the longest time
to complete during every iteration. Due to the principle of global critical path and
the join points of the cyclic regular graph, we get the global critical path by first
preclustering separately subgraphs corresponding to different invocations of a
nested loop at Step 2 and then by coalescing the critical paths of each subgraph at
Step 3. If we apply algorithm LinearCluster to the expanded graph, we may get
directly the linear cluster graph shown at Step 3 (i.e., we may skip Step 2). After
merging clusters representing the different invocations of the same computation,
we can get the final linear clusters shown at Step 4. On the other hand, if we clus-
ter the OCG at Step 1, we can directly generate the VAG shown at Step 4. There-
fore, two different graph representations of a cyclic regular graph generate the
identical virtual architecture graph.

4.4.4. Preclustering

A critical restriction to using an OCG is that each cyclic graph is required to
be regular. There are many types of nested do-loops which can not be represented
by cyclic regular graphs. The preclustering scheme previously used to precluster a
subgraph of a computation graph can be adopted to prevent full expansion of cyclic
subgraphs which are not regular but show uniform patterns of execution.

74

This scheme is useful if we can identify regular patterns of dependencies
among nodes when expanding a contracted node representing a cyclic computation
graph. For example, as can be seen in graph G shown in Fig. 6-5, the elimination
of elements of row i of matrix A should be done in the order of A;1,A;5, A;3, .. .,
A; ;1) because of sequencing constraints among the nodes. For such a graph, we
can find linear clusters based on the constraints rather than unrolling do-loop. Such
an attempt is called preclustering , since it is done only for the expanded nodes
without considering the other nodes prior to identifying the global linear clusters.
Interestingly enough, it usually corresponds to unrolling the outermost loop. Note
that any OCG can be also preclustered if necessary.

A node in a preclustered (sub)graph is different from the other nodes in a
computation graph which contains the subgraph. Each edge does not represent a
sequential order of execution, but a communication path between clusters. As a
result, each node in the preclustered subgraph may be assigned to a separate pro-
cessor so that each computation can be done in parallel. That does not mean that
all tasks in a preclustered node are independent of the other tasks in the other pre-
clustered nodes, but that there exists at least one task in every preclustered task
which is executable in parallel.

We are now concerned with how to identify linear clusters after a contracted
node is expanded and clustered into a preclustered graph. All we need after pre-
clustering the expanded nodes is to designate the MDP in the preclustered graph so
that it can be included as a part of the global critical path which will be identified
thereafter. For example, assume that a contracted node is on a global critical path
before being expanded and preclustered. After preclustering the expanded nodes,
some of the nodes may be excluded from the critical path. To be specific, the
MDP of the subgraph should remain as a subpath of the critical path, while the
other clusters should become separate linear clusters. The path corresponding to
the MDP becomes a subpath of the global critical path. Therefore, there is no
difficulty in identifying the critical path of the whole graph even if it is a mixture of
computation nodes and linear clusters.

4.4.5. Linear Clustering of Cyclic Computation Graphs

We have defined and described new schemes to find linear clusters from
cyclic computation graphs without fully expanding them. These are only applica-
ble to computation graphs with cyclic regular subgraphs or to a do-loop which
shows a uniform pattern of execution when being unrolled. The following algo-
rithm LinearClusterWithCycles illustrates how to identify linear clusters from such

computation graphs.

LinearClusterWithCycles (G, K)

/* G is a cyclic computation graph. */
/* K is a set of linear clusters. */

Begin

Transform G into contracted graph G¢;
Identify global linear clusters from G ;
For each cluster in descending order of its path length
Do
If there exist enough parallelism
which can be exploited within the cluster,
Then
Unroll each outermost loop by transforming
each of embedded cyclic regular subgraphs into an OCG
and then precluster it to generate a preclustered graph if necessary;
Precluster other types of cyclic subgraphs directly into precluster graph
by unrolling the outermost loop;
Until all nodes are examined
or the number of linear clusters generated becomes not less than
the number of available processors whichever becomes true first;

End LinearClusterWithCycles.

76

The complexity of this algorithm is dependent on the level of granularity of
schedulable unit of computation and the number of processors available. Let us
assume that a cyclic computation graph G = (N, E) is transformed into a cycle-
free contracted graph G, = (Nf”o, E CO,O), where INC% | = ng. The time complex-
ity for linear clustering G, is O (ng’). Next, a contracted node Né o (Ii<ny)in
N, o may be expanded into another cyclic graph Gcl,z- = Ncl,i, Ecl,;-) where INCIJ %
= n,. Then the time complexity for preclustering Gcl,i is O(nf’) for 1<i<ng.

Assuming at most k times of hierarchical expansion of each contracted node in G
at the worst case, the total time complexity is:

OMBHO My +0 (i) +O iy y+ - +0 (n2) SO (n?),

where n = ng+ ngny +nyng+ ° + ng_pney. Infact, n represents the total
number of nodes expanded after k-level hierarchical expansion of each contracted
node in GCO,O. As a result, the total time complexity of algorithm Linear-
ClusterWithCycles is O (n3), where # is the number of nodes after k-level
hierarchical expansion.

77

CHAPTER 5

PHYSICAL MAPPING

The subject of this chapter is how to map a virtual architecture graph (VAG)
onto a physical architecture graph (PAG). A VAG represents an imaginary mul-
tiprocessor system which guarantees the maximum parallelism available and
reduces significantly the interprocessor communication overhead for a given com-
putation graph, while a PAG represents a real multiprocessor system onto which
the VAG is to be mapped. This mapping is called a physical mapping as it is the
final mapping of a computation graph onto a real physical multiprocessor system.

A system is regarded as homogeneous if it consists of identical processors and
communication links. Every processor in the system may share one global
memory or may have local memory with the same capacity. However, each pro-
cessor may have a different number of communication links. For example, the
Intel Hypercube can be regarded as a homogeneous multiprocessor since every
node consists of identical types of resources. Due to the characteristics of homo-
geneous systems we define here, the number of links is the only factor to be con-
sidered during homogeneous mapping. On the other hand, a heterogeneous system
is composed of resources with different characteristics and capacities. Even though
it has identical processors, it is regarded as a heterogeneous system if it has dif-
ferent sizes of local memories, different speeds of communication links, etc. For
example, Cm" can be regarded as a heterogeneous multiprocessor since there are
two types of communication links: local and global busses. The Intel Hypercube
may become a heterogeneous system if each processor had a local memory with
different capacity.

Both VAG’s and PAG’s are undirected graphs. For the matter of convenience
of mappings, we ignore the directions of communications among linear clusters
and physical communication links. The amount of communication between any

78

pair of linear clusters is the sum of the amount of communications in both direc-
tions. All communication links are also assumed to be bidirectional.

It is well known that the optimal graph mapping problem is NP —hard
[BRU74]. Even its sub-problems [ULL73] are NP —complete. Although it may
not be possible to develop polynomial-time algorithms which are globally optimal
unless NP =P, it is still feasible to develop polynomial-time algorithms which are
globally near-optimal. There are two extreme approaches to the graph mapping
problems. One of them is to find globally optimal mapping for some restricted
cases. For example, Hu [HU61] proposed a polynomial-time, optimal scheduling
algorithm which is applicable if every task has unit execution time, and a given
computation graph is in the form of tree. Coffman and Graham [COF72] also
found a polynomial-time, optimal scheduling algorithm under the assumption that
each task has unit execution time and the number of available processors is two.
On the other extreme, Pathak [PAT84] proposed a greedy algorithm which strictly
relies on local information. Neither of these approaches is suitable for our purpose.
The former can only be applied to such restricted cases that it is not applicable to
any practical cases at all. On the other hand, the latter could find globally optimal
mapping; however, in most cases, especially when there are many local optima, the
result may be far from the optimal one.

The important goal of our proposed algorithms is to compromise between two
extreme approaches by reducing the complexity of the mapping algorithms while
sacrificing their optimality as little as possible. For physical mapping, we need to
take into consideration as much global information as possible during mapping. In
this chapter, we propose and justify various transformations of computation and
architectures graphs, and heuristic algorithms to fulfill the goal.

5.1. Dominant Request Tree

The basic idea of our algorithm is to find subgraph isomorphisms from a VAG
to a PAG which minimize the total execution time and satisfy given scheduling
constraints. A subgraph G, = (N, E ;) is said to be isomorphic to graph G, =

79

(N 5, E ,), provided there is a one-to-one, onto mapping 2: Ny — N, such that
(w,v)e E ifand only if (h(u), h(v)) € E,. The subgraph isomorphism problem
is "Given graphs G ; and G ,, is G ; isomorphic to some subgraph of G ;7" We can
easily show that the subgraph isomorphism problem is NP ~complete , making use
of the fact that Undirected Hamilton Circuit is NP —complete . This fact forces us
to rely on heuristics. We map each node of a VAG one by one in a sequential
order. The key issue is then how to determine the mapping order which leads to
the minimization of the total execution time. It is desirable to gather global infor-
mation on a VAG to determine the order of nodes to be mapped. When a node has
more than one adjacent node, the order selects the edge whose adjacency should be
preserved. For this purpose, we propose another transformation of a VAG into a
virtual architecture graph called a Dominant Request Tree (DRT). This transfor-
mation can be done independently of a target architecture (i.e., whether it is homo-
geneous or heterogeneous). A main purpose of this transformation is to gather glo-
bal information which can be utilized during mapping.

A DRT is a maximal spanning tree of a VAG . We construct the DRT starting
from a node called the Most Dominant Node (MDN) rather than starting from an
arbitrary node in the VAG. The MDN is that node N which maximizes the cost
function defined as:

T, + (1-w) T

comp COnUn.?

where Ty, is the computation time of N, T, is the total communication time
of N with its adjacent node, and 0 is a normalization factor. The MDN is con-
sidered to be the most important node in the VAG in the sense that it represents a
linear cluster which represents all tasks on the critical path in a given computation
graph. It is usually the case that the MDN requires the largest amount of computa-
tion and communication among nodes in the VAG. As a result, we want to start

mapping from the MDN so that it can be assigned to the most appropriate proces-
sorin a PAG.

Starting from the MDN as the root node of a DRT, we select next the node
among its adjacent nodes which has the highest binding power. The binding power
of node N,4; adjacent to node N is determined by:

80

(’)l'Tcomp + (1—031)'(032'7—'60% + (l_mZ)'zTcompadj)’

where T, is the computation time of Nygi, Teomy is the communication time of
node N with node N4;, and Ty, 18 the communication time of N,4; with one
of its neighbors other than N. ®; and , are again normalization factors. We keep
identifying another node with the highest binding power among unassigned nodes

incident upon any node which has been already selected until all the nodes are
selected.

A DRT of a VAG has two types of edges: the primary and the secondary
edges. The former are edges belonging to the DRT, while the latter are edges
belonging to the VAG but not to the DRT . While traversing a VAG, we can iden-
tify the most dominant edge of each node as the one which requires the largest
amount of communication among all edges incident to the node. As a result, a
DRT of a VAG always includes the most dominant path to a cluster among all the
adjacent paths. It does not necessarily mean, however, that the amount of com-
munication required by two clusters connected by a primary edge is always larger
than that required by another two clusters connected by a secondary edge. By
maintaining the adjacency of the primary edges during mapping, however, we can
possibly minimize the total communication overhead.

Another important piece of information acquired after constructing a DRT is
the priority list L. The order in which each cluster is included in the DRT deter-
mines the order of the actual mapping of linear clusters onto available processors.
We need this sequential order to reduce the time complexity of our mapping algo-
rithms. In order to get L, we rely on local information as well as global informa-
tion. To be specific, when calculating the binding power of node N, we have con-

sidered two kinds of communication times: T¢yy, and gy, - The former pro-

vides us with local information. On the other hand, the latter supplies restricted
global information. It is an estimation of the total communication overhead of an
adjacent node with its adjacent nodes other than N. This global information is very
helpful in the situation depicted in Fig. 5-1.

g1

(A)

6 3
\
@@o

Figure 5-1 Dominant Request Tree

For example, assume that all the nodes have the same computation time, but
different communication times as can be seen in Fig. 5-1. Then, node C has the
highest binding power among the nodes adjacent to A, even if A has the smallest
amount of communication with C. As a result, C will be assigned to a processor
right after A. It will greatly increase the chance for node C to maintain the adja-
cencies with its direct descendants (especially, with F), and eventually decrease
the total communication overhead. In this case, unless we take into account C’s
communication overhead with its descendants in calculating A’s binding power
with C, F is to be assigned to a processor only after all nodes B, C and D .

To conclude, a DRT plays an important role in mapping algorithms explained
in the next sections. It provides us with global information on a computation
graph. It determines a group of the edges whose adjacency should be satisfied to
minimize the total communication overhead, and in what order. In addition, it
makes it possible to reduce the complexity of mapping significantly, since we now
focus on the mappings of the primary edges. Whenever it is not possible to main-
tain adjacency of the primary edges, we try to utilize the secondary edges.

5.2. Homogeneous Mapping

This section concerns physical mapping algorithms for homogeneous mul-
tiprocessor systems and related heuristics. It also discusses the time complexity of
the algorithms. Since all resources in homogeneous systems are identical, there are

no scheduling constraints to be applied during mapping. It is enough to attempt to
find an optimal mapping which minimizes intercluster communication. For exam-
ple, we do not have to worry about memory constraints for the mapping. Since
each processor has the same amount of memory, any linear cluster can be assigned
t0 any Processor.

5.2.1. Homogeneous Mapping Algorithms

The main purpose of homogeneous mapping is to find a subgraph in a PAG to
which a DRT of a VAG is isomorphic, relying on various heuristics like full-
connectivity, exclusion, perturbation and foster mapping. In this section, we
explain homogeneous mapping algorithms as well as the heuristics in detail. Each
node of the VAG is assigned to a processor in the order determined during
transforming the VAG into the DRT. The basic approach of the homogeneous
mapping algorithm is to try to maintain adjacency of each node in the DRT with its
neighbors as far as possible; whenever there is a direct primary edge from cluster
C, to C,, we choose processor P, which has a direct link from P¢ . Note that P¢

denotes a processor that cluster C is to be mapped.

Algorithm HomogeneousMapping below summarizes our basic approach to
homogeneous mapping. ‘

HomogeneousMapping(DRT , PAG)
Begin

Perform the initial mapping of the root node of DTR onto PAG ;
For each cluster K (except the MDN) in the order of priority list L,

ConnectivityMapping(K , DRT , PAG);

If unsuccessful,

Then

ExclusionMapping(K, DRT , PAG),
If unsuccessful,
Then

g3

PerturbationMapping(K, DRT , PAG);
If unsuccessful, A
Then
FosterMapping(K , DRT , PAG);
If unsuccessful,
Then
Allocate K to any unassigned node
with the most appropriate number of links among the nodes
incident upon any of already assigned nodes;
End For;
Improvement(DRT , PAG);

End HomogeneousMapping.

At the beginning of mapping, the MDN is assigned to a processor which has
the most appropriate number of communication links. Suppose that the MDN has
¢ edges. If there are processors with e or more adjacent processors, we select any
processor with the smallest number of neighbors. Otherwise, we select any proces-
sor with the largest number of adjacent nodes. If we have more than one candidate,
we take into account the number of links required by the nodes adjacent to the
MDN ; we choose one with the most sufficient number of links for them. If more
than one candidate is still available, we choose one arbitrarily.

We next explain four heuristics in the order they are applied during mapping.
For each heuristic, we introduce the algorithm and a related description with exam-
ples. As can be seen in the preceding algorithm, we first attempt to maintain full-
connectivity among clusters as summarized below.
ConnectivityMapping(K , DRT , PAG)
/* K is a cluster to be mapped. */
Begin

Check if there are any free nodes adjacent 10 Pg in PAG

84

onto which K ’s direct ancestor K, in DRT has been assigned,;
For each free node adjacent to Py,
Check if there exist clusters K,, in DRT
which has direct path with K as well as K ;;
For each cluster K, in descending order of binding power with K,
Find a node in PAG which has direct links with PKda and P K,
End For;

End ConnectivityMapping.

Suppose that cluster C is mapped onto a processor in a PAG and assume that
direct ancestor Cy, of C has already been assigned to P, . We first consider the

case that at least one processor adjacent to P, is free (i.e., has not been assigned
to any cluster yet). Then, we check if C has an adjacent cluster B which has
already been assigned to processor Py in the PAG. If so, there are two possibili-
ties. First of all, the three nodes form a fully-connected subgraph as below:

@
F®

Figure 5-2 Fully-connected Subgraph

In Fig. 5-2, solid and dotted lines represent the primary and secondary edges,
respectively. As can be seen in the figure, there exist primary edges between C
and A as well as C and B. There also exists a direct secondary edge between A
and B. If a cluster to be mapped is a member of a fully-connected subgraph such
as C, P, will be chosen from processors which also form a fully-connected sub-
graph with processors P4 and Pp.

For example, assume that we want to map cluster C after mapping cluster A,
where C and A are connected by a primary edge as shown in Fig. 5-3. First we
look for a node in the VAG which is adjacent to C and has been already assigned
to a processor. In Fig. 5-3, B, and B, are such clusters, each of which forms a

85

fully-connected subgraph with A and C. Assume that B, has not yet been
assigned, while B ; has been assigned to Pp . We then map C onto P, since it is

the processor which forms a fully-connected subgraph with processors P4 and Pp .

B,
A e —— .
~) H \\ i
Mo 2 ~
e N :
// N ; ‘\\ :
,/ ~ 1 -~ §
—— ! !
O--" B, O---mmmmm - O
o) Pc

Figure 5-3 Mapping of Fully-connected Component

Secondly, C is adjacent to both A and B, but there is no direct edge between
A and B. In this case, we just need to find a processor which is adjacent to both
P, and Pg. Even if we can find a cluster such as C, it may not be possible to
locate a processor suitable for the cluster. If that is the case, we try to maintain the
adjacency of the primary edge between A and C.

If cluster C fails to form full-connectivity with other clusters, we select one
which has the most suitable number of links among the adjacent nodes of P4, as
we do for the initial mapping of the MDN. During the selection, we exclude pro-
cessors which might be crucial for other clusters yet to be assigned as follows.

ExclusionMapping(K , DRT , PAG)
/* K is a cluster to be mapped. */
Begin

Check if any nodes adjacent to P, are free;
For each free node in a certain order,

If the node is not critical to another unassigned cluster
Then Do
Allocate K toit;

86

Return;
End Do;
End For;

End ExclusionMapping.

For example, suppose that we have already allocated clusters A and B 1o pro-
cessors P4 and Pg, respectively. In Fig. 5-4, there are three candidate processors
(.e., P4, P, and P 3) to which cluster C may be assigned. We remove P ; from the
candidates, since it will become a crucial processor for the assignment of cluster D
adjacent to both A and B.

DRT

Figure 5-4 Example for Exclusion Mapping

Now we consider the case that we want to map cluster C whose direct ances-
tor in a DRT has been assigned to P, but there is no more free processor adja-
cent to Pc, . Due to the lack of free adjacent processors, C must be mapped onto a
processor which is not adjacent to P . For this case, we provide two heuristics:
perturbation and foster mappings. In both heuristics, we first choose a processor
which has the most appropriate number of links among currently unassigned pro-
cessors. If there is more than one, we choose the one which is the nearest to its
direct ancestor Pc,. Those unassigned processors should be adjacent to at least
one processor to which a cluster has already been assigned. We call the selected
processor P, for future reference.

In perturbation mapping, we attempt to preempt one of the adjacent nodes of
P which has been already assigned as follows:

87

PerturbationMapping(K , DRT , PAG)
/* K is a linear cluster to be mapped. */

Begin

Choose processor Pg with the most appropriate number of links
among currently unassigned processors
which are adjacent to any of the assigned ones;
For each already assigned node Pg_ adjacent to Py,
in ascending order of the binding power of K, with K,
If K, has no direct primary edge with K ;,,
Then Do
Assign K to Pg and K, 10 Pg.
Return;
End Do;
For each already assigned node Py adjacent to Py
in ascending order of binding power with K, ,
Swap it temporarily with Pg;
If it results in less communication overhead,

Then Do

Swap them permanently;
Return;

End Do;
End For;

End PerturbationMapping.

There are two possible cases that a linear cluster can be preempted after being
assigned to a processor. First, an adjacent processor (say, PCM},) of Pc, might be

assigned to cluster C,,; which is not adjacent to cluster Cy,. The other possible
case is that all the clusters assigned to adjacent processors of P are neighbors of

Cya» but Cgy; might have less communication overhead with Cy, than C. If either

g8

of the above cases occurs, after swapping temporarily the current assignment (e.g.,
C 1o Pc,, and Cyy; 10 P,,,), we compare the total communication overheads
between before and after swapping. If it successfully reduces the total communica-
tion overhead, we make it permanent. As can be seen in Fig. 5-5, assume that we
have already assigned clusters A, B, C, E, and F to processors Py, P, Pe, Pp
and Pg in PAG, respectively. Since P4 has no more free adjacent processors by
the time we need to map cluster D, we temporarily assign it to processor Pp in
PAG. Then we try to swap D with one of clusters which have already been
assigned to processors (adjacent to P4). For example, it may be better to assign D
to Pr and F to Pp, since D is a common neighbor of A and B as Py is a common
neighbor of P, and Pp.

DRT PAG
J "
O e
C B D E F
Pc

Figure 5-5 Example for Perturbation Mapping

This might be considered as a perturbation in a simulated annealing technique
[KIR83]. The reason for the perturbation is to compensate for drawbacks of
sequential mapping. As discussed previously, the mapping order of nodes in a
VAG 1is determined largely based on local information: the closer a node is to the
MDN , the better chance it has to be mapped onto an appropriate processor. Furth-
ermore, the communication requirement of a secondary edge may be greater than
that of a primary edge. As a result, we may get further reduction in the total com-
munication overhead by swapping a node to be assigned yet with another node
which has been already assigned to a processor.

As long as perturbation mapping does not make any improvement, it is not

&9

possible to maintain adjacency using a primary edge for this particular mapping.
That is, cluster C can not communicate directly with cluster Cy,. In order to
lessen the effect of the indirect communication, we first check whether there is any
cluster adjacent to C through the primary edge which has already been assigned to
a processor. If there is more than one, we choose cluster Cy, which has the highest
binding power (other than C,,) with cluster C. After assuming cluster Cy, as a
direct ancestor of cluster C, we reiterate the same mapping procedure mentioned
above (i.e., finding the best mapping from processor Pcfa). We call such a map-

ping foster mapping. The only difference is that C, now becomes the direct
ancestor of C for Cy,. '

FosterMapping(K , DRT , PAG)
/*K 1is a linear cluster to be mapped. */
Begin

For each cluster K,;; (#K4,) adjacent to K in DRT
in descending order of binding power with K,
If K4; has already been assigned to Pk,
Then Do
Find the best mapping K from P Koo
Return;
End Do;
End For;

End FosterMapping.

If there does not exist such a primary edge, utilizing the secondary edges, we
repeat the same procedure as we do for the primary edge. For example, in Fig. 5-6,
we assume that the priority list L is (4,B,C,D,E). By the time we want to
assign cluster £, there is no free neighbor of P,. As a result, Py is forced to be
assigned to one of the free non-neighbor nodes. Suppose that cluster £ has more
binding power with C than with D . Then P acts like the original direct ancestor

90

of E for P,. Among the remaining four free processors, we choose P sinceitisa

common neighbor of P and Pp, as E is a common neighbor of C and D ;

Figure 5-6 Example for Trivial Foster Mapping

On the other hand, it may not be always a good heuristic to utilize secondary
edges during foster mapping. In the VAG shown in Fig. 5-6-a, suppose that the
priority list L is (Cq , ..., Cg). Itis trivial to map clusters Cy, Cq, Cy, C3 and
C, onto processors Py, Py, P,, P3 and P4, respectively. Next, we need to map
cluster C5. Since P onto which C 5’s direct ancestor C has been mapped has no
more free adjacent processors, we try to maintain the adjacency of Cs’s other edge
(i.e., the secondary edge between C 4 and C5). Since C 4 has been already assigned
to P4, C 5 will be assigned to P . Depending on the amount of communication of
C 5 with its neighbors, however, it may be better to map C 5 to P 5 than to P4. For
example, let us assume that the communication requirement between C 4 and Cs is
nominal comparing with the requirement between C to Cs. Then although the
latter is not adjacent to P4, we can reduce communication overhead by reducing
the number of hops (from 3 to 2) that a message has to travel between C g and Cs.
Furthermore, if P 5 is assigned to C s, then the primary edge from C 4 to C g can be
maintained. During foster mapping, we need to take into consideration these fac-
tors, especially when a processor (e.g., P ¢) to be mapped is crucial to another clus-
ter yet to be mapped. If none of the above attempts succeeds, we simply return any
unassigned processor which has the most appropriate number of links and is also
adjacent to any already assigned processors.

91

92

N
Cp, Qp, Or,
op/qp5
Op
(a) (b)

Figure 5-7 Example of Nontrivial Foster Mapping

Since the previous mapping algorithms do not guarantee an optimal solution,
we try to further improve the result by applying restricted pairwise exchange simi-
lar to [BOKS81] at the final step.

Improvement(DRT, PAG)
Begin

Do
For each candidate node which may be exchanged,
Swap it temporarily with other candidate nodes;
If the total communication overhead can be reduced,
Then
Swap them permanently;
End For;
Until no improvement is possible;

End Improvement.

We do not allow, however, random pairwise exchange of nodes. During mapping,
we keep track of how each cluster has been assigned and each cluster is given a
code according to the way it has been mapped as follows:

¢ code (: assigned to the MDN;

e code 1: assigned to a node if it is a member of a fully-connected subgraph;
» code 2: assigned to a node if it is adjacent to more than one cluster;

e code 3: assigned to a node if it is assigned using a primary edge;

o code 4: assigned to a node if it is assigned in a way not mentioned above.

If code 4 is assigned to a cluster during mapping, it becomes a candidate for
pairwise exchange. To be specific, it will be swapped with any free processor or
with another processor onto which a cluster with code 4 has been assigned. This
filtering allows us to obviate a lot of exchanges. This is quite a simple scheme, but
it is expected to give a reasonably good improvement efficiently by throwing away
a large unnecessary search space.

Finally, we discuss the time complexity of the mapping algorithms. We
assume that / and p are the number of linear clusters derived from a given compu-
tation graph by linear clustering and merging, and the number of processors in a
target multiprocessor system, respectively. The initial mapping takes O([), since
we just need to traverse each node once in a VAG . During mapping steps, it takes
the longest time to check full-connectivity among clusters during foster mapping,
which takes O (I%p-(I-p+I+1)). The final step takes O (/%) for pairwise exchange.
As a result, the overall time complexity of homogeneous mapping algorithms is
o3p 2) in the worst case.

§.2.2. Discussion

Our algorithm relies on local as well as some limited global information.
First, we look for a maximal spanning tree DRT for a VAG . Then the nodes in the
spanning tree are mapped onto available processors in descending order of their
binding powers. The sequential mapping order is expected to give us a sub-optimal
mapping result without exhaustively testing all the possible combinations of

93

mapping.

Comparing this new approach with the previous greedy algorithms [PAT84,
STA84, VANS84], we expect the results of our mapping algorithms to be much
better. Usually, the greedy approach first identifies a task which requires the larg-
est amount of communication, called the heaviest communicator. After finding the
most appropriate processor to which to assign the cluster in terms of the number of
links, it assigns the neighbors of the cluster to its adjacent processors. The critical
factor is that it favors the neighbors of the heaviest communicator not because they
have more communication requirements than others but because they happen to be
the neighbors of it. Its neighbors, on average, may have more communication
requirements than others; however, it is not necessarily true for all of them. Furth-
ermore, there may exist an intercluster communication path which does not belong
to the longest path but its adjacency should be maintained for significant reduction
of communication overhead. Since this path is considered only after the appropri-
ate processors have been already assigned to its neighbors, it may be difficult to
maintain its adjacency. On the other hand, our approach tries to take into account
the global communication pattern and does not give any preference to those clus-
ters adjacent to the heaviest communicator. Unfortunately, since linear clusters are
to be mapped onto a PAG in a (predetermined) sequential order, the mapping algo-
rithms may not be always globally optimal. The optimality of the algorithms may
increase as we take into account more global information when constructing
DRT's .

Finally, prior to the actual implementation of a parallel computation, we may
identify which architecture is more appropriate to a given computation graph by
applying the algorithm to a variety of multiprocessor systems. This will save us a
lot of effort to develop application programs and choose appropriate architectures
for the applications. For example, we can easily show that hypercube architecture
is more appropriate to molecular dynamics code [EUB86] than hypertree architec-
ture [KIM86b].

94

5.3. Heterogeneous Mapping

Heterogeneous mapping is a mapping of computation graphs onto architecture
graphs which represent heterogeneous multiprocessor systems. In the following
section, we characterize resources which are to be considered during heterogeneous
mapping. Then we introduce the Dominant Service Tree (DST) concept and dis-
cuss various issues related to its generation. A DST is a subgraph of a PAG.
Analogous to a dominant request tree, it provides global information on a hetero-
geneous multiprocessor system. To be specific, the tree implicitly specifies the
relative order of computing power of processors and transmission speed of com-
munication links. We then introduce and justify heterogeneous mapping algo-
rithms based on tree-to-tree mapping.

5.3.1. Characterization of Resources

Resources to be considered during heterogeneous mapping are processor,
communication link and memory. A processor can be characterized by a variety of
parameters. There are basically two types of paranieters: architecture and imple-
mentation parameters. Architecture parameters include data types (e.g., integer,
real, etc.), operation types (e.g., register-to-register, memory-to-memory, etc.) and
number of registers supported by a processor. In fact, those are visible to (low-
level language) programmers. Implementation parameters specify how various
components of a processor have been implemented in reality. A processor may
include stack, pipeline or vector processorT, interleaved memory, etc., in its imple-
mentation. Depending on these parameters, each processor may show different
performances for a variety of application programs; a processor may be very effec-
tive for some applications while not efficient at all for the others. Instruction exe-
cution speeds may be used to measure the performance of a processor. Tradition-
ally, it has been one of the most popular metrics for benchmark testing of proces-
sors. It may not be sufficient, however, to rely solely on instruction execution

+ Sometimes, it may be considered as an architecture parameter as in CRAY systems.

speeds of processors to determine their performance.

In general, given an application program, the more parameters we take into
account to characterize a processor, the more accurately we determine the effec-
tiveness of the processor. On the other hand, it may be too complicated to consider
all feasible parameters simultaneously during mapping. Furthermore, it may not be
possible to construct a DST independently of the application program. Unless it is
determined which task is to be assigned to which processor, it is hardly possible to
figure out the performance of processors and in turn to generate a DST .

In order to determine a DST as little dependent on an application program as
possible, we assume that the characteristics of the program are known a priori. We
further assume that every submodule of the application program has the identical
characteristics, regardless of the level of granularity of the submodules. These
assumptions make it possible to determine the relative performance of processors
for the application program. Each processor may be given a different Processor
Rating (PR) based on its relative performance with respect to the application pro-
gram. In our research, we assume that such ratings are also known a priori.

Secondly, a communication link can be characterized by communication
latency and bandwidth. The former can be defined as the interval between the ini-
tiation of communication and the actual initial transmission. The latter is the max-
imum transmission rate which can be sustained by the processor and a communica-
tion link attached to it. In the case that the distances between processors are long

enough to affect their interprocessor communication times, we consider normal-

ized bandwidith (NB) defined as & -—g—, where B and D represent bandwidth and

distance, respectively. It can be also characterized by operational modes such as
simplex, half duplex and full duplex. The communication overhead can be defined

Co

as @« Typppy + (1-00) - —;’\}“Z'm' where © is a normalization factor, and Ty, and

T, omm TEPresent communication latency and the amount of communication mes-

sage to be transmitted, respectively.

Finally, memory can be characterized by memory access time and capacity,

among other properties. Memory can be either local or global to a processor. We *

96

will consider only memory capacity to make the mapping problem simple. This
resource is different from the other resources considered previously in that we will
not take into consideration memory constraints when constructing a DST. This
constraint is to be applied on the fly; i.e., a processor can be assigned to a task or
not during mapping based on its memory capacity.

£.3.2. Dominant Service Tree

For heterogeneous mappings, it is important to utilize resources with high per-
formance as far as possible so that the total execution time can be minimized and
the workload balance can be achieved. We first need to distinguish resources with
higher performance from those with lower performance. A Dominant Service
Tree (DST) provides a limited amount of global information on resources in a
heterogeneous multiprocessor lest our mapping algorithms become totally greedy
based on local information. We can construct a DST by utilizing a maximal span-
ning tree algorithm. In fact, this may be considered as a transformation of a physi-
cal architecture graph into another physical architecture graph. In a sense, the
transformation can be regarded as prescanning of architecture graphs prior to phy-
sical mapping. During the scanning, we collect information like which processors
have more computing power and which communication links have more bandwidth
than others.

It also represents connection patterns among those resources with higher per-
formance, which implicitly specify how to utilize resources in what order (if possi-
ble). The relative locations of direct descendants of a node in a DST determine
their overall ratings in the combined capacity of processors and communication
links attached to them. For example, a node has usually more computing power
than its descendants, and its leftmost direct child has the highest rating among
direct descendants. Note that any scheduling constraints, including memory con-
straints, do not affect DST construction.

The construction of a DST starts from the Most Dominant Node (MDN) as
the root node rather from an arbitrary node. It is that processor P which maxim-
izes the cost function defined as:

97

PR + (1-w)NR,

where PR is the rating of processor P, NB is the sum of normalized bandwidths of
communication links connected to P and ® is a normalization factor. Then we
select next nodes according to their binding powers. The binding power of node
P,4; fromnode P in the DST can be defined as follows:

@ PR + (1-001)-(00y NB +(1-0) TNB o),

where PR is the rating of processor P,,;, NB is normalized bandwidth of proces-
sor P with P,4;, and NB,,; is normalized bandwidth of P,;; with its neighbor
other than P. ®; and m, are normalization factors. Using this function, we select
next the processor node with the highest binding power among unassigned nodes
which are adjacent to any assigned node, until all the nodes in a PAG are selected.

After the transformation of a PAG into a DST, the scheduling problems for
heterogeneous multiprocessor systems turn into the tree-to-tree mapping problems.
The edges in the PAG are to be divided into two different types: the primary and
the secondary edges. Analogous to a DRT, the edges belonging to the DST are
called the primary edges, while the edges belonging to the PAG but not to the DST
are called the secondary edges. Note that the primary edges are essential even
when only processors are heterogeneous. In that case, the primary edges identify
which processors have more computing power than the others.

5.3.3. Overview of Heterogeneous Mapping

In this section, we overview the basic idea of heterogeneous mapping algo-
rithms presented in Section 5.3.5. We first construct a DRT from a VAG based on
the computation and ccmmunication requirements of each task. Similarly, from a
given PAG, we construct a DST based on the number of links, their normalized
bandwidth and processor rating. Then heterogeneous mapping can be considered
as a tree-to-tree mapping from the DRT to the DST. The main goal of heterogene-
ous mapping is to identify the mapping which maintains adjacency of the primary
edges of the VAG with those of the PAG. When there are no primary edges

98

99

available, however, we utilize secondary edges of the PAG during mapping.
Specific scheduling constraints are also to be applied during the mapping. Fig. 5-8
shows an overview of our approach to heterogeneous mappings.

From VAG From PAG

L |

Match Primary Edges

(Utilize Secondary Edges if Necessary)

Apply Specific Scheduling Constraints

| |

Based on, Based on |
omputation and Number of Links,
ommunication PR and NB

Requirements

Reduce Total Execution Time
Increase Resource Utilization

Figure 5-8 General Overview of Heterogeneous Mappings

The ideal goal of heterogeneous mapping is to find a subgraph of a PAG
which has the identical topology with that of a VAG . Once we identify subgraphs
with the identical topology of the VAG, we choose a matching which minimizes
the following objective function:

! Tcomp- & comm;
)’ =+ (1-0) (T (@ T g1y H1—005)-)3
T (o + (e (Ef 2T ety H(1=02) ne,)
where T, is the computation requirement of cluster i assigned to a processor

whose rating is PR;, and Ty, is the amount of communication of cluster i with

one of its neighbors assigned to a communication link whose normalized
bandwidth and communication delay are NB; and Tdelay},, respectively. In the

preceding function, we assume that there are / linear clusters to be mapped, and
cluster i has ¢; edges. In addition, the matching should satisfy all given scheduling
constraints.

PAG,

| /A

Figure 5-9 Two Mappings onto Identical Topology

VAG

Fig. 5-9 exemplifies the role of the objective function in a heterogeneous map-
ping. We assume that all the clusters in VAG have the same computation time, and
all the processors in PAG’s have the same processor rating. Then we may let ®; be
0 without loss of generality in order to make a comparison between two different
matchings. In Fig. 5-9, A, B, and C in VAG are mapped onto P,, P, and P in
PAG’s, respectively. The numbers in VAG and PAG’s represent the amounts of
communication to be transmitted between each pair of clusters and normalized
bandwidths of communication links, respectively. Finally, let T4, and w, be 0
and 0.5, respectively. Then the total communication time is 3 when VAG is to be
mapped onto PAG 4, while it is 101.001 when mapped onto PAG,. One main

100

cause for the huge difference in the total communication times is the workload
imbalance of communication links in the second matching. The first mapping can
balance workload by assigning the link with large bandwidth to the edge with large
communication requirement.

5.3.4. Issues on Heterogeneous Mappings

In order to reduce the complexity of mapping, we propose the transformation
of the graph-to-graph mapping problem to the tree-to-tree mapping problem.
Unfortunately, it is still an NP —complete problem to find an optimal mapping from
one tree to another. The issue here is how to develop efficient heuristic mapping
algorithms between a DRT and a DST. In following sections, we explain how to
determine the mapping order of nodes of a DRT and introduce so-called node
information as a means to avoid exhaustive matching between two trees. The
other issue with which we are concerned is how to take into account various
scheduling constraints during mapping.

5.3.4.1. Mapping Order

We introduced in Section 5.3.3. objective function to minimize for an optimal
mapping. One way to minimize the function is to order linear clusters in descend-
ing order of the sum of their computation and communication requirements and to
order processors in descending order of their combined capacity of computation
and communication links attached to them. Then match them according to their
relative locations in the orders so that it minimizes the objective function.

There are two approaches to determine the mapping order. First, we may con-
struct the priority list .. in descending order of the binding power of each node
alone in a DRT . That is exactly the same as the order we have used for homogene-
ous mappings. In order to show that this approach may not be suitable for a hetero-
geneous mapping, we consider the following scenario using Fig. 5-10. For two

linear clusters L and L, at the same level in DRT, we assume that the binding

101

power of L ; is greater than that of L, alone but less than the total binding power of

L, and all its descendants.

DRT » DST : .
ROIA
4% g%

@ ®
Figure 5-10 The Importance of Mapping Order

According to the first approach, L, will be mapped onto P ;; however, this is
not a good choice. If L, were mapped onto Py, even though the primary edge
from L to L ; cannot be mapped onto a primary edge in DST, all the other primary
edges in DRT would be mapped onto the primary edges in DST . If we follow the
mapping order generated by this approach, it may be difficult to fully utilize the
primary edges, since connection patterns of those edges may be ignored during
mapping. In the case of homogeneous mappings, as there are only the primary
edges in PAG’s, homogeneous mapping algorithms will choose P 4 over P since
the algorithms may discover that P, is essential to L, and to later mappings of
other nodes. On the other hand, in the case of heterogeneous mappings, since the
primary edges are always first consumed whenever available, and P ; is the only

node connected to P o through a primary edge, L ; will be assigned to P ;.

In order to avoid this situation, we propose a second approach to determine
the mapping order in which the priority list L is constructed in descending order of
the sum of the binding power of each node and all its descendants in a DRT . This
order can be regarded as less greedy than the previous order, since it considers the
binding power of its descendants as well as its own. It also gives us a better chance
to utilize primary edges than the previous one. This is because the number of

102

primary edges in a tree is expected to be approximately proportional to the weight
of its root node. Since the only primary descendant of P ; has been assigned to L,
L, should be assigned to P 4 by following the secondary edge from P to P4 On
the other hand, besides requiring extra overhead for generating a new mapping
order, the second approach discriminates against the nodes which request more
computation and/or communication for themselves than the others, but have few
descendants. Note that it is still possible that L | is mapped onto P ; if the binding
power of L ; itself is greater than the combined binding powerof L, , ..., Ls.

£.3.4.2. Node Information

It is evident that an optimal mapping can seldom be found if the mapping
relies solely on local information. Nonetheless, it is also infeasible to match each
node in the trees exhaustively to find a perfect match. The important issue for
heterogeneous mappings is how to find an optimal mapping from a DRT to a DST
without doing exhaustive matching. As a compromise, we propose node informa-
tion associated with every node in a DRT and a DST. It is a septuple (Depth,
AvgDepth, Width, NoOfDirectChildren, NoOfIndirectChildren, AvgBranchFactor,
AvgSiblingCnt). This data provides us with clues to determine how a (sub)tree
looks from its root node without traversing it completely; it will supply information
useful for finding a perfect match between trees.

We explain here the definition of attributes of the septuple and their functions.
Depth represents the longest path length from the root to any leaf node in a tree. It
allows comparison of the heights of two trees. Similarly, AvgDepth represents the
average path length from the root to all leaf nodes in the tree. Width of a (sub)tree
is equivalent to the number of leaf nodes. It makes it possible to determine the
width of the (sub)tree. Next, NoOfDirectChildren denotes the number of direct
descendants of a node in a tree. Since our heterogeneous mapping algorithms are
basically greedy, it is one of the important factors in maintaining adjacency of two
nodes in a tree even after they are mapped onto the other tree. This attribute makes
it easier to find a node in a DST which has a sufficient number of adjacent nodes
for a node in a DRT . The fifth attribute of the septuple is NoOfIndirectChildren .

103

Using this attribute, we may estimate how many nodes other than direct descen-
dants are in a tree.

DRT O DST O

Figure 5-11 Mapping based on Node Information

It would be better if each node had information on all of its indirect descen-
dants. Unfortunately, it would increase drastically the amount of node information

to be provided as the depth of a tree increases. AvgBranchFactor of node N is
(Ng+Ning) . .
defined as N where N; and N,,; denote the number of direct and indirect
i

descendants, and N, denotes the total number of nodes other than leaf nodes in a
tree rooted at N. Even though two trees have exactly the same number of descen-
dants, they may form completely different trees depending on how they are con-
nected together. This information gives us the average number of direct descen-
(Ng+Ning)
Depth
This information lets us know how many nodes are on each level on average.

dants of the nodes in the tree. Finally, AvgSiblingCnt is defined as

104

Although two trees have the identical AvgBranchFactor , they may have different
topologies. AvgSiblingCnt makes it possible to differentiate between them. If
those attributes were unavailable, it would be difficult to figure out which subtree
of a DST is better to match with a subtree of a DRT .

Assuming node information is a quadruple (Depth, NoOfDirectChildren,
NoOfIndirectChildren, AvgBranchFactor), Fig. 5-11 shows an example to explain
why we need the attributes like AvgBranchFactor . Without AvgBranchFactor in
node information, it is not clear which subtree of the DST is better to match, even
though the right subtree is the one to match.

5.3.4.3. Scheduling with Resource Constraints

As previously mentioned, if there are any scheduling constraints to be applied,
they are considered during the physical mapping. This makes it possible to
transform a PAG into a DST without caring which task will be assigned which
processor. Prior to allocating a task to a processor, we check whether the processor
satisfies the scheduling constraints of the task; that is, whether the processor has
sufficient memory and disk space, a floating point accelerator, etc. This kind of
scheduling is simple, but strictly greedy in the sense that the first processor satisfy-
ing the scheduling constraints of a task is assigned to the task, no matter how much
more it would be efficient for or critical to other tasks which have not been
assigned yet.

When being compared with the previous approaches [GAR7S, CHUS80], this
scheme reduces the complexity of mapping significantly while sacrificing optimal-
ity. This approach is useful when it is expected that the majority of resources
satisfy given scheduling constraints. The main advantage of this approach is to
allow us to keep relying on the tree-to-tree mapping idea. On the other hand, a
resource critical to a cluster may be preoccupied by another cluster to which the
resource may not be essential. If that is the case, it may result in frequent preemp-
tions and remappings of tasks which have been already assigned, due to the greedi-
ness of this approach. When only a few processors are expected to satisfy the con-
straints, it may be useful to preallocate tasks to these processors to prevent such

105

preemptions during mapping.

5.3.5. Heterogeneous Mapping Algorithms

In this section, we describe heterogeneous mapping algorithms and related
heuristics in detail. A heterogeneous mapping is basically a tree-to-tree mapping.
Starting from initial mapping of the root node of a DRT, it allocates a node of the
DRT onto a node of a DST in a serial order determined while building the DRT .
Primarily, it attempts to maintain adjacency: first of primary edges and then of
secondary edges, if necessary. If neither is possible, leaving the node unassigned,
it attempts to map next unassigned node. Algorithm PostMapping maps those
unassigned nodes at the end of mapping.

The following algorithm HeterogeneousMapping summarizes our approach
to heterogeneous mapping algorithms.

HeterogeneousMapping(DRT , DST)
Begin

InitialMapping(DRT , DST, Assigned);
If Assigned 1is failse,
Then
return;
For each node Nppr except root node of DRT in predetermined order,
LetN gﬁT be a direct ancestor of Nppr;
Let NB?T be a node in DST
on which NB}?T has been already mapped;
FindPrimaryMatch(Npgr, N52r, Npst, Assigned);
If Assigned is false,
Then
FindSecondaryMatch(Nper, N56r, Npsr» Assigned);
End For;

106

PostMapping(DRT , DST);

End HeterogeneousMapping.

Suppose that DST,,,; and DRT,,,, represent the MDN’s of DST and DRT,
respectively. If DST,,,, provides DRT,,, with sufficient resources, then the initial
mapping is very trivial; otherwise, we need to generate another DST again from
any node which satisfies the scheduling constraints of DRT,,,, as explained in the
next algorithm:

InitialMapping(DRT , DST , Assigned)
Begin

Check if DST,,,, sctisfies scheduling constraints of DRT,,;;
Set Assigned to true;
If satisfied,
Then
Return;
Else Do
For each node N in DST in breadth-first search order,
If N satisfies scheduling constraints of DRT,,,,
Then Do
Set N to DST,,,; as the MDN
Build a new DST starting from the new DST,,;;
Assign DRT,,,; t0 DST, ;5 |
Return;
End Do;
Set Assigned to false;
Return;
End Do;

End InitialMapping.

107

108

The unsuccessful initial mapping implies that a given computation can not be
executed on the target architecture, since no processor satisfies the scheduling con-
straints required by the MDN of DRT . If that is not the case, we map the remain-
ing nodes in the DRT one by one in the predetermined order as follows:

FindPrimaryMatch(Npgp, N B4, Npsr» Assigned)

/¥ Nppr is a cluster to be mapped. */
/* Npsr is a processor onto which Npgr is to be mapped. */

Begin

Set Assigned to false;
Set {Npsr] to be the set of direct primary descendants of N, [
which have not been assigned yet;
Eliminate nodes from {Npgr}
which do not satisfy scheduling constraints of Nppr;
If the set is empty,
Then
Return,
FindMatch(Nppr, {Npsr 1> Npsr)s
If the depth of the subtree rooted at Npgr is not less than
that of the subtree rooted at Nppr,
Then
Return;
Else
CheckDescendants(Wpgr, Npst)s
Set Assigned to true;
Return;

End FindPrimaryMatch.

Let us assume that node Nppy in a DRT is to be mapped onto one of the
direct descendants of Ng% in a DST. When more than one direct descendant

satisfies scheduling constraints of Nppr, we need to select one of them. Selection
procedure is based on the node information of candidate nodes in the DST as sum-
marized in algorithm FindMatch. Whenever we need to break tie, we make use of
distance function DF defined as follows:

7
DF(s,r) ="\ / 3 @;(5;77)%
i=1

where s =(s1,...,57) andr =(ry,...,7r) are the node information of one of the
candidate nodes and Nppr, respectively, and w;’s are normalization factors as
usual. In fact, distant function DF is defined as a yardstick to estimate how well a
node in the DRT matches with a processor in DST .

FindMatch(NDRT, {NDST } 5 NDST)
Begin

Choose nodes from {Npgr} such that s; 2 r; for all i such that 1<i<7,
wheres=(sy,..., sq)andr=(ry,..., rqy)are
the node information of nodes in {Npgr} and Nppr, respectively;
If there is one,
Then
Return;
If there is more than one such node,
Then Do
Choose one which minimizes distance function DF ;
Return;
End Do;
Choose and return a node from {Npgr} which has the maximum number
of attributes such that s; = r; for 1<i <7;
If there is more than one,
Then
Choose one such that s, 2r;and s3273;

If there is more than one,

109

110

Then Do
Choose one which minimizes distance function DF ;

Return;
End Do;
Choose one which minimizes distance function DF ;

Return;
End FindMatch.
We now show how to map the DRT shown in Fig. 5-12 onto the DST's in Fig.

5-13 and Fig. 5-15. The mapping order of the DRT will be C, Cy4, C4, Cy, Cg,
Cs and C5. Note that we omit the node information for leaf nodes as it is always

©,...,0.

(32,43322) @
@ Q 222121515

(1,1,2,2.02.2)

© ©

Figure 5-12 Dominant Request Tree with Node Information

The mapping from the DRT in Fig. 5-12 to the DST in Fig. 5-13 is trivial.
Using only the primary edges, we can easily find appropriate matches between
nodes in the DRT and those in the DST. Clusters Cq, C4, C 7, C5, C4, Cs, Cyare
mapped onto nodes A, B, E, C,D,K,and L, respectively.

111

A /(32473924

(1,1,22,02,2

Figure 5-13 Dominant Service Tree with Node Information (Trivial Case)

When algorithm FindPrimaryMatch matches subtree Sppr rooted at Nppr to
subtree Sper with insufficient depth for node Nppr, it may be beneficial to parti-
tion Sppr into smaller subtrees in such a way that the depth of each subtree is
always less than that of Sppr. One of the subtrees will include Nppr. Then we
may find a better matching for those subtrees in the DST . The following algorithm
CheckDescendants is invoked for the purpose.

CheckDescendants(Nppr, Npst)
Begin

Partition subtree Sppy rooted at Nppr into smaller subtrees in such a way
that one of them (Sppy) includes Nppr as its root node
and their depths are less than that of Sppr;
If the depth of Sppr remains same,
Then Do /* We cannot reduce the depth. */
Assign Nppr t0 Npsr;
Return;
End

Else Do
Update the node information of Nppr:
FindPrimaryMatch(Npzr, N54r, Npsr» Assigned);
If Assigned is false
Then
FindSecondaryMatch(Nppr, N5gr, Npgr, Assigned);
End

End CheckDescendants.

Fig. 5-14 shows a case where the depth of a subtree in DRT is longer than the
depth of any subtree in DST . In that case, we consider the mapping of subtrees of
DRT , onto subtrees of DST. Since its depth is reduced by one, we are now able to
find a perfect match of the right subtree of DRT ; onto DST 5. The root and the left
subtree of DRT ; are mapped onto DST ;.

DRT O DST
DRT " \\\ (nfzsoTsz;,]
o (3,2.5}@2,4,2,2) ne
i
{
O i)(z 23.1322) \
e
(1,1,3,3,‘9,3,3)
\‘ \\
' %
\ OOH
Y o e e - -

Figure 5-14 Subtree Matching

Algorithm FindSecondaryMatch is almost equivalent to algorithm FindPri-
maryMatch except it attempts to map using the secondary edges. It also utilizes
algorithm FindMatch to choose subtree Spgr rooted at Npgr which is expected to
have the most similar topology of subtree Sppr rooted at node Nppr, and algorithm

112

CheckDescendants for better matching in the case where the depth of Sppp is
greater than that of Spgr. '

FindSecondaryMatch(Npzr, N5gr, Npsr» Assigned)

/* Nppr is a cluster to be mapped. */
/* Npsr 18 a processor onto which Nppr is to be mapped. */

Begin

Set Assigned to false;
Set {Npgr} to be the set of direct secondary descendants of NgﬁT
which have not been assigned yet;
Eliminate nodes from {Npgr}
which do not satisfy scheduling constraints of Npgr;
If the set is empty,
Then
Retumn;
FindMatch(Npgr, {Npsr }» Npsr):;
If the depth of the subtree rooted at Nppy is not less than
that of the subtree rooted at Nppr,
Then
Return;
Else
CheckDescendants(Npgr, Npsr)s
Set Assigned to true;

Return;

End FindSecondaryMatch.

We need FindSecondaryMatch for the mapping of the DRT in Fig. 5-12 to
the DST in Fig. 5-15. For example, we can easily allocate clusters Cy, Cy, Cy

and C, to nodes 1, 2, 7, and 4, respectively, according to the mapping order.

Then we simply allocate C ¢ onto node 8, since there is only one secondary edge

113

available from node 1 to node 8. For more sophisticated mapping, on the other
hand, we may not assign C4 to node 8. Taking into account the fact that C -
assigned to node 7 has two direct descendants and the fact that node 3 is closer
to node 1 than node 8, we may choose node 3 for C;. Then we allocate clusters

C s and C 5 to nodes 8 and 6, respectively.

¥
(1,1,1,1 QLD

i

Figure 5-15 Dominant Service Tree with Node Information (Nontrivial Case)

As mentioned before, when we fail to assign a node to a processor because
either no more primary or secondary edges are left or scheduling constraints cannot
be satisfied, we leave it unassigned. Algorithm PostMapping takes care of those
unassigned nodes and does pairwise exchanges, if necessary. This delayed match-
ing of some nodes in a DRT is quite different from the approach taken for homo-
geneous mappings, in which the mapping order is strictly enforced. Due to the
characteristics of heterogeneous mapping based on tree-to-tree martching, node
Nppr is mapped onto node Npgr, not only because the latter satisfies scheduling
constraints of the former but also because subtrees Sppr Tooted at Npgy and Spst
rooted at Npgr are expected to have a similar topology. As a result, it is very
important to match nodes belonging to one subtree to nodes belonging to the other
subtree as far as possible. If one of the nodes belonging to Spgy were assigned to a

node not belonging to Spgr, it may totally mix up the later mapping result. In

114

order to avoid the problem, we temporarily suspend the mapping of such nodes
until we complete mapping nodes of the DRT onto the DST using the primary
edges as well as the secondary edges. Using a secondary edge for the mapping
may cause a similar problem, but the effect will not be as severe as the previous
case.

PostMapping(DRT , DST)
Begin

Set {Npgr] to be the set of nodes in DRT which have not been assigned yet;
Set {Npgr} to be the set of nodes in DST which have not been assigned yet;
For each node Nppr in the predetermined order,
Choose nodes from {Npgr}
which satisfy scheduling constraints of Npgr;
If the set becomes empty,
Then
Swapping(Npgr, DST);
Else
Choose one which minimizes
the total computation and communication times of Nppr;
Remove Npgr from {Npgr};
End For;

End PostMapping.

Algorithm Swapping is invoked whenever we can not find an appropriate
node among unassigned nodes in a DST which satisfies the scheduling constraints
of node Nppr to be mapped. If that is the case, we may find node Np¢r- which
satisfies the scheduling constraints among the nodes in the DST which have been
already assigned to some clusters in the DRT . In addition, we may find node Npgr
among unassigned nodes in the DST which satisfies the scheduling constraints of
cluster Nppp currently assigned to Npgp. Then we may assign Nppr and Npypr to

115

Ny and Npgr, respectively. If there is more than one pair of candidates for the

swapping, we choose the pair which minimizes the total computation and commun-
ication overhead after the swapping.

Swapping(Npgr)
/* Npgr is a cluster to be swapped. */
Begin

Set {Npsr} to be the set of nodes among already assigned nodes in DST
which satisfies scheduling constraints of Nppr;
If the set is empty,
Then
Return; /* Scheduling is impossible */
For each node Njgp in {Npgr} in the predetermined order,
Set Nppr to be the cluster assigned to Npgr;
Find node Npgr among unassigned nodes
which satisfies scheduling constraints of Nppr
and minimizes the total overhead after being swapped with Nper+
If found,
Then Do
Assign Nppr and Nppr to Nper and Npgr, respectively.
Return;
End Do;
End For;

End Swapping.

We briefly discuss the time complexity of heterogeneous mapping algorithms.
We assume that there are [linear clusters to be mapped onto p processors. First,
the initial mapping takes O (p 3) since we have to generate a new DST starting from
every processor node in a PAG in the worst case. During both FindPrimaryMatch
and FindSecondaryMatch, the worst case occurs when we need to recursively

116

invoke CheckDescendants. The complexity of the matching step is
O (I*-p -(I-p+1)). Finally, algorithm PostMapping takes at most O (I -p -(I+1)).

8.3.6. Discussion

For heterogeneous multiprocessor scheduling, we transform the graph-to-
graph mapping problem to the tree-to-tree mapping problem. The transformation
is expected to reduce the mapping complexity significantly while sacrificing the
optimality of the mapping as little as possible. We generate a DST based on the
number of links, processor ratings and normalized bandwidth. As a result, it is crit-
ical to determine properly the processor ratings. In order to make mapping prob-
lem simple, it is assumed that the ratings are known a priori.

Heterogeneous mappings may not be so difficult as long as we can identify
suitable DST’s. However, when secondary edges or some scheduling constraints
are to be considered during mapping, the result of mapping may be far from the
optimal solution. Memory is the only special hardware to be considered during
heterogeneous mapping. If there are only a few different capacities of memories
available, it may be sufficient to take scheduling constraints into account on the fly
during mapping.

117

CHAPTER 6

PERFORMANCE EVALUATION

The first goal of performance evaluation is to investigate how much further
our scheduling algorithms can improve performance of already-parallelized com-
putations, relying on less hardware resources if possible. The next goal is to test if
they are applicable to a spectrum of architectures from loosely-coupled to tightly-
coupled systems and from homogeneous to heterogeneous systems. Computation
graphs may be regular or irregulari and cyclic or acyclic; they may represent
numeric or nonnumeric computations, and the granularity of their nodes may be
fine or coarse. The final goal is to check if the algorithms are also applicable to
such a broad class of computation graphs.

The previous chapters introduced linear clustering and mapping algorithms as
techniques for improving the performance of parallel computations. This chapter
presents the performance results of those techniques as applied to a variety of com-
putation graphs and architecture graphs. In the experiments are used three different
applications: sieve of prime numbers, forward elimination of square matrices, and a
synthetic program. The applications are chosen to illustrate different classes of
computation graphs and to exemplify different problems associated with parallel
computations. The experiments were performed on an Intel iPSC with 32 proces-
sors and on a Sequent Balance 21000 with 10 processors. Note that every meas-
ured time is the average of 20 repetitions of each application under consideration.

After summarizing our experimental environments, we explain the perfor-

mance metrics being considered in the experiments. Then, we discuss the

T A computation graph is regarded as regular if the same pattern of computation is re-
peated at each level in a computation graph; however, it does not necessarily have the
same number of nodes on each level. On the other hand, it is regarded as irregular if
there exist any random patterns of computation at any level.

118

implementations and the results of performance evaluation of the three applications
in detail to show the versatility of our scheduling algorithms.

6.1. Experimental Environments

As was mentioned in Chapter 2, there is a spectrum of multiprocessor archi-
tectures from loosely-coupled to tightly-coupled system. The Intel iPSC system is
a loosely-coupled multiprocessor based on a binary n-cube network. The system
has two components: the cube manager and the cube. The cube manager enables
us to develop programs, to load them into the cube, and to get or release the cube
and others [INT87]. The cube itself consists of 32 identical processors, each pro-
vided with 512K bytes of local memory and connected to 5 neighboring processors.
Neither shared memory nor a global synchronization mechanism is available in this
system. No variables are shared among processes even though they are on the
same node. Therefore, both interprocessor and intraprocessor communications can
only be achieved by message passing in any circumstances. Synchronization is
subsumed by communication in the sense that a parallel computation assigned to a
node may be triggered or resumed only after its necessary message (if any) arrives
from the other node or the cube manager. Each node may contain up to eight
point-to-point, asynchronous, bidirectional communication channels. The eighth
channel is a global Ethernet channel that provides direct accesses to and from the
cube manager. Each node may be assigned up to 20 processes, and, therefore, the
number of processes involved in a single application program may be more than
the number of processors in the system.

The Balance 21000 system is a tightly-coupled multiprocessor with 10 identi-
cal processors, each of which is connected with a single shared memory of 16M
bytes through a common high-speed bus. Unlike other tightly-coupled systems
(e.g. the Ultra, the Butterfly, and the RP3), there is no switching network which
connects the processors and memory modules. The maximum number of processes
which can be created simultaneously is (n—1), where n is the number of processors
which is currently on-line. Processor scheduling is done automatically by its
operation system Dynix, which provides three types of scheduling algorithms

119

[SEQ86]: prescheduling, static scheduling and dynamic scheduling. No matter
which scheduling algorithm we choose, though, we have no control over processor
assignment; we can not assign a process to a specific processor. As a matter of
fact, it is trivial to map linear clusters on a shared memory machine like the Bal-
ance, since it has nominal interprocessor communication overhead and acts as if it
were a fully connected system.

6.2. Performance Metrics

Before presenting the results of the experiments, we introduce six perfor-
mance metrics: total execution time, communication overhead, total throughput,
processor utilization, theoretical communication time, and theoretical execution
time. The first four of the metrics are actually measured either on the iPSC or on
the Balance, while the rest of them are theoretically calculated to compare them
with the measured performance. Once identifying the theoretical lower bounds, we
can better evaluate performance of our scheduling algorithms.

The total execution time T,,,. is simply the sum of the total computation time

(T comp) for computing schedulable units of computation on available processors in
parallel and the total communication time (T,,,) for transferring the required
messages among the processors. The communication overhead is the ratio of the
communication time excluding pure message transmission time to the total execu-
(T,

comm —Ttheo.comm)

T

exec

tion time; i.e., . The total throughput is defined as the number

of application programs completed during a given time span. The processor utili-
zation is a measure of how efficiently each processor in a multiprocessor system

has been used by a program assigned to it. It can be determined by

, where
p
T; represents the total execution time to solve an application program on i proces-

SOr1S.

According to empirical measurement performed on the iPSC [DUNB86], the
set-up time to acquire a channel is 860 usec, while the transmission time to send

120

one byte is 0.18 psec. Those performance characteristics are used to calculate
theoretical communication time Ty, comm (-6 (860 +0.18 X 1) usec), where n is
the total number of bytes to be transferred along the critical path. Note that
theoretical communication time only counts the pure message transmission time.
Since the size of a single message can not be greater than 16K bytes in the iPSC,
we considered communication delay per every 16K bytes when the message length
is longer than 16K bytes. In order to obtain the theoretical execution time
T oo exec » WE TUN & program and measure its total execution time T ; on the Balance
using a single processor. Then, we divide T, by p, the number of processors
which participated in parallel computation of the program.

6.3. Calculation of Prime Numbers

In this section, we describe a parallel algorithm implemented on the iPSC to
find prime numbers and, then, provide the performance results with a related dis-

cussion. The computation graph shown in Fig. 6-1 describes how to calculate all
the primes from 2 to N in parallel.

Figure 6-1 Computation Graph

Cluster Name | Node Number || Cluster Name | Node Number
Co 0,1,17,25,29,31 Cyg 9,21,27.30
c, 2 Co 10
C, 3,18 Cio 11,22
Cs 4 Cu 12
Cy 5,19.26 Cqy 132328
Cs 6 C 3 14
Cs 7.10 Cis 15,24
Co 8 Cis 16

Figure 6-2 Clustered Graph

The operations performed by all the nodes except node O are to eliminate the
multiples of a given prime from a group of numbers sent from its direct ancestor
nodes. Each of these operations may be performed independently and simultane-
ously, using the different set of data in each node. Node O divides evenly the
numbers which have not been eliminated yet into groups and distributes them to its
direct descendants. The leftmost node (except node 31) on each level sends a

122

prime number (whose multiples are to be eliminated) to the nodes on the next
lower level. Node 31 sends the remaining uneliminated numbers to node'0. Com-
ing back again to node 0, we repeat the elimination sweeps until only the primes
are left. It is enough, however, to repeat the elimination sweeps only up to N
based on the observation that any number less than N cannot have all its multiples
greater than VN . Even though our parallel implementation is not the most efficient
way to find the prime numbers on the iPSC, it provides us with a communication-
intensive computation graph, which is cyclic and regular. Table 6-1 shows how the
nodes in Fig. 6-1 are clustered in Fig. 6-2.

Unclustered(Execution Time)

lustered(Execution Time)

Total
Execution

me

sec)

Unclustered(Communication Time)

,,,,,, L ' ;
10000 20000 30000 40000 50000 60000 70000
Maximum
me
umber

Figure 6-3 Comparison of Total Execution Times and
Total Communication Times

123

124

Unclustered(Measured)

Totgl |
Comipunication
me

sec)
21
Unclustered(Theoretical)
14
Clustered(Measured)
RS 'CI&éiéfed(Theoretical)
o ; : ; ' ; |
10000 20000 30000 40000 50000 60000 70000
M imgm
UH‘%GI‘
Figure 6-4 Measured vs Theoretical Total Communication Times
on the Critical Path

Fig. 6-3 demonstrates how much we can further reduce the total execution
time of the computation graph in Fig. 6-1 after linear clustering it. As expected,

the improvement of total execution time is achieved mainly by reducing communi-
cation time. In Fig. 6-4, we compare the measured communication times with their
corresponding theoretical lower bounds for both the unclustered and clustered
graphs. The curve for the measured communication time is very close to the curve
for its theoretical lower bound in the clustered graph. In fact, the proximity of the
two curves shows how efficient our algorithm is.

The total communication time consists of pure message transmission time and
communication delay. Communication delay in the iPSC is mostly affected by the
following factors: the number of hops a message must travel, waiting time for a
message to arrive, and message queuing delay for a channel. We can significantly
reduce unnecessary interprocessor communications by clustering inherently
sequential processes into one cluster and, as such, reduce message waiting time and
message queuing delay. Furthermore, it is expected that the adjacency is better
maintained during mapping of the VAG shown in Fig. 6-2 onto a PAG represent-
ing the iPSC than during direct mapping of the computation graph shown in Fig.
6-1 onto the PAG, largely due to the simplified graph after linear clustering. For
example, the average number of hops each message must travel was reduced from
1.652 to 0.978 after clustering the computation graph. For the unclustered graph,
on the other hand, the various overheads keep being accumulated as N gets larger.
It results in a large gap between two curves in the unclustered graph as the max-
imum prime number to be found gets larger.

Max Prime Number | Unclustered | Clustered
16000 0.420 0.058
20000 0.348 0.037
30000 0.308 0.011
40000 0.277 0.030
50000 0.239 05.017
60000 0.223 0.010
70000 0.218 0.002

Table 6-2 Comparison of Communication Overhead to Total Execution Time

125

Table 6-2 compares the communication overhead of the unclustered graph
with that of the clustered graph. While the clustered graph has very little overhead,
the unclustered graph wasted a significant portion of execution time for communi-
cation overhead. Note, however, that the overhead diminishes as N gets larger.
The reason for this can be explained as follows: The ratio of communication time
to computation time decreases as N get larger (cf. Table 6-3), since most of the
nonprimes are scratched out while calculating the first few primes. As a result,
synchronization overhead is expected to be diminished.

Max Prime Number | Unclustered | Clustered
10000 0.872 0.104
20000 0.694 0.094
30000 0.613 0.061
40000 0.546 0.086
50000 0.472 0.073
60000 0.440 0.067
70000 0.435 0.058

Table 6-3 The Ratio of Communication Time to Computation Time

Table 6-4 demonstrates another advantage of linear clustering. As mentioned
in Chapter 4, linear clustering enables us to make use of less resources than
required by unclustered graphs. For example, when the computation graph shown
in Fig. 6-1 requires all 32 nodes for a one-to-one mapping of nodes to processors,
the VAG shown in Fig. 6-2 requires just 16 processors. Furthermore, the former
requires 47 direct communication channels while the latter requires 32 direct chan-
nels. It makes it possible to run two VAG’s simultaneously on the iPSC. We
measured the total execution time to complete two clustered graphs and, then,
divided it by 2 to estimate the average time to complete one clustered graph. The
throughput results indicate the number of application programs which have been
completed during the time span required to get all the primes up to 70000 without
clustering the computation graph. As can be seen in Table 6-4, when executing

126

two clustered graphs simultaneously in the iPSC, the throughput improvement is
always more than twice. This result reflects the fact that in spite of the fact that we
run two computation graphs simultaneously, there is not much overhead caused by
that. This result also demonstrates the significant reduction in communication
overhead and better mapping caused by linear clustering.

Number of Tasks
Max Prime Number Completed Ratio(B/A)
Unclustered(A) | Multiple Clustered(B)
10000 5.930 17.248 2.909
20000 3.348 9.684 2.892
30000 2439 6.465 2.651
40000 1.779 4919 2.765
50000 1.434 3772 2.630
60000 1.128 2.969 2.632
70000 1.000 2.575 2.575

Table 6-4 Comparison of Total Throughput

To conclude, we find that linear clustering makes it possible to decrease the
total communication time significantly by getting rid of unnecessary interprocessor
communication and reducing the number of hops for a message to travel. When
expecting heavy communication among processes, it has been usually the case that
we avoid loosely-coupled architecture. We show that linear clustering may reduce
such an overhead drastically, and therefore, loosely-coupled architectures may be
applicable to such an application.

6.4, Forward Elimination of Matrices

Gaussian elimination is the well-known algorithm for solving a system of
linear equations Ax = b by successively eliminating the unknowns. We assume
that A is an nxn real, dense, nonsingular matrix, x is the column vector of

127

nunknowns, and b is a given column vector of n real constants. In this section, we
describe a series of experiments related to the algorithm using a Sequeni Balance
21000 and then discuss their results. Although Gaussian algorithm is a two step
process of forward elimination and back substitution, we are only interested in the
forward elimination step represented by the computation graph in Fig. 6-5.

Figure 6-5 Computation Graph

Each node (labeled A;; in Fig. 6-5) represents the row operation for each pivot
row k (1sk<n-1) of matrix A to make the element a; (k+1<l<n) zero. This
operation also updates the other parts of matrix A as follows:

. . .
For k+1SlSn, aij =qa; i —a; k X—-'_’J_'e where ijgn
3, 9, ¥ ak’k

The row operations for the pivot rows can be performed simultaneously as long as
sequencing constraints are satisfied as described in the computation graph in Fig.
6-5. To be specific, node A;; can be triggered as soon as nodes A -1)j-1y and
A;(j-1y have been completed.

The computation graph in Fig. 6-5 was clustered in such a way that the nodes
with the same row index (say, i) were put into linear cluster C;_; as shown in Fig.

128

129

6-6. It should be mentioned here that it is permitted to create simultaneously up to
9 processes in the Balance with 10 processors. Taking into account this restriction,
the VAG in Fig. 6-6 needs to be transformed into another VAG in Fig. 6-7. A
merged node M; in Fig. 6-7 was constructed as follows:

For 0<i <8, M;={C; | i =j(mod 9) and 0<j<n-1}.

Figure 6-7 Merged Graph

130

In Fig. 6-8, we can see that how much further cluster merging improves per-

formance of the clustered graph; the result for the merged graph is very close to the

theoretical lower bound of the total execution time.

Total
ution

et
SeC

160+

150+

1404

130+

1204

110+

100+

704+

60+

50+

404

30+

20+

10+

Unclustered

Clustered

/ Merged
/!
7

{,("Theoretical
/ Av

50 100 150 200 250 300 350
P X X % X P X
50 160 150 200 250 300 356

L

Figure 6-8 Comparison of Total Execution Times using 9 Processors

324

ti erence
28l - verheagc 1%1‘ ynchromzauon an

0Cess

26 +

24 4

22 4

20 ¢

Execution 18 +

Time

D?erence

sec) 16 +

14 L

12 +

10 1

131

307 - = %?rlhEagcfltl)g%} e%égﬁé%“gﬁa(égé‘éizgr%auan (Unclustered)

ation (Clustered)

5}9 1;(20 1 §<0 ZQO 2)5(0 3é)<0

50 100 150 200 250 300

Figure 6-9 Analysis of Scheduling Overhead Relative to
Overhead based on Merging

350
X
350

There are basically two factors which affect the communication overhead in

the Balance: the overhead in creating multiple processes and the overhead in syn-

chronization and communication among processes. Observe, though, that there is °

nominal communication overhead between processors because the Balance has

shared memory through a common bus. As a result, whether a computation graph
is being clustered or not, the sources of performance improvement are to reduce the
number of processes to be created and to reduce unnecessary synchronization over-
heads. The other important source of the improvement is to balance the workloads
of processors.

Fig. 6-9 presents an analysis of the total execution time differences shown in
Fig. 6-8. The x-axis in Fig. 6-9 represents the total execution time and the com-
munication overhead for synchronization and process creation and other overhead
like bus contention in the merged case. The curves in Fig. 6-9 represent the differ-
ences among the total execution time and the overhead of the unclustered and
clustered graphs relative to the merged one (represented by the x-axis). In the case
of the unclustered graph, there is significant reduction in synchronization and pro-
cess creation overhead; the rest of the reduction is accomplished by load balancing.
On the other hand, in the case of the clustered graph, there is very little difference
in synchronization and process creation overhead; notice that the curve for the
overhead is virtually overlapped with the x-axis. As a result, load balancing should
affect the difference of the total execution times.

Number of Processors

Array Size E l 6 l 3

Unclustered | Clustered | Merged | Unclustered | Clustered | Merged | Unclustered | Clustered | Merged
10x10 0.99% 1.02% 1.02% 2.26% 2.30% 2.33% 7.97% 8.87% 9.09%
50x50 33.69% 40.00% | 45.35% 47.54% 56.38% | 64.63% 67.03% 79.74% | 86.84%

100100 5831% 77.71% | 81.24% 76.55% 87.31% | 89.59% 83.27% 93.86% | 95.44%

150%150 70.74% 82.72% | 88.79% 81.55% 92.32% | %4.17% 89.56% 96.36% | 96.99%

200%200 74.73% 84.35% | 91.49% 85.11% 9450% | 95.84% 89.99% 96.52% 97.10%
250x250 71.61% 88.64% | 94.42% 86.61% 95.08% | 96.03% 90.08% 96.66% 98.05%
300x300 78.09% 92.06% 97.05% 86.67% 95.38% | 98.54% 92.22% 98.42% 99.50%
350x350 81.58% 94.34% 98.29% 86.88% 9543% | 98.81% 92.36% 98.29% 99.81%

Table 6-5 Comparison of Processor Utilization

Table 6-5 presents the processor utilization versus the number of processors
for a range of numbers using three different graphs. From the table, the following

132

observations may be made: As the number of processors decreases, the processor
utilization increases since the workload of each processor becomes more balanced.
Secondly, as the array size increases, the processor utilization also increases since
the ratio of computation time to the various communication overhead increases.

To conclude, this experiment demonstrated that our scheduling algorithm is
also applicable to a tightly-coupled system. This result also suggests that merging
plays an important role for balancing workloads as well as reducing resource
requirement. We also observed that we may get better processor utilization as the
number of processors gets smaller. If the total throughput is important, we would
utilize as small a number of processors, each of whose utilization approached 1, as

possible. For this specific application, we got the best utilization when the number
of processors was three.

6.5. Synthetic Program

Fig. 6-10 represents a synthetic computation graph. It is different from the
previous computation graphs in that it does not represent a real application pro-
gram. We modified the computation graph for molecular dynamics code [EUB86]
so that the number of nodes and edges in the graph became larger than those avail-
able in a PAG representing a heterogeneous system. The system is simulated by
an Intel iPSC in such a way that half of the processors and one fifth of the com-
munication channels are twice as fast as the real ones. We deliberately manipulate
the computation and communication times of the nodes and edges of the irregular
computation graph, respectively. Fig. 6-11 shows the clustered graph based on
Table 6-6. Solid and dotted lines represent the primary and secondary edges (cf.
Chapter 5), respectively.

In order to utilize the concept of data driven synchronization of the static
dataflow machines, a node is assumed to be fired only after all the messages are
available and outputs messages only at the end of its computation. The main pur-
pose of the experiments using this synthetic program is to compare the influence of
linear clustering between homogeneous and heterogeneous systems.

133

134

Figure 6-11 Clustered Graph

Cluster Name Node Number Cluster Name | Node Number

Co 0.2,6,12,15,22,29,35,38,40 Cy 20

c, 5,11,16,25,31,36,39 Cg 19

C, 3,7,13,21,28,33,37 Cy 17

C, 27,34 C 1o 10,14

Cy 24,32 Ci 9

Cs 23,30 Cy 8

Ce 18,26 Cis 1,4

Table 6-6 Linear Clusters

Fig. 6-12 compares the total execution times for four different cases: the
measured and the theoretical total execution times for homogeneous and hetero-
geneous systems. Note that dotted and solid bars represent the total execution
times for the unclustered and the clustered graphs, respectively. As can be seen,
after linear clustering the computation graph shown in Fig. 6-10, we got a reduc-
tion of 58.69% in the measured total execution time in the heterogeneous iPSC,
versus 36.36% in the homogeneous iPSC. The total execution time of the
unclustered graph in the heterogeneous iPSC is improved by just 12.57% when
comparing with that in the homogeneous one. On the other hand, the total execu-
tion time of the clustered graph in the heterogeneous iPSC is improved by 47.20%.
These comparisons demonstrate that linear clustering allows us to utilize hetero-
geneity of the target architecture more efficiently than the unclustered graph. They
reemphasize the fact that linear clustering makes it easier to take advantage of
architectural characteristics during mapping. In the theoretical lower bound, the
improvement is not as impressive as the measured case. The reason for that is the
disregard of various communication overheads except for pure transmission time
when measuring the theoretical bounds. Nevertheless, the clustered graph shows
much better performance improvement in the heterogeneous case than the homo-
geneous case.

135

136

5.0 +
o
H i
to
.
[
1o
4.0 4+ - roT
P [
- o
N [
o o
[
o
! o
P Pl
3.0 + b Lo
Total X — [
Execution | v
Time | Do
(sec) ! o
! P
! P
! H i]
i 1 | i l
2.0 4 ! P I
! - !
! o !
! o i
1 N) r o7
1) N TR
i } 1 i i
! | i o
i i 1 i i
i i i i t
1.0 + ! ! ! L
i] i H
| f i !
1 |] 1
{ t i i
i i] i
i i i i
i ! i i
1 i | i
i I]]
H H 1 i
Measured Measured Theoretical Theoretical
(Homogeneous) (Heterogeneous) (Homogeneous) (Heterogeneous)

Figure 6-12 Comparison of Total Execution Times (Unclustered vs Clustered)

Tabulated in Table 6-7 is throughput comparison between homogeneous and
heterogeneous architectures. As can be seen, since there are 14 clusters in Fig. 6-
11, we are able to assign and execute at least two clustered graphs simultaneously
in the iPSC using only 28 processors. The throughput improvement in the hetero-
geneous iPSC is 36.25% better that in the homogeneous iPSC.

137

Clustering Type Homogeneous | Heterogeneous
Unclustered 1.000 1.000
Clustered 1.571 2.421
Multiple Clustered 3.030 4753

Table 6-7 Comparison of Total Throughput

To conclude, linear clustering seems to be more effective for heterogeneous
systems for better utilization of their architectural characteristics than for homo-
geneous systems. It allows us to utilize better the processors with more computing
power and the channels with faster speed.

CHAPTER 7

CONCLUDING REMARKS

Technological innovations made it feasible to construct a variety of multipro-
cessor systems from collection of processors. These processors can either share
common memory or have their own local memories, or both. To fully utilize such
systerns, enormous research efforts have been invested on the development of
effective ways to find optimal allocations of application programs to processors so
that the total execution time can be minimized. Traditionally, there has been a split
between research on multiprocessor scheduling for tightly-coupled and loosely-
coupled systems. Most researchers have focused on the development of specific
scheduling strategies to take advantage of unique hardware characteristics such as
interconnection topologies.

As opposed to the previous approaches, we have investigated and proposed
multiprocessor scheduling techniques and heuristic mapping algorithms which are
applicable to a spectrum of multiprocessor systems. The fundamental idea we have
used is that multiprocessor scheduling can be regarded as a mapping of a computa-
tion graph onto an architecture graph. We defined the graph models for computa-
tion graphs and architecture graphs. The former, which are acyclic directed graphs,
describe parallel computation structures to be executed. The latter, which are
undirected graphs, represent target multiprocessor systems onto which the compu-
tation graphs are to be mapped.

Based on the models, we proposed new scheduling techniques using linear
clusters. A linear cluster is a connected subgraph of a computation graph which is
in the form of a linear list of schedulable units of computation. We justified that
linear clustering was ar effectual heuristic to compromise between two conflicting
goals, minimization of interprocessor communication and maximization of poten-
tial parallelism, and to satisfy the other goals the throughput enhancement and the

138

workload balance, relatively well. The underlying idea of linear clustering is that
the schedulable units of computation that are sequentially dependent on each other
are to be assigned to one processor, while those that are mutually independent are
to be allocated to separate processors. The critical restriction of linear clustering is
that it expects a computation graph to be acyclic. In order to relieve this restric-
tion, we identified the cases that cyclic computation graphs might be transformed
into acyclic graphs in a straightforward manner if they meet certain properties. We
also proposed a technique for linear cluster merging to balance the workload of
processors and to reduce the amount of resources necessary for a parallel computa-
tion.

After linear clustering and merging, we can identify an optimal architecture
graph for a given computation graph. We developed two efficient heuristic
scheduling algorithms which mapped the optimal architecture graph onto a physi-
cal architecture graph, which in turn could represent either a homogeneous or a
heterogeneous multiprocessor system. Those algorithms rely not only on local
information but also on limited global information. Both algorithms
utilize dominant request trees to reduce the mapping complexity, but take quite
different approaches to mapping the trees onto architecture graphs. Most impor-
tantly, in the case of homogeneous mapping, the trees are directly mapped onto a
physical architecture graph. On the other hand, in the case of heterogeneous map-
ping, they are mapped onto dominant service trees. A dominant service tree pro-
vides limited global information on a heterogeneous multiprocessor system like
which resources have high performance.

We presented performance evaluation of our mapping algorithms on an Intel
iPSC with 32 processors and a Sequent Balance with 10 processors. The evalua-
tion results showed that we could get impressive performance improvements of
already-parallelized computations on both the loosely-coupled system and the
tightly-coupled system, utilizing less hardware resources whenever feasible.

There are many directions for future work. Of immediate interest is to
enhance the models for computation and architecture graphs for allowing nondeter-
minism in the former and for embedding more scheduling constraints in the latter.
Next, it will be worthwhile to investigate how to allow dynamic binding in

139

computation graphs. Other future work will involve the extension of our mapping
algorithms to include more heuristics. It will be also interesting to coinpare the
performance results of our algorithms with those of other approaches for the same
computation graphs. Finally, the important issues that have not been considered in
this thesis are how optimal our algorithms are and what their theoretical perfor-
mance bounds are.

140

Bibliography

[AES82] Ae, T., and Aibara, R., "Experimentation and Analysis of Multiproces-
sor Systems,"” IEEE 1982 Real-Time System Symp., Dec. 1982, pp. 69-
80.

[AHO83] Aho, A.V., Hopcroft, J. E., and Ullman, J. D., Data Structures and
Algorithms, Addison-Wesley, 1983.

[ARG86] "Using the Encore Multimax," Argonne National Laboratory,
Mathematics and Computer Science Division, Technical Report
ANL/MCS-TM-65, Argonne National Lab., Argonne, Il1., 1986.

[BANS87] Banerjee, J., Kim, W., Kim, S. J., and Garza, J. F., "Clustering a DAG
for CAD Databases,” To appear in /[EEE-SE.

[BAR81] Barnes, E. R., "An Algorithm for Partitioning the Nodes of a Graph,”
IBM Research Report RC 8690, Feb. 1981.

[BBN85a] "Butterfly (TM) Parallel Processor Overview,” Bolt Beranek and New-
man Inc., Cambridge, MA, June 1985.

[BBN85b] "The Uniform System Approach To Programming the Butterfly (TM)

Parallel Processor,” Bolt Beranek and Newman Inc., Cambridge, MA,
Nov. 1985.

[BER84] Berman, F., and Snyder, L., "On Mapping Parallel Algorithms into
Parallel Architectures,” Proc. Int’l Conf. on Parallel Processing, Aug.
1984, pp. 307-309.

[BIA85] Bianchini, R. P., and Shen, J. P., "Automated Compilation of Interpro-
cessor Communication for Multiple Processor Systems," Dept. of ECE,
CMU, Nov. 1985.

[BOKS81] Bokhari, S. H., "On the Mapping Problem," JEEE-TC, Vol. C-30, No. 3,
Mar. 1981, pp. 207-214.

[BOU72] Bouknight, W. J., Denenberg, S. A., McIntyre, D. E., Randall, J. M.,
Sameh, A. H., and Slotnick, D. L., "The Iliac IV system,” Proc. IEEE,

141

[BROBS5]

[BROB6]

[BRU74]

[BRY81]

[CAMBS]

[CHIZ4]

[CHOS8Z]

[CHU69]

[CHUS80]

[COF72]

[COF76]

[DEG81]

Apr. 1972, pp. 369-379.

Browne, J. C., "Formulation and Programming of Parallel Computa-
tions: A Unified Approach,” Proc. of Int’l Conf. on Parallel Processing,
Aug. 1985, pp. 624-631.

Browne, J. C., "Framework for Formulation and Analysis of Parallel
Computation Structures,” Parallel Computing 3, 1986, pp. 1-9.

Bruno, J., Coffman, E. G., Jr., and Sethi, R., "Scheduling Independent
Tasks to Reduce Mean Finishing Time," CACM 17, 1974, pp. 382-287.

Bryant, R. M., and Finkel, R. A., "A Stable Distributed Scheduling

Algorithm," 2nd In?’l. Conf. on Distributed Computing Systems, 1981,
pp- 314-323.

Campbell, M. L., "Static Allocation for a Data Flow Multiprocessor,”
Proc. of Int’l Conf. on Parallel Processing, Aug. 1985, pp. 511-517.

Chiang, W. P., "Optimal Graph Clustering Problems with Applications
to Information System Design,” Technical Report CRL-TR-30-84, The
Univ. of Michigan, June 1984.

Chou, T. C. K., and Abraham, J., "Load Balancing in Distributed Sys-
tems," IEEE-SE, Vol. SE-8, No. 4, July 1982, pp. 401-412.

Chu, W. W, "Optimal File Allocation in a Multiple Computer System,"
IEEE-TC, Vol. C-18, No. 10, Oct. 1969.

Chu, W. W, Holloway, L. J,, Lan, M.-T., and Efe, K., "Task Allocation
in Distributed Data Processing,” IEEE Computer, Vol. 13, No. 11, Nov.
1980, pp. 57-69.

Coffman, E. G., Jr., and Graham, R. L., "Optimal Scheduling for Two-
Processor Systems,"” Acta Informatica 1, 1972, pp. 200-213.

Coffman, E. G., Jr. (Ed.), Computer and Job-Shop Scheduling Theory,
John Wiley and Son, N. Y., 1976.

DeGroot, R. D., "Mapping Computation Structures onto SW-Banyan
Network", Ph. D. Thesis, The Univ. of Texas at Austin, Dec., 1981.

142

[DEMS82]

[DUN86]

[EAG86]

[EDL85a]

[EDL85b]

[EFES2]

[EUB86]
[F1S84]

[FOR64]

[FOR78]

[FUL73]

[GAJ83]

Deminet, J., "Experience with Multiprocessor Algorithms,"” [EEE-TC,
Vol. C-31, No. 4, Apr. 1982, pp. 278-288.

Dunigan, T. H., "Hypercube Performance," in Hypercube Multiproces-
sor, M. T. Heath (Ed.), SIAM, 1986.

Eager, D. L., Lazowska, E. D., and Zahorjan, J., "Dynamic Load Shar-
ing in Homogeneous Distributes Systems,"” IEEE-SE, Vol. SE-12, No. 5,
May 1986, pp. 662-675.

Edler, J., Gottlieb, A., Kruskal, C. P., McAuliffe, K. P., Rudolph, L.,
Snir, M., Teller, P. J., and Wilson, J., "Issues Related to MIMD Shared-
memory Computers: The NYU Ultracomputer Approach,” IEEE Proc.
of the 12th Annual Int’l Symp. on Computer Architecture, June 1985,
pp. 126-135.

Edler, J., Gottlieb, A., and Lipkis, J., "Considerations for Massively
Parallel UNIX Systems on the NYU Ultracomputer and IBM RP3,"
Ultracomputer Note No. 91, Courant Institute of Math. Sci., NYU, Dec.
1985.

Efe, K., "Heuristic Models of Task Assignment Scheduling in Distri-
buted Systems," IEEE Computer, Vol. 15, No. 6, June 1982, pp. 50-56.
Eubank, S., Personal Communication.

Fisher, J. A., and O’Donnel, J. J., "VLIW Machines: Multiprocessors
We Can Actually Program," COMPCON, Spring, 1984, pp. 299-305.

Ford, L. R., and Fulkerson, D. R., Flows in Networks, Princeton Univ.
Press, Princeton, N. J., 1964.

Forsdick, H., Schantz, R., and Thomas, R., "Operating Systems for
Computer Networks," IEEE Computer, Vol. 11, Jan. 1978.

Fuller, S. H., and Siewiorek, D. P., "Some Observations on Semicon-
ductor Technology and the Architecture of Large Digital Modules,”
IEEE Computer, Oct. 1973, pp. 15-21.

143

Gajski, D., Kuck, D., Lawrie, D., and Sameh, A.," Cedar - A Large .

Scale Multiprocessor,” Proc. of Int’l Conf. on Parallel Processing, Aug.

[GAR75]

[GART79]

1983, pp. 524-529.)
Garey, M. R,, and Graham, R. L., "Bounds for Multiprocessor Schedul-

ing with Resource Constraints,” SIAM J. Comp., Vol. 4, No. 2, June
1975, pp. 187-200.

Garey, M. R., and Johnson, D. S., Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. M. Freeman and Com-
pany, New York, 1979.

[GOT83a] Gottlieb, A., Grishman, R., Kruskal, C. P., McAuliffe, K. P., Rudolph,

L., and Snir, M., "The NYU Ultracomputer - Designing an MIMD
Shared Memory Parallel Computer," JEEE-TC, Vol. C-32, No. 2, Feb.
1983, pp. 175-189.

[GOT&83b] Gottlieb, A., Lubachevsky, B., and Rudolph, L., "Basic Techniques for

[GRAG69]

[GYL76]

[HAES80]

[HAY82]

[HEA70]

[HIL85]
[HU61]

the Efficient Coordination of Very Large Numbers of Cooperating
Sequential Processors,” ACM TOPLAS 5, Apr. 1983, pp. 164-189.

Graham, R. L., "Bounds on Multiprocessing Timing Anomalies,"” STAM
J. Appl. Math., Vol. 17, No. 2, March 1969, pp. 416-429.

Gylys, V. B., and Edwards, J. A., "Optimal Partitioning of Workload for
Distributed Systems,” Digest of Papers, COMPCON, Fall 1976.

Haessig, K., and Jenny, C. J., "Partitioning and Allocating Computa-
tional Objects in Distributed Computing Systems,” IFIP, 1980, pp.
503-508.

Haynes, B. S., Lau, R. L., Siewiorek, D. P., and Mizell, D. W., "A Sur-
vey of Highly Parallel Computing,” IEEE Computer, Jan. 1982, pp. 9-
24,

Heart, F. E., Kahn, R. E., Ornstein, S. M., Crowther, W. R., and Wal-
den, D. C., "The Interface Message Processor for the ARPA Computer
Network," Proc. AFIPS, SICC, 1970, pp. 551-567.

Hillis, W. D., The Connection Machine, MIT Press, 1985.

Hu, T. C., "Parallel Sequencing and Assembly Line Problems," Opera-
tions Research, 9, 6, 1961, pp. 841-848.

144

[INT87]
[JONS8O]

[KARG6]

[KAR72]

[KAS84]

[KAT78]

[KER70]

[KER71]

[KIM86a]

[KIM86b]

[KIR83]

"iPSC User’s Guide," Intel Corporation, Apr. 1987.

Jones, A. K., and Gehringer, E., "The Cm* Multiprocessor Project: A
Research Review,"” Technical Report CMU-CS-80-131, CMU, July
1980.

Karp, R. M., and Miller, R. E., "Properties of a Model for Parallel Com-
putations: Determinacy, Termination, Queueing,” SIAM J. Appl. Math.,
Vol. 14, No. 6, Nov. 1966, pp. 1390-1411.

Karp, R. M., "Reducibility among Combinatorial Problems," in Com-
plexity of Computer Computations, R. E. Miller and J. W. Thatcher
(Eds.), Plenum Press, New York, 1972, pp. 85-103.

Kasahara, H., and Narita, S., "Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing,” IEEE-TC, Vol. C-33, No.
11, Nov. 1984, pp. 1023-1029.

Katsuki, D., Elsam, E. S., Mann, W. F., Roberts, E. S., Robinson, J. G.,
Skowronski, F. S., and Wolf, E. F., "Pluribus - An Operational Fault-
Tolerant Multiprocessor," Proc. IEEE, Vol. 66, No. 10, Oct. 1978, pp.
1146-1159.

Kernighan, B. W., and Lin, S., "An Efficient Heuristic Procedure for
Partitioning Graphs,” Bell System Tech. J., Vol. 49, No. 2, Feb. 1970,
pp. 291-307.

Kernighan, B. W., "Optimal Sequential Partitions of Graphs", JACM,
Vol. 18§, No. 1, Jan. 1971, pp. 34-40.

Kim, S. J., "Interface Specification Languages for Computation and
Resource Graph Generations," Internal Memo, Univ. of Texas at Austin,
Jan. 1986.

Kim, S. J., "On a Physical Mapping for Homogeneous Multiprocessor
Systems," Internal Memo, Univ. of Texas at Austin, Nov. 1986.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., "Optimization by

Simulated Annealing,” Science, Vol. 220, No. 4598, May 1983, pp.
671-680.

145

[KUNS82]

[KUNg4]

[LEE77]

[LEES87]

[LIU78]

[LLOSO]

[LO85]

[LUK75]

[LUS85]

[MAg2]

[MARG67]

146

Kung, H. T., "Why Systolic Architectures 7", IEEE Computer, Vol. 15,
No. 1, Jan. 1982, pp. 37-46.

Kung, H. T., "Systolic Algorithms for the CMU Warp Processor,”
Technical Report CMU-CS-84-158, Dept. of Comp. Sci., CMU, Jan.
1984.

Lee, R. P, and Muntz, R. R., "On the Task Assignment Problem for
Computer Networks,” Proc. 10th Hawaii Int’l Conf. System Sciences,
Jan. 1977, pp. 5-9.

Lee, S. Y., and Aggarwal, J. K., "A Problem-driven Approach to Paral-
lel Processing: System Design/Scheduling and Task Mapping,” Techni-
cal Report TR-87-7-39, Computer and Vision Research Center, The
Univ. of Texas, June 1987.

Liu, C. L., and Dhall, S. K., "On a Real-Time Scheduling Problem,"
Operations Research, Vol. 26, No. 1, Feb. 1978, pp. 127-140.

Lloyd, E. L., "Scheduling Task Systems with Resources,” Ph. D. Thesis,
MIT, May 1980.

Lo, V. M., "Task Assignment to Minimize Completion Time," 5th Int’[.
Conf. on Distributed Computing Systems, 1985, pp. 329-336.

Lukes, J. A., "Combinatorial Solution to the Partitioning of General
Graphs," IBM J. Res. Develop., Vol. 19, 1975, pp. 170-180.

Lusk, E. L., and Overbeek, R. A., "Use of Monitors in FORTRAN: A
Tutorial on the Barrier, Self-scheduling DO-Loop, and Askfor Moni-
tors," Technical Report ANL-84-51, Argonne National Lab., Argonne,
1., June 1985.

Ma, P.-Y. R, Lee, E. Y. S., and Tsuchiya, M., "A Task Allocation
Model for Distributed Computing Systems,” JEEE-TC, Vol. C-31, No.
1, Jan. 1982, pp. 41-47.

Martin, D. E., and Estrin, G., "Model of Computational Systems -
Cyclic to Acyclic Graph Transformations,” JEEE-TC, Vol. 16, No. 1,
Feb. 1967, pp. 70-79.

[MAS82]

[MATS5]

[MET76]

[NCU85]
[NI81]

[OUS80]

[OUS82]

[PATE4]

[PFI85]

[RAM72]

[RAO79]

[SADS87]

Mashburn, H. H.,, "The C.mmp/Hydra Project: An Architectural Over-
view," in [SIE82] pp. 350-370.

Matelan, N., "The Flex/32 Multicomputer,” Proc. of the 12th Int’[Conf.
on Computer Architecture,” June 1985, pp. 209-213.

Metcalfe, R. M., and Boggs, D. R., "Ethernet: Distributed Packet
Switching fo Local Computer Network,” CACM, Vol. 19, No. 7, July
1976, pp. 395-404.

"NCUBE/ten : An Overview," NCUBE Corp., Nov. 1985.

Ni, L. M., and Hwang, K., "Optimal Load Balancing Strategies for a
Multiprocessor System,"” Proc. Int’l Conf. on Parallel Processing, Aug.
1981, pp. 352-357.

Ousterhout, J. K., Scelza, D. A, and Sindhu, P. S., "Medusa: An Experi-
mental in Distributed Operating System Structure,” CACM, Vol. 23, No.
2, Feb. 1980, pp. 92-105.

Ousterhout, J. K., "Scheduling Techniques for Concurrent Systems,”
Proc. of the Third Int’l Conf. on Distributed Systems, Oct. 1982, pp.
22-30.

Pathak, G. C,, "Towards Automated Design of Multicomputer System
for Real-time Applications,” Ph.D. Thesis, North Carolina State Univ.,
1984.

Pfister, G. F., "The Architecture of the IBM Research Parallel Processor
Prototype (RP3)," IBM Research Report RC 11210, June 1985.

Ramamoorthy, C. V., Chandy, K. M., and Gonzalez, M. J., "Optimal
Scheduling Strategies in a Multiprocessor System,” JEEE-TC, Vol. C-
21, No. 2, Feb. 1972, pp. 137-146.

Rao, G. S., Stone, H. S., and Hu, T. C., "Assignment of Tasks in a Dis-
tributed Processor System with Limited Memory," IEEE-TC, Vol. C-28,
No. 4, Apr. 1979, pp. 291-299.

Sadayappan, P., and Ercal, F., "Nearest-Neighbor Mapping of Finite
Element Graphs onto Processor Meshes,” IEEE Trans. Computer, Vol.

147

[SARB6]

[SEI85]

[SEQ86]

[SHES85]

[SIE82]

[SOL79]

[STA84]

[STO77]

[STO78]

[TANSS]

[ULL73]

[ULL735]

C-36, No. 12, Dec. 1987, pp. 1408-1424.

Sarkar, V., and Hennessy, J., "Compile-time Partitioning and Schedul-
ing of Parallel Programs,” Proc. on Compiler Construction, 1986, pp.
17-26.

Seitz, C. L. "The Cosmic Cube,” CACM, Vol. 28, No. 1, Jan. 1985, pp.
22-33,

"Balance Guide to Parallel Programming,” Sequent Computer Systems,
Inc., 1986.

Shen, C.-C., and Tsai, W.-H., "A Graph Matching Approach to Optimal
Task Assignment in Distributed Computing Systems Using a Minimax
Criterion," JEEE-TC, Vol. C-34, No. 3, Mar. 1985, pp. 197-203.
Siewiorek, D. P., Bell, C. G., and Newell, A., Computer Structures:
Principles and Examples, McGraw-Hill Company, N. Y., 1982.
Solomon, M. H., and Finkel, R. A., "The Roscoe Distributed Operating
System," Proc. 7th Symp. on Operating Principles,” 1979, pp. 108-114,
Stankovic, J. A,, and Sidhu, L. S., "An Adaptive Bidding Algorithm for
Processes, Clusters and Distributed Groups,” Proc. on the 4th Int’i.
Conf. on Distributed Computing Systems, 1984, pp. 49-59.

Stone, H. S., "Multiprocessor Scheduling with the Aid of Network Flow
Algorithms," IEEE-SE, Vol. SE-3, No. 1, Jan. 1977, pp. 85-93.

Stone, H. S., and Bokhari, S. H., "Control of Distributed Processes,”
IEEE Computer, Vol. 11, No. 7, July 1978, pp. 97-106.

Tang, P., Yew, P.-C., and Zhu, C.-Q., "Processor Self-Scheduling in
Large Multiprocessor Systems," No. 536, Center for Supercomputer
Research and Development, Univ. of I1l., Nov. 1985.

Ullman, J. D., "Polynomial Complete Scheduling Problems," Operating
Systems Review, Vol. 7, No. 4, 1973, pp. 96-101.

Ullman, J. D., "NP-complete Scheduling Problem," J. of Computer Sys-
tem Science, Vol. 10, 1975, pp. 384-393.

148

[VAN84] Van Tilborg, A. M., and Wittie, L. D., "Wave Scheduling - Decentral-
ized Scheduling of Task Forces in Multicomputers,” IEEE-TC, Vol. C-
33, No. 9, Sep. 1984, pp. 835-843.

[WANR85] Wang, Y.-T., and Morris, R. J. T., "Load Sharing in Distributed Sys-
tems," IEEE-TC, Vol. C-34, No. 3, Mar. 1985, pp. 204-217.

[WARG62] Warshall, S., "A Theorem on Boolean Matrices,”" JACM, Vol. 9, No. 1,
Jan. 1962, pp. 11-12.

[WIT80] Wittie, L. D., and van Tilborg, A. M., "MICROS, A Distributed Operat-
ing System for MICRONET, A Reconfigurable Network Computer,"
IEEE-TC, Vol. C-29, No. 12, Dec. 1980, pp. 1133-1144.

149

	tr88001-21
	tr88001-22
	tr88001-23

