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ABSTRACT

An important requirement of non-traditional database applications such as computer aided
design, artificial intelligence, and office information systems with multimedia documents is the
support of application evolution. Application evolution includes evolution of object schemas as well
as evolution of objects in the application.

We provided a framework of schema evolution in [BKKK86, BKKK87] and the framework
was realized in an object-oriented database system, ORION, at MCC. In this paper, we extend
this schema evolution framework by allowing schema versions and DAG rearrangement views in
object-oriented databases. We present a technique that enables users to manipulate schema versions
explicitly and maintain schema evolution histories. For completeness, we integrate our model with
the object version model formulated by H.T. Chou and W. Kim [CK86].

We identify new types of view, called DAG rearrangement views, of composite objects and
class hierarchies. We present a set of operators for defining DAG rearrangement views. We identify
sets of composite object views with the property that queries on the views are processable on
instances of the original composite object schema. We also discuss how instances would be viewed

and reorganized in DAG rearrangement views of class hierarchies.

1. Introduction

The successful use of database management systems in data-processing applications has created a substantial
amount of interest in applying database techniques to such areas as knowledge bases and artificial intelli-
gence (Al) [SB86], computer-aided design (CAD) [AKMP86], and office information systems (OIS) [IEEE85,
Ahls84, WKL86]. In order to provide the additional semantics necessary to model these new applications,
many researchers, including those referenced above, have adapted the object-oriented programming paradigm
[GR83, BS83, CA84, Symb84] to serve as a data model.

In order to use the object-oriented approach in a database system, it is necessary to add persistence and
sharability to the object-oriented programming paradigm. Several database systems based on this approach
are under implementation, including GEMSTONE [MOP85], IRIS [Fish87], and ORION [Ban87]. In order
to meet the requirements of new database applications, recently developed database systems have advanced
features that were not available in conventional database systems such as SQL/DS [IBM81] and INGRES
[SWKHT6].

An important requirement of non-traditional database applications such as CAD/CAM, Al and OIS
is the support of application evolution. Application evolution includes evolution of object schemas as well
as evolution of objects in the application. We provided a framework of schema evolution in [BKKKSS,
BKKK87] and the framework was realized in an object-oriented database system, ORION, at MCC [Ban87].

! Research partially supported by NSF Grant DCR-8507724
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In the framework, whenever a schema definition is updated, the previous schema is changed to a new one
and existing instances of the previous schema are modified in order to comply with the new schema (ie.,
overriding the previous schema and its instances).

In this paper, we extend our schema evolution framework by allowing schema versions and DAG re-
arrangement views in object-oriented databases. Although there has been substantial research on object
versions [DL85, CK86, KL84, KCB86], the issue of schema versions has not been investigated in the data-
base literature. In non-traditional applications, users will probably define and modify a database schema
through trial and error, thus it is important to allow flexibility in the definition of a database schema
[WKL86]. The approach to schema versions and views presented in this paper contribute flexibility to the
dynamic evolution of non-traditional database applications.

We shall present a technique that enables users to manipulate schema versions explicitly and maintain
schema evolution histories in object-oriented databases. Our solution for schema versions is consistent with
our schema evolution framework, is designed to minimize storage redundancy and allows us to avoid the
problem of update anomaly. For completeness, we integrate our schema version model with the object version
model formulated by H.T. Chou and W. Kim [CK86].

One way of representing variants and alternatives of a schema is to allow views of the schema. Views
in object-oriented databases are more versatile than those in relational databases. Two distinct notions
in object-oriented data models are are described by directed acyclic graphs (DAG): composite objects and
class hierarchies. Conventional views in relational databases are constructed via combinations of relational
operators such as select, project, and join. Views in object-oriented databases include rearrangement of
DAG structures (both composite objects and class hierarchies) as well as conventional views in relational
databases. We present sets of operators for defining DAG rearrangement views of composite objects and class
hierarchies respectively. We identify sets of composite object views with the property that queries on the
views can be processed on instances of the original composite object schema. We also discuss how instances
would be viewed and reorganized in DAG rearrangement views of class hierarchies.

In section 2, we review the core concepts of object-oriented data models, with emphasis on the ORION
data model. Section 3 gives an overview of our schema evolution framework. In section 4 we define the
semantics of schema versions and discuss integration of our schema version model with the object version
model formulated by [CK86]. Semantics of DAG rearrangement views and operations for constructing DAG
rearrangement views are introduced in section 5. Section 6 presents an operational interface (user commands)

for manipulating schema versions and DAG rearrangement views. A summary section completes the paper.

2. Object-Oriented Data Models

In this section we review the core concepts of object-oriented data models, which are also the major concepts

of the ORION data model. We also indicate some assumptions or conventions in the ORION data model.

2.1 Core Conceplis

Object-oriented data models support the usual features of object-oriented languages, including the notions
of classes, subclasses, class hierarchies, and objects. Our data model is that of the ORION system [Ban87].
Each entity in an ORION database is an object. Objects include instance variables that describe the state
of the object. Instance variables may themselves be objects with their own internal state, or they may be

primitive objects such as integers and strings which have no instance variables. Objects also include methods

2



which contain code used to manipulate the object or return part of its state. These methods are invoked from
outside the object by means of messages. Thus, the public interface of an object is a collection of messages
to which the object responds by returning an object.

Although each object has its own set of instance variables and methods, several objects may have the
same fypes of instance variables and the same methods. Such objects are grouped into a class and are said
to be instances of the class. Usually each instance of a class has its own instance variables. If, however, all
instances must have the same value for some instance variable, that variable is called a shared-value variable.
A default value can be defined for a variable. This value is assigned to all instances for which a value is not
specified. Such variables are called default-valued variables. The domain of an instance variable is a class.
The domain of an instance variable is to be bound to a specific class and all subclasses of the class.

Similar classes are grouped together into superclasses. The result is a directed acyclic graph (DAG)
containing an edge (Cy,Cs) if class Cy is a superclass of Cp. A class inherits properties (instance variables
and methods) from its immediate superclasses, and thus, inductively, from every class C for which a path
exists to it from C. The class-superclass relationship (Ci, Cs) is an “ISA” relationship in the sense that
every instance of a class is also in instance of the superclass. Using the terminology of the entity-relationship
model (see, e.g., [KS86]), we say that C is a generalization of Cy and Cy is a specialization of C. The class
OBJECT is defined to be the root of the DAG.

Because we allow the use of a DAG to represent the ISA relationship among classes, it is possible
for a class to inherit properties from several superclasses. This is called multiple inheritance in [GOLDS83,
STEF86]. This leads to possible naming conflicts between properties inherited from superclasses. Another
source of conflict is the possibility that a locally-defined class variable or method has the same name as
an inherited property. These conflicts are resolved by giving the local definition precedence. Other conflicts
are resolved based upon a user-supplied total ordering of the superclasses. This ordering can be changed at
any time by the user. Furthermore, the user may override the default conflict resolution scheme either by

renaming or by explicitly choosing the property to be inherited.

2.9 Instances with One and Only One Type

The inheritance mechanism causes inclusion relationships among sets of instances. For example, if a class
S is a subclass of a class C, any instance of S is an instance of C. These inclusion relationships should be
maintained to make ISA relationships among classes of a class hierarchy meaningful.

There are two ways of positioning (physically storing) instances in class hierarchies. One can allow an
instance to belong to more than one class, or one can require that an instance belong to one and only one class.
While some object-oriented systems, such as GALILEO [ACO85], ADAPLEX [SFL80], and TAXIS [MBW80],
follow the former approach, others, such as ORION [Ban87], GEMSTONE [MOP86], and COMMONLOOPS
[Bob85] follow the latter approach. The class hierarchies in Figure 1.a and 1.b illustrate the former and latter
approach respectively.

We believe that requiring instances to belong to one and only one class is better in applications that
involve many instances (i.e., data-intensive applications) since this reduces data redundancy. By allowing
instances to belong to more than one class, storage waste and update costs are increased. As shown in Figure
1.a., if the user deletes an instance (e.g., H.J. Kim) from the UNIVERSITY-PERSON, the system must
also delete corresponding instances from all subclasses of UNIVERSITY-PERSON, i.e., GRAD-STUDENT,
STAFF, and TA, in order to keep the database in a consistent state. The same argument applies to insert and

update operations. One disadvantage of requiring instances to belong to one and only one class is that the
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query language is more complicated {addressed in next section); two types retrieval and update operations

are needed.

The difference between the two approaches can also be seen in Figure 2. In Figure 2.a, the object 09 can
belong to NUCLEARVEHICLE and WATERVEHICLE (and, of course, to VEHICLE), whereas in Figure
2.b, a new class, called NUCLEARWATERVEHICLE, must be created for capturing the object 09 in a single

class.

In this paper, we follow the approach in Figure 1.b and Figure 2.b and assume that instances can not

belong to more than one class, as in the ORION data model. This assumption influences the semantics of

schema versioning,.
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Figure 2: Modeling instances in VEHICLE database

2.9 Operations on Instances

The user’s view of a single class is similar to a relational view. SQL-like query languages [IBM81] can be
adopted for object-oriented databases. However, the inheritance mechanism and the assumption “an instance
can belong to one and only one class” (i.e., the approach in Figure 1.b) force us to provide two kinds of
SELECT, DELETE and UPDATE operations. In this section we introduce a set of operations which are
necessary under our assumption.

e SELECT-ONLY (instance variables) FROM (classes) WHERE (query predicates): This type of query,
when posed to a class C, causes a selection of all instances of C that satisfy the query qualification.
Instances of subclasses of C, if any, are ignored. For example, the meaning of the query “SELECT-ONLY
* FROM GRAD-STUDENT” is “retrieve all graduate students who are not a TA”.

¢ SELECT-ALL (instance variables) FROM (classes) WHERE (query predicates): In many cases, it may
be desirable to retrieve instances of all subclasses of a class as well as its own instances. SELECT-ALL
type queries are the same as SELECT-ONLY queries, except all instances of C and C’s subclasses
are evaluated. For example, the meaning of the query “SELECT-ALL * FROM GRAD-STUDENT” is
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“retrieve all graduate students”.

e The properties of the SELECT-ONLY operation extend to the DELETE-ONLY and UPDATE-ONLY
operations, and the properties of the SELECT-ALL operation extend to the DELETE-ALL and
UPDATE-ALL operations.

e INSERT (an instance) TO (a class): Inserting an instance into a particular class is straightforward as
long as the type of the instance corresponds to the class.

e MOVE (an instance) FROM (a class) TO (another class): During the lifetime of a database, the role
of an instance may evolve. For example, H.J.Kim in Figure 1.a has four roles: T.A.,, GRADUATE-
STUDENT, STAFF, and UNIVERSITY-PERSON. Suppose H.J.Kim gets his PhD degree and takes a
teaching job at the same university. Now H.J.Kim has a different set of roles: PROFESSOR, STAFF, and
UNIVERSITY-PERSON. The instance H.J.Kim, which belonged to T.A., should be moved from T.A.
to PROFESSOR, using the MOVE operation. The MOVE operation is an atomic operation subsuming
both the INSERT and DELETE operations.

2.4 Composite Object

The notion of composite objects explicitly captures the IS-PART-OF relationship. A composite object is a
hierarchical structure of related instances that captures the IS-PART-OF relationships between an object
and its parents. (In the literature, what we call composite objects have variously been called complex objects
[LP83, KIM85], molecular aggregations [BK85], composite objects [Bobr85], and aggregation hierarchies
[Atwo85].) As such, most object-oriented data models support the notion of composite objects.

A composite object has a single root object that references multiple child objects, each through an
instance variable. Each child object can in turn reference its own child objects, again through instance
variables. A parent object exzclusively owns its child objects; thus the existence of child objects is predicated
on the existence of their parent. Child objects of an object are thus dependent objects. The instances that
constitute a composite object belong to classes that are organized in a DAG. This collection of classes is
called a composite object schema. A composite object schema consists of a single root class and a number
of dependent classes.

In the remainder of this paper, we shall use a vehicle class hierarchy and a vehicle composite object
as an example for illustrating our ideas. The class hierarchy for vehicles is shown in Figure 3. In Figure 4,
we illustrate a composite object schema for vehicles. The classes that are connected by dotted lines form
the composite object schema. The root class is the class VEHICLE. Through the instance variables Body
and Drivetrain, vehicle instances are linked to their dependent objects, which belong to the classes BODY
and DRIVETRAIN. The instances of BODY and DRIVETRAIN, in turn, are connected to other dependent
objects.

3. An Overview of Schema Evolution

The ORION schema evolution framework [BKKK86, BKKKS87] consists of a set of properties of the consistent
schema called invarianis, and a set of rules that guide the selection of the most meaningful way of preserving
the invariants for those schema changes that allow more than one meaningful way. The invariants hold at
every quiescent state of the schema, that is, before and after a schema change operation. They are used
for defining the semantics of every meaningful schema change. However, for some schema changes, the
schema invariants can be preserved in more than one way. The set of rules that we have guides the selection
of one most meaningful way. In our previous papers [BKKK86, BKKKR7], we showed that how schema
transformation rules are applied to maintain the invariants for all types of schema changes in ORION. A

more formal treatment of schema evolution is in [KKBKS86]. As such, we omit the details of invariants and
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the schema transformation rules here.
We list all schema changes that are supported in the ORION schema evolution framework below.
(1) Changes to the contents of a node (a class)
(1.1) Changes to an instance variable

(1.1.1) Add a new instance variable to a class

(1.1.2) Drop an existing instance variable from a class

(1.1.3) Change the name of an instance variable of a class
{1.1.4) Change the domain of an instance variable of a class
(1.1.5) Change the inheritance (parent) of an imstance variable

(inherit another instance variable with the same name)
(1.1.6) Change the default value of an instance variable
(1.1.7) Manipulate the shared value of an inmstance variable
1.1.7.1) Add a shared value
{1.1.7.2) Change a shared value
(1.1.7.3) Drop a shared value
{1.2) Changes to a method
(1.2.1) Add a new method to a class
(1.2.2) Drop an existing method from a class
(1.2.3) Change the name of a method of a class
(1.2.4) Change the code of a method in a class
(1.2.5) Change the inheritance (parent) of a method
{inherit another method with the same name)
{2) Changes to an edge
(2.1) Make a class S a superclass of a class C
{2.2) Remove a class S from the superclass list of a class C
(2.3) Change the oxder of the superclasses of a class C
(3) Changes to a mnode
(3.1) Add a new class
(3.2) Drop an existing class
{3.3) Change the name of a class
Semantics of each operation of the taxonomy are described in [BKKK86, BKKK87]. Although our
framework has been developed for the ORION data model, we believe that is applicable to most object-

oriented systems.

4. Schema Versions in Object-Oriented Databases

In this section we extend the schema evolution framework by allowing schema versions. We first discuss the

semantics of schema versions and then present our approach.

4.1 Schema Version Semantics

In conventional object version models [KL84,DL85], only one schema is shared by multiple object versions
of an object. This, however, is rather a strong restriction on object version derivation because an object

version can be derived only by changing some values of instance variables of a parent object version, not by
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deleting or adding instance variables, nor by changing their domains. The following example illustrates the

restriction of object version derivation in conventional object version models.

Example 4.1: Suppose a schema AUTO is (Id,Engine-size,Color) and domains of instance variables are
Id: String, Engine-size: 100..500, Color: {red,blue,white}. Let the AUTO schema be S. Let an object
D be (TKW624, 320, blue). Consider the following versions: Dy (TKW624, 250, blue), Dy (TKW624, 320,
blue, ford), Ds (TKW624, blue), Da4 (TKW624, 550, blue). In conventional object version models [KL84,
KCB86, CK86], D2, D3 and D4 cannot be versions of D because the AUTO schema cannot be shared by them:
Ds, has a value (ford) of a new instance variable Manufacturer, D3 does not have a value for the instance
variable Engine-size, and D4 has an out-of-range value for the instance variable Engine-size. However, suppose
we allow object versions Dy, D3 and Dy to have their own schema versions of the original AUTO schema
S: S, (Id: String, Engine-size: 100..500, Color: {red,blue,white}, Manufacturer: String), Sz (Id:
String, Color: {red,blue,white}), S4 (Id: String, Engine-size: 100..600, Color: {red,blue,white}).
Then, D», D3 and Dy can be considered as versions of D. .|

The next example also illustrates the necessity of a schema versioning facility in a non-traditional

database system.

Example 4.2: The system architecture for CAD systems often consists of a public database system con-
nected to a collection of private database systems [CK86]. Users can check out an object version from the
public database system and manipulate it in their design workstation (private database). They can create
a new object version from the checked-out object version and check the new object version into the public
database.

Now suppose that there are several object versions vy, vz, ..., Vo of an object schema V in the public
database. After user A has checked out vy, another user B or a database administrator may change the
structure of V (i.e., schema change). If the system does not keep track of the previous version of schema
V, A cannot check a new object version, say vy, derived from vy, into the public database because the new
object version vg can not be accommodated in the new schema V. -

The restrictions shown in the above two examples can be relaxed by maintaining schema versions. In
summary, there are two major benefit of keeping track of schema versions: (1) They provide for more flexible
derivation of object versions; that is, object version derivation can cross multiple schema versions and (2)
They allow the independence between object evolution and schema evoluiion to be maintained.

There are two difficulties (called storage redundancy and update anomaly) in supporting schema versions,
which must be resolved for schema versions to be practical. There are two (naive) approaches to managing
schema versions: the snapshot approach and the view approach. In the snapshot approach, whenever a new
version of a schema (say B) is derived from a schema (say A), all instances of A are copied, modified in order
to comply with B, and stored physically under B. The view approach is that in the same situation above,
the instances of A are not copied under B. Instead, whenever necessary, instances of A are viewed under B.
Consider the following example to illustrate the difficulties.

Example 4.3: Let us consider a class AUTO-MANUFACTURER with 4 instance variables: Id (Integer),
Name (String), Location (String), and Wagon? (Boolean). Id is a unique identifier for a company.
Name is the name of a company. Location is a location of each company and Wagon? indicates whether
the auto-manufacturer produces a wagon or not. Suppose a schema version AUTO-MANUFACTURER.1 1s
created by dropping the instance variable Wagon? from the original schema AUTO-MANUFACTURER.
Also suppose another schema version AUTO-MANUFACTURER.2 is created by selecting the instances of
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AUTO-MANUFACTURER producing wagons. In this schema version, the value of Wagon? in all instances
is “Yes”.

Figures 5.a and 5.b show the snapshot and view approaches. In the snapshot approach, as Figure
5.a illustrates, many instances are stored in duplicate under the three schemas. If we want to delete auto-
manufacturer #02 from the original schema AUTO-MANUFACTURER, we have to delete the same instance
from AUTO-MANUFACTURER.1 and AUTO-MANUFACTURER.2. In the view approach, update requests
in the views must be translated into updates in the database. If there is more than one translation of a
view update request, the view update request is ambiguous. Suppose a user requests the deletion of auto-
manufacturer #06 from the AUTO-MANUFACTURER.2 view in the Figure 5.b. There are two possible
translations of the view update request: one is to delete #06 from AUTO-MANUFACTURER, while another
is to replace the Wagon? instance variable of #06 with a “No”. However, either of two translations may
cause an unintended update anomaly.

The view approach has another drawback: suppose another schema
version AUTO-MANUFACTURER.3 is created by adding a new instance variable President (String).
In the view approach, it is quite clumsy to model AUTO-MANUFACTURER.3: one way is to create an
auxiliary class AUX having Id and President and then form AUTO-MANUFACTURER.3 from a join view
of AUX and AUTO-MANUFACTURER. However, the view update ambiguity in a join view is even greater
[Kel85].

Our approach is to keep all schema versions in a single class hierarchy. As shown in Figure 5.c, AUTO-
MANUFACTURER.1 can be modeled as a superclass of AUTO-MANUFACTURER because the class def-
inition AUTO-MANUFACTURER.1 is more general than that of AUTO-MANUFACTURER. By similar
reasoning, AUTO-MANUFACTURER.2 can be modeled as a subclass of AUTO-MANUFACTURER. As we
will show, problems in the snapshot and view approaches are nicely resolved in our approach. -

For simplicity, the above example shows the case of one class, i.e., as simple as a single relation. If we
adopt either the snapshot or view approach directly in real object-oriented database schemas, the storage
redundancy and update anomaly problems are even more serious because the class hierarchy of a real-world
object-oriented database schema could be a DAG structure with hundreds of classes.

In summary, we reject the snapshot approach for two reasons. First, storage waste will be enormous if we
store instances once for each schema version, and second, database updates will be expensive because every
snapshot will be checked. Also, we do not accept the view approach because view updates may cause semantic
problems (update anomaly). Hence, we have been seeking a technique that enables users to explicitly deal
with schema versions, while guaranteeing minimum storage redundancy and allowing us to get around the
problem of update anomaly.

As shown in section 2, an object instance cannot belong directly to more than one class. However, an
object instance I of a class A is also an instance of all superclasses of A. As such, logically I is an instance
of A and A’s superclasses, but physically I belongs only to A. Storage is saved because the instance I is only
stored once under the class A. Therefore, minimum storage redundancy is guaranteed with a class hierarchy.

We make one important assumption in the update semantics of object-oriented data models. In the
relational model, if V is a view of a relational schema R, a request for deleting a tuple from the view V
causes some update ambiguities because the view tuple deletion may or may not be translated into the
database tuple deletion. In object-oriented data models, such update ambiguities are ignored. Suppose a
class A is a superclass of B and B is a superclass of C. Let ¢; be an instance of C. Note that ¢y is also an

instance of classes A and B, but I is stored only under C. If we follow the convention that is adopted in the
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Figure 5: Approaches for Schema Versioning
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relational model, a request for deleting ¢1 can be interpreted three ways: (1) dropping from C, but staying
in the database as an instance of A and B, (2) dropping from B and C, but staying in the database as an
instance of A, (3) dropping from A, B, and C (i.e., dropping from the database). However we assume that
(3) is the only deletion semantics in object-oriented data models. Therefore, the issue of update anomaly is
ignored within a class hierarchy. Our approach takes advantage of this assumption and the properties of our
schema evolution framework and class hierarchies.

We intend to maintain a history of classes, not a class hierarchy. Therefore, in our approach, schema
versioning is achieved through the versioning of classes, i.e., the granule of schema versioning is a class,
not a class hierarchy. A new class version is derived by changing the definition of the original class. A class
definition consists of a set of superclasses, a set of instance variables, and a set of methods. The relationship

between S’ (a new class version) and S (the original class) is one of the following:
e S’ is more generalized than S. (i.e., S is a superclass of S)
o S’ is more specialized than S. (i.e., S’ is a subclass of S)
e S’ is neither more generalized, nor more specialized than S, but, S’ is somehow related with S. We call
S’ a neighborhood class.

Therefore we view a class version derivation as creating a new class either as a subclass, a superclass,

or a neighborhood class of the original class. We shall keep class versions in a single class hierarchy.

4.2 Semantics of Operations in Schema Versioning

In this section we explore our idea by discussing operations in our schema version model. Because of space
limitation, we present the key points of semantics of the operations. A more complete description of semantics
is in [Kim88].

CREATING A NEW CLASS VERSION

When a new class version C’ is derived from an existing class version C, we must first determine the
taxonomic location of C’ in the class hierarchy. It is possible for the system to find the taxonomic location
automatically. However, since in the worst the system must compare the new class version to all existing
classes in the class hierarchy in order to determine the taxonomic location, the algorithm is rather expensive.
Furthermore, the algorithm involves potentially costly computation to test type subsumption. Thus, we may
wish to require the user to provide the taxonomic location of C.

If SUBSUME(C,C’) is true, then C is more general than C’, i.e,, C is a superclass of C’. The algorithm

for determining taxonomic location follows.

TAXONOMIC-LOCATION-DECIDE(C’)

/* C is the new class version */

superclass-set — {OBJECT};

foreach class C in the class hierarchy do mark G;

while there is a marked class C in superclass-set do begin
unmark C;
new « @;
foreach immediate marked subclass C; of S do begin

if SUBSUME(C,, C) then new « new U {C;}

end;

if new # 0 then superclass-set «— (superclass-set — {C}) U new

12



end
subclass-set « §;
foreach class C in superclass-set
do subclass-set «— subclass-set U { immediate subclasses of C };
foreach class C in subclass-set
do if not SUBSUME(C’,C) then subclass-set «— subclass-set — {C};
do create a new class C’ having the classes in superclass-set as immediate superclasses and the classes
in subclass-set as immediate subclasses;
end
The computational complexity of deciding subsumption between classes depends on the expressive power
of the class description language. For example, if the class description language has the expressive power of
the first order logic, the type subsumption problem is undecidable [LB86]. But our class description language
is simple in that a class definition consists of a set of superclasses, a set of instance variables, and a set of
methods. The set of superclasses in a class definition is compiled into a set of inherited instance variables and
a set of inherited methods. Therefore, eventually, a class definition is composed of a set of instance variables
and a set of methods. Here is the algorithm for SUBSUME:

SUBSUME(C,C?)
/* C,C’: class descriptions™/
begin

foreach instance variable I of C:

do if C’ does not have an instance variable subsumed by I then return(false);
foreach method M of C:
do if C’ does not have a method subsumed by M then return(false);

return(true); /* C is a superclass of C’ */

end

Now we introduce some criteria for deciding subsumption on instance variables and methods.

e Subsumption can be determined between instance variables by simply comparing domains of instance
variables: (AGE: 10..100) subsumes (AGE: 10..50) because 10..100 subsumes 10..50, (MANUFAC-
TURER: AUTO-COMPANY) is subsumed by (MANUFACTURER: VEHICLE-COMPANY) because
VEHICLE-COMPANY is a superclass of AUTO-COMPANY.

e Suppose a method has a functional specification such as f:(domain of input-parameter-1) x {domain of
input-parameter-2) — (domain of output-parameter-1) x (domain of output-parameter-2). Subsumption
can be determined between methods by simply comparing domains of parameters in the following way:
given methods M: I — O and M": I’ — O’ if T’ is subsumed by I and O is subsumed by O’ then M is
subsumed by M’ [Car83].

After finding the taxonomic location of & new class version, the new class version is created in the class
hierarchy. Then, some object instances of the superclasses of the new class version must be repositioned to
the new class version. Consider the two class versions AUTO.1 and AUTO.2 in Figure 6.a. When AUTO.2 is
derived and created as a subclass of AUTO.1, instances satisfying the AUTO.2 description must be moved
from AUTO.1 to AUTO.2 (that is, automobiles whose weight is between 1000 and 4000). That is because of
the assumption that an instance can belong to one and only one class.

Next we look in detail at the example in Figure 6. There are 5 class versions of AUTO class as shown

in Figure 6.a. Since AUTO.3 subsumes AUTO.1, AUTO.3 is placed in the class hierarchy as a superclass of
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AUTO.1 AUTO.2 AUTO.3
Id: Integer Id: Integer Id: Integer
Weight: 1000..6000 Weight: 1000..4000 Doors: 2,4,5
Doors: 2,4,5 Doors: 2,4,5 Weight: 1000..6000
Manufacturer: String Manufacturer: String

AUTO 4 AUTO.5 AUTODUMMY .6
Auto-1d: Integer 1d: Integer AUTOA4
Weight: 1000..4000 Weight: 1000..5000 A
Doors: 2,4,5 Doors: 2,4 AUTO5

Manufacturer: String Manufacturer: String

Figure 6.a: Schema Versions of AUTO class

OBECT\

AUTO.GENERIC

AUTO.2, AUTO 4

AUTO.DUMMY .6

Figure 6.b: Generic, Dummy, and Equivalent classes

AUTO.1, whereas AUTO.2, AUTO .4 and AUTO.5 are placed as subclasses of AUTO.1. We introduce three
types of classes: generic class, dummy class, and equivalent class.

e GENERIC CLASS: Retrieval of all object versions of all class versions of a class is a difficult task if there
are many class versions created and some of them are already deleted. A generic class is an immediate
superclass of all class versions of a particular class and is an immediate subclass of class OBJECT A
generic class does not have any instance variables or methods. A generic class is be used for dropping
all class versions of a class at once. Another important application of a generic class is that it allows
all class versions to be the domain of an instance variable. In the example of Figure 6b, the instance
variable Vehicle can have all class versions of AUTO as a domain by specifying AUTO.GENERIC as its
domain. When a class is created, its associated generic class is created automatically. If all class versions
of a class are deleted, the generic class of the class is deleted automatically.

o DUMMY CLASS: If a new class version is a neighborhood class of the original class version, the
new class version cannot be embedded into class hierarchy as a superciass or subclass of the original
class version. This makes it impossible to store common instances of the two versions {due to our

requirement of an instance belonging to exactly one class). Therefore, we create a dummy class which
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can accommodate common instances of the new class version and existing class versions. As shown in
Figure 6.b, AUTO.DUMMY .6 must be created in order to accommodate common instances of AUTO.5
and AUTO.4. The class definition of AUTO.DUMMY .6 is just AUTO.5 A AUTO 4.

e EQUIVALENT CLASS: Suppose a new class version S of class C is derived by renaming one of instance
variables in C. It does not make sense to store S as a neighborhood class of C and create a dummy class
having instances of S and C, because S and C are essentially same schema versions. This gives rise to
the notion of equivalent classes. S and C can be stored in the same node of a class hierarchy because
membership conditions of S and C are the same. Schema change operations (1.1.3) and (1.2) may create
semantically equivalent class versions having the same membership condition. As shown in Figure 6.b,
AUTO.2 and AUTO 4 are in the same node of the class hierarchy because the definitions of AUTO.2
and AUTQ.4 are the same except for the different names of Id and Auto-Id.

DELETING A CLASS VERSION

The semantics of deleting a class version are similar to that of deleting a normal class: all instances and
object versions of the class version are deleted and all subclasses of the class version lose inherited instance
variables and methods from the class version.

In addition, when a class version is deleted, some corresponding dummy classes may have to be dropped.
In Figure 6.b, if AUTO.5 is deleted, AUTO.DUMMY .6 is no longer necessary, and thus it is deleted automat-
ically. If the user deletes a generic class, all class versions of the generic class are deleted as well as instances
of them.

UPDATING A CLASS VERSION

The operations in the taxonomy of schema changes (section 3) can be used for changing the contents

of a class version.

CREATING A NEW INSTANCE VERSION

An object version can be created under any existing class version of a particular class. In conventional
object versioning, object version derivation is allowed only under the same class. In schema versioning, object
version derivation can cross two different versions of a class. For example, suppose an object version V1 of an
object is created under class version C1. Another object version V2 can be derived from the object version
V1 under class version C2. As shown in example 4.1, object version derivation with schema versioning is
more flexible than that in conventional object versioning.

However, this flexibility leads to a difficult problem: Since the class version used for an object version Vi
may be different from the class version that is used for an object version Vj which is derived from Vi, the class
version for Vj should be identified by either the user or the system. There are three possible cases: (1) only
one existing class version can accommodate Vj, (2) more than one existing class version can accommodate
Vj, and (3) no existing class version can accommodate Vj.

In case (1), since only one class version is identified, there is no major problem. The new instance version
Vj is created as an instance of that class version. In case (2), since an instance cannot belong to more than
one class, a new class version, having class versions which can accommodate Vj as superclasses, needs to be
provided by the user 2. Then Vj is created as an instance of the new class version. In case (3), since there
is no appropriate class version for Vj in the class hierarchy, a new class version which can accommodate Vj
must be provided by the user and the new schema version needs to be placed in the appropriate place of the

class hierarchy. Then V] is created as an instance of the new class version.

2 The system can do this. But as we mentioned earlier, it is a potentially expensive task
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DELETING AN INSTANCE VERSION
No changes to the class DAG occur as a result of deletion of an instance version. If the last instance of

a class version is deleted the class version is not deleted unless the user does so explicitly.

UPDATING AN INSTANCE VERSION

Updating an object version V may require it to belong to a different class version. If the updates
violate the membership conditions of the class to which the object version belongs, the object version should
be relocated into an appropriate class version in the class hierarchy. The class version for the updated
object version V should be identified. The three possible cases are similar to those of CREATING A NEW
INSTANCE VERSION, and are handled similarly: (1) only one existing class version can accommodate the
updated object version V, (2) more than one existing class version can accommodate the updated object

version V, and (3) no existing class version can accommodate the updated object version V.

4.3 Integration with the Object Version Model of H.T. Chou and W. Kim

H.T. Chou and W. Kim [CK86] suggested an object version model for distributed CAD databases. Their
proposal includes the broad spectrum of semantics and operational issues in object version control and
takes into account the characteristics of CAD environments, such as the system architecture and the way
in which users and applications share data and interact among themselves. To make our schema wversion
model complete, we integrate our schema version model and their object version model. The semamntics of
operations in the previous section are slightly modified because of the integration.

Chou and Kim claim that a CAD environment will consist of intelligent design workstations and central
server machines on local-area networks. The central server (mainframe computer) will manage the public
database of stable design objects and design control data. Each design workstation will have a private
database. Users or application programs in a workstation check object versions out of the public database,

manipulate them in the workspace of the workstation, and check new object versions into the public database.

TRANSIENT SCHEMA VERSION vs. WORKING SCHEMA VERSION

Chou and Kim identify two types of object versions: transient object versions and working object
versions. Working object versions are considered stable and are actively shared by multiple users whereas
transient object versions are only manipulated by the users who create them. Transient object versions can
be promoted to working object versions if they are considered useful and stable. Only working object versions
can reside in the public database while both working and transient object versions can reside in a private
database.

A transient object version can be updated or deleted by the user who created it. A new transient object
version may be derived from an existing transient object version; when this occurs, the existing transient
object version is promoted to a working object version. On the other hand there are update restrictions
on working object versions. Since a transient object version can be derived from a working object wversion,
updates to working object version are unnecessary®. However deletion of working object versions is allowed.

We extend the above scenario in our schema version model. We want to treat class versions and object

versions in the same manner. As in object versions, a transient class version can be updated or deleted by

3 Some object version models [BK85] allow updates to a working object version. If updates to a working
object version are allowed, a set of update propagation algorithms are needed for deriving new object versions
(transient or working), from the working object version. This is necessary to enforce consistency bet ween the
new object versions and the updated working object version [CK8&6].
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the user who created it. A new transient class version can be derived from an existing transient class version
and the existing transient class version is promoted to a working class version. Working class versions cannot
be updated. The semantics of deleting working class versions are different from the semantics of deleting
working object versions in that, in the class hierarchy, deleting a class version may cause subclasses of the
class version to lose inherited instance variables and methods from the class version. Therefore if any one
of the subclasses of the class version is a working class version, deletion of the class version
must not be allowed.

Class versions are also different from object versions in that if a transient class version has one
object version which is promoted to a working object version, the transient class version must
also be promoted to a working class version in order to prevent schema changes to the class
version which may affect the working object version.

Only working class versions and working object versions can reside in the public database. Therefore
no updates to working class versions or working object versions are allowed. Deletion of a
working class version is allowed if the schema version does not have any subclasses in the class
hierarchy.

In the private database, working class versions and transient class versions are resident in the class
hierarchy as are working and transient object versions. Update or deletion of a class version is allowed

if the class version does not have any working subclasses in the class hierarchy.

CHECK-IN/CHECK-OUT

When the user checks a working object version V out from the public database into his private database,
a copy of V is installed into the private database. The status of the copy is “transient”. In this situation, the
schema version S for V must have been checked out previously [CK86)]. If S does not already reside
in the private database, the user or the system must check S out from the public database to the private
database. The user can check out more than one class version at once (a subset of the class hierarchy). After
manipulating V and its schema S in the private database, suppose V' and S’ are derived respectively. If
the user wants to check V’ into the public database, first he must check §’ into the public database. After
checking 8’ into the public database, the location of S’ in the class hierarchy of the private database might
be different from the location of S’ in the class hierarchy of the public database, because the class hierarchy
of the private database is different from that of the public database.

Consider the example in Figure 7. As shown in Figure 7.a, two class versions C, D and four instances
¢l, ¢2, d1, and d2 are checked out from the public database to the private database. Suppose two new class
versions F, G and three new instances f1, g1, ¢3 are created in the private database (Figure 7.b). After these
instances are checked into the public database, the locations of G and ¢3 may be different as shown in Figure
7.¢ if E subsumes G.

VERSION NAMING AND BINDING

In the object version model [CK86] the full name for each object version is a triple <object name,
database name, version number> where ‘object name’ is the identifier of an object, and ‘database name’
is the name of a private database, or the public database. However the naming convention is not sufficient
for our schema version model because versions of a particular object may cross multiple schema versions.
For example a version of an AUTO object may not have the AUTO class as its schema. Now the full name
for each object version is a four tuple <object name, class version, database name, version number>. For
example <1181, TRUCK.2, KIM’s DB, 6> means that object version 6 of the object 1181 is in KIM’s private

17



Public DB OBJECT Private DB
A C e {cl.c2}
{cl.c2}
e 3
PN -
D
B D E {d1,d2}
{b1} {d1,d2} {el,e2,e3}
{a) Checking Out
Public DB OBJECT Private DB
C
A C {el.c2,¢3}
{cl.e2}
F
{1}
B D E D
{b1} {d1,d2} {el,e2,e3} {d1,d2} —
{1}
(b) Creating New Class Versions and Instances
Public DB OBJECT Private DB
C
A C {cl.c2,¢3}
/ {cl.c2} /
e F
B {fl}F {f1}
1) /
D < £
‘{dl,d?} {61,82,63,{33} D
T~ {d1, d2}
G ~ g
{g1} {g1}

(¢c) Checking In

Figure 7: Check-In/Check-Out Processes

18



database under the TRUCK.2 class version.

[CK86] also consider static binding and dynamic binding. In static binding, the full name of an object
version is specified. In dynamic binding, some portions of the full name are left unspecified. However an
‘object name’ should be provided explicitly in dynamic binding. For the unspecified parts, the system selects

default values. As for the criteria used in selecting default database and default version, refer to [CK86].

CHANGE NOTIFICATION

The scenario of change notification in H.T. Chou and W. Kim’s object version model follows: A transient
or working object version in a private database may reference other transient or working object versions in
the same private database, or working object versions in the public database. A working object version in
the public database may reference other working object versions in the public database. Change notification
is required when a referenced transient object version is updated, deleted, or a new transient object version
of it is created. Change notification is also required when a referenced working object version is deleted or
a new transient version of it is derived. Two types of notification techniques are provided: message-based
notification and flag-based notification. The details of these techniques are described in [CK86]. Below we
tailor their change notification framework to our schema version model.

We say that class C refers to class C’ if

e the domain of an instance variable of Cis O’
e a method of C refers to C’ or to an instance of C’

Change notification is required when a referenced transient class version is updated, deleted, or a new
transient class version of it is created. Similarly, change notification is required when a referenced working
class version is deleted or a new transient version of it is derived. The creators of the class versions that refer
o a class version C are notified of changes to C.

Additionally we have to consider the impact of each schema change on existing methods. Change
notification is required when a referenced transient class version is updated, deleted, or a new transient class
version of it is created. Similarly, change notification is required when a referenced working class version is
deleted or a new transient version of it is derived. The creators of the methods that refer to a class version
C are notified of changes to C.

5. DAG Rearrangement Views

Schema versioning is a means of maintaining a history of schema changes by keeping versions of schema. An
alternative method is to allow views of schema. Views in object-oriented databases are more versatile than
those in relational databases. Conventional views in relational databases are constructed via combinations
of relational operators such as select, project, and join. Views in object-oriented databases include rear-
rangement of DAG structures (both composite objects and class hierarchies) as well as conventional views
in relational databases.

In this section, we present operators for defining DAG rearrangement views of composite objects and
class hierarchies. We identify sets of composite object views with the property that queries on the views are
processable on instances of the original composite object schema. We also discuss how instances would be
viewed and reorganized in DAG rearrangement views of class hierarchies.

Most applications in object-oriented databases assume a group of cooperative workers (i.e., team) are
sharing the same objects. However, users may not need to see the whole database and objects in it. They

need to see only those parts of composite objects and those classes that are relevant to their applications.
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We envision the following applications of a DAG rearrangement view facility:

e Check-out granularity control: In order to work with an object version or create a new object version,
users need to check object versions and their classes out of a public database to a private database. In
the case of huge design objects with thousands of parts, a DAG rearrangement view facility would allow
the user to specify parts of objects to be checked out.

e Authorization: In many situations, the database administrator wishes to control the rights of users
to access parts of objects. He may wish to reserve the privilege of modifying a particular part of an
object or to make some parts invisible to the user. A DAG rearrangement view facility will provides the
database administrator with the means to control access rights.

e Versions of class hierarchies: In the previous section, the granularity of schema versions was a single
class, not a class hierarchy. With DAG rearrangement view facility, we can keep several versions of a
class hierarchy in an inexpensive way.

5.1 DAG Rearrangement Views on Composite Objects

The notion of composite objects explicitly captures the IS-PART-OF relationship. A composite object is a
collection of related instances that form a hierarchical structure, and schema of a composite object is a DAG
structure.

Figure 8.a shows a part hierarchy for vehicle composite objects. Figure 8.a is a simplified form of Iigure
4 without description of the instance variables. Figure 8.b, 8.c, and 8.d show three possible views of the
vehicle composite objects of Figure 8.a.

In relational databases, every possible view (constructed from relational algebra operators) against
relational schemas has the property that queries to the view can be processed using the tuples of the
underlying relational schemas. It turns out that not all possible DAG rearrangement views of composite
objects are acceptable because queries to a certain DAG rearrangement view are not processable on instances
disciplined by the original composite object schema.

There are often restrictions on posing queries against tree or DAG type objects (hierarchical structures).
In IMS (see, e.g. [KS86]), query qualification predicates may involve only parent record types of a target record
type or the target record type itself. In System 2000 [MRI78], query qualification predicates may involve only
parent record types or child record types of a target record type or the target record type itself. The reasons
behind those restrictions are query processing overhead. The same restrictions are assumed in accessing
composite objects of object-oriented databases because composite objects are hierarchical structures.

In the remainder of this section, we elaborate on the relationship between an access pattern and the
set of DAG rearrangement views for which the given access pattern can be used to process queries on
instances disciplined by the original composite object schema. We shall use the following syntax for queries
on composite objects and their DAG rearrangement views.

GET attributes of target record type

WHERE predicate

We shall use the following queries against the schema of the vehicle composite object in Figure 4 for
comparing access patterns:

Q1: GET CHASSIS. Year

WHERE (VEHICLE.Manufacturer = “HyunDae”) and (BODY.Chassis = 1234)

Q2: GET VEHICLE.Color

WHERE BODY.Chassis = 1234
Q3: GET BODY Interior
WHERE ENGINE. Model = “320CT7
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Figure 8: DAG Rearrangement Views of VEHICLE Composite Object

We shall use terms parentpari and childpart in what follows: in Figure 4, VEHICLE class has two
childparts, BODY and DRIVETRAIN classes, and in turn, VEHICLE class is a parentpart of BODY and

DRIVETRAIN classes.

CHILDPART-ONLY TRAVERSAL

In childpart-only traversal, if the target attributes of a query belong to a part P of a composite object,
query predicates may contain only attributes of parentparts of P. Query Q1 is allowed in the childpart-only
traversal scheme because its target atiributes belong to CHASSIS and the query predicates of Q1 involves
only attributes of parentparts of CHASSIS. Queries Q2 and Q3 are not allowed in childpart-only traversal
because BODY is not a parentpart of VEHICLE and ENGINE is not a parentpart of BODY. IMS uses the
childpart-only traversal scheme as its primary access pattern.

Consider the DAG rearrangement views of the VEHICLE composite object in Figure 8. As Figure 8.b
llustrates, for each part P in the view, the set of the parentparts of P of the view is a subset of the parentparts

of P of the original schema. As such, childpart-only traversal can be used on the view in Figure 8.b because all
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possible queries on the view are processable directly on instances disciplined by the vehicle composite object
schema. However, childpart-only traversal can not be used on the view in Figure 8.c because some queries
on the view are not processable directly on instances disciplined by the original vehicle composite object
schema. For instance, the query “GET BODY .Interior WHERE CHASSIS . Year = 1988” is allowable in the
composite object view because the query predicate involves attributes of parentparts of BODY. However,
the query is not processable in the original composite object schema in Figure 8.a because CHASSIS is not
a parentpart of BODY. By similar reasoning, the view in Figure 8.d is not allowed in the childpart-only
traversal scheme.

DEFINITION: If every query, which is expressed in a composite object view in accordance with a

traversal scheme, is processable directly on the original composite object schema, the composite object

view is called a processable composite object view (PCOV) in the traversal scheme.

We characterize PCOVs for childpart-only traversal as follows:

e Let S and S’ denote the original schema of a composite object and a DAG rearrangement view on S
respectively. S’ is PCOV in the childpart-only traversal scheme iff for each part P in 5, the set of the
parentparts of P in S’ is a subset of the parentparts of P in S.

e Let S and TR(S) denote the original schema of a composite object and the transitive closure of S. Let
S’ be a view on S. 8’ is PCOV iff §’ is a sub-DAG of TR(S).

We consider two useful operations for constructing PCOVs:
e (V1) Hide a part P: The part P is not visible and immediate parentparts of P become imimediate
parentparts of immediate childparts of P.
e (V2) Make a part P an immediate childpart of one of P’s parentparts

It is easy to see that given a schema S, the resulting schema S’ that is constructed from applying any
combination of V1 and V2 is a subset of the transitive closure of S. As such, S’ is a PCOV.

CHILDPART-PARENTPART TRAVERSAL

In childpart-parentpart traversal, if the target attributes of a query belong to a part P, query predicates
may contain only attributes of parentparts or childparts of P, or P itself. Queries Q1 and Q2 are allowed
in the childpart-parentpart traversal scheme because CHASSIS is a childpart of VEHICLE and BODY, and
VEHICLE is a parentpart of BODY. Query Q3 is not allowed because BODY is neither a parentpart nor
a childpart of ENGINE. System 2000 uses the childpart-parentpart traversal as its primary access pattern
rule.

The childpart-parentpart traversal scheme can be used with the DAG rearrangement views in Figure 8.b
and 8.¢, but not with the DAG rearrangement view in Figure 8.d. The childpart-parentpart traversal scheme
can not be used with the view of Figure 8.d because some queries on this view can not be processed in the
instances of the original VEHICLE composite object schema. Note that the childpart-only traversal can not
used on the DAG rearrangement view in Figure 8.c, but childpart-parentpart traversal can. We denote the
union of a part P and its child and parent parts of P as CP-SET(P). In Figure 8.b, CP-SET(VEHICL.E), CP-
SET(BODY), CP-SET(CHASSIS) and CP-SET(ENGINE) are respectively subsets of CP-SET(VEHICLE),
CP-SET(BODY), CP-SET(CHASSIS) and CP-SET(ENGINE) in the original VEHICLE schema of Figure
8.a.

We characterize PCOVs for childpart-parentpart traversal as follows:
e Let S and S’ denote the original schema of a composite object and a DAG rearrangement view on 5
respectively. 8’ is PCOV in the childpart-parentpart traversal scheme iff for each part P in §’, CP-SET(P
in §) D CP-SET(P in §7)
In childpart-parentpart traversal, there is one more useful view definition operation in addition to V1 and
V2.
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Figure 9: A Sample Database of VEHICLE Class Hierarchy

e (V3) Exchange parts: As shown in the view of Figure 8.c, exchanging parts is allowed. However the
exchange of arbitrary two parts can violate the premise of the childpart-parentpart traversal. Thus,
exchanging is allowed only when for each part P, CP-SET(P) in the resulting view is a subset of CP-
SET(P) in the original schema.

FREE TRAVERSAL

In free traversal, if target attributes of a query are those of a part P, query predicates may contain any
parts of the composite object schema. In free traversal, queries Q1, Q2, and Q3 are all allowed. Arbitrary
DAG rearrangements views including the views in Figure 8.b, 8.c, and 8.d are allowed. To cur knowledge,
no existing hierarchical database system allows free traversal because of query processing ambiguity and

overhead due to multiple paths between target attributes and query qualification attributes.

5.9 DAG Rearrangement Views on a Class Hierarchy

There are 5 operations which are useful in defining the DAG rearrangement views of a class hierarchy. For

each operation, we introduce the semantics of the operation:

1. Hide a class C: The class C is not visible in the view. The instances under C and subclasses of C lose
their membership in C. Instance variables or methods which are locally defined in C are not visible
from the subclasses of C. However, instances of C are still visible from superclasses of this class. This
operation is often followed by the operation “Make an ISA relationship explicit” defined below. The
semantics of this operation are similar to those of the schema change operation “(3.2) Drop a class 7
in section 3.

9. Hide an ISA relationship: Suppose S is an immediate superclass of C. By hiding the ISA relationship
between S and C, instance variables and methods inherited from S are not visible in the view of C and
subclasses of C. Further, instances of C and subclasses of C lose the membership in S. The semantics of
this operation are more or less similar to those of the schema change operation “(2.2) Remove a class
S as a superclass of the class C” in section 3.

3. Make an ISA relationship explicit: Suppose S is the only superclass of C, and C, in turn, has one subclass
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Figure 10: DAG Rearrangement Views of VEHICLE Class Hierarchy

C1. After performing “Hide the class C”, S and C1 become disconnected in the view. In that case, this
operation can connect S and C1 by making S an immediate superclass of C1. Since S was already a
superclass of C1, there is no impact on instances of Sor C.

4. Create a new ISA relationship: Suppose S1 and S2 do not have any ISA relationship between them
and S1 and S2 have a subclass C in common. After performing “Hide the class C”, we can make 52 an
immediate superclass of S1 by using this operation. Since $2 was not a superclass of S1 in the original
schema, instances of S1 are not qualified as instances of §2 in the view. However instances of C can be
viewed as instances of S1 because instances of C were common instances of St and S2. This operation is
a counterpart of the schema change operation “(2.1) Make a class S a superclass of a class C” in section
2, but has totally different semantics.

5. Create a new subclass: Suppose a new class S is created as a subclass of a class C in a view. Some
instances of C may need to be moved in the view from C to S if the instance is qualified as an instance
of the new class S. The semantics of this operation are similar to the schema change operation “(3.1)
Define a new class C” in section 2.

The semantics of the above operations will be clearer after we go through some examples. Suppose
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classes in the VEHICLE class hierarchy in Figure 3 have the instances shown in Figure 9. We show how each
of the DAG rearrangement views of Figure 10 is constructed and what instances are visible from each class.

In what follows I denotes the set of instances of class C.

e The DAG rearrangement view in Figure 10.a is constructed by the following sequence of operations:
(1) Hide SUBMARINE
(2) Hide NUCLEARVEHICLE
(3) Hide WATERVEHICLE
The following instances are visible from each class in this view:
o lygmrcre = { v1, v2, v12* } where v12* is a projected form of v12 under the VEHICLE class
definition.
o Iyyororvernrcre = { v3, v4, vb, v11¥, v13*, v14* } where v11¥, v13*, and v14* are a projected
form of v1l, v13, and v14 respectively under the MOTORVEHICLE class definition.
o Tayro = {Vv6 }
o Ispoor = { v7,v8 }
o Lipoor = {v9,v10 }

e The DAG rearrangement view in Figure 10.b is constructed by the following sequence of operations:
(1) Hide SUBMARINE

(2) Hide NUCLEARVEHICLE

(3) Hide WATERVEHICLE

(4) Hide MOTORVEHICLE

(5) Hide AUTO

(6) Make VEHICLE an immediate superclass of 2DOOR

(7) Make VEHICLE an immediate superclass of iDOOR

The following instances are visible from each class in this view:

o Iypmrcre = { v1,v2, v3* va* vb* v6* v11* v12% v13* v14* } where v3*, v4*, vb* v6*, v11¥
v12* v13* and v14* are a projected form of v3, v4, v, v6, v11, v12, v13, and v14 respectively
under the VEHICLE class definition.

o Ispoor = { V7, v8 }

o] I4DOOR = { Vg, v10 }

# The DAG rearrangement view in Figure 10.c is constructed by the following sequence of operations:
(1) Hide 2DOOR

(2) Hide 4DOOR

(3) Hide AUTO

(4) Hide SUBMARINE

(5) Make NUCLEARVEHICLE an immediate superclass of WATERVEHICLE.

The following instances are visible from each class in this view:

o Ivgmrcie = {vl,v2}

o Lyrororverrcrr = { v3, v4, vB, v6¥, v7*, v8*% v0* v10* } where v6*, v7*, v8%, v0*, and v10*
are a projected form of v6, v7, v8, v9, and v10 respectively under the MOTORVEHICLE class
definition.

o InvcrearvEHICLE = { v13%, v14¥ } where v13* and v14* are a projected form of v13 and v14
respectively under the NUCLEARVEHICLE class definition. (Note that v11 is dropped from the
instance set of NUCLEARVEHICLE. In the original class hierarchy, vl1l does not have the role
of WATERVEHICLE. As such, v11 should not be visible from the NUCLEARVEHICLE class in
this view because only instances with the roles of WATERVEHICLE and NUCLEARVEHICLE
are qualified as instances of NUCLEARVEHICLE)

o IwarervEnicLe = { v12}



e The DAG rearrangement view in Figure 10.d is constructed by the following sequence of operations:
(1) Hide 2DOOR

(2) Hide 4DOOR

(3) Hide AUTO

(4) Create USSR-SUB as a subclass of SUBMARINE

(5) Create USA-SUB as a subclass of SUBMARINE

The following instances are visible from each class in this view:

o Ivgmurcre = {vl,v2}

o IyrororRvEHICLE = { v3, V4, vB, v6*, vT¥, v8* v0* v10* } where v6*, v7*, v8%, v9*, and v10*
are a projected form of v6, v7, v8, vO and v10 respectively under the MOTORVEHICLE class
definition.

InvcLEarvEHICLE = { V11 }

IwarervEHICLE = { V12 }

IsuBMARINE = { }

Iyssr—sup = { v13 } (assume that v13 is a submarine made in USSR)
Iysa-sup = { v14 } (assume that v14 is a submarine made in USA)

0O 0o 0 0O ©

6. Operational Interface

We present a preliminary operational interface (user commands) for supporting our model of schema versions

and

DAG rearrangement views in object-oriented databases. Our proposal is a superset of the operational

interface in [CK86].

6.1

User Commands for Schema Versions

DERIVE-OV FROM <O> BY <1,V>7: This command is used to derive a new transient ocbject version
from another object version O by replacing the value of the instance variable I with a new value V.
<I,V>T means one or more of <I,V>.

DERIVE-SV FROM <S> BY <OP>": This command is used to derive a new transient class version
from another class version S by performing one or more schema change operations OP in the taxonomy
of section 3. <OP>"1 means one or more of <OP>.

DELETE-OV <O> | <FROM O.x TO O.y>: A series of object versions of O between O.x and O.y are
deleted by this command.

DELETE-SV <S> | <FROM S.x TO S.y> | <S.generic>: A series of class versions of S between S.x
and S.y are deleted by this command. If the generic class of a class is deleted, all of its class versions
are also deleted.

PROMOTE-OV <0O>: A transient object version O is promoted to a working object version by this
command.

PROMOTE-SV <8>: A transient object version S is promoted to a working object version by this
command.

CHECKIN-OV <0O> TO <DB>: The object version O is checked into the target database DB by this
command.

CHECKIN-SV <S> TO <DB>: The class version S is checked into the target database DB by this
command.

CHECKOUT-OV <O> TO <DB>: This command is used to check out an object version O to the
target database DB.

CHECKQOUT-SV <S> TO <DB>: This command is used to check out a class version S to the target
database DB.

If we allow schema versions and object versions, query languages for object-oriented databases need

to be extended for querying and manipulating schema versions as well as object versions. The following

situations may require extension of query languages.
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1. Queries on schema derivation hierarchy: What are the child class versions of a class version 57, VW hat is
the parent class versions of a class version §7, What is the next class version number of a class version
§7, etc. The same argument is applied to object versions.

2. Temporal queries over schema versions: Retrieve all instances which are created under a class version
S, Retrieve all instances which are created between a class version S.x to a class version 5.y, ete.

However, the issue of query language extension is beyond the scope of this paper.

6.2 User Commands for DAG Rearrangement Views

e DEFINE-COV <COV> FROM <S> AS <OP>*: This command creates an composite object view
COV by applying composite object view construction operations <OP>7 to aroot class S and childpart
classes of S.

¢ DEFINE-CHV <CHV> FROM <S> AS <OP>": This command creates a class hierarchy vievww CHV
by applying class hierarchy view construction operations <OP>* to a root class S and subclasses of S.

e DROP-COV <COV>: The composite object view definition of COV is dropped.

e DROP-CHV <CHV>: The class hierarchy view definition of CHV is dropped.

In posing queries to DAG rearrangement views of composite objects and class hierarchies, view mnames

may be indicated with a new query language construct like FROM <view name>.

7. Summary

In this paper, we addressed two issues of object-oriented database schemas which were not addressed mn
the database literature. We presented a model of schema versions and DAG rearrangement views in object-
oriented databases. The paper made four contributions.

The first contribution of the paper is in the development of a model which extends schema evolution, by
allowing schema versions in object—oriented databases. By allowing schema versions as well as object versions,
evolution of applications is completely supported by the database system. We defined the semantics of schema
versions. We presented a technique that enables users to manipulate schema versions explicitly and maintain
schema evolution histories in an object-oriented database environment. Our solution for schema versions is
consistent with our previous work on schema evolution [BKKK86,BKKKS87], and it guarantees méZzzimum
storage redundancy and allows us to avoid the problem of update anomaly.

The second contribution of the paper is the integration of our schema version model with Chou and
Kim’s object version model [CK86]. Chou and Kim’s object version model is designed for distributed CAD
databases. We examined various issues of Chou and Kim’s object version model in our context, including
working and transient schema versions, schema version check-in and check-out, version naming and binding,
and change notification.

The third contribution of the paper is the definition of DAG rearrangement views in object-oriented
databases. We presented sets of useful operators for defining DAG rearrangement views of composite ©bjects
and class hierarchies respectively. We identified sets of composite object views with the property that queries
on the views are processable on instances of the original composite object schema. We also discizss how
instances would be viewed and reorganized in DAG rearrangement views of class hierarchies.

The fourth contribution of this paper is an operational interface for manipulating schema versicons and
constructing DAG rearrangement views.

Implementation aspects of schema versioning and DAG rearrangement views will be addressed in a

forthcoming paper.
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