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Abstract

The heap is an important data structure used as a priority queue in a wide variety
of parallel algorithms (e.g., multiprocessor scheduling, branch-and-bound). In these
algorithms, contention for the shared heap limits the obtainable speedup. This paper
presents an approach to allow concurrent insertions and deletions on the heap in a
shared-memory multiprocessor. Our scheme has much smaller overheads and gives a
much better performance than a previously reported scheme. The scheme also retains
the strict priority ordering of the serial-access heap algorithms; i.e., a delete operation
returns the best key of all keys that have been inserted or are being inserted at the time
delete is started. Our experimental results on the BBN Butterfly parallel processor
demonstrate that the use of the concurrent-heap algorithms in parallel branch-and-

bound improves its performance substantially.

Index Terms: concurrent data structures, priority queues, insertions, deletions, branch-

and-bound, speedup.

1 Introduction

The heap is an important data structure used as a priority queue in a wide variety of parallel

algorithms (e.g., multiprocessor scheduling, graph search[17], branch-and-bound[13,12,8,18])

*This work was supported by Army Research Office grant # DAAGZ9-84-K-0060 to the Artificial Intelli-
gence Laboratory, and Office of Naval Research Grant N00014-86-K-0763 to the computer science department

at the University of Texas at Austin.



on shared-memory multiprocessors. In these algorithms each processor repeatedly performs
an access-think cycle. Every processor executes its current subproblem at hand (think-
ing), then accesses the shared heap to insert subproblems if it generated any and removes
the best available subproblem in the heap to solve next. Since many processors share the
heap, the simplest way to provide consistency in updates is to serialize the updates. A lock
is associated with the heap and the processors access the heap under mutual exclusion.
This serial-access scheme limits the number of processors that can be used to speed up
the problem. If Tipinp 1s the mean think time and T .ess 18 the mean access time, then
clearly the maximum speedup achievable is < (Tyccess + Tinink )/ Taccess (see [8]). Tinink is a
characteristic of the problem being solved. Tjecess depends on the priority structure being
used. For the heap, Theeess is O(log M), where M is the size of the heap.

One way to alleviate the limitation is to let many processors access the heap simulta-
neously. Updates on different parts of a heap can proceed concurrently provided they do
not interact with each other. Let us view the heap as a binary tree with the root at the
top and leaves at the bottom. In the ordinary serial heap algorithms, deletes manipulate
the heap level by level going from top to bottom, while inserts manipulate it from bottom
to top. Hence many deletions (or many insertions) can be executed in parallel by using
a simple window locking scheme[3] or software pipelining[15,16]. But inserts and deletes
cannot be active together, as they proceed in opposite directions and hence can deadlock.
Biswas and Browne[3] present a scheme to handle this problem. But their scheme incurs
substantial overhead, and performs worse than the serial-access heap unless the heap size
M is very large.

This paper presents a new concurrent-heap access scheme that has small overhead, and
is able to perform better than the serial-access heap even for small heaps. Two important
ingredients of this scheme are (i) a heap insertion algorithm which manipulates the heap
from top to bottom; and (ii) a scheme to combine a delete operation with the most recent
unfinished insertion operation. Since these new insertions and the deletions move from top
to bottom in the heap, they can both be active together without causing deadlocks.

Section 2 reviews conventional insert and delete operations on the heap, and presents
a new insert operation that traverses the heap from top to bottom. Section 3 presents
concurrent-heap algorithms developed using this insert operation, and provides a proof
of its correctness. Section 4 analyzes the expected performance improvement due to the

concurrent-heap scheme. Section 5 presents experimental results on the BBN Butterfly
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parallel processor evaluating the improvement in performance due to the concurrent-heap
algorithms . Section 6 discusses ways to improve the basic scheme to further reduce the
overheads. A comparison with related work is presented in Section 7. Section 8 contains

concluding remarks.

2 Serial Access Heap algorithms

2.1 Preliminaries

A heap is a complete binary tree of depth d[1,7], with the property that the value of the
key at any node is less than the value of the keys at its children (if they exist).! Before
presenting the concurrent update scheme, we briefly describe the sequential implementation
of the heap to establish the terminology. Throughout the paper we present algorithms in
a machine-independent, high-level pseudo-code.

It is efficient to implement the heap using an array. The root occupies location 1 and
the node 1 occupies location i. The children of node i occupy locations 2i and 2i+1. The
parent of node i is at L%j We assume that each node in the heap has a key pointing to
a field of data. Key(i) denotes the key located at node i. VALUE(]) denotes the value or
the priority order of the key at node i. Empty nodes in the heap are assumed to have a
special key called MAXINT whose value is co.

We denote the left son and the right son of node i by LSON(i) and RSON(i) respectively.
The parent of node i is denoted by PARENT(i). Associated with the heap are the data
fields lastelem and fulllevel®. lastelem is the index of the last non-empty node of the heap.
fulllevel is the index of the first node in the deepest level of the heap that contains at least
one non-empty node. For an empty heap, lastelem = fulllevel = 0. Fig. 1 shows a sample

heap of twelve keys, and the value of lastelem and fulllevel.

The values of keys at all nodes in a correct heap satisfy the heap property. The heap
property, given below, simply states that the value of node i is less than or equal to the

value of any of its descendents in the heap.

HP(i)= (V] : jis a descendant of i :: VALUE(i) < VALUE(j) )

IThe discussion in this paper is applicable even if the heap is represented as a k-ary tree.
“The conventional delete and insert.b operations described below do not need to maintain fulllevel, but

it is needed for the insert_t operation which traverses the heap from top to bottom.
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Figure 1: A heap of 12 keys. Upper half of the circle contains the node number, and the

lower half contains the value of the key.



2.2 Insertion and Deletion operations on a Serial Heap

The operations supported on a heap are insertion and deletion. The insert operation inserts
a new key, nkey, in the heap and the delete operation returns the smallest key in the heap.

The insert operation grows the heap by adding a key to the first empty node in the
heap. Let us call this location target. When target has this new key, then the heap
property may be violated at the nodes on the path from target to the root. The following
insertion algorithm performs reheapification on this path by pushing the new key upwards.
This type of insertion is called insert_b because it proceeds from the bottom of the heap

towards the top.

insert.b(nkey, heap)

Lock(heap);

lastelem «-lastelem 4+ 1 ;

if (lastelem > fulllevelx2) then fulllevel «~lastelem endif
1 «—lastelem ;

key[i] «nkey ;

/* Reheapification Loop */

while ((i # 1) VV (VALUE(®i) < VALUE(PARENT()))) do
Exchange(key(i),key(PARENT()) };
1«-PARENT();

endwhile

Unlock(heap) ;

end. insert_b

The delete operation shrinks the heap by removing the key at the root of the heap and
by placing the key of the last non-empty node of the heap at the root. The heap property
may now be violated at the root of the heap. Reheapification is performed by pushing this
key downward until the heap property is satisfied at the node where this key is held. Note
that, after placing the key of the last node at the root, the heap structure is changed only

internally. It does not shrink or grow.

delete(heap)

Lock(heap);

if (lastelem = 0) then {Unlock(heap); Return(NULL)} endif
least «—key(1};

i1

j «lastelem ;

lastelem «lastelem - 1 ;

if (lastelem < fulllevel) then fulllevel «fulllevel/ 2 endif

if (j = 1) then {key(1) +~MAXINT; Unlock(heap); Return(least)} endif
key(1) —key(i) ;

key(j) —MAXINT ;

/* Reheapification Loop */



/* Let MIN(i) be the index of the son of i which has smaller VALUE*/

while (VALUE(i) > VALUE(MIN(i))) do
Exchange(key(i),key(MIN(})) ;
1 <——NﬂN(i) ]

endwhile

Unlock(heap) ;

Return(least) ;

end._delete

2.3 Inserting from Top

It is possible to perform insertions from the top by using the following (informally stated)

algorithm:

k «1;
if VALUE(k) > VALUE(nkey) then Exchange(key(k),nkey)) ;
while (k has both successors)
k +any successor of k;
if VALUE(k) > VALUE(nkey) then Exchange(key(k),nkey)) endif
endwhile

Put nkey at one of the empty leaves of k.

This naive insertion algorithm is not guaranteed to grow the heap level-by-level, which
is crucial for the efficiency of insertions and deletions.?> Our new insertion algorithm, which
we call insert_t, performs reheapification in such a way that each insertion adds a key to
the first empty node in the heap (just as in the conventional insert_b operation).

Let target be the first empty node in the heap. The insertion path is the path
between the root and target. This path is unique because the heap has a tree structure.
This path can be easily traversed starting from target (integer division by 2 gives the
parent of any node in the binary tree). This path can also be traversed starting at the root
as follows. Let I be the displacement of target at the last level (i.e., I = lastelem - fulllevel),
and p be the length of the insertion path. If we view I as a p bit binary number, then the
bits of the binary representation of I (from the most significant to the least significant)

tell us whether to go right (if 1) or left (if 0) when we go from the root downward. For

31f the heap becomes unbalanced, then inserts and deletes can take up to O(M) operations rather than

Oflog M) operations.

(o)



fulllevel = 8 lastelem = 13

.

Displacement I = 5
Figure 2: An example of how the insertion path is computed in insertt. A new key is
inserted into the heap at node 13. I = 5 = (101) in the binary representation; length of

the insertion path = 3.

example, the first node at the last level (given by fulllevel) has displacement 0 and its path
is left left left- - -. Fig. 2 shows the twelve node heap of Fig. 1 to which a thirteenth node is
being added. It also shows the values of fulllevel, lastelem, and I. In binary representation,
I = (101), which means that we can go from the root to target by following right, left and

right branches at successive nodes.

Values of the nodes on the insertion path (from root to target) are nondecreasing. To
insert a new key in the heap, we need to put the new key at a proper node on the insertion
path, and move all the keys at and below this node one level down (filling the target node).

The insert_b algorithm does this by visiting the nodes on the insertion path from bottom



to top. The insert_t algorithm given below does it in the opposite order.

insert_t(nkey,heap)
Lock(heap)
lastelem «lastelem + 1
target —lastelem ;
if (lastelem > fulllevelx 2) then fulllevel = lastelem endif
i «target - fulllevel ; /* 1 is the displacement of target */
j e—fu]llevel/? ; /*J — Qlengih of insertion path —1 */
k «1; /* k is the current position in the insertion path */
/* Reheapification Loop */
while (j # 0)
if(VALUE(k) > VALUE(nkey)) then Exchange(nkey key(k)) endif
if (i > )
then {k «—RSON(k); i «i - j;} /* Go Right */
else {k «+LSON(k)}; /* Go Left */
endif
i=i/25
endwhile
key(k) «—mnkey ;
Unlock(heap} ;

end_insert_t

In the above procedure, the insertion path is being computed on the fly. In the nth
iteration of the re-heapification loop of insert.t, nth bit (from the left) of the binary
representation of I is tested. If it is 1, then the right son is traversed next; otherwise
the left son is traversed next. At the beginning of the nth iteration of insert.t, the value

of i 1s the same as the value of Tif its n — 1 left most bits are set to zero.

2.4 Proof of correctness of insertion from the top

The following invariant is maintained by the insert_t algorithm (it is true after the initial-
ization step, and is maintained through out the execution of the reheapification loop).

Invariant [;: In insert_t, Value(nkey) is no smaller than the value of any of the nodes
that are above (the node pointed to by the variable k).

The proof of correctness of insert_t follows from the following theorem.

Theorem 2.1 If a key is inserted in o heap using the insert.t procedure, then the resulting

binary tree 1s still a heap.

Proof: To place a key at location t, level n, the procedure insert_t performs n-
1 iterations of the heapification loop, and then places some key at location t. Due to

Invariant Iy, swapping nkey with the key at node k does not violate the heap property of



k’s ancestors. Furthermore, swapping is done only if Value(k) > Value(nkey), which means
that it does not affect the heap property of k and k’s descendents. Therefore, throughout
the execution of the heapification loop, the heap property is satisfied by all the nodes in
the heap.

At the end, k=t, and nkey is no smaller than any of the ancestors of the node k. Hence
placing nkey at location k does not violate the heap property of any node in the heap, and

the resulting tree structure is a heap.

3 Concurrent-access heap algorithms

A simple locking strategy is embedded into delete and insert_t routines to achieve con-
currency in access maintaining consistency in updates and avoiding deadlocks. Instead of
locking the whole heap (as done in the serial-access scheme), we lock only a small portion
of the heap at a time. This portion is called a window. It consists of 3 nodes for the
delete algorithm and 1 node for the insert operation. In order to allow window locking, we
associate a lock with every node. Each processor accesses the contents of a node only after
locking it to ensure mutual exclusion. The two other data fields of the heap, full level and
lastelem, are modified only in the initialization phase of the insert_t and delete routines.
Hence we conveniently associate the lock of node 1, the root, with these fields also; i.e., a
processor can access these locations only when the root has been locked.

Although insert_t and delete both manipulate the heap from top to bottom, there is one
problem in letting them work together. Recall that the delete operation deletes the key at
the root and replaces it with the most recently inserted leaf key (and starts reheapification).
If the most recent insert_t operation is still in progress, then this last leaf node does not
have a key. If delete picks up the key of any other leaf node, then the resulting heap may
become unbalanced. If the delete operation waits for the last insertion to finish, then we

loose concurrency.

To solve this problem, we associate a field called status with every node in the heap.
The status of a node can have four values, each associated with the semantics given in Table
1. When an insertion starts, the status of its target is set to PENDING. If a deleter starts
working when an insertion is still in progress, it changes the status of the target of the last
inserter to WANTED, and waits. At the beginning of each iteration of the reheapification

loop, the inserter checks to see if the status of target has become WANTED. If this is



Status code | Meaning
PRESENT | A key exists at the node.

PENDING | An insertion is in progress which will ultimately insert a key at the node
WANTED | A deleter is waiting for the key.
ABSENT No key is present at the node.

Table 1: Meaning of various status codes.

the case, then nkey is placed at the root and the inserter quits. Once the key is placed
at the root, deleter starts working. The concurrent deletion and insertion algorithms are

presented below.

Concurrent Delete(heap)

Lock(1);

/* Lock the root of the heap */

if (lastelem = 0) then {Unlock(1); Return(NULL)} endif

least «—key(1);

11

] ««lastelem ;

lastelem «lastelem - 1 ;

if (lastelem < fulllevel) ‘then fulllevel —fulllevel/2 endif

if (j=1) then{ key(1) «—MAXINT; status(1) «ABSENT; Unlock(1); Return(least)} endif

Lock(j) ;
if (status(J) = PRESENT)
then {key(l) «key(i); status(j) «—ABSENT; key(j) —MAXINT;}
else {status(1l) «ABSENT ; status(j) ~VVANTED}
endif
Unlock(j) ;
while (status(i) = ABSENT) do {Wait()} endwhile /* i = 1 at this point */

Lock(LSON()) ; Lock(RSON(A)) ;
/* R,eheapxﬁcation Loop *
/* Let MIN(i) give index of the son of i which has lower VALUE*/
/* Let MAX(i) give index of the son of i which has higher VALUE*/
while (VALUE() > VALUE(MIN(i))) do
Exchange(key(i) key(MIN(1))) ;
Unlock(1) ; Unlock(MAX(i)) ;
Lock{LSON(i)) ; Lock(RSON(1)) ;
endwhile
Unlock(i) ; Unlock(LSON()) ; Unlock(RSON()) ;
Return(least) ;
end_Concurrent_Delete

Concurrent Insert{nkeyheap} ),

Lock{1) /* Lock root of the heap */

lastelem «lastelem + 1

target «—lastelem ;

if (lastelem > fulllevelx 2) then fulllevel «lastelem endif

10



1 «~target - fulllevel ; /* i is the displacement of target */
j é_fuﬂievel/z ; /*3 — -ZIength, of insertion path —1 >.:j/

k «1; /* k is the current position in the insertion path */
status(target) —PENDING ;

/¥ Reheapification Loop */
while (j # 0)
if (status(target) = WANTED) then break endif
if (VALUE(k) > VALUE(nkey)) then Exchange(nkey,k); endif
if (i > )
then /* Go Right */
{Lock{RSON(k));Unlock(k); k —RSON(k); i «i- j}
else /* Go Left */
{Lock(LSON(k)); Unlock(k); k «LSON(k)};
endif
i=i/2;
endwhile
if (status(target) = WANTED)
then /* Some deleter is waiting at the root to pick the key at target */
{key(1) «—nkey; status(target) «~ABSENT; status(1l) —PRESENT}
else
{key(target) «nkey; status(target) «+ PRESENT};
endif
Unlock(k) ;
end_Concurrent Insert

Whenever an inserter or a deleter moves down 1 level by incrementing k or i, it first
locks the next node and then releases the current lock. This ensures that concurrent
deletes or inserts proceeding in the same path progress in strict queue order without any
interference. Since the locking sequence is in the strict increasing order of node indices,

there are no deadlocks.

Proof of correctness of the Concurrent-Heap Scheme

The proof of correctness follows from the following theorem.

Theorem 3.1 If a sequence of operations OPy, ...,OP, is performed on a binary heap such
that, for all i, OP; € {concurrent insert, concurrent delete}, then the resulting binary tree
is a heap. Furthermore, each delete operation OP; returns the smallest key of the heap that

would have resulted from the application of OPy,...,OP;_; to the original heap.

Proof: By induction on the length n of the sequence of operations.
Base Case: The sequence length is 1; hence only one insert or delete operation is
performed. In this case, the proof follows from the correctness of sequential delete and

insert.t.
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Induction Step: Suppose the theorem holds for all sequences of length n and less.
Let OP,,...,OP,,OP, ., be a sequence of length n+1.

Case 1: OF,; = Concurrent insert.

In this case, because of the strict queuing order maintained among successive opera-
tions, OF, 1 sees exactly the same binary tree as it would if it waited for OP;,...,0OP, to
finish. From the induction hypothesis, the sequence OF;, ..., OF, returns a correct heap.
Hence the tree resulting from the application of OF, 1 is also a correct heap due to the
correctness of the sequential insert_t.

case 2: OPF,,; = Concurrent delete.

The key deleted by OPF, 1 is clearly the smallest key of the heap resulting from the
application of OF,...,0F,, as this key would not have been touched by any of the still
executing operations if OF, ; waited for them to finish. If at the time OF, ., starts
executing, the status of the node pointed to by lastelem is PRESENT, then OP, ., sees
exactly the same heap as it would if it waited for OF;, ..., OF, to finish. Otherwise, some
concurrent insert operation that is supposed to put a key at lastelem has not finished
execution. Assume that this operation is OF,,. Once OPF,;; has changed the status
of the target of OF,,, OPF, stops executing the reheapification loop, and gives nkey to
OP, 1. OP, ;1 sees the binary tree that results from the application of OFy,..,OPF,,_,,0P,,
(partial), OP, 41, ..., OF,.

OP,, sees exactly the same binary tree as it would if it waited for OP,,...,OP,,_1 to
finish*, which should be a correct heap, as the length of the sequence OP,...,OP,,_; is
less than n+1. OP,, being an insert_t operation, always maintains the binary tree as a
heap (see the proof of Theorem 1). Hence even partial execution of OP,, leaves the tree
as a heap. The binary tree seen by OF,.41,..,OF, is the one that results from the partial
application of OF,,. Since this sequence is shorter than n+1, the tree resulting from the
application of OF,,;1,..,0PF, is also a heap. Hence the tree seen by OP,, is also a heap,

which also returns a heap (due to the correctness of concurrent delete).

4The sequence OPpy 41, ..., OF, may contain some deletes which might “absorb” some other insert opera-
tions OF;. But such OF; is guaranteed to be within the sequence OF,,11, ..., OF,, and hence does not effect

the heap seen by OF,,

12



4 Theoretical Analysis of Performance

In this section we present a discussion of expected improvement in speedup due to the new
concurrent-heap algorithms. First we define some terms and state some assumptions that

are made to simplify the analysis.

4.1 Definitions and Assumptions

1. M is the total number of keys present in the heap.

2. Think time T},,,, is the time spent by each processor in computation in between

successive accesses to the heap.

3. L is the number of levels traversed in the heap during heap access operations. For

example, for insert_t,

L =|log(M +1)]

4. Access time T, is the time required to perform an operation on the heap in the

absence of contention for the heap.

T =L+T, +T

access

Here, T, is the time for executing the initialization part of the code (i.e., the code
before the reheapification loop), and T, is the time for executing one iteration of the
reheapification loop. For simplicity, the above definition of T, assumes that, for

any given operation, the execution time of different iterations of the reheapification

loop are the same.

Clearly, T, ,T, and hence T,...,, are higher for concurrent heap because of the overheads
of locking, etc. We use the superscript ¢ to denote that the term refers to the concurrent-
access operation and the superscript s to denote that the term refers to the corresponding
serial access operation, whenever a distinction needs to be made. For example, T¢, ..,
refers to access time using the concurrent-access scheme.

Speedup S is the ratio of time taken by one processor to execute N think-access cycles,

and the time taken by P processors to execute the same number of cycles. In the parallel

case, each processor performs %’- think-access cycles.



Speedup improvement factor due to concurrent heap

speedup due to concurrent heap

- speedup due to serial-access heap

4.2 Analysis

Here we study the performance of serial and concurrent-heap algorithms for the task of
performing N think-access cycles using P processors (N > P). To simplify the analysis,
we assume that all N access operations are identical, and that all processors have the same

processing speed.

1. The Base Case

The time needed by one processor to execute N think-access cycles

= N % (Tinink + Tircess)

GCCcess

o

Serial Heap

Now P processors perform the same number of operations using the serial heap
algorithms. Bach processor performs -‘7—;; think-access cycles, and locks the heap for
the duration of each access operation. If there is no contention for the heap, then

each processor takes Tipinr + T2

wcess Tor executing one cycle. Even if P is very large,

the maximum rate at which the operations can be done is

1 . -
s per unit time.

ceess

B (Tonink + TPoress) if P < T””"f}ijv’““

ACCeEES
QACCESE

Time for N operations =

N« TS 3}6‘ P> Trhinkj‘TEr css

aecess 3
access

N TthirLk+T8 cpss
P if P < Tuige

QCCES S

Speedup =

Tininetlgecess o Tini T ess
th :Z'AS Zf P 2 think+

5
QGCCess TCLCCESS

® ) = < o ° : S
The maximum speedup achievable with the serial heap algorithms is m—-—%&ﬁ»

GCCESE

3. Concurrent Heap

Now P processors perform N think-access cycles using the concurrent-heap algo-

rithms. Note that the next operation can start after the current operation has
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unlocked the root. The time for which the root is locked = T 4 77 . Therefore, the

1
Te+Te

maximum rate at which the operations can be performed is per unit time.

N . c ; Tins k%’jg cess
”IS‘(Tthmk -+ Taccess) Zf P < 23”@4—3"; ‘

Time for N operations =

: Lining+Tgccess
N +T?)  if P> Dol

Tininkt T gccess Tinink+ L 5ecess
P x if P <

Tthink‘}'chccess TL%+TTC
Speedup =
Tinink+ 15 cecs : Tinink+450cees
ToFTs of P2 =t
. - . . N T s
The maximum speedup obtainable with the concurrent-heap algorithms is %%&—
w T

From the above analysis, we conclude the following.

1.

2.

The concurrent-heap scheme allows O(log M) operations to proceed in parallel.

Unless T°°

access

is greater than T2 + T, concurrent heap cannot perform better than

the serial heap.

If Tinine= 0 (and T2 .., > TS + T7), then the concurrent heap performs better than

» e . <
the serial heap as long as P > %gﬂfﬁ- . Otherwise (for P < %M ), the concurrent

QACCes s aceess

heap performs worse than the serial heap due to the overheads.

If Tining > Toceess (and T2 > T¢ +1T7), then the concurrent heap does not perform

access

worse than the serial heap even for small P. It performs better than the serial heap

if P> Tipink/ T2

ccess o

Tonink+ TS ces :
For large P (> ”"*%’;izﬁg ces¢ ) the speedup improvement factor due to concurrent heap
w T
T

is T%éj_ﬁfg, which is independent of Ti;,x. The actual value of the improvement factor
w b

varies for different operations as follows.

Case I: Deletes

For the serial delete, 77 = T2+ L«+«T: , where L =~ logh . Thus, T}

access access
increases logarithmically with the heap size, and T + T remains (an implementation
dependent) constant. Hence there exists I{ such that for M > I{,T; ., > T + 17

Thus for big enough heaps, the concurrent-heap scheme performs better than the

serial-access heap, and the speedup improvement factor grows as O(log M ).
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e Case II: Random Inserts

If the keys of randomly distributed values are inserted into a heap, then the number
of iterations of the heapification loop executed in insert_b is very small [7]. Hence,
LinT; .., =T+ Lx*T; is very small (<2) even for very large heaps. Hence,
for this case, the concurrent heap does not perform better than the serial heap, as
in most implementations, T, + T is not much smaller than 7 ____ . ° Note that
if concurrent (random) inserts and deletes are performed simultaneously, then the
concurrent heap could still perform better overall if the average access time for serial

inserts and deletes is larger than the average root locking time in concurrent heap

operations.

e Cage I11: Biased Inserts

In many parallel algorithms (e.g., branch-and-bound [13]), each newly inserted key
tends to be nearly as good as the best key already available in the heap. In this case,
Tpcess = L7 + LT, , where L =~ log M . For this case, just as in case I, the speedup

improvement factor grows as O{log M).

In our analysis, we assumed that all access operations take exactly the same amount of

time. In practice, Tyccesswould be different for different operations. In this case, for larger

mean (T;CCBSS }

number of processors, the speedup improvement factor would be e
mean(T§+TF)

5 Experimental Evaluation of the Concurrent-access

heap algorithms

We have implemented the concurrent-heap algorithms and the serial-access heap algorithms
on the BBN Butterfly multiprocessor to test their performance. Using each scheme, P
processors performed a total of 1000 delete or insert operations (each processor performed
1000/ P operations. P was varied between 1 and 30). The speedup was computed accord-
ing to the definition given in Section 4.1. Relative performance of the concurrent heap was

studied for the following cases.

Case I: Deletes

In this case, each processor performed one delete operation in each access-think cycle. A

%it may even be larger for some implementations.
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total of 1000 delete operations were performed on a heap that initially had 2048 keys.
Thus, the depth of the heap remained 10 for all the deletions. Fig. 3 shows speedup
results for the case in which Typinz is set to 10 ms (& 5 times T2 ... ). For the serial-access
scheme, the speedup was fairly linear up to 5 processors, but saturated after that. For
the concurrent heap, the speedup saturated at 11.6. For less than 5 processors, concurrent
delete performs slightly worse than the serial delete. When we decreased (or increased)
Tinink, the speedup dropped {or went up) for both sequential and concurrent deletes. But,
as predicted by the analysis of the previous section, the speedup improvement factor for

large number of processors remained roughly the same (& 2.3).

Case II: Inserts

In this case, each processor performed one insert operation in each access-think cycle.
A total of 1000 insert operations were performed on a heap that initially had 1024 keys.
Thus, the depth of the heap remained 10 for all the insertions. As discussed in the previous
section, for inserting keys with random key values, our concurrent-heap scheme does not
perform better than the serial-access heap insert. (The speedup figures are roughly the
same for both concurrent heap and serial heap; hence they are not shown.)

To test the performance for biased inserts, we generated keys whose values were in the
decreasing order. In this case, the relative performance of the concurrent-heap scheme is
similar to that obtained for deletes. Fig. 4 shows the speedup curves for Tipi= 10ms.

Case III: Parallel Branch-and-Bound

To test the performance of the concurrent-heap scheme in a more realistic situation, we
incorporated it in a parallel branch-and-bound algorithm for solving the traveling salesman
problem[13,12,8]. In this parallel algorithm, in each access-think cycle, each processor
removes a least cost node from the heap, generates two successors, computes their costs,
and inserts them both on the heap. The think time i1s the time to create two successors
and compute their costs (for the algorithm we used, it is O(n?), where n is the number
of cities). We implemented two versions of the parallel algorithm on BBN Butterfly - one
using the serial-access heap, and the other using the concurrent-access heap. For each
version, the speedup was computed with respect to sequential branch-and-bound using the
conventional heap algorithm. As shown in Fig. 5, the concurrent-access scheme delivers
significantly higher speedups than the serial-access scheme. In the problem instances we
used for experiments, the heap size grew up to 8000 elements. The larger heap size explains

the larger speedup improvement factor (= 3).
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6 Possible Improvements

A number of modifications can be made to our scheme to further improve its performance.

Some of these are outlined below.

1. Combining Insertions and Deletions

If a processor needs to do one or more inserts and a delete, then it can merge the last
insert operation and the delete operation into a slightly modified delete operation
as follows. If the root of the heap is worse than the key to be inserted, then the
(merged) operation finishes right away, and processor treats the key to be inserted
as the one deleted. Otherwise, it replaces the root with the key to be inserted, and
proceeds (without having to wait for some other active inserter to give it the key)
with the deletion routine. This improvement can be incorporated in the serial-access

scheme as well.

2. FIFO access at the bottom of the heap.

Notice that insertions and deletions extend the current last level of the heap in a
LIFO manner; i.e., a delete operation removes the most recently inserted key. We
can change this to FIFO; i.e., as long as the current level is not completely empty,
the deleter deletes the oldest inserted key from this level. Now inserters put nodes
at one end of the last level while deleters take nodes form the other end. (Clearly,
this implicit FIFO queue is to be implemented at each level with a wrap around. We
also need extra synchronization when a level is completely filled up or completely
empty.) This scheme makes it unnecessary for the deleter to wait for the inserter to
put its key at the root, and thus removes one checking operation from the loop of

insert (reducing 7°) and reduces the initial processing time (7) in delete.

3. Level Locking

This modification is useful if processors execute at uniform speed and the locking
operation is expensive. We can associate one lock with each level of the heap, and in-
stead of locking individual nodes, we can lock the entire level as needed. This reduces
the number of lock and unlock operations in each cycle of concurrent delete from four
to two (reducing T°¢). The number of lock and unlock operations in concurrent insert

remain unchanged.

R}
ek



4. Service Processors

It is possible to incorporate service processors in our scheme as follows. Whenever a
processor needs to insert or delete, it communicates with the next available service
processor (the available service processors may be maintained in a queue), which
performs the actual operation on behalf of the user processor. For example if the
user processor likes to delete a key, then a service processor locks the root, gives the
root key to the user processor, and continues with the delete operation. The user
processor can continue with its processing without having to wait for the entire delete
operation to finish. If O(log M) processors are available, then one processors (or a
small number of processors) can perform delete or insert in constant time irrespective
of the size of the heap. This arrangement may be useful if T};;,, and the number of
user processors are small. If Ty, is large, then service processors do not provide

any performance improvement.
5. Splitting I7?

One way to reduce the bottleneck at the root (given by TS + T) is to split the root
update operation into two steps - the first step updating the values of lastelem, etc.,
and the second part performing the reheapification at the root. We can associate

two different locks for these two steps.

7 Related Research

In [3], Biswas and Browne present a scheme, called CHEAP, that allows insertions and
deletions to proceed in parallel. In their scheme, an insert or delete operation is decomposed
into a sequence of update steps at different levels of a heap. An auxiliary task queue stores
the steps of insertions and deletions currently in progress. By appropriately scheduling
these update steps, a set of service processes concurrently perform insertions and deletions
without causing deadlocks. If enough service processors are available, then this scheme
allows many insertions and deletions to proceed in parallel. This approach is not able
to perform better than the serial access scheme except for very large heaps due to the
overheads associated with scheduling window updates through the server queue.

Unlike the scheme in [3], our scheme does not require special server processors to update
the heap. Also the number of locks needed for each operation are much smaller in our

scheme. Unlike their scheme, our scheme also retains the strict priority ordering of the
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serial-access heap algorithms; i.e., a delete operation returns the best key of all keys that
have been inserted or are being inserted at the time the delete operation is started. The
scheme presented in this paper was motivated by the work of Biswas and Browne. Initially,
we wanted to incorporate CHEAP in our parallel branch-and-bound algorithms to improve
their performance. But experiments conducted by Biswas ¢ showed that CHEAP was not
able to perform better than the serial-access scheme even for heaps with 10,000 keys.

Ellis and Gaffar” have developed a scheme that also does not require the use of separate
special service processors. In this scheme, inserts and deletes proceed in opposite directions,
but avoid deadlock using a “sliding-lock” scheme. Performance results of this scheme are
not yet available.

A number of concurrent-access schemes have been developed for manipulating dictio-
naries that are represented as balanced trees[6,11], B-trees [5], and the balanced cubel4].
Most of these concurrent schemes allow O(log M) operations (delete the smallest key, delete
a key, insert a key, search for key, etc.) to be done simultaneously. A major exception
is the balanced cube which permits O(M ) search, insert and delete operations to done
concurrently. However, even the balanced cube permits only O(log M) operations “delete-
the-smallest-key” operations at a time. In a priority queue, the only operations of interest
are “delete-the-smallest-key” and “insert-a-key”. For these operations, on a sequential
processor, the heap is clearly a more efficient data structure than B-tree, balanced trees
and the balanced cube. Since our concurrent-access heap scheme has the same degree of
concurrency as others and has smaller overhead, it is better than other concurrent schemes
for manipulating a strict priority queue.

A number of VLSI dictionary machines [14,19,2] use O(M) processors and allow O(log M)
operations to proceed in parallel. Leiserson’s hardware priority queue[10] provides O(1)
access time at the expense of O(M) processors. As discussed in the previous section, with
the help of O(log M) service processors, our concurrent-access scheme can also provide
O(1) access time. However, the constant factor in O(1) is expected to be smaller for the

hardware priority queue.

SPrivate communication

“Private communication with Carla Ellis



8 Conclusions

We have presented a new scheme that allows concurrent insertions and deletions in a
priority queue. The insert and delete operations of this scheme keep the heap balanced;
hence each operation still takes O(log M) steps, where M is the size of the heap. The
scheme also retains the strict priority ordering of the serial-access heap algorithms; ie., a
delete operation returns the best key of all keys that have been inserted or are being inserted
at the time delete is started. The scheme allows O(log M) processors to manipulate the
heap simultaneously. For a large number of processors, the speedup improvement factor
due to our scheme grows as O(log M ). We have incorporated the concurrent-heap scheme
in a parallel branch-and-bound algorithm for solving the traveling salesman problem, and
have obtained significantly higher speedups than with the serial-access schemes.

Note that even in the concurrent-access heap scheme, at most O(log M) processors
can manipulate the heap concurrently. To allow greater concurrency, it seems necessary
to relax the strictness of the priority queue. In [9], we present several ”distributed” for-
mulations of priority queue that permit O(M) concurrency, and test their effectiveness in

parallel branch-and-bound.
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