SEPARATION PAIR DETECTION
Donald Fussell and Ramakrishna Thurimella

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-08 March 1988

Abstract

A separation pair of a biconnected graph is a pair of vertices whose removal disconnects the graph. The
central part of any algorithm that finds triconnected components is an algorithm for separation pairs.
Recently Miller and Ramachandran have given a parallel algorithm that runs in O(log?n) time using O(m)
processors. We present a new algorithm for finding all separation pairs of a biconnected graph that runs
in O(log n) time using O(m) processors. A direct consequence is a test for tricormectivity of a graph
within the same resource bounds.

1 Introduction

Triconnected components are useful in testing a graph
for planarity, finding how reliable a computer net-
work is against node failures, etc. The central part
of any triconnected component algorithm is an algo-
rithm to find separation pairs. A separation pair of a
biconnected graph is a pair of vertices whose removal
disconnects the graph.

There are potentially O(n?) pairs that can qual-
ify to be separation pairs. Consider a simple cycle of
n vertices. It is biconnected and every nonconsecu-
tive pair of nodes is a separation pair. Therefore any
parallel algorithm that is required to list all the pairs
must have a processor-time product of Q(n?). But
such a list is not necessary when finding triconnected
components. The output of our algorithm is a set of
paths, where a pair of non-neighboring vertices of G
is a separation pair if both vertices appear on a path.

The set of separation pairs can be found by n ap-
plications of parallel biconnectivity algorithm of Tar-
jan and Vishkin [TV 84] as follows. Notice that if w
is an articulation point in the subgraph V(G) — {v}
then {v,w} is a separation pair in G. Therefore the
set of separation pairs can be found in O(logn) time
using O(mn) processors. The number of processors
used by our algorithm is linear in the size of the edge
set O(m), and the algorithm runs in O(logn) time.

The paper is organized as follows. The next sec-
tion contains definitions and some preliminary re-
sults. Section 3 contains two transformations that
preserve separation pairs. The first transformation
results in what we call a reach graph of ears and the
second planarizes the reach graph. The last section
establishes the complexity bounds of the algorithm.

A major part of the work reported here was de-
veloped prior to the announcement by Miller and
Ramachandran [MR 87] of their parallel algorithm
for triconnected components. The reach graphs de-
scribed in section 3.1 are similar to the bridge graphs
of ears. The graphs resulting from planarizing the
reach graphs P; and the star graphs of [MR 87] are
the same.

The techniques we use differ significantly from the
divide-and-conquer approach used by Miller and Ra-
machandran. The novelty in our approach comes
from the extensive use of a method we refer to as
“local replacement” to obtain an efficient parallel re-
duction of this problem to another which is solvable

with known efficient techniques. The method of lo-
cal replacement involves replacing each vertex v of
the original graph by a sparse graph G,. The sparse
graph is such that |V(G,)| =degree(v). The tech-
nique of local replacement is of independent interest,
and we have found it to be of use in other parallel
graph algorithms as well [F'T 87].

2 Preliminaries

Let V(G) and E(G) stand for the vertex set and the
edge set of a given graph G respectively. Sometimes
V(G) and E(G) are written as Vg and Eg respec-
tively. The subgraph G’ induced by a subset V/(G)
of the vertex set V() is a graph whose vertex set is
V(@) and the edge set E{G') is a subset of E(G) such
that the edges in E(G’) are those with both end nodes
in V'(G). A vertex in a connected graph is an artic-
ulation point if removal of it results in disconnect-
ing the graph. A connected graph G is r-connected
if at least r vertices must be removed to disconnect
the graph. A biconnected graph { or a block) is 2-
connected. A ear decomposilion stariing with a node
Py of an undirected graph Gis G = PpUP U..UP;
where P41 is a path whose end nodes belong to
Py U P U...UPF; but its internal nodes do not. Also
the edge set of the graph Fg = Ep, UEp, U...UEp,
and the vertex set Vg = Vp, UVp, U...UVp,. Observe
that k is the number of edge disjoint simple pathsin a
connected graph G, therefore & = |Eg|~n+1. Each
of the paths P; 1s an ear. If the two end nodes of a
path P; do not coincide then P; is called an open ear,
otherwise the ear is closed. In open ear decomposi-
tion everyear F;, 1 < i < k,is open. Let an ear be a
short ear if it consists of a single edge, otherwise call
it a long ear. For any 7 < k, the subgraph induced
by the ears Fy, ..., E; of an open ear decomposition is
biconnected for a given biconnected graph [Wh 32].
A pair of vertices {x,y} of a biconnected graph is a
separation pair if the number of components of the
subgraph induced by V(G)—{z, y} is more than one.
A vertex is an internal node of an ear if it is neither
the first nor the last node of that ear. Notice that,
except for the root, each node is an internal node of
exactly one ear.

Remark: 1t is assumed that r ¢ {z,y} throughout
this paper. The pairs in which one of the vertices
is v can be detected as a special case by finding the
articulation points of the graph induced by V(G) —
{r} within the resource bounds claimed.

Lemma 1 If {=,y} is o separaiion pair of a graph
(G then there exisis a long ear E; in any open ear
decomposition of G such that {z,y} is a pair of non-
consecutive nodes on Fj.

Proof : Associate with each vertex v # r the ear
E,, where v is an internal node of F,. The fact that
each vertex has a unique ear for which it is an internal
node follows from the definition of an ear.

If {z,y} is a separation pair, then the removal of
these two vertices results in disconnecting the graph
into more than one component. Let the connected
components induced by V(G)—{z, y} be Cy,Co, ..
for some k > 2. Assume, without loss of generality,
that the root 7 € V(C1). See Fig 1.

Let E; be the minimum of the ear numbers as-
sociated with the vertices of any C;, for ¢ #£ 1. E
cannot start and end at & (or at y) since that would
imply Ej is a closed ear attached to z (resp. y) and
the only closed ear of a biconnected graph is the one
that is attached to the root r. The end nodes of Ej
should belong to an ear (or two ears) with smaller ear
number (resp. numbers). Since z and y are the only
two vertices through which an ear with a ear number

smaller than E) can be accessed from C;, we conclude
that {z,y} C V(E;).

z and y are not neighboring nodes on E; since
there is at least one vertex v where ear(v) = E; and
v € V(C;) that is between z and y on E;. For the
same reason Fj is a long ear. M

The following definition labels the vertices depend-
ing on the ear they belong to and the position of the
vertex on that ear.

Definition 1 Starting with the end nodes, if 2 and
y are the end nodes of E}, pick one of the end nodes
p arbitrarily, p € {z,y}, and define pos(p, E;) to be
zero. For rest of the nodes in V(E}), pos{v, E;) is the
distance from p to v on ;. The value of pos(z, Ey),
for # € V(F;) is undefined. If v is an internal node
of E; then it is denoted by pos(v); since the second
argument is unique it can be omitted.

Definition 2 Given an internal node v of £, define

fdpath P:v—r
and (V(P)—{v}N
V(E) =10

otherwise

reach{v) =
lefty, right,]

where left, (right,) is minimum (resp. maximum)
over the set
{pos(v', E})|3 path P : v — o' and (V(P) —
{v, ') NV (E) =0}

and m is any integer larger than the number of ver-

tices in the graph. We will assume m = 2n through-
out.

We will refer to the first component of the interval
as reach(v).1 and the second as reach(v).2.

., Cy, Theorem 1 {z,y} is a separation pair iff 3 a long

ear By containing x and y such that x and y are not
consecutive nodes on E; and all nodes v between z
and y on By satisfy reach(v) C [pos(z, E), pos(y, E})]
assuming pos{z, ;) < pos(y, Ey).

Proof : (only if) Let the removal of the vertices
z and y result in disconnecting the graph into con-
nected components C1,C4,...,Cy, for some k£ > 2.
Assume without loss of generality that the root node
» of the ear decomposition belongs to the vertex set of
Cy. Consider any C;, for ¢ # 1. Let E} = min {ear(v)]
v € V(C;)}. As proved in lemma 1, and y are con-
tained in V(E;).

Assume, for contradiction, that this part of the
theorem is not true. That would imply, for all ears
containing = and vy, specifically E;, there exists a ver-
tex v such that

(pos(z, E1) > reach(v).1) or (pos(y, E1) < reach(v).2)

In either case, we will exhibit a path from v to » that
does not use z or y, thus implying v € V(C}). As
we assumed v € V{C;), for some C; # C4, we would
have a contradiction.

If pos(z, Er) > reach(v).1 and pos(z, E;) = 0 then
reach(v).1 has to be —2n as it is the only number
less than 0 in our numbering. Therefore reach(v) =
[-2n, 2n] implying that there is a path from v to r
that does not use any vertices of Ej, specifically =
and y. Therefore assume pos(z, Ei} # 0 and 0 <
reach(v).l < pos(z, E;). This implies there is a path
P {rom v to vy, where pos(vi, By} < pos(z, E). Let vy
be the vertex with pos(v,, E;) = 0. From v, extend P
first by taking edges of E} to vertex v5. To extend P
further to » consider the block B induced by the ears
Py, ...,ear(vy). B cannot contain z but can contain
y. But since there are two vertex-disjoint paths from
vy to r in B it is always possible to extend P to »

without having to use y. Therefore there is a path
from v to r that does not use either z or y.

The argument when pos(y, E;) < reach(v).2 is
similar.

(if) Since z and y are not neighbors on Ej, there ex-
ists at least one vertex between z and y on £;. If the
segment of the path Ej that is between 2 and y does
not get disconnected from the component containing
7, then there is a path from the root to a vertex v of
the segment that avoids both z and y. That means

(pos(z, E;) > reach(v).1) or (pos(y, Ei) < reach(v).2),

a contradiction. 1

3 An Algorithm for Separation pairs

The point of characterizing separation pairs in terms
of the reach labeling is to be able to generate sep-
aration pairs efficiently. Let G, be the graph ob-
tained by adding to two edges (v,reach(v).1) and
(v, reach(v).2) to E(G) for each vertex v € V(G), for
reach(v) # [—2n,2n], and by deleting all short ears
from E(G). In the case when reach(v) = [~2n,2n]
add single edge (v, 7). Define G, to be the reach graph
of G. Tt follows from Theorem 1 that the set of sep-
aration pairs of G, and G is identical since the reach
labeling of their respective vertices is the same.

The next subsection shows that an approximation
of the reach labeling can be computed efficiently by
making use of the parallel biconnectivity algorithm
of Tarjan and Vishkin [TV 84]. The fact that the ap-
proximation suggested suffices when extracting sepa-
ration pairs is shown in Theorem 3 in the next sub-
section.

Even though G, is structurally simpler than G,
a further simplification appears to be necessary to
generate separation pairs rapidly in parallel.

Define R; to be the reach graph of E; as follows.
The graph R; is the same as F; with the following
additions. Create a new vertex r; and add an edge
(v,7;) if reach(v) = [=2n,2n] or v is an end node
of Fy; otherwise add two edges (v,reach(v).1) and
(v,reach(v).2) to E(R;). Section 3.2 includes the
definition of the planar versions P; of K; and a pro-
cedure that finds the P by a reduction to the con-
nected component algorithm of Shiloach and Vishkin

[SV 81]. See Fig 3. A local modification is suggested
at the end of Section 3.2 that yields a set of paths
where each nonconsecutive pair of vertices on each
path is a separation pair.

3.1 Computing the Reach Labeling

This consists of two stages. In the first stage we define
an approximation reach’ and show how to compute it
efficiently. In the second we show how to make local
modifications of the original graph so as to offset the
error introduced by the approximation. The graph
G’ that results after the local modifications has the
following desirable property: corresponding to each
separation pair {z,y} and the ear E; (as defined in
Theorem 1), the reach’ labeling of F; in G’ is the
reach labeling of E; of the original graph G.

Define the reach/(v) labeling in the same way as
reach(v) but with the weaker restriction: P should
not use the internal nodes of ear(v) but is allowed to
use the end nodes of ear(v). Notice that if each vertex
of G is an end node of at most one ear then reach
and reach’ are identical. Moreover, for each vertex
v, reach(v) C reach/(v). Moreover, if reach(v) #
reach’(v) then reach/(v) = [—2n, 2n].

In the following we show how to label the vertices
with the reach’ labeling efficiently.

Consider the auxiliary multigraph G, constructed
from the given graph G as follows. Let E, be a
long ear vg,v1, ..., v; of length greater than two, i.e.
B > 3. Now, G. is obtained from G by contract-
ing all such ears E, by merging the internal vertices
¥1, 09, .., tp—1. For all v, v € V(G,), label v with the
ear number it represents. See Fig 2.

Let By, B, ..., By be the biconnected components
of G.. Let the root node belong to By. For 1 <1 <
[, let v,, be the node with minimum node label in
V(B;). (Recall that the node labels in G, correspond
to the ear labels of long ears of G.) Define By', ..., B/
to be the subgraphs of Bs, ..., B; respectively, where
for 2 < 1 < I, B; is the subgraph of B; induced by
the vertex set V{(B;) — {v,, }. It is easily verified that
the V(B;")s define a partition over V(G).

Consider a labeling « of the By’s. This labeling
will help us find the reach’ values of a node v locally,
that is by looking at the neighbors of v.

For all v € V(B,), a(v) = (v,,,z,y) where z (y)
is minimum (resp. maximum) over the set

{pos(s)|(s,1) € E((),s and t correspond to v,
and a vertex in B;’ resp.}

Extend the «o labeling of the vertices of G, to the
vertices V{(G) — {r} as follows. Each v is an internal
node of exactly one long ear E, and the node cor-
responding to E, belongs to exactly one B;'.! For
v € V({G), a(v) is the o label of the node in G, that
corresponds to the ear(v). From the definition of an
ear 1t follows that for all v € V(G), av).1 < ear(v).

Before we relate o and reach’ labelings, we need
to prove

Lemma 2 If (v,w) € E(G) then a(w).1 < ear(v).

Proof : If ear(w) < ear{v) then a(w).l < ear(v)
since a(w).l < ear(w). Assume ear(w) > ear(v).
If there exists a path from w to » that avoids all
the internal nodes of ear{v) then both ear(v) and
ear(w) belong to a biconnected component B; in G,
and a(v).l = a(w).l = v,,. So, a(w).l < ear(v)
since a(v).1 < ear(v). If all the paths from w to r
have to use some internal nodes of ear(v), then ear(v)
would be an articulation point in &, , to which the bi-
connected component containing ear{w) is attached.
Therefore, n{w).1 = ear{v). O

Definition 3 For each vertex v € V((), define a set
of edges escape-edges(v) as

{(v, w)|{v,w) € E{(G) — E(ear(v)) and ear(t()))#}

See Fig 4.
Theorem 2 For a vertex v, v # r,

(i) reach/(v) = [—2n,2n] if and only if there exisis
(v,w) € escape-edges(v) and a{w).1 < ear{v).

(i) if reach’(v) # [—2n,2n] then reach’{v).1
(reach’{v).2} is the minimum (resp. mazimum)
over the union of the following three sels

(a) {pos(v)}

1 This statement would be incorrect if B;’ is replaced by B;
because if the node corresponding to E; were an articulation
point in (¢ then it would be split and therefore present in
more than one component.

(b) {pos(w)|3(v,w) € E(G) — E(ear{v)) and

ear{w) = ear(v)}

(c{o(w).2(resp. a(w).3)]

v, w) € escape-edges{v)}

Proof : (i) (only if) reach/(v) = [—2n, 2n] implies
that there is a path P from v to r in G that avoids all
the internal nodes of ear(v). Let the first two vertices
of P be v and w. From the definition of reach/(v),
ear(v) # ear(w). So, we have the following two cases
to consider.

Case (a): ear{w) < ear(v)

For any vertex vz, a(vy).1 < ear{(vy) from Lemma
2. In particular for v, = w. Therefore a{w).l <
ear(w) < ear(v).

Case (b): ear(w) > ear(v)

Corresponding to each long ear E, of G there is a
node in G, {call it e;). We will show that ¢, and e,
belong to the same biconnected component B in G,
and B is attached to an articulation point e, , where
ear(y) < ear(v) < ear(w). Since afe,).1 would be
ey, it would follow that a(w).1 < ear(v).

Consider two paths Py and P in G, from e, to eq.
Let P be eyey, €y,...0 Where ey > ey, > €4,... > eg.
Such a path is guaranteed to exist given the defini-
tion of ear decomposition. Let P; be eyey...ep, the
path in G, that corresponds to the path P that we
assumed to exist in . Let e, be the first vertex after
ey common to Py and P, in the order they occur on
the paths. Since node labels on P; decrease monoton-
ically and as e, #£ e,, we conclude that e, < e, < 4.
Let B be the block that contains e,, ¢, and e,,. Then
foralle; € V(B), afe;).l <es. Soaley).l <e, <ey.
Therefore a{w).1 < ear(v).

(if) Given that «(w)}.1 < ear(v) and that there
exists an edge (v,w) € E(G) — E(ear(v)), ear(v) #
ear(w), we need to prove that r can be reached from
v without using any internal nodes of ear(v). No-
tice that e, and e, belong to the same block in G,
because of the edge (v,w). And a(w).1 is the articu-
lation point in G, to which B is attached. a{w).1 #
ear(v) since o(w).l < ear{v). Therefore there are
two vertex-disjoint paths from ey, to a{w).1. Assume
€y, and e, are in the same biconnected component in

(G.. Clearly there exists a path from e, to of{w).1
that does not contain e,. From a(w).l take a path
with monotonically decreasing node labels to eg5. So,
we can always a find a path in G, from e, to eg that
avoids e,. Hence, by taking a corresponding path
in G, the root r can be reached without using any
internal nodes of ear(v).

(ii) From (i) we know that reach’(v) # [~2n, 2n] im-
plies that for all (v, w) € escape-edges(v), a(w).1 >
ear(v). But from lemma 2 we know that a(w).1 <
ear(v). Therefore, for all such w, a(w).1 = ear(v).
This means that all the paths starting with an escape-
edge lead back to an internal node of ear(v).

The result directly follows from the definition of
reach’(v), o(v).2 and a(v).3. O

Since we do not how to find the reach labeling,
we need a theorem similar to theorem 1 with reach
replaced by reach’. To achieve this goal, we propose
the following local modifications to G resulting in &'.

Definition 4 Let two ears be paralle] ears if they
have the same pair of end nodes. Let a group of parel-
lel ears be parallel ears that are in the same connected
component when the two end vertices are removed.
See Fig 5.

Algorithm Build (7

1. Identify each ear as either a single ear or a par-
allel ear. Also mark the ear with the minimum
ear label in a group of parallel ears.

2. Partition the edge set into a set of paths in-
duced by ears by “splitting” at the end nodes.

3. Let ear E, be v,vq, ..
tex s of B, by sg, .

., vz, w. Rename each ver-

4. “Glue” these paths, to get &7, as described be-
low.

{a) Let E; be the first long ear. Pick one of
the two end edges of Fy arbitrarily and
give it a direction. Orient rest of £y in
the opposite direction.

{(b) Give directions to the remaining ears of G
so that the resulting digraph Gy is acyclic.

{¢) Remove the last edge in each directed ear

in (4 to obtain a directed spanning tree
Ta.

If £, is a single ear or a parallel ear with
minimum ear label in that group then do
the following.

(d)

Let (vg, w) be the edge that was removed
in step 3¢ for the ear By, I lea(vy, w) = v
in T4 then let Ey; be the ear number of
the first edge in the tree path from v to
w. Add an edge between vg, and vg,. If
{ca(vy, w) # v in Ty then add an edge be-
tween vg, and vp, , where v is an internal
node of By in G.

If £, is a parallel ear and E, is not the
minimum ear label in that group then do
the following. Connect the end node vg,
to vg, where Fy, comes after E, in the de-
scending order of ear labels in that group.
(f) Reverse the direction of edges of Gy and
repeat steps 3¢ and 3d.

Fig 7 illustrates the local modifications suggested
by the above algorithm. Before we prove that reach’
labeling of G’ is sufficient to find separation pairs we
need the following definitions.

Definition 5 If a vertex v is not an end node of any
ear in (G then it retains the same vertex label in
and we say v of G and v of & correspond to each
other. Otherwise vertex v of G and vg, of G' corre-
spond to each other if the latter is obtained from the
former by splitting in step 1.

We also say a path (ear) of G corresponds to a
path (ear) of G’ if their vertices correspond to each
other.

Definition 6 An ear B, dominates another ear By if

no vertex of Iy belongs to the component containing
the root r in V{(G) — V(E;). See Fig 6.

Lemma 3 Let E, dominaie By Epysoo, Eg,, for
< wy < ... < . Let v be the end node of E,,
where the edge labeled E, that is incident on v is in
Tq. The subiree of Ty rooied at v contains all the

vertices of the ears By By, .. By, .

Proof: Let the end nodes of £, be v and w. The
proof is by induction on k. For & = 1 notice that

the end nodes of F,, are also in E;. If both the end
nodes of E,, are internal nodes of £, then the lemma
is clearly true. If one of the end nodes of F, is v then
lemma holds irrespective of whether F,, is attached
in Ty by v or by the other end node. Assume one
of the end nodes of E, is w. If E;, is attached in
Ty by the end node other than w then the lemma
holds. So assume ear E, is attached in Ty by w.
But that means E,, together with the segment of F,
that is in between the end nodes of F,, forms a cycle
contradicting that Gy is acyclic.

Let the lemma be true for & = ¢ —~ 1. Consider
the possible nodes of attachment of E,, in Ty. If the
end nodes of E,, are either internal nodes of E, or
nodes in the vertex set of E ..., Ey,_, then clearly
the lemma holds. So assume one of the end nodes of
E;, is an end node of E;. The case when the vertex
of attachment is v or one of the nodes in the vertex
set of By, ..., Ez,_, is straightforward. Assume E,
is attached to w in Ty. The end node of E,, other
than w is a vertex z in the subtree rooted at v by
induction hypothesis. By taking the ear E; to which
x belongs to and the ear to which the end node of
E; belongs to and so on, the vertex w can be reached
implying that Gy is not acyclic. I

Lemma 4 If E. dominates E, and if both have the
same end-vertex v then both ears are either outgoing
or incoming at v in Gy.

Proof: Consider 7; where the edge with the ear la-
bel E, that is incident on v is in the tree. If £, and
Ey have different directions at v then G4 has a cy-
cle consisting of £y and the tree path from v to the
end node of £, other than v. Such a tree path is
guaranteed to exist by the previous lemma. O

Assume for two ears E, and E,, E, < E, and
that if they are parallel then they are in the same
group. Let v be an end node of £, in G. Let T} be
the spanning tree of G/ corresponding to Ty in which
the ear £, is attached by a vertex corresponding to
v.

Lemma 5 If B, dominaies B, then the subiree of
T7 rooted atf vy, contains all ithe vertices of ear Ey.

Proof: If B, and £, are parallel then clearly the
end node of E, is the descendant of vp, since the
end nodes of parallel ears in a group appear in sorted
order. So assume £ and £, are not parallel. If they

do not share an end node then this lemma follows
from Lemma 3. If they do then it is easy to complete
the rest of the proof using Lemma 4 and induction.

O

Let the end nodes of Ey, (E;) be v and w; (resp.
wa). Assume E, < E, and T} is the spanning tree in
which both E, and E, are attached to v.

Lemma 6 If the fundamental cycle created by in-
cluding the end edge of By that is incident at wy con-
tains the ears £, and Ey then for every verter w # v
on the cycle we have ear(w) > E,.

Proof: Consider the following order on the funda-
mental cycle. Start at v and trace the cycle in the
direction starting with edges of E,. Notice that once
a vertex z, where ear(z) = E, is reached then all ver-
tices that come after = should also belong to E,.Assume
there is a vertex p for some ear(p) < F,. We will
show that this assumption leads to a contradiction.
From the spanning tree construction, described in the
algorithm, it is clear that if a vertex that is on ear(p)
can be reached then one of its end nodes ¢ for which
ear{q) < ear(p) can be reached by going up the tree.
This process can be repeated until a vertex that was
used is encountered. Since the fundamental cycle is
always a simple ¢ycle the encountered vertex has to
be v. But that implies that the cycle constructed does
not contain any edges labeled F,, a contradiction. [

Remark: Notice that if w; = wy, that is E; and E,
are parallel then the lemama is vacuously true since
the fundamental cycle never contains edges of two
parallel ears.

Let {z,y} be a separation pair. From Theorem 1
we know that there exists a long ear F; containing
two nonconsecutive nodes z and y with pos(z, Ey) <

pos(y, Er).

Theorem 3 {z,y} is a separalion pair in G ff for
all nodes v that are between xp, and yg, on E; in G
we have reach/(v) C [pos(zg,, Er), pos(yg,, £1)].

Proof: The local modifications suggested in the al-
gorithm can be viewed as “local expansion™ of the
nodes. Clearly if there is no path between two nodes
that avoids the internal nodes of an ear then there is
no path that avoids the nodes of that ear in &. There-
fore the reverse implication is trivial. The following
argument establishes the forward implication.

Let E be the set of ears both of whose end nodes
are in CU{z, y} where C is the connected component
containing the segment of E) that is between z and

yin V(G) — {=z, ¥}

Let C’ be the connected component containing
the segment of £ that is between zg, and yg, in
V(G"Y—{zg,,yr }. Let E' be theset of earsin C'. We
claim that the ears of E correspond in a one-to-one
manner with the ears of E and vice-versa. Let C be
the part of the connected component corresponding
to the ears in E. We will show that ¢’ = C}.

Assume C" # Cp and let E,, € ' — C%. Notice
that there cannot be an edge from a vertex that does
not correspond to either z or y to a vertex of £, as it

would imply that the corresponding edge is present
in V(G) ~ {z,y} and hence E, would be in E.

We will first establish that E) is the minimum ear
number in C’. Notice that it is sufficient if we prove
for each split vertex zg_ of z that if zg,_ is in C’ then
E, > E;. If there were a vertex zp, with E, < F;
then consider the ear label Ey of the edge (zg,,zE,)
that connects z g, to one of the vertices of . Notice
that this edge has to be either in the spanning tree
T} or the tree obtained by reversing the directions.
Assume without loss of generality that it is in 7.
That means the subtree of T rooted at zg, does not
contain the ear F,, contradicting Lemma 5.

Assume E, greater than the maximum ear label
in C%. Also assume, without loss of generality, that
E, is connected directly to the component C% . But if
the only edges of attachment of F,, are two edges con-
nected to zp, and yg, then £, would get disconnected
when these two vertices are removed. Therefore as-
sume without loss of generality that zp, is a vertex
of attachment of B, to Cf for some E; < F,,, < E,.
If ., and E, are parallel then they are in the same
group and therefore there is a path in G from an n-
ternal node of F,, to E, that does not use either z
or y. This means B, € E. If E,, and E,, are not par-
allel, then from the previous lemma, there is a path
in G from an internal node of F,,, which uses vertices
whose ear label 18 greater than or equal to E,,. But
as E, > F,, neither # nor y can occur on this path
hence E, € E. Therefore such an F, cannot exist.
O

3.2 Planar Versions of Reach Graphs of Ears

The reach graphs E; for the ears F; are defined at
the beginning of Section 3. Refer to the edges in

=3

E(R;)— E(E;) as arcs. Define a relation on V{F;) as
follows. Two vertices z and y are related if there is an
arc between them or there exists a pair of arcs (z,u),
(y,v) with pos(e) < pos(y) < pos(u) < pos(v). Ex-
tend the relation to include »; as follows. Define z to
be related »; if there is edge {z,r;) € E(R;) or there is
an arc (x,y) and (u,r;) such that pos(z) < pos(u) <
pos(y). Now consider the partition pi,p2,...,pr in-
duced by this relation. The planar version P; of R;
is obtained as shown below. The vertex set V{(5;) is
the union of V(E;), {r;} and {vp, | p; is a partition
that does not include ;}. The edge set E(FP;) is the
union of E(E;) {{z,vp,) | « belongs to the partition
pi} and {(#,7) | « and 7; are in the same partition

The following algorithm builds P; using the con-
nected component algorithm [SV 81]. See Fig 3.

Algorithm Build P

1. For each arc (,y), identify two arcs (a,b) and
{c,d) where {a,b) = max { pos(f) | (e, f) is an
arc with pos(z) < pos(e) < pos(y)}. Define
{¢, d) similarly with max replaced by min.

. Replace each arc (z, y) with two edges (2, vee y>),
(v<wy>,y). Refer to vep ys as an arc vertez.

. If (a,b) is an edge identified with the arc (z,y)
in the first step then add an edge (ver ys>, v<a >)

4. Agsume p; is a connected component in the sub-
graph induced by the arc vertices after the Step
3. For all 7, merge all the arc vertices of p; into
a single vertex v,, using the connected compo-
nent algorithm.

Refer to the vertices resulting from the Step 4 of
the previous algorithm also as arc vertices. For each
arc vertex vp,, define lefi(vp,) (right(vp,)) to be the
pos value of the vertex on Ej; that is connected to vy,
and that has a minimum (resp. maximum) pos value.
Call the edges connecting v,, to its left and right
vertices in P;, exireme edges. It is easy to see that
each vertex of Z; can have at most one non-extreme
edge incident on it in F;.

Theorem 4 The equivalence classes defined in the
beginning of this subsection and the equivalence classes
produced by the above algorithm are identical

Proof: It is required to show that it suffices to iden-
tify the arcs {a,b) and {(¢,d) for each {z,y), where

these edges are as defined in Step 1 of the algorithm.
Define the right-maz{z,y) to be the arc (g,b). Sim-
ilarly the lefi-maz(z,y) to be the arc (e,d). Con-
sider the arcs (z,y) and (u,v) where (u,v) # (a,b),
and pos{a) < pos(u) < pos{b) < pos(v). Let left-
max(u,v) = (e, f) and right-max(z,y) = (g,h). As-
sume pos{e) < pos(f} and pos(y) < pos(h). If e, f, ¢
and h are in the same partition then ¢,b, v and v also
belong to the same partition. Otherwise we have two
arcs (e, f), (g, h) where (pos(h) — pos(e)) > (pos(v)—
pos(x)). Repeat the argument if e, f, g and A are not
in the same partition. Every application of the argu-
ment results in a new pair of arcs for which the dis-
tance between the vertices at the extreme is strictly
greater than the corresponding distance for the old
pair of arcs. As the length of F; is finite we conclude
that a,b, u and v are in the same partition. O

Theorem 5 The graphs P; resulting from the above
construction are planar.

Proof: We claim that if P; is not planar then there
exists a pair of arc vertices z,y such that subgraph
of P; induced by V(E;) U {z,y} is not planar. As-
sume the claim is not true. Let 24,24, ..., 23 be arc
vertices. Now assume that there is an arc vertex z
such that the subgraphs V(E;) U {21, 22, ..., 21} and
V(E;)U{z,2n},1 < b < k are planar but the sub-
graph V(E;) U {z, 21,29, ...,2;} is not. Consider the
following embeddings of V(E;YU{z,z,}. Assume the
graph F; is represented as a horizontal line and the
vertices z and z; and the edges incident on z and
zp appear above it. We say z;, is inside z if xp is
inside the closed curve consisting of z and part of
E; that is between left(z) and right(z). Otherwise
we say xp 18 outside z. Applying an inductive argu-
ment we can conclude the following. The node z can
be “inserted” such that the nodes that are inside z
would remain inside and the nodes outside z would
remain outside without destroying the planarity of
V(E) U]z, 21,20, ..., 2 }. The claim follows since we
assumed otherwise.

Notice that for a given arc vertex z and a vertex
w € V(E;), left(x) < pos(w) < right(z), there exists
an arc {(u,v) € E(R;) such that pos(w) < pos(v) <
pos(v). This follows from the relation defined at the
beginning of the section. That is if there is no arc
that connects the different sides of w then lefé{xz)
and right(z) cannot be in the same partition.

Assume the theorem is not true. Let z,y be two
arc vertices such that the subgraph of P, induced by

V(E;)U {2, y} is not planar. We claim that there are
two arcs (@, b) and (¢, d) , pos{a) < pos{c) < pos(b) <
pos(d), where a, b {c, d} are in the same partition as z
(vesp. y). To prove the claim assume (a,b) is the arc
obtained by applying the argument from the previous
paragraph where the arc vertex is z and w is the
vertex whose pos value is le fi(y). The second arc is
obtained by again applying the same argument but
now with the arc vertex y and w = b. But, from the
way the relation is defined, a,b,¢ and d are in the
same partition. Therefore z = y and F; is planar as
there is only one arc vertex. A contradiction. O

Theorem 6 Assuming {x,y} € V(G) the following
statements are equivalent:

(i) {z,y} is o separation pair in G.
(ii) {x,y} s a separation pair in P;.

(it} {@,y} lie on a bounded face in P; in the em-
bedding given in the proof of the previous theorem.

Proof: Note that G and its reach graph G, have
an identical set of separation pairs as mentioned at
the beginning of Section 3. If {z,y} is a separation
pair G then there is arc that connects the segment §
that is between # and y to the rest of the ear E; in
Gr. Therefore all the arc vertices that have an edge
that connects to a vertex of S should also have their
extreme edges with in the segment between z and y.
Therefore {z,y} is a separation pair in ;. Conversely
if {&,y} is not a separation pair then there is an arc
that connects the segment between z and y to the rest
of the ear E; . Therefore there is an arc vertex with
at least two edges: one connecting a vertex from the
segment, and the other connecting a vertex outside
the segment. Therefore the first two statements are
equivalent.

The equivalence between the last two statements
follows in a straightforward manner from the con-
struction given before. O

The following algorithm shows how to obtain sep-
aration pairs from the P;. Basically, starting with
F; each node is expanded linearly by considering the
edges incident on the corresponding vertexin P;. This
expanded path is then broken off at places where the
vertices from the opposite sides cannot form a sepa-
ration pair.

Algorithm Generafe-separation-pairs

For a vertex v € V{Ey), let 21,22, ..., 23 be v’'s neigh-
borsin P;. Assume &1,z € V(E;). Assume le ft{x;),
for 1 < i < k, is in sorted order. In addition, for all
7, if left(z;) = v then assume the relative ordering
of z;’s is with respect to their right(z;) in decreasing
order. Assume Pred(v) and Succ(v) refer to the ver-
tex before and the vertex after v on the line segment
under consideration.

1. If there is a non-extreme edge (2, ;) incident
on z in P; then replace z in E; by the following
two chains

Vg, Vg =V,

v’xj—vxj“*..rvxk_l.
If all the edges incident on z are extreme in P
then replace ¢ in E; by the following chain

Vg™V ™ Vg ; Vg Vi py o Vap,

where, for all 2 < i < 7, left(z;) < pos(v) and,
for all j < i<k, left(s;) = pos(v).

For an arc vertex z, let p and ¢ be vertices such
that lefi(z) = pos(p) and righi(z) = pos(q).
For each arc vertex & s r;, add an edge (Pred(p,)
Suee(g,)) and destroy the edges (Pred(p,), p:)
and (gq, Suce(ge)).

. For the arc vertex r;, destroy the edges as in
the previous step but add an edge only if there
are no non-extreme edges incident on r;.

Discard all single-vertex-paths resulting from
the previous step.

Fig 8 illustrates the local modifications suggested
by the above algorithm .

Theorem T Two vertices z,y are on a path p pro-
duced by the above algorithm if and only if z,y is a
separation pair in ;.

Proof: If x and y are consecutive on E; then the the-
orem is trivially true since the only edges destroyed
by the algorithm are the edges introduced by the
chain(s) by the first step. Therefore assume they are
not consecutive but pos(z) < pos(y).

Consider the forward direction.

We will first establish that after the algorithm ter-
minates there can be no edge between any two split

vertices v; and ve of a vertex v. From the construc-
tion it is clear that vy and vo have to be consecutive.
From the order we assumed, as explained at the be-
ginning of the algorithm, we can conclude that only
edges between split vertices are destroyed. An inspec-
tion of the algorithm reveals that there are £ — 1 split
vertices and k — 2 edges between them for each vertex
of degree k. Notice that there are exactly k¥ — 2 edges
from E(F;)— E(F;) incident on a vertex of degree k.
Since each such an edge destroys one edge in Step 2
of the above algorithm we conclude that no two split
vertices of the same vertex can be connected by an
edge after the algorithm terminates.

Now assume that the nodes z and y are con-
secutive nodes on p. Since edges are created only
by arc vertices assume z is the arc vertex that cre-
ated the edge between z and y in p. If this part
of the theorem is not true then z and y are not on
a common face. That implies there is a vertex s
such that pos(s) € [pos(x),pos(y)] and reach(s) ¢
[pos(z), pos(y)]. Since z,y and z are in the same
equivalence class the edges (z,z) and (y, z) cannot
both be the extreme edges of z. Therefore we have a
contradiction. Now consider the case when z, z and
y are consecutive on p where z and z, and z and y
are on a common face but not # and y. Notice that z
is connected to at least one of its split vertices. Since
no two vertices among «,y and z are split vertices of
the same vertex this situation cannot arise.

Conversely if z and y are not consecutive on F;
but occur consecutively on a face in P; then there
exists an arc vertex z for which (z,z) and (y, z) are
left and right extreme edges respectively. Notice that
the predecessor of z, (also the successor of y,) has to
be a split vertex of z (resp. y). As Step 2 adds an
edge between the predecessor of z, and successor of
Y, the nodes z and y are on a path generated by the
algorithm .

4 Complexity on a CRCW Pram

Maon, Vishkin and Schieber [MSV 86] describe how
to find open ear decomposition in at most O(elogn)
operations. Let 7" be the spanning tree that was used
to find open ear decomposition in the above algo-
rithm. Then the position of vertices on an ear-pos
labeling~can be computed using the Euler-tour tech-
nique of Tarjan and Vishkin [TV 84] on T by doubling
in Oflogn) time with Ofe) processors.

Consider the complexity of reach’ labeling.

The auxiliary multigraph G, can be constructed
as follows. Assume that the processor assigned to the
first edge of each ear is responsible for creating the
edge between the appropriate vertices of (.. Recall
that in the case of short ears there is only one edge
which is also the first edge. Each processor P; as-
signed to the first edge of an ear £; finds the end
nodes u and v of E;. The processor P; also finds the
ear numbers F;, Ey for which the pair u, v are interval
nodes and the values pos(u, E;) and pos(v, Ey). As-
sume the corresponding nodes in G, are ej,e;. The
processor P; creates the edge {e;, ex) and labels the
edge with a 2-tuple < pos(u, E;), pos(v, Ey,).

The « labeling of the vertices of G, consists of the
following steps. Find the blocks of G, by the algo-
rithm given by Tarjan and Vishkin [TV 84]. Treat
each block B; separately and construct a spanming
tree T3, in each block using the modification of the
connected component algorithm of Shiloach and
Vishkin [SV 81]. The articulation point v,, that rep-
resents the minimum ear label in B; can be found by
using the Euler-tour techunique. The values & and y
can be found by examining the 2-tuple labels of the
edges incident on v,,. These values are broadcast to
all the vertices in the block B; using the Euler-tour
technigue again.

Extending the o labeling to the vertices of G is
straightforward. Let P,, be the processor assigned
to the vertex e; € V(Ge). As mentioned in the con-
struction of G, Pe, can be the same processor that
was assigned to the first edge of E; in G. Now P,
can broadcast the value of afe;) to all the internal
vertices of E; using the Euler-tour technique on the
spanning tree 7" of G.

Theorem 2 gives a relation between reach/(v) and
a(v). Therefore reach’/(v) can be found by finding
the minimum {or maximum as appropriate) of the
components of « values of the edges incident on v.
This can be performed using the doubling technique
by the processors assigned to the edges incident on v.

From the explanation given above it is easy to
see that the reach’ labeling can be done in O(logn)
time using O{m) processors. The following argument
shows that ' can be constructed within the same
resource bounds.

To identify parallel ears do the following. Let
(u,v1), {u,va), ..., (1, v;) be the edges incident on a
vertex v and let Ep,, Ep,, ..., By, be their ear labels
respectively. Let the end nodesof £, | E,,, ..., F;, be

(u,wn), (u, we), ..., (u,wy) respectively. Now assume

10

the edge list at v is in the increasing order of the pos
values of wy, ws, ..., wy. This can be achieved by any
of the parallel sorting algorithms [AKS 83]. Consider
an auxiliary graph 7, where the vertices correspond
to the long ears of . Now the processor P; assigned
to the first edge of each ear E; examines the neigh-
boring edge with ear label E; to see if £y and E; have
the same end nodes. If so, F; adds an edge between
the corresponding vertices in . Now using the con-
nected component algorithm of Shiloach and Vishkin
on Gy, we can identify all groups of parallel ears.

Splitting and renaming can be achieved, for ex-
ample, by making the node labels a 2-tuple: the first
component representing the vertex label, and the sec-
ond representing the property by which the graph is
being split. In our case the second component is the
ear label of the edge that is incident on that vertex.
The edge list for the split version of the graph can be
constructed by using a parallel sorting algorithm as
explained in [TV 84].

In general the above approach can be adopted for
the construction of any locally modified graph of a
given graph.

The digraph G4 can be constructed efficiently as
shown in [MSV 86]. The same paper also contains
a method to compute lca values of non-tree edges in
O(log n) parallel time.

The only nontrivial step in the construction of the
P; is the identification of the arcs (a,) and (¢, d) for
each arc (z,y). It is easily seen that {a,b) and (¢, d)
can be found by doubling for each (z,y) in O(logn)
time using at most O(m) processors.

Finally the implementation of the algorithm that
generates separation pairs involves building a locally
modified graph. This can be done in within the claim-
ed resource bounds as explained before.

References
[AKS 83] M. Ajtai, J. Komlios and E. Szemeredi, “An

O(nlog(n)) sorting network,” Combinator-
tca 3:1, 1983, pp. 1-19.

[FT 87] D. Fussell and R. Thurimella, “ Finding
a sparse graph that preserves biconnectiv-
ity,” submitied.

MR 87] G.L.Miller and V. Ramachandran, “A new

triconnectivity algorithm and ils applica-

[MSV 86]

[SV 81]

[TV 84]

[Wh 32]

tions,” Proc. 19th annual STOC | NY, May
1987, pp. 335-344.

Y. Maon, B. Schieber and U. Vishkin,
“Parallel ear decomposition search (EDS)
and ST-numbering in graphs,” TR 46/86,
School of Mathematical sciences, Tel Aviv
University, Feb. 1986.

Y. Shiloach and U. Vishkin, “An O(logn)
parallel connectivity algorithm,” J. Algo-
rithms 2, (1981), pp. 57-63.

R. E. Tarjan and U. Vishkin, “An efficient
parallel biconnectivity algorithm,” SIAM
J. Computing, 14, (1984), pp. 862-874.

H. Whitney, “Non-separable and planar
graphs,” Trans. Amer. Math. Soc., 34
(1932), pp 339-362.

11

1.E
1

contains X,y

reach values

AW
[2.4) [1 5] (44] {1 k20, zn]

1 2 3 4 5 6 '\
pos nh:e}'r,

rE

13
%

2.A Graph G and its auxiliary graph Gg

3. The reach graph Ry of ear E; and its P

escape edges ==

(b)

& €c)

i

O

£43%,.5.6)

=1

4. Computing reach'(v)

reach'(v). 1= min { {?osiv}}u {pas(a)} u(&(b) 2.&(c) ,2}
L43,2,57

reach'(v) .2= max {{pos(v}}u{&{b) .3,@&:}»3}} =6
veach’ (v) ={1,6}

7. After local modifications

non-extreme edage

. ‘
.. S -
R J N
P.dM‘, u B » v '
v P Vq Ve vc vs b

At the node level

W‘—:-—""‘ 4' W’?s
1 4, 202 Fp3 e OnN TCE L

H

8. After Step 1

