PERFORMANCE MODELLING OF
PARALLEL COMPUTATIONS

Ashok K. Adiga

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-11 April 1988

Abstract

The design of parallel computations involves numerous decisions which effect execution efficiency. The
choice of an optimum configuration for a computation on a given architecture is essential for attaining the
maximum efficiency in terms of achieved speedup. Some of the relevant factors in the configuration
space of a computation include the granularity of a task, the communication model used, choice of depen-
dencies between tasks and the host architecture on which the application is to be run. In this dissertation,
we present a model for representing parallel computations which can be used to analyze their perfor-
mance for various configurations. Our model is an extended Petri Net with facilities to model contrel and
data flow mechanisms, as well as synchronization and communication primitives. A methodology is
developed for representing the execution of a computation on a given architecture. The methodology
consists of viewing the model as consisting of three distinct submodels (the computation, architecture and
mapping submodels) which have standard interfaces between them. Specification of a structured
methodology enables the automatic generation of model instances. In addition, it becomes possible to
specify a library from which architectures can be selected to determine if they are suitable for a given
computation. This modelling technique is then used to study the performance of computations under
variations in their configuration parameters, including their actual run-time behavior on various target
architectures.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. J.C.Browne, for his guidance and en-
couragement, without which this dissertation would not have been possible. I am
grateful for the many invaluable discussions, as well as the unwavering support he has
provided over the years.

1 am grateful to Dr. M.K.Molloy for many Petri Net related discussions,
which helped shape some of the ideas during the early stages of this work. I would
also like to thank the rest of my dissertation committee, Dr. G.J.Lipovski, Dr. Vipin
Kumar and Dr. J.Bitner for their encouragement and time.

I wish to thank the many friends and colleagues who helped me during my
graduate career at UT Austin. In particular, I would like to thank Sanjay Deshpande
for the many discussions on computer architecture, and Bapi Ahmad, Bernard
Menezes and Krishna Palem for their comments and éuggestions during various stages
of the dissertation. Finally, I would like to express my gratitude to Nancy Macmahon
for helping me survive innumerable crises.

This research was supported in part by the Department of Energy under
grant DE-FGO05-85-ER-25010 and by the DARPA under grant NO0039-86-C-0167.

Ashok K. Adiga

The University of Texas at Austin
May, 1988

TABLE OF CONTENTS

Acknowledgements e v
A DS T . ot vi
Table Of CoOmenS Lo\ttt e e et et e e vii
Chapter 1. Introduction i e 1
Chapter 2. Graph Models for Parallel Systems 6
2.1. General Transition Nets ittt ittt i i e e 9
2.0 Pt NetS . i e 9

2.1.2. Self-Modifying Nets i i i 14

2.1.3. Computation Graphs ittt 14

2.1.4. Predicate/Transition Nets 15

2.1.5. Vector Addition and Replacement Systems 17
2.2.Restricted Models e e 18

22 1. Evaluation Nets « ..ot tiec 18

2.2, 2 PrO- NS e e 19

2.2.3. Decision-free Peri Nets it 20

2.3 Augmented Models L 20
2.3.1. UCLA Graph Modelof Behavior 20

2.3, 2. SY ST EM .. e 21

2.3.3. Parallel Program Schema 21

2.3.4. Hierarchical Graph Model oot 21

2.4. General Time-Extended Models 22
2.4.1. Stochastic Petri Nets i i i i 22

242 Time Extended Petrl Nets ... it i e i e e 22
2.8, ConCIUSIONS .« vttt i e e e e e 23

Chapter 3. A Model for Parallel Computations

3.1. Modelling Parallel Computations .
3.2. Definition of the Model
3.2.1. Parallel Computation Model . .
322 FiringRules...............

3.2.3. Transition Predicates and Procedures

3.2.4. Transition Selection Policy . ..
3.3. Some Properties of the Model

3.4. Hierarchical Modelling and Parameterization

3.4.1. Subnets and their firing rules .
3.4.2. Subnet and Place parameters .
3.4.3. Scope rules for parameters . ..
3.5. Comparison with Other Models . . .

Chapter 4. A Methodology for Modelling Parallel Computations

4.1. Computation Submodel
4.1.1. Computation Graphs
4.1.2. Conversion of CGs to CSMs .

4.2. Mapping Submodel

4.3. Architecture Submodel

4.4. Advantages of this Organization ..

Chapter 5. PCSIM: A Performance Evaluation Tool

5.1. The Simulator Package
5.2. Time Resolution Mechanism
5.3. Specification of Node Attributes ..
5.3.1. Place Attributes
5.3.2. Transition and Subnet Attribute
5.4. Validation of Simulator
5.4.1. Validation against results using
5.4.2. Other Validation Results

Chapter 6. Modelling Parallel Architectures

6.1. Multibus Architectures
6.1.1. System Description
6.1.2. Modelling the Multibus System

........................
............................
............................
....................
............................
...........................

............................

............................

......................

............................
............................
............................
............................
S e ettt e
............................

Stochastic Petri Nets

............................

............................

............................
............................

...........................

25

26
27
27
28
29
31
32
33
33
35
36
37

38

39
39
41
44
47
49

50

50
52
56
57
58
59
59
60

63

64
65
67

6.1.3. Modelling Results o i i 69

6.2. Interconnection Network Architectures 74
6.2.1. System Description i 77
6.2.1.1. PrOCESSOTS oottt it e 78

6.2.1.2. MEMOTIES . .o\ttt ettt ettt i 79

6.2.1.3. Interconnection Network 79

6.2.2. PCM Representationof the ICN 84
6.2.2.1. Model for the Packet Switched ICN 86

6.2.2.2. Model for the Circuit Switched ICN 90

6.2.3. Modelling Results for Banyan ICN 96

6.3. ConcludingRemarks i 101
Chapter 7. Modelling Computations usingthe PCM 104
7.1. Interface between the Architecture and Mapping Submodels 105

7.2. Block Lower Triangular System 108
7.2.1. BLT Solution using CSLand TDFL oot 109

7.2.2. Modellingthe BLT Systerm i 113

7.3. Block Tridiagonal System i, 121
7.3.1. Model for the Tridiagonal System 123

7.4, ConClusionsttt e 128
Chapter 8. ConClusions 129

Appendix A. Equivalence of the PCM Model to Petri Nets with Inhibitor Arcs . 131
A.1. Definitionof the IPNmodel 131

A.2. Conversion from IPNtoPCMo ... 132
Appendix B. Modelling high level languages 135
B.1. Representation of CSL Constructs o ... 135
B.1.1.CSL Variables 136

B.1.2. The CONSTRUCT statementoitinntinenenen.n. 136
B.1.3.Executionoftasks i i 136

B.14 Iterationand Branching L 137

B.1.5. Synchronmizationc.iuiniiiniiiiinieniaann 138

B.1.6. CommuniCcationotiuiimtimtenetneneeanenanns 138

B.2. Task-level Data Flow Languaget 142

B.2.1.General Node ..ottt e e e e 142
B22 MergeNOGe ...t 143
B2.3. Do-all Node ..ottt e e e e e 144
B24.LoopNode ...ttt 144
B25 Caseand EndCase Nodes ittt iiennennan 145

Bibliography

Table 5-1:
Table 5-2:
Table 6-1:
Table 6-2:
Table 6-3:
Table 6-4:
Table 7-1:
Table 7-2:

LIST OF TABLES

Comparison of Simulation Results with SPAN
Comparison of Simulation Results with SPAN (cont’d)
Effective Memory Bandwidth Crossbar MRP = 1
Effective Memory Bandwidth 16x16 Multibus MRP = 1
Effective Memory Bandwidth 8x8 Multibus MRP = 0.5
Effective Memory Bandwidth 16x16 Multibus
Comparison of Simulation Results with actual executions
Tridiagonal Simulation Results

61
62
69
70
70
71
113
127

LIST OF FIGURES

Figure 1-1: Models of Computation and their Mapping 3
Figure 2-1: Graphical representation of a Petri Net 10
Figure 2-2: Reachability Graph for Figure 2-1 12
Figure 2-3: Examples of SM-nets 14
Figure 2-4: Computation Graph and its Equivalent Petri Net 15
Figure 2-5: Transition in a Predicate/Transition Net 16
Figure 3-1: Grammar for simple expressions 30
Figure 3-2: Grammar for Predicates 31
Figure 3-3: Grammar for Procedure 31
Figure 3-4: Representation of a subnet 34
Figure 3-5: Expansion of a subnet with parameters 35
Figure 4-1: Example of a Computation Graph 41
Figure 4-2: Execution of a Node 42
Figure 4-3: Computation Submodel Equivalent 43
Figure 4-4: Functions available in the mapping submodel 45
Figure 4-5: Mapping Process S to processor 0 46
Figure 4-6: Architecture Interface with the Mapping Submaodel 48
Figure 5-1: Function invoked when a transition begins firing 55
Figure 5-2: Function invoked when a transition completes firing 56
Figure 5-3: SPN Example 60
Figure 6-1: A 3x3 Multibus Multiprocessor System 65
Figure 6-2: PCM Model for Multibus System 68
Figure 6-3: Speedup vs MRP for an 8 Processor/8 Memory System 72

Figure 6-4: Speedup vs Favorite Memory Probability for an 8 73
Processor/8 Memory System

Figure 6-5: Effect of Message Lengths on Speedup 75
Figure 6-6: Interconnection Network Architectures 76
Figure 6-7: 8x8 Banyan Interconnection Network 77
Figure 6-8: A Packet Mode Switch 80
Figure 6-9: A Circuit Mode Switch Node 82
Figure 6-10: Labelling the ICN Switches 84
Figure 6-11: Implementation of a Global Clock 85
Figure 6-12: Packet Switched Switch Model 87

Figure 6-13: Packet Switched Processor Model 89

Figure 6-14:
Figure 6-15:
Figure 6-16:
Figure 6-17:
Figure 6-18:
Figure 6-19:
Figure 6-20:
Figure 6-21:
Figure 6-22:

Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:

Figure 7-10:
Figure 7-11:
Figure 7-12:
Figure 7-13:
Figure 7-14:
Figure 7-15:
Figure 7-16:
Figure 7-17:

Figure A-1:
Figure B-1:
Figure B-2:
Figure B-3:
Figure B-4:
Figure B-5:
Figure B-6:
Figure B-7:
Figure B-8:
Figure B-9:

Figure B-10:
Figure B-11:

Packet Switched Memory Model
Circuit Switched Switch Model
Circuit Switched Processor and Memory Models
Network Controller Model
Variation of Network Controller Queue Length
Comparison of Message Receive Times
Message Receive Times vs Load Factor
Processor Productivity vs Msg Length (packet)
Processor Productivity vs Msg Length (circuit)
Processor and Memory Models for the Multibus Architecture
A Triangular System
CSL Program for Triangular Solver
TDFL Solution for BLT System
PCM model for TDFL Solution
PCM Representation of Init (a) and Solve (b) tasks
PCM Representation of Matvect tasks
Delays (in psec) associated with some operations
Execution Time vs No. of Partitions
Execution Time vs No. of Partitions
Speedup vs No. of Partitions
Processor Utilizations vs No. of Partitions
Network Controller Queue Lengths
A Block Tridiagonal System
Top Level of Tridiagonal Solution
Model for Tridiagonal Subnet
Model for Lu Subnet
An Example
CSL EXECUTE and COBEGIN Statements
CSL IF Statement
CSL FOR Statement
CSL WATT and SIGNAL Statements
CSL SEND, RECEIVE and WITH Statements
Shared Access with Readers and Writers
A TDFL General Node
A TDFL Merge Node
A TDFL Do-all Node
A TDFL Loop Node
TDFL Case and Endcase Nodes

90

92

93

95

97

98

99
100
102
106
108
110
111
112
114
116
116
117
118
119
120
121
122
124
125
126
133
137
138
139
139
140
141
142
143
144
145
146

Chapter 1

Introduction

The study of sequential algorithms has lead to well known methodologies for
designing efficient computations for conventional sequential, or single processor,
computers. The design of parallel computations, however, remains an active area of
research. In a parallel computation, the overall computation is partitioned into smaller
tasks which can be executed concurrently on multiple processor computers. As a con-
sequence of this partitioning, the tasks often need to communicate among themselves
to exchange intermediate results of the computation. Further, to ensure correct execu-
tion of the computation, synchronization of execution of the tasks is also required. A
major step in the design of parallel computations is therefore the partitioning of the
computation into smaller tasks. An inefficient partitioning could lead to prohibitive
synchronization and communication overheads which would, in turn, lead to an in-
efficient realization of the computation. The execution efficiency of a parallel com-
putation is dependent on the architecture on which it is executed, since the com-
munication and synchronization overheads depend on the architectural support
provided. To design an efficient partition for a given computation, it therefore be-
comes important to be able to model the execution of the computation on a given ar-
chitecture. This would lead to a better understanding of the methodology used for
parallel computations.

The specification of a parallel computation includes the specification of a
collection of tasks and the dependencies between them [BROS85]. The dependencies
could be simple synchronization or sequencing relationships, constraint relationships
such as mutual exclusion for shared resources, or communication relationships sig-
nifying data transfer between two or more tasks. The basis for a model for parallel
computations is to be able to predict the efficiency of execution of a parallel computa-
tion on a given architecture, and to study the effect of varying different configuration

parameters of the computation. The configuration space of interest includes the fol-
lowing parameters:

e shared memory/ message model: the interaction between the tasks of a
computation can be specified using a message model, a shared memory
model, or a mixture of the two. This choice is based on the support
provided by the host architecture and the volume and size of the infor-
mation being exchanged.

e granularity of a unit: the efficiency of the computation is directly depend-
ent on the size of each schedulable unit of computation (or task). Larger
units would usually reduce the amount of parallelism possible, while
smaller units could entail additional overheads of data movement.

e computation structure: this includes the specification of synchronization
and sequencing of the units composing the computation.

e underlying or host architecture: on which the computation is mapped. If
the computation maps naturally on the architecture, the performance ob-
served will be much better.

It is clear that there are several decisions to be made when designing an ef-
ficient computation. The problem is further aggravated by the interdependence of the
factors specified above. The granularity of a unit of computation may lead to an ef-
ficient implementation on one architecture, but not on another. Processor and memory
availability on a particular architecture may decide the best computation structure for a
computation. A modelling technique which captures the behavior of the computation
is therefore invaluable as an aid to determining an optimal configuration for a given
computation and architecture.

A further degree of complexity is engendered by the fact that computations
are usually expressed in terms of some programming language which, in turn, imposes
further constraints on the execution. As shown in Figure 1-1, analysis of the execution
behavior of parallel algorithms is most often done by direct mapping of the algorithm,
which is expressed in terms of the operations of some abstract machine to the opera-
tions of some real machine architecture. There is then often surprise when a program

Algorithm mapping
Architecture
Application
Compile, load
Programming

(Binding to architecture)

High
Level
Languages

Figure 1-1: Models of Computation and their Mapping

written for the algorithm fails to perform in the manner suggested by the direct map-
ping of the algorithm to the architecture. A major source of such surprises is that the
higher level language in which the program for the algorithm is usually expressed
defines yet a third abstract machine based on yet a third model of parallel computa-
tion. There are thus two perhaps quite different mappings involved. Each mapping
may introduce additional execution cost due to differences in abstract machine ar-
chitecture. Mapping of control and communication structures, the major difference
between models of computation, are often the major sources of additional execution
cost. There is thus need for a capability to conveniently and cost effectively analyze
the execution behavior on real architectures of parallel computations expressed in
terms of programs in higher level languages.

To represent parallel computations as described, the model should:

e be able to represent, to some extent, the data state of the computation.
Unless the data state is explicitly modelled, (deterministic) data dependent
flow of control can only be modelled probabilistically, which can lead to
inaccuracies in the predicted performance.

e be hierarchical in nature. Hierarchical representations allow modelling at
various levels of granularity. In addition, changes to one level of the
model should not effect the rest of the model

e have a mechanism to specify the metrics of interest in the performance
study being conducted, with the aim of identifying bottlenecks and
restructuring the computation to obtain a more efficient realization.

e support a systematic methodology for the development of executable
representations.

There have been three basic approaches to modelling parallel systems: Dis-
crete event simulation models ([NIE69],[EFR64]), Analytic Queueing models and
Graph models (in particular, Petri Net models). Petri Nets [PET81] are useful for
modelling parallel systems because of their ability to represent asynchronous be-
havior. In addition, they provide a natural way of representing holding of multiple
resources and process blocking, both of which occur frequently in parallel systems.
The major drawback with standard Petri Nets is that the concept of fime is missing. It
is only possible to arrive at a partial ordering of events that occur in the system (which
are modelled by the firing of transitions). Several extensions to Petri Nets have been
suggested which include features to gather timing information such as total execution
times, resource holding times, communication and synchronization delays ([(NUT72],
[NOE78], [BER79], [MOLS2], [SIF79], [MARS84]). Most of these models are strictly
probabilistic in nature, and do not attempt to model the data dependent decisions
which are inherent to modelling computations. There have been few models which
incorporate the modelling of data ([EST86], [STO8S5]). All these models are described
in greater detail in Chapter 2.

Chapter 3 contains the definition of the model proposed in this dissertation.

The model is based on Petri Nets, with extensions to facilitate the performance
modelling of parallel computations. Attributes are added to the Petri Net transitions to
introduce time into the model and to model the data state of the computation. The
notion of hierarchy is introduced into the model by defining subnets. When combined
with the parameterization of nodes, this allows the modelling of complex computa-
tions (including their representation in programming languages) and architectures in a
simple and natural manner.

A methodology for representing computations is presented in Chapter 4. This
helps in ensuring correct models by allowing the automatic generation of model in-
stances for a given computation. It also permits the creation of an architecture library,
containing verified models of representative architectures, from which candidate ar-
chitectures can be selected for a modelling experiment.

A tool supporting the performance studies, based on the proposed model, is
presented in Chapter 5. The front end graphical editor allows the creation of model
instances, while simulation of the model instances yield performance statistics. The
Chapter describes the algorithms used to trace the occurrences of events in the system.
Validation results obtained for various examples are also presented.

The suitability of the model for representing parallel architectures is
demonstrated in Chapter 6. The models are verified using results available from pre-
vious research, and the verified models are used to create an architecture library. In
particular, the architectures studied can be classified as shared memory architectures,
where processors in the system communicate via a shared address space. These ar-

chitectures are then used in a modelling study of parallel computations, as described in
Chapter 7.

Chapter 2

Graph Models for Parallel Systems

Several techniques have been developed over the years for modelling com-
puter systems. This chapter presents some of the common classes of models proposed
in the past, and attempts to trace their evolution. A mode! is an abstract representation
of a system which omits details not essential to the purpose of the model. By
manipulation of the representation, new knowledge about the modelled phenomenon
can be obtained without the danger, cost or inconvenience of manipulating the actual
system itself. This knowledge could be useful when designing a new system or when
making changes to an existing one.

A model for a computer system has several applications. It serves as a formal
specification of the modelled system. In addition, it can be used to determine two im-
portant aspects of the system: correctness and performance. Correctness implies
proper system behavior under all possible external conditions, while performance
specifies its efficiency under these conditions. The most commonly used modelling
techniques are either mathematical or procedural. The former consists of sets of rela-
tions describing the system mathematically, while the latter is a description of the
various parts of the system, usually using some programming language. Solution tech-
niques used for computer system models are either simulation based or analytical.
Mathematical models are often amenable to analytical solutions, which are preferred
over simulation solutions due to their accuracy and speed. In some cases, however,
such analysis proves to be mathematically intractable, in which case simulation be-
comes the only method of solution. Procedural models are usually studied using
simulation.

Regardless of the technique used to study the model, validation of the model
is an essential step which cannot be ignored. Validation ensures that the model does,
indeed, mimic the behavior of the system being modelled. Informally, validation

should ensure that given the same set of inputs, the model and the system display
identical behavior and produce the same outputs.

The most common forms of procedural models fall under the category of
Discrete Event Simularions. Discrete Event Simulation models involve the description
of a system by a computer program and the simulation of the interactions within that
system as they occur over a discrete time interval. The system being modelled is
described using a simulation language. One of the earliest and best-known simulation
languages is IBM’s GPSS [EFR64]. While not used extensively for performance
evaluation, this language is still popular in other areas of computer-based simulation.
The major drawback of discrete simulation language models is the high cost incurred
in development and use. Further, changes in the system often lead to major rewrites of
the simulation program, which could prove to be too expensive. In most cases, the
simulation model, itself, represents a significant piece of software which might be dif-
ficult to validate or verify.

Analytic Queueing models have been widely used to model computer sys-
tems [KLE75]. They are typically simple and easy to use, and provide a means to
obtain results analytically, without having to resort to simulation. A queueing network
consists of several service facilities (resources) at which customers (jobs) queue for
service. Specification of a service facility includes specification of the rate at which
customers arrive, as well as the structure and discipline of the facility itself. Further, a
service facility can give preferential treatment to certain (classes of) customers. When
a customer completes service at a facility, or node, it moves to a new node. These
routing decisions are specified by the arcs interconnecting the nodes. If all service
facilities satisfy certain constraints, it has been shown that analytical results can be
derived for the entire network [BAS75].

There are some serious problems with using such models for parallel sys-
tems. Queueing models do not have any capabilities for proving correctness of the
system being modelled. Due to their probabilistic nature, they are unable to model
deterministic processes. It is difficult to model process blocking and the holding of
multiple resources, both of which are common occurrences in parallel systems. To
overcome these problems, extended queueing models such as PAWS [IRA86] and

RESQ [SAUS82] have been proposed. The major addition in RESQ, for example, is the
concept of passive resources which jobs can hold while receiving service at a node.
Jobs can also block while waiting for a passive resource to become available. If pas-
sive resources are used, however, the model can no longer be solved analytically.

Several Graph models have been proposed for modelling parallel systems. A
graph usually consists of nodes with interconnecting arcs. In most representations of
parallel systems, the nodes have been interpreted as representing some type of action
or transformation in the state of the system, while arcs represent flow of data and con-
trol. The basic difference lies in this interpretation placed upon the nodes and arcs. In
fact, the queueing network models discussed previously can be viewed as graph
models with a rather elaborate interpretation of the nodes as queue/server pairs. The
interpretation includes, for each queue, a service discipline, and for each server, a ser-
vice rate. Petri Nets, on the other hand, interpret nodes as being places (representing
conditions) and transitions (representing actions). Most of the earlier graph models
were used to determine the correctness of the system being modelled, and paid little
attention to the system performance. Later models have incorporated features that al-
low these performance figures to be obtained. Graph models can be broadly classified
into four groups.

e General Transition nets such as Standard Petri Nets [PET81], Computa-
tion Graphs [KAR66], Vector Addition Systems [KAR69], Self Modify-
ing nets [VAL78] and Predicate/Transition nets [GEN81]. These models
provide the basis for most of the later models, and are therefore extremely
significant.

e Restricted Models such as E-Nets ((NUT72], [NOE73]) and Decision free
Petri Nets [RAMS80]. These models place restrictions on standard Petri
Nets. Though this reduces the modelling power, the resulting model is
easier to model and analyze. In addition, these models included the notion
of time, thus allowing performance evaluation of the modelled system.

e Augmented Models such as the UCLA Graph Model of Behavior
[VER8&3], SYSTEM [YAUS83], Parallel Program Schemata [KAR69] and
the Hierarchical Graph model [STO85]. These models consist of distinct

submodels to model control and data domains. In addition, an interpreta-
tion domain is declared which contains semantic information.

e General Time-Extended models such as Stochastic Petri Nets [MOL81]
and Time Extended Petri Nets [BER79]. These models allow standard
Petri Nets to be defined with added facilities for performance evaluation.
The rest of this chapter is devoted to a study of these models. A somewhat detailed
description of general transition nets is included, since most of the extended models
proposed (including the model proposed in this dissertation), are based on them. Some
pointers are also given to the commonly used analysis techniques for such nets.

2.1 General Transition Nets

2.1.1 Petri Nets

A Petri Net model is constructed out of two sets of vertices in a bipartite
graph. One set of vertices is called the set of places and represents the set of con-
ditions. The other set of vertices, called transitions, represents changes in state or
operations. The arcs which connect the transitions and places represent the depen-
dencies between the events and conditions.

More formally, a Petri Net is defined as a bipartite, directed graph described
by the four tuple, PN = (P,T,1,0), where

P = (Pyrecees /Pg), a set of places, n 2 0;
T= (ty,-.... +tg), a set of tranmsitions, m 2 0;

I is the transition input function, I : T =-=> 2P,
or, I is a subset of PxT;
O is the transition output function, O : T =-=> 2P,

or, O is a subset of TxP;

and the sets P and T are disjoint.
The places specified by I, the Input function for a transition are called the input places
for that transition. Similarly, the places specified by the Output function for a tran-
sition are its output places. The model defined above captures the static properties of
the modelled system. The dynamic properties can be modelled by the addition of
another primitive entity called a token. Tokens reside in places and signify the exist-
ence of a condition. A marking of a Petri Net is an assignment of tokens to places.

10

This distribution of tokens in the net may change with the execution of the net. The
Initial Marking, the distribution of tokens before execution begins, is often specified
as part of the net definition. Execution of the net proceeds by firing transitions which
alter the net marking, using the following firing rules:
e A transition may fire if it is enabled. A wansition is said to be enabled if
each of its input places contains at least one token.

e The firing of a transition removes one token from each input place, and
places one token in each output place.

e At any given instance, if more than one transition is enabled, exactly one
of them is selected non-deterministically. The selected transition is then
fired, leading to a new marking.

PN = (PITIIIOIM)

P = { P,, Py, Py, Py, Pg }
= { Ty, Ty, T3: Ty, Ts }

=4

o

=3

w

Raas®
oW oW unn
P S

g

N
T Cd g S

O

Sy

3

(5]

Sag?
oW owu
o i ey iy el

g

LY

2
L]
b
©
L=
©
o
[]

Figure 2-1: Graphical representation of a Petri Net

Figure 2-1 shows the definition of an instance of a Petri Net. As mentioned
earlier, I and O are sets of functions specifying the input and output places for each
transition. The marking vector, M, specifies the number of tokens in each place. In the
figure, the only token in the net is in place P;. This distribution of tokens to places

11

(i.e. the marking) of the net at any instant defines the state of the net. The equivalent
graphical representation of this Petri Net is also shown in the figure. Places are
represented as circles, transitions as bars, and tokens as dots within places. For each
transition, arcs are drawn from its input places to the transition, and from the transition
to its output places. The only transition enabled for the marking shown in the figure is
T,. Firing transition T, causes a token to be removed from P; and leads to a new
marking with tokens in places P, and P;. Both T3 and T4 are now enabled and can
fire independently, leading to a marking M =[0,0,0, 1, 1]. In this marking, both T,
and Ts are enabled, but the firing of either would disable the other. The two tran-

sitions are said to be in conflict, and one of them is selected non-deterministically and
fired.

An execution of this Petri Net can be characterized by a sequence of tran-
sition firings which cause a succession of net markings from the initial marking M to a
final marking M. If the net does not contain two or more transitions which have iden-
tical input and output functions, this sequence of net markings also uniquely specifies
the execution of the net. Correctness properties of the net are usually determined by
enumerating all possible execution sequences by constructing a reachability ser. The
reachability set contains all markings reachable from the initial marking through a
legal sequence of transition firings. This set is commonly represented as a graph with
markings as nodes, and directed arcs connecting two markings if the firing of a tran-
sition takes the net from one marking to the other. The reachability graph for the net
defined in Figure 2-1 is shown in Figure 2-2, where the arcs are labelled with the tran-
sition whose firing caused the change in marking. Since, for unbounded nets, this
technique can lead to infinitely large reachability graphs, another technique called a
reachability tree is often used. The method for constructing the tree is similar to that
shown here, except that if firing a transition leads to a marking My which is greater
than some marking M, already encountered in the tree, all those positions (places) in
My, which are greater (have more tokens) than the corresponding position in M, are
replaced with the symbol o. This ensures that the resulting tree is bounded in size, at
the cost of losing some information about the exact markings reachable. The rea-
chability graph can be used to answer some questions about the behavior of the net .
Most of this analysis, however, is aimed at proving the correctness of the modelled
system, and not its performance.

12

/———a M = [10,0,0,0]
T

M = [0,0,1,1,0] M, = [0,1,0,0,1]

Figure 2-2: Reachability Graph for Figure 2-1

Another means of analyzing properties of such nets is the method of
invariants which uses the structure of the net along with the firing rules, and provides
a method for verifying certain facts (invariants) about the modelled system. An exten-
sive study of the theory of invariants in such nets can be found in [REI82]. The basic
idea is to identify sets of places such that the weighted sum of the number of tokens in
these places is always constant. Using this invariant and the initial marking of the net,
it is possible to generate relationships for the number of tokens in the places in the set.
This is useful for proving properties such as mutual exclusion between two places.

Several extensions have been proposed to the Standard Petri Nets (PNs)
defined in the previous Section. These extensions either extend the modelling power,
or simply make the modelling effort easier by reducing the number of nodes in the

13

graph (implicit introduction of hierarchy into the representation). It is known that the
modelling power of PNs is less than that of a Turing machine [PET81]. However,
some of the extensions introduced here lead to models equivalent to Turing machines.
The extensions which reduce the number of nodes in the graph, however, can be
shown to have equivalent representations using the basic PN model.

The most commonly used definition of Petri Nets allows weighted arcs be-
tween nodes. A weighted arc is equivalent to having multiple arcs between a place-
transition pair. The firing rule now specifies that a transition is enabled only if each of
its input places contain at least as many tokens as the weight of the arc that connects
them. Further, firing a transition causes the appropriate number of tokens to be
removed from the input places and placed in the output places. Petri Nets with
weighted arcs are equivalent to standard Petri Nets in their modelling power.

Colored Petri Nets [PET80] are Petri Nets in which tokens are typed (or have
colors). The state of a place node is now represented by a vector specifying the num-
ber of tokens of each type present in that place. The enabling rule for a transition is
modified to require a certain combination of typed tokens at the input places for ena-
bling the transition. When a transition fires, it removes its enabling tokens from the
input places, and places a combination of typed tokens in its output places. This is
implicit introduction of hierarchy into the representation basis of simple Petri Nets
since a complex net structure in a simple Petri Net can be reduced to a single transition
and its input/output place set in a Colored Petri Net. If the number of colors (types)
allowed is finite, the resulting Colored Petri Net is equivalent to PN. If an infinite
number of colors is allowed, however, the model becomes equivalent to a Turing
Machine.

Another modification to PNs is to define an arc type called an inhibiror arc
[KOS73]. This arc can only connect a place to a transition, and implies that the tran-
sition can be enabled only in the absence of a token at that place. Again, PNs with
inhibitor arcs are equivalent in modelling power to Turing Machines [AGE74].

14

2.1.2 Self-Modifying Nets

(@) (b)

Figure 2-3: Examples of SM-nets

Self-Modifying Nets (SM nets, [VAL78]) is an extension to Petri Nets, in
which firing rules of transitions can be changed over the execution of the net. The
extension over PNs is that arcs can be labelled either with integer weights (as in the
case of Petri Nets), or with an arbitrary place name (say, P;), as shown in Figure
2-3(a). For transition T to fire in a marking M, P, should contain as many tokens as
are present in place P, in that marking. Since the number of tokens in P, can vary
over the execution of the net, the firing rule for transition T; can be dynamically
modified. Figure 2-3(b) shows how SM nets can easily model inhibitor arcs. In the
figure, P, is a special place with no input arcs, and is therefore always empty. Ty thus
fires only if P, contains exactly zero tokens, which is equivalent to having an inhibitor
arc from P to T;.

2.1.3 Computation Graphs

Computation Graphs were one of the earliest models of parallel computation
proposed [KAR66]. They were mainly designed to represent execution of programs
evaluating arithmetic expressions in parallel. A Computation Graph is a finite,
directed graph where each vertex represents an operation, and each (directed) arc
represents a queue of data items used by the target operation and produced by the
source operation. Each arc has, associated with it, some control information. This
information is expressed as a four tuple (I, V, W, T). I is the initial number of data

15

items in the queue; V is the number of data items produced by the source for each
execution; T, the threshold, is the number of items required by the target operation
before it is enabled, and W is the number of items actually consumed by the target for
each execution. Obviously, W < T should hold for each arc.

<0,22,1> <1,1,1,1>

oo Y i
™ A 4

<2.2.1.1> C

Figure 2-4: Computation Graph and its Equivalent Petri Net

Each instance of a Computation Graph has an equivalent Petri Net representation with
each arc being replaced by a place and each vertex by a transition. The initial Petri Net
marking is defined by the initial number of data items, I, in each arc. Figure 2-4
shows the transformation of a Computation Graph into an equivalent Petri Net. The

modelling power of Computation Graphs is known to be less than that of Petri Nets
[PET81].

2.1.4 Predicate/Transition Nets

Predicate/Transition Nets [GEN81] are a class of colored Petri Nets with
predicates associated with transitions, and expressions (possibly containing variables)
associated with arcs. In any given marking of the net, a transition is enabled if there is
an assignment of tokens (colors) such that the arc expressions are satisfied (by binding
any existing variables), and the transition predicates hold under this assignment. This
generalization of ordinary Petri Nets allows more manageable descriptions of nets, due
to the fact that equal subnets can be folded into each other yielding a much smaller

16

net. The two common analysis techniques used for Petri Nets, the reachability tree and
invariant approaches, can both be generalized to apply to these Predicate/Transition
nets [GENS81].

686
@@ 2x

<X,y>+<X,2>
y<z

<y,z>

&
&

Figure 2-5: Transition in a Predicate/Transition Net

Figure 2-5 shows a predicate/transition net fragment. The places contain
tokens which have structure and information (i.e. are colored). The arcs have expres-
sions associated with them which contain variables (x, v and z), which are bound
using the values of the tokens. The transition has a predicate associated with it, which
must hold for the transition to be enabled. In the figure, the transition is enabled for
two possible assignments of values to the variables (<x,y,z> = <a,b,c>, and <x,y,z> =
<b,b,c>). The two firings conflict with each other (for the token *b¢’ in the lower lef-
thand place), and only one can be fired for the marking shown. The arc label
‘<x,y>,<x,z>’ indicates that upon firing, two tokens will be placed in the output place,
and the information contained in those tokens will be <x,y> and <x,z> respectively.

17

2.1.5 Vector Addition and Replacement Systems

Vector Addition Systems (VAS) are mathematical models for analyzing sys-
tems of parallel processes [KAR6G9]. Because of their simple formulation, these sys-
tems are typically used for formal proofs of properties of equivalent models such as
Petri Nets.

An r-dimensional VAS is defined by the two-tuple <d,W>, where d, the starz
vector, is an r-dimensional vector of non-negative integers and W is a finite set of
r-dimensional integer vectors called displacement vectors. The Reachability set is the
set of all vectors of the form:

d+ w +wy, + ... + w,
such that
wi £ W i=1,2,...s

and
d+w +w, + ... 0+ w2 0 i=1,2,...,8

kN
In other words, a displacement vector may be applied at any point if the resulting -
vector has no negative integers. It has been shown that these systems are equivalent to
self-loop free Petri Nets. The dimensionality, r, corresponds to the number of places
in the corresponding Petri Net. The start vector corresponds to the initial marking of
the Petri Net, and each displacement vector corresponds to the change in marking that
occurs if a transition fires. Each displacement vector, therefore, corresponds to a tran-
sition in the Petri Net. Since the *displacement’ caused by a self-loop in a Petri Net is
zero, this cannot be represented in a VAS.

Vector Replacement Systems (VRS) were defined to directly model Petri
Nets with self loops in a vector addition system-like model [KEL74].

A VRS is defined to be a two tuple <d,W>, where d is defined as before, and
W is a finite set of pairs of r-vectors:

W= { Uy, V; } i=1,2,...m

where the U vectors are test vectors, and the V vectors are the displacement vectors.

18

Before a displacement vector can be applied, the corresponding test vector is used to
check if it is legal. The reachability set is now redefined to be the set of all vectors of
the form:

d+vl+v2+ ceee F oV,
such that
vy, EV i=1,2, s
and
d + vy F vy + L. oy 2 0 i=1,2,...,=
2.2 Restricted Models

In this section, the models described are restricted forms of the standard nets
described in the previous section. These restrictions, while decreasing the modelling
power, enhance the analytical power of the models.

2.2.1 Evaluation Nets

The Evaluation nets (E-nets) developed by Nutt [NUT72] are similar to Petri
Nets in appearance and operation. There are, however, some restrictions and modifica-
tions to standard Petri Nets which are listed below:

1. All wransitions are constrained to be of five predefined types.

2. Places can have at most one input and one output arc. This means that
there cannot be any conflicting transitions. A place can hold zero or one
token only: the net is safe.

3. A special place type (called a resolution place) is introduced which acts
as a switch. Its operation is controlled by resolution procedures which
can read token attributes.

4. Tokens are have attributes which distinguish them from each other.
These attributes are modified by transition procedures which are invoked
by the firing of a transition.

5. The firing of a transition introduces a fixed delay. This feature intro-
duces time into the net.

19

6. Some global ’environment variables’ are defined which maintain global
state information. These variables can be modified by transition
procedures.

The first two conditions simply reduce the state space and make the net
easier to analyze. Conditions 3 & 4 imply that data dependent control flow is now
possible, since the resolution ’switch’ operates on token attributes. Conditions 4 & 5
allow timing information to be collected in tokens. This information can be eventually
aggregated using an environment variable. The existence of environment or global
variables is the major drawback in this model. This makes analysis of the behavior of

the model very difficult. The only feasible way to study the behavior of these model
seems to be by actual execution of the model.

An extension to E-nets was proposed which allowed macros to be defined
[NOE73], and then using these macro nets to model more complex systems. While

this does not add to the modelling power of E-nets, it makes the representation easier
to understand.

These nets are capable of modelling complex systems. Noe and Nutt used
macro E-nets to model the behavior of the CDC6400 system [NOE73].

2.2.2 Pro-Nets

This model is based on a modified form of E-nets [NOE78]. One basic type
of wransition is defined, which has a set of conjunctive (AND) inputs and a set of
selected (OR) inputs. To be enabled, all the AND inputs should have exactly one
token, and at least one of the OR inputs should have a token. Upon firing, each AND
output gets a token, and one OR output gets a token. The interesting contribution of
this work was to show how Pro-nets could be represented by Vector Addition Sys-
tems, which could then be used to mechanically abstract the original net to simpler
nets by collapsing selected places and transitions.

20

2.2.3 Decision-free Petri Nets

Decision-free Petri Nets [RAMS8O0] are Petri Nets in which each place has ex-
actly one input transition and one output transition. Though these nets have several
interesting properties, their major drawback is that they cannot be used to model con-
tention, since transitions cannot share places. The transitions in these nets can be
specified with fixed delays.

2.3 Augmented Models

The augmented models are implemented with three distinct submodels. The
first is the control which is equivalent to one of the previous models. There are inter-
pretation procedures which are associated with each operation in the control. Finally,
there are data storage cells where interpretation procedures can read or write infor-
mation.

Though these models offer an ease of expression for some complex systems,
due to the encoding of state information into data representation, analytical represen-
tation of the states becomes cumbersome. In most cases, simulation of the system
must be used to measure its performance.

2.3.1 UCLA Graph Model of Behavior

The control domain consists of nodes (corresponding to events), arcs which
model precedence relations between events, and tokens which reside in arcs (which
model presence of conditions required for an event to occur). The input or output arcs
at a node can be related using logic operators (AND, OR, prioritized OR). The data
domain consists of processors which are mapped to control domain nodes on a one-to-
many basis. Each processor has predefined datasets from which it may read or write.
A processor is activated when any one of its control nodes is activated. The data trans-
forms performed and the delays associated with the processor are defined by the inter-
pretation domain. This extended model allows various queueing phenomena to be
modelled, such as different service types at control nodes. A detailed description of
this model is given in [VER83] and [EST86].

21

2.3.2 SYSTEM

SYSTEM is a modified form of Petri Nets designed for modelling distributed
software systems [YAU83]. The control domain is a Petri Net graph with certain
modifications. Input and output arcs can be connected by logic operators, and logic
expressions for output arcs can be data dependent. Each transition of the control
domain is viewed as a software ’component’, with associated data objects. This
defines the data domain. Further, each transition has a set of abstract data types
defined. A data transfer specification function is defined for each transition, which
specifies what operations are to be applied to the data objects. This specification,
along with the abstract data types, forms the interpretation domain.

2.3.3 Parallel Program Schema

The Parallel Program Schema [KARG69] consists of a set of M memory loca-
tions, a finite set A, of operations, and a control T for the sequencing of operations.
The control T is basically a transition system consisting of a set of states, a finite al-
phabet with a set of initiation and termination symbols for each operation, and a next-
state function. This forms the control domain. The data domain consists of the
memory locations defined by M. Further, each operation has a domain of memory
locations, D(a) from which it can read values, and a range of locations, R(a) to which
it can write its results. The actual performance of an operation is called the interpreta-
tion of the operation.

2.3.4 Hierarchical Graph Model

The Hierarchical Graph model [STO85] was proposed as a tool for modelling
software systems. In this model, a process is viewed as a three tuple: <D, SP, CF>,
where D is the data model, SP is the static program model, and CF the control flow
model. The data model is defined by an H-graph grammar which represents the pos-
sible local data states for the process. The static program model is a collection of
"basic blocks’, where each block is a linear sequence of procedure calls. The inputs
and outputs of the procedure calls are specified using selector functions to extract
values from the corresponding data model. The control model is a timed Petri Net
which specifies the sequence of execution of the basic blocks.

22

2.4 General Time-Extended Models

The models described here do not restrict Petri Nets, but extend the model to
include timing information. Since these models use standard Petri Nets, the usual
analysis can be done on them. The models we consider fall into two broad categories:
Stochastic Petri Nets (SPNs) and General Timed Petri Nets (GTPNs). Stochastic Petri
Nets are historically important since they provided the first bridge between queuing
networks and Petri Nets.

2.4.1 Stochastic Petri Nets

Stochastic Petri Nets [MOL81] are Petri Nets which are extended by assign-
ing random variables representing firing delays to each transition. The set of SPNs
with exponentially (or geometrically) distributed delays is shown to be homomorphic
to the set of all homogeneous Markov chains. The state of a Petri Net is represented by
its marking. Using the equivalent Markov model, the steady state probability of each
of these states can be calculated. This information can be used in evaluating perfor-
mance measures such as average delay and average throughput. Two advantages of
this model are the simplicity of specification and the verification step provided by the
automatic generation of the state space. Some extensions to SPNs include allowing
transitions with no firing delay [MAR84] and arbitrary delays [DUGS85]. Transitions
with zero delay have precedence over the other transitions. This reduces the set of
reachable states in the extended model compared to the basic SPN. When arbitrary
delays are introduced, however, the net cannot be solved using the usual Markovian
analysis and must be simulated. One drawback with SPNs is the explosion in the size
of the Markov chain as the size of the Petri Net is increased (i.e. as places or tokens
are added to the net).

2.4.2 Time Extended Petri Nets

Time Extended Petri Nets (TEPNs) were proposed by Berlin [BER79]. The
basic extension in TEPNSs is to differentiate between ’active’ and ’enabled’ tokens.
Each token has a delay associated with it. A transition is enabled when each of its
input places contains an active token. These active tokens are now converted to
’enabled” tokens and can no longer cause any other transition to be enabled. Tokens
are delayed for a time equal to the delay time associated with them. The Parallel-
Program Reconfigurable-Architecture Performance (PRP) model [KAPS82] associates

23

delays with transitions rather than with tokens, thereby leading to a more natural
representation. Each TEPN place has an asynchronous clock and a set of performance
functions which allow the evaluation of performance measures for that place. Finally,
tokens have attributes which can be modified by transitions. As is the case with SPNs,
the degenerate case of TEPNS is the standard Petri Net upon which standard Petri Net
analysis can be done. Another model, the Generalized Timed Petri Net model
(GTPNs) proposed by Holliday and Vernon [HOLS85] is the timed Petri Net equivalent
of GSPNs. This model places no restrictions on the structure of the net, other than
requiring it to be bounded. Delays are associated with transitions and can be deter-
ministic or geometrically distributed. The model allows analysis by creating the em-
bedded discrete-time Markov chain and solving for steady state values. As with SPNs,
the GTPN has the drawback that the embedded Markov chain explodes in size as the
size of the Petri Net is increased.

2.5 Conclusions

Graph models have been widely used for performance modelling of computer
systems. The descriptions given in this Chapter were necessarily brief; a more com-
prehensive description and comparison of various graph models for performance can
be found in [BROS87].

The previous sections have described several Petri Net based models for
modelling parallel systems or computations. The difference between modelling paral-
lel systems and parallel computations is that parallel computations are, in general, ex-
pected to terminate, whereas parallel systems are modelled assuming that they never
terminate. Also, parallel computations have a strong notion of flow of control and data
that is not explicit in parallel systems. In general, however, most models are capable
of representing both parallel systems as well as parallel computations.

A performance model for parallel computations should have the following
capabilities: the ability to represent the flow of control for individual processes in the
computation; the ability to represent the data state for the computation; representations
for interprocess communication and synchronization; inclusion of timing information

in the model so that the performance of the computation can be determined by analysis
or simulation of the model.

24

The general transition nets provide the basis for most of the other models.
They are useful for formal specifications of parallel computations, but are inadequate
for our purposes. A major drawback with these nets is that they do not include timing
information and they cannot be used to make performance estimates. The restricted
models (such as E-nets) can be analyzed to yield performance estimates, but lack the
modelling power of the more general models. The augmented models have the power
to model general parallel computations. The separation of the data and control
domains, however, tends to obscure the interactions between processes in the com-
putation. Stochastic Petri nets have proved to be extremely useful for modelling paral-
lel systems. However, they are inadequate for representing parallel computations since
there is no concept of a data state. It is not possible to make decisions depending on
the current data state of the computation. A desirable model, therefore, would include
the power of the general time extended nets and the augmented models’ ability to
represent data dependent control flow.

Chapter 3

A Model for Parallel Computations

Most of the models discussed in the previous Chapter dealt with the represen-
tation of parallel systems. The model presented here deals specifically with the
representation of the execution of parallel computations. Although the two have many
common issues, there are some problems unique to parallel computations. In par-
ticular, such models must allow some mechanism for representing data-dependent
control flow. The flow of control and data in the model should faithfully reflect that of
the actual program. A more serious problem is the existence of global variables in
programs. There seems to be no elegant way to represent such variables since global
variables, by definition, can be altered almost anywhere in the program. The choice of
a Petri Net based model, however, allows most of the synchronization and com-
munication primitives to be directly modelled. The Parallel Computation Model
(PCM, [ADI86]) is based on Petri Nets [PET81], and is somewhat similar to the
Parallel-Program Reconfigurable-Architecture Performance (PRP) model proposed in
[KAPR2], the main difference being the explicit control flow permitted in our model.
The transition predicates and procedures proposed here are derived from the program
verification model proposed in [KEL76]. The rest of this Chapter is organized as fol-
lows. Section 3.1 contains a brief discussion of the capabilities required for modelling
parallel computations. A formal definition of the model follows in Section 3.2. Section
3.3 discusses some properties of the model such as representation of state of the net
and its modelling power. Extensions to the model to include hierarchical modelling
and capabilities to model dynamic parallel computations are introduced in section 3.4.

26

3.1 Modelling Parallel Computations

The Computation Model described in this Chapter was designed with several
goals in mind. Before presenting a definition of the model itself, a description of these
goals is given. The basic capabilities required of the model are as follows:

e representation of the execution behavior of parallel computations

e ability to model both high level language constructs and architectural fea-
tures

e introduction of time into the model to enable performance evaluation

e flexibility to use the model to study the execution efficiency of the com-
putation at different points in its configuration space
The rest of this Section describes each of these points in greater detail.

The basic idea of the model is to be able to represent the execution behavior
of parallel computations. The model should be able to capture some of the standard
features of parallel computations such as synchronization and communication between
processes and parallel execution of processes. It should also be able to model sequen-
tial program constructs such as iteration and branching. An important factor is that the
model should be able to capture the actual execution overheads involved when the
computation is run on a given architecture. This implies that the model must have the
capability to model the underlying architecture on which the computation is to be run.
Also, as previously noted, there should be some representation for the data state to
allow explicit data-dependent flow of control.

The model should be able to represent parallel computations expressed in
high level languages, as well as architectural features. One possible use for the model
would be to take existing programs in high level languages, and translate them into
instances of the model. The behavior of this model instance could then be studied on
various architectures to obtain the best match.

The model is to be used as a vehicle for predicting the execution efficiency
rather than correctness of the computation being studied. Most of the design decisions,
therefore, are predicated upon a performance evaluation viewpoint rather than a

27

theoretical view of Petri Nets. Since standard Petri Nets do not have the notion of
time, only a partial ordering of transition firings can be obtained by analyzing the net.
An extension must be provided, therefore, to model time more accurately.

Since the model is to be used to study the execution of a computation under
various configurations, it must be flexible enough to allow easy modification of an
instance of the model. In particular, it should be possible to alter factors like the de-
gree of parallelism, the communication model and the underlying architecture without
excessive overhead.

3.2 Definition of the Model

This Section contains a formal definition of the Parallel Computation Model
(PCM), a model which captures the execution behavior of parallel computations. The
model is an extended form of Petri Nets, with additional features to enhance the
modelling of data dependent control flow, as well as hierarchical modelling to allow
different levels of abstraction.

3.2.1 Parallel Computation Model

The Paralle] Computation Model (PCM) is defined by the three-tuple
PCM = (PN, SV, TA)

where

PN = (P, T, I, O, M), a Petri Net, where
P = {py,..,Py}, @ set of places,n =z 0
T = {ty,..,ty}, a set of transitions,m 2 0
I is the transition input function, I : T =--> 2%,
or, I is a subset of PxT;
O is the transition output function, O : T --> 2%,
or, O is a subset of TxP:;
M= [U,...,H,], a vector of integers specifying
the initial marking of the net;
and the sets P and T are disjoint

SV is a two-tuple <V, IV>

and

V= {vy, vy, .e,vr};a set of state variables, r 2 0
IV = [ivy,...,iv.], a vector of integers specifying

28

the initizal wvalues of the state wvariables;

TA = is a three-tuple <II, ®, T>
and
V) = {n (M), 7 (V), ..., il (M)},
a set of predicates,
DV) = {0(V), (V). 0p (W)},
a set of procedures,
T(V) = {1,(V), T(V), ..., (V) },
a set of delays,

The basic underlying structure is the standard Petri Net PN. In addition, the
model allows a set of program variables (V), and attributes associated with each tran-
sition (TA).

Each transition t; in the model defined above has a corresponding predicate
7;(V) and a transition procedure ¢;(V). The predicates are defined on program vari-
ables, and are used to enable transitions under the modified firing rules. The transition
procedures also operate on elements of V and can be used to modify them. The func-
tion T;(V) specifies the delay associated with transition t;, and can also be a function of
the set of program variables.

3.2.2 Firing Rules

The definition of the model is completed by specifying the modified firing
rules. A transition can be in one of three states: disabled, enabled, or firing. The rules
governing transition state changes are as follows.

1. A disabled transition t, is enabled if:
‘v’pj
and
n; (V) is true

each of its input places contains at least one token in its enable region
and the predicate corresponding to the transition is true.

2. An enabled transition t; enters the firing state by removing one token
from each of its input places:

29
Vpy € I(t;), Uy < Hy -1

3. A transition t; remains in the firing state for a period of time specified by
its delay function 1;(V). A the end of this period, it places a token in the
enable region of each output place, and executes its associated proce-
dure. It then returns to the disabled state:

ij
and
6; (V) is executed, updating the state vector V

€ 0O(t;), Hy < My + 1

4. An enabled transition must continue to satisfy rule 1 until it enters the
firing state, failing which it reverts to the disabled state.

Rule 1 states the conditions for a transition to be enabled. As with ordinary
Petri Nets, each of its input places should contain at least one token; in addition, its
predicate should be true. When a transition enters the firing state (Rule 2), it merely
removes its enabling tokens. Transition firings are no longer instantaneous, as in the
case of standard Petri Nets. Tokens appear on the transition’s output places only after
a certain delay, as specified in Rule 3. There are two ways in which the firing of a
transition can effect other transitions (Rule 4). When a transition starts firing, the
removal of tokens from its input places could cause other enabled transitions to be-
come disabled. Also, when a transition completes firing, it modifies the marking as
well as the state of the program variable vector, thereby causing other transitions to be
either enabled or disabled.

3.2.3 Transition Predicates and Procedures

Transition predicates are bi-valued logic expressions in terms of the set of
state variables V. Evaluation of a predicate depends on the current (data) state of the
model, and returns either a true or false value, which is used to condition the enabling
of its associated transition. The completion of firing of a transition is marked by the
execution of its procedure, which is merely a sequence of assignment statements
which update the elements of V.

30

The transition predicates and procedures are defined by means of a context-
free grammar. All non-terminals in the grammar are enclosed within angular brackets
"<’ and ’>’. Any symbol not enclosed within the brackets is a terminal symbol. The
terminals in the grammar consist of the common logical and arithmetic operators
which allow general boolean and arithmetic expressions. In addition, two special ter-
minals, VAR and NUM are defined. For the predicates and procedures, VAR always
refers to a state variable (i.e. an element of the set V), while NUM is any integer. The
grammar specified below can be roughly classified into three groups: arithmetic ex-
pressions, predicate expressions and procedure statements. Each will be described in
more detail next.

Figure 3-1 shows the part of the grammar that specifies general arithmetic
expressions. Since the only values allowed are signed integers, the operations defined
in the expressions are addition, subtraction, multiplication, and integer division and
modulus. The grammar is structured to enforce the appropriate precedence between
the operations (i.e. left to right evaluation except when the second operation has a
higher priority than the first.)

<aterm>

<aexpr> + <aterm>
<aexpr> - <aterm>
<afactor>

<aterm> MOD <afactor>
<aterm> / <afactor>
<aterm> ¥* <afactor>

{ <aexpr>)

VAR

NUM

<aexpr>

<aterm>

N Y N

H
'w)
N e

<afactor>

Figure 3-1: Grammar for simple expressions

The next segment of the grammar (Figure 3-2) defines the transition predi-
cates. A predicate consists of atoms which are connected using the logical operators
AND and OR. Again, the structuring of the grammar enforces the precedence relations
between the operators NOT, AND and OR. Each atom represents a boolean condition

31

of the form specified in rules 22-27, where two arithmetic expressions are compared
using a relational operator.

i3 <pexpr> ::= <pterm>

14 / <pexpr> OR <pterm>
15 <pterm> ::= <pfactor>

16 / <pterm> AND <pfactor>
17 <pfactor> ::= (<pexpr>)

ig / <patom>

i¢ / TRUE

20 / FALSE

21 / NOT <pfactor>

22 <patom> ::= <aexpr> = <aexpr>
23 / <aexpr> <> <aexpr>
24 / <aexpr> <= <aexpr>
25 / <aexpr> >= <aexpr>
26 / <aexpr> > <aexpr>
27 / <aexpr> < <aexpr>

Figure 3-2: Grammar for Predicates

The transition procedure is a sequence of simple assignment statements. Each assign-
ment (rule 30 in Figure 3-3) has a single state variable on the left hand side, and an
arithmetic expression on the right. Execution of the procedure causes each arithmetic
expression to be evaluated, and the result stored in the corresponding state variable.

28 <proc> ::= <assnmt>
29 / <proc> ; <assnmt>
30 <assnmt> ::= VAR <~ <aexpr>

Figure 3-3: Grammar for Procedure

3.2.4 Transition Selection Policy

When two or more enabled transitions share a common input place, the selec-
tion of one of these transitions for firing could cause the others to become disabled.
The definition of the model is incomplete without specification of a policy for select-
ing a transition for firing from a set of conflicting, enabled transitions. The nondeter-
minism introduced by this policy adds to the power of the model. Several selection
policies have been used in previous models. The conflict resolution submodel implicit
in the Stochastic Petri Net (SPN) model [MOLS81] is based on competing transition

32

delays. The transition with the shortest firing time wins the conflict. In the continuous
time SPN model, only one transition can complete firing at any instant. Given a set of
conflicting transitions, the probability that a certain transition t; completes firing first
is equal to t;’s firing rate divided by the sum of the firing rates of all the competing
transitions.

In our model, however, the conflict is resolved before any of the transitions
begin firing. At any instant, a transition is selected from the set of enabled transitions
with equal probability. After this transition begins firing, a new transition is selected
from the modified set of enabled transitions. This process is repeated until no tran-
sitions remain enabled. In other words, any transition that can start firing is guaranteed
to do so immediately, unless it is disabled by the firing of a conflicting transition.
Also, several transitions may complete firing at any instant.

3.3 Some Properties of the Model

The state of the PCM net at any instant can be specified by the state of each
node in the net, and the data state at that time. The state of each place is the number of
tokens currently residing in that place. The state of a transition is specified by its
Remaining Firing Time (RFT, [ZUB80]), which specifies the time required for
completion of firing of the transition. If the transition is not firing, its RFT is zero.
Since the variables allowed in the model are all integers, the data state is given by a
vector of integers, each specifying the current value of a variable.

If the state variables are disallowed, the model reduces to a timed Petri Net
similar to the Generalized Timed Petri Nets defined by Holliday [HOL85], and similar
techniques can be used to analyze the model. The addition of the unconstrained predi-
cates and procedures, however, inhibits such analysis.

The modelling power of the PCM model is equivalent to that of a Turing
machine. The proof of equivalence consists of showing the equivalence of the PCM
model to Petri Nets with inhibitor arcs, which are known to be equivalent to Petri Nets
in their modelling power. A formal definition of Petri Nets with inhibitor arcs, along
with the reduction of the IPN to an equivalent PCM are shown in Appendix A.

33

3.4 Hierarchical Modelling and Parameterization

Petri Net models are well suited for hierarchical modelling. It is possible to
collapse entire subnets into a single transition, where the firing of the transition im-
plies execution of the contained subnet. This allows the user to model a system at
different levels of abstraction. In addition, the representation shown below allows
powerful parameterization features to be incorporated in an elegant manner. The
parameterization greatly reduces the number of nodes in the Petri Net graph, and al-
lows specification of subgraphs dependent on the dynamic state of the net. This fea-
ture has proved to be extremely useful for the representation of parallel computations,
whose structure often depends on an intermediate computation state. It also allows a
structured approach to modelling, which is the basis for the methodology presented in
the next Chapter.

3.4.1' Subnets and their firing rules

PCM supports hierarchical modelling by allowing transitions to be specified
as subners. A subnet transition has a subgraph associated with it. This subgraph is
constrained to begin and end with special transitions called the initiating and
terminating transitions. Figure 3-4 shows a subnet transition and its associated sub-
graph. The firing rules for the subnet transition are slightly different from the general
firing rules given earlier, and are specified next. As before, the transition can be in one
of three states: disabled, enabled or firing. In the following text, subnet transitions are
simply referred to as subnets.

1. A disabled subnet t; is enabled if each of its input places contains at least

one token and the predicate 7;(V) corresponding to the subnet is true.

2. An enabled subnet t; enters the firing state by removing one token in
each of its input places. At this point, the subnet is said to be acrive. In
addition, the initiating transition of its associated subgraph enters the
firing state.

3. A subnet t; remains in the firing state until the terminating transition of
its associated subgraph fires. At this point, the subnet ceases to be ac-
tive, places a token in the enable region of each output place, and ex-
ecutes its associated procedure ¢;(V). It then returns to the disabled state.

34

O T_initiate
000 ()

Subnet |] L > Subgraph

| O o000
O T_terminate

Figure 3-4: Representation of a subnet

4. An enabled subnet must continue to satisfy rule 1 until it enters the firing
state, failing which it reverts to the disabled state.

The rules specifying conditions for the subnet to be enabled (Rules 1 & 4) are
identical to those for general transitions. The other two rules specify the actual firing
of the subnet. As in the case of ordinary transitions, subnets begin firing by moving
tokens from their input places from the enable to hold regions. Instead of simply in-
troducing a delay at this point, however, control is passed to the subgraph associated
with the subnet. This is achieved by firing the initiating transition of the associated
subgraph. Similarly, the firing of the terminaring transition of the subgraph signals
the completion of firing of the subnet.

The introduction of subnets into the model raises an important issue: can
transitions within a subnet be enabled if their parent subnet is not active? The decision
taken in our model is that for a transition to be enabled, it should belong to an active
subnet. This choice is well founded if subnets are considered to consist of actions that
are logically related. Unless the global conditions for the entire set of actions is true, it

35

is meaningless to allow individual actions to occur. In other words, unless the subnet
itself is firing, it makes little sense to allow its component transitions to fire.

3.4.2 Subnet and Place parameters

The model allows parameters to be associated with subnets and places. This
feature provides a compact representation for multiple replications of identical net
fragments. This is especially useful, since our experience with parallel computations
has shown that they often contain several streams of identical statements to be ex-
ecuted in parallel. Also, the parameters can be dependent on the set of program vari-
ables, thus allowing the representation of dynamic nets.

Figure 3-5 shows a parameterized subnet and its equivalent expanded net.
This expansion is done at the time the subnet becomes active. In the figure, the only
subnet parameter specified is i, which takes values from 1 to 2.

SUBNET PARAMETER: i=1..2

T1G) =
P2(ij) PI(1)

Pi(i)

P2(1,1)

Figure 3-5: Expansion of a subnet with parameters

36

These values are applied to all nodes in the subnet with the exception of the initiating
and terminating transitions. Application of a parameter to a node includes replication
of the node with the parameter value substituted in all the node attributes. In Figure
3-5, for example, application of the parameter i to node T1(i) results in two nodes
T1(1) and TI1(2). If the parameter i occurs in any of transition T1’s attributes
(predicate, procedure or delay), it is replaced by either 1 or 2.

Places can also have parameters associated with them. Place P2(i,j) in Figure
3-5 shows a place with parameter j going from 1 to i. For the stream with i equal to 1,
this implies a single place P2(1,1), while the other stream (with i equal to 2) has two
places P2(2,1) and P2(2,2). This allows compact representation of multiple places as
inputs or outputs to a single transition.

3.4.3 Scope rules for parameters

Bounds for subnet and place parameters can be expressed in terms of simple
integer values, program variables, and other parameters. They can also be specified as
expressions consisting of all three types. The use of integer values needs no clarifica-
tion. Where program variables are used, the value used is the value of the variable at
the time the subnet becomes active.

Whereas integers and program variables can be used anywhere in the net, the
use of parameters as bounds for other parameters is allowed only in conjunction with
some scope rules. There are two cases where this situation arises. The simple case is
when a subnet parameter list contains two parameters, with one parameter being a
bound for the other. In this case, the horizontal scoping rule applies, which states that
a parameter be declared before it is used. For example:

i=1¢%tob5;, j=2 to i;

is legal, whereas

=2 to i; i 1 to 5;

is not.

The second rule, called the vertical scoping rule, describes how parameters
filter through nested subnets. The vertical scope rule states that a parameter can be
legally used within a subnet if:

37

e it has been declared as a parameter for that subnet, or

e it appears as the bounds for another parameter specification and satisfies
the horizontal scope rules, or

eit is a legal parameter for the subnet’s parent net. In this case, the
parameter has a value associated with it which specifies the subnet’s in-
stantiation value at the higher level.

3.5 Comparison with Other Models

The heart of the PCM model remains the Standard Petri Net, which can be
obtained by stripping the nodes (places and transitions) of the graph of all their at-
tributes. The addition of the state variables and transition attributes leads to the ad-
ditional modelling power, and the model becomes equivalent to a Turing machine. It
has been shown that certain questions such as reachability and boundedness become
undecidable for classes of Timed Petri Nets [JON77], and the evaluation of the net is
accomplished by simulating its behavior.

The model defined here can be viewed as a form of a Predicate/Transition net
[GENS81] (described in Chapter 2), with the state variables and transition predicates
and procedures being used instead of structured tokens and arc expressions. The PCM
model allows global information (using the state variables), whereas the PrT nets en-
force the use of only local information. The PCM model is therefore a member of the
class of Colored Petri Net models.

Since the number of replications of streams within a PCM subnet is depend-
ent on the state of the net at the time of activation, the model is, in essence, equivalent
to the self-modifying nets (SM nets, [VAL78]) described earlier. The effect of the
firing a PCM subnet (its "firing rules™) can vary over successive firings, as in the case
of SM nets.

Chapter 4

A Methodology for Modelling Parallel Computations

Modelling the execution behavior of a computation can be viewed as consist-
ing of three distinct submodels. The computation submodel specifies the computation
at an abstract level, and includes details such as the processes that constitute a com-
putation, the interaction between these processes and the logical dependencies be-
tween them. The architecture submodel specifies the details of the architecture on
which the computation is to be executed. This submodel captures the particular details
of the architecture which effect the execution of the computation such as the
mechanisms provided for communication (shared memory or message passing), as
well as processor delays incurred for ordinary sequential operations. The mapping
submodel defines the binding of the processes and data objects in the computation
submeodel to processors and memories in the architecture submodel. This submodel
also specifies scheduling decisions which may be required for initiating the binding
between processes and processors.

A methodology for modelling parallel computations based on these sub-
models is described in this Chapter. The formulation of such a methodology eases the
burden of modelling complicated computations, and helps to ensure that the obtained
model faithfully reflects the actual execution behavior of the computation. Since the
steps defined for constructing each submodel are general in nature, the entire proce-
dure can be easily automated. By carefully defining the interfaces between the various
submodels, it becomes possible to create a library of architecture submodels which
can then be used when building a composite model. Further, using a uniform
methodology ensures a fair comparison of alternate configurations of a given com-
putation.

The various submodels are described in each of the following sections. The
last Section highlights the advantages of using the three submodels to obtain the com-
posite model.

38

39

4.1 Computation Submodel

The Computation Submodel models the execution of a computation on an
abstract machine. The characteristic of the abstract machine is that it is an ideal
machine for the computation, and does not introduce any restrictions or delays in the
execution of the computation other than those due to the computation itself. Since a
computation usually consists of processes that interact using either messages or shared
data, the abstract machine has one one processor for each process, with links between
those processors which need to communicate and shared objects accessible, with no
additional overhead, to all processors which need to read or write them. This defini-
tion of the computation submodel is consistent with the definition of most languages
which specify parallel computations: the language implicitly assumes an abstract un-
derlying architecture, and compiling programs encoded in these languages for a given
architecture introduces additional restrictions imposed by the architecture. The start-
ing point for development of the computation submodel is a specification of the com-
putation in some well defined language. In this Section, the computations are specified
using a restricted form of Computation Graphs ([BRO8S]), a formal model for
specifying computations. Appendix B shows constructs in the computation submodel
for representing programs written in two other parallel languages: the Computation
Structures Language (CSL), and the Task-level Data Flow Language (TDFL).

4.1.1 Computation Graphs

A Computation Graph [BROS8S5] is a formal model for specifying computa-
tions, and is used as a starting point for developing the computation submodel from
the specification of a computation. A Computation Graph is a program for some com-
putation in terms of the operations of an abstract machine. It provides the framework
for representing parallel computations by specification of actions and dependencies
between actions. A computation graph is a directed graph in which the nodes
represent schedulable units of computation and the arcs represent dependencies be-
tween them. Execution of the computation is attained by traversal of the directed
graph along the paths defined by the dependencies. No restrictions are placed on the
rules for traversal of the computation graph other than satisfaction of all dependency
constraints. The Computation Graph model allows several types of dependency con-
straints, but only the following are considered here:

e sequencing dependencies specify an ordering relation between execution
of the source and sink computation units.

40

e synchronization dependencies specify a set of computation units which
cannot execute simultaneously (i.e. mutual exclusion).

e producer/consumer dependencies specify that the sink must receive some
information from the source before it may execute. The most common
type of information exchanged is data, in which case the constraint
reduces to a simple data dependency.

Computation Graphs provide a flexible and powerful representation for
parallel computations. The clean separation of computations and dependency relations
allows each to be resolved individually and mapped onto the abstract machine. Hierar-
chical abstraction is easily achieved by grouping several computation units into a
single unit. Resolution of the computation to greater detail is obtained by replacing a
node by a subgraph.

The computation graph model can be used to represent several well known
methodologies for parallel computation by appropriately choosing traversal rules and
allowed dependency constraints. For example, if the only dependencies permitted are
data dependencies, and the traversal rule states that the existence of data ’tokens’ on
all input arcs to a computation unit causes its execution and the execution of a com-
putation unit creates data ‘tokens’ on each of its output arcs, the resulting represen-
tation would be equivalent to a basic form of data-flow [DEN72].

The firing rules selected in the restricted version are as follows: each node
can be activated only when all its input dependencies are satisfied. Sequencing and
data dependency arcs carry tokens which are placed on the arc upon completion of
execution of the source node, and are consumed by the sink node when it is activated.
If a node has only sequencing or data dependency arcs as its inputs, it is activated
when all input arcs carry tokens. If two or more nodes satisfy all their input sequenc-
ing and data dependencies and are connected by a mutual exclusion arc, one of the
nodes is selected at random and activated. Though the restricted model lacks the
power of the original model, it provides base for development of the computation sub-
model.

41

The Computation Structures Language presented in Appendix B can be
viewed as a procedural specification of a computation graph and its traversal. Execu-
tion of a CSL program is equivalent to a parallel traversal of the computation graph it
specifies. The language provides primitives for user specification of certain types of
dependency constraints. While these primitives do not cover the entire range specifi-
able using computation graphs, they are sufficiently powerful to be able to represent a
wide variety of computations. Similarly, the Task-Level Data Flow language (TDFL),
also described in Appendix B, is also an instance of the Computation Graph model
with special types of dependencies defined between computation nodes.

4.1.2 Conversion of CGs to CSMs

Figure 4-1 shows an example of a computation expressed using the Com-
putation Graph model. The graph consists of 6 computation units connected by arcs
specifying the dependencies between them. The example contains all three types of
dependencies allowed in the restricted model: sequencing (S), date (D) and mutual
exclusion (M).

Figure 4-1: Example of a Computation Graph

42

T1

A_load

A_ready

O A_done

T2

Figure 4-2: Execution of a Node

A computation submodel can be specified for this example by making the
following observations. Each node in the computation graph is associated with a
processing element in the underlying abstract machine. Since a node in a CG, by
definition, is an independent entity, its execution has no side effects on any of the
other nodes, and its contribution to the state of the overall computation is merely a
delay representing the time taken for its execution. In the submodel, the execution of
a single node, say node A, would be as shown in Figure 4-2. Before A can execute, it
has to be loaded on (or, bound to) a processor. This binding is not explicit in the com-
putation submodel. To initiate loading of the process, a token is placed in place
A_load by the firing of transition TI. When the process has been loaded, a token
arrives in place A_ready, and T2 fires, signifying the execution of node A. Transition
T2 has a delay attribute equal to the expected execution time of the node. The process
signals completion of execution by placing a token in A_done, which effectively
releases the processor associated with A.

At this level of abstraction, architectural details such as the number of
processors available and the time required to load a process on a processor are left

43

unspecified. In fact, the “ideal’ architecture can be specified by properly terminating
these requests in the mapping submodel. '

The complete computation submodel for the example (Figure 4-1) is shown
in Figure 4-3. The execution of each node is modelled by the firing of a single tran-
sition, and the loading of processes described above is not shown so as to simplify the

figure.

C_send
O)

Figure 4-3: Computation Submodel Equivalent

Sequencing dependencies are modelled by simply connecting the correspond-
ing transitions by a common place. The mutual exclusion dependency between nodes

44

D and E in the Computation Graph is modelled by adding the extra place Murex in the
in the submodel. After transition C completes firing, a token is placed in place
C_send. Depending on the actual architecture, a token arrives in C_receive after some
time delay. The additional information required for sending data to a process are the
process id and the size of the data item. These are passed by associating two state
variables with C_send.

Using these fixed translation rules, an equivalent computation submodel can
be created for any given computation graph. Similar rules can be specified for any
given language (see Appendix A). The interface between the computation submodel
and the mapping submodel is defined in greater detail in the next Section.

4.2 Mapping Submodel

The mapping submodel represents the binding of entities in the computation
submodel (processes, shared data objects, etc) to entities in the architecture submodel
(processors and memory modules). The structure of the mapping submodel remains
unchanged over variations in the actual mapping. Only the node names and attributes
(of places and transitions) need to be altered. Due to this feature, the mapping sub-
model lends itself naturally to automatic generation using a predefined template. It
also presents a standard interface to the architecture submodel, thus making the
representation basis modular.

Figure 4-4 shows the mapping submodel to map a process S to a processor
P(0). The places prefixed by "S_" are shared between the mapping submodel and the
computation submodel which defines the process S, while the places prefixed by "P_"
are shared with the architecture submodel.

A token placed in place S load initiates loading of the process. When load-
ing is completed, a token is placed in S ready. Also, when a process is loaded on a
processor, the processor itself becomes busy (signified by the presence of a token in
P _busy(0)). Once a process has been loaded, it can make a request. The three types of
requests possible are accessing a shared object, sending a message to another process
and receiving a message from another process. In addition, the request must be ac-
companied by additional information specifying the shared object name or the process

S_load

P_idle
S_ready

P_busy

S_ack
P_done

000

S_done

00005

Figure 4-4: Functions available in the mapping submodel

id of the receiving (or sending) process along with the size of the message to be sent.
This is done by associating three state variables with place S_reg. The request is then
translated in terms of the architecture, and a token is placed in P_reg(0). When the
request has been satisfied, a token arrives in P_done(0), and consequently, in S_ack.
Finally, when process S has completed, it releases Processor O by signalling place
S_done, which moves a token from P_busy(0) to P_idle(0). The actual mapping sub-
model for this example is shown in Figure 4-5.

The state variables required for this subnet are: S_req_type, S_req_id,
S_req_size, P_req_type(0), P_req_id(0) and P_req_size(0). In addition, each processor
has a queue associated with it. When a process initiates loading, it is entered into the
queue. When the processor becomes idle, it selects a process from the queue using
some predefined strategy. Commonly used strategies include FCFS and Priority.
Transition TI has a function which enqueues the process, while T2 has a predicate
which checks to see if the process is to be loaded next. Firing T2 causes the process to
be removed from the queue. Transition T3 copies the request information from the

46

i=1,N
P_idle(®)
S_load(i)
S_ready(i)

0 QO EQE

(>
S
Map_req(i) ‘ 3

Communication S_done(i)

‘ ° . O Proc_utility

P_done(0) P_req(0) P_busy(0)

S_rec(i)

Figure 4-5: Mapping Process S to processor 0

process to the processor. The additional places shown in the figure (Proc_utility and
Communication) are used to aid performance measurement.

The method described above for mapping the computation onto the architec-
ture requires, in the worst case, one mapping subnet for each process in the computa-
tion. However, in most cases, computations are made up of several identical tasks, and
the mapping is usually done in a regular manner. If these conditions are met, an entire

47

set of (identical) tasks can be mapped using a single subnet merely by using ap-
propriate indices for both the processes as well as the processors. Consider the follow-
ing examples:

Process Index Processor Index
a) i 0
b} i i mod 2
c) i i mod p

In case (a), all the processes are mapped onto processor zero. In case (b), all even
numbered processes are loaded on processor 0, while all odd numbered processes are
loaded on processor 1. If p is the number of processors in the system (by convention,
the processors are always numbered from O to p), case (¢) shows a mapping which
"wraps’ the processes over the p processors.

If the execution behavior of the computation on the abstract machine is of
interest, the mapping submodel can be greatly simplified. All requests to the architec-
ture are acknowledged immediately, without being passed on to the architecture sub-
model. For example, the moment a token arrives in S_load, it is removed and a token
placed in S_ready.

The mapping submodel provides a standard interface between the computa-
tion and architecture submodels, and, in effect, isolates them from each other. This
allows the creation of an architecture submodel library which can be drawn upon to
select the best architecture for a given computation. The architecture submodel is
described briefly in the next Section.

4.3 Architecture Submodel

The architecture submodel represents the behavior of the architecture on
which the computation is being executed. It captures the details of the architecture
which affect the sending and receiving of messages, and the accessing of remote
(shared) memory modules. The sequential behavior of each processor is not modelled
explicitly, but is represented as a delay. Chapter 6 describes the architecture sub-
models for two types of shared memory architectures in detail. In this section, that part
of the architecture which interfaces with the mapping submodel is described. Figure

48

P_req(i) P_busy(i)

000

P_done(i) Qﬁ_

Figure 4-6: Architecture Interface with the Mapping Submodel

4-6 shows this fragment of the architecture submodel. Once a processor is busy, if 2
request arrives (a token in P_req), the processor is activated, and T/ fires. The proces-
sor then determines the type of request and proceeds to satisfy the request. Once the
request has been satisfied, 72 fires, and the token in P_done signals completion to the
mapping submodel. Since all processors in a parallel architecture are usually identical,
a single subnet is sufficient to represent them.

Defining architectures in this uniform method has several advantages. The
architectural submodels can be tested in isolation and then included in a library to be
used in conjunction with any computation. Typical state variables for each architec-
ture are the number of processors and memory modules, allowing a family of architec-
tures to be represented. In addition, the models in the library are set up to report
typical performance figures such as processor utilities and memory bandwidths, as
well as communication delays incurred due to the architecture.

49

4.4 Advantages of this Organization

There are several advantages of using the submodels described in the pre-
vious Sections. The major advantage of this organization is the separation of the three,
logically distinct, submodels. Changes to any submodel do not effect the behavior of
any other submodel as long as the standard interface between them is maintained. To
evaluate the effect of various mappings on the execution efficiency of a computation,
for example, it is sufficient to modify only the mapping submodel, while leaving the
other submodels unchanged. Similarly, the architecture can be modified without af-
fecting any of the other submodels. Changing the computation submodel has a similar
effect if the computation consists of the same tasks as before.

The architecture submodel can be tested in isolation to verify that it faithfully
reflects the behavior of the actual architecture. The standard interface between the ar-
chitecture and mapping submodels facilitates the creation and utilization of a library of
architectures. The presence of such a library enables the search for a suitable architec-
ture for a given computation. Further, by properly defining the mapping submodel, the
behavior of the computation given an ideal architecture can be evaluated. This is use-
ful since it yields upper bounds on the performance characteristics obtained.

Chapter §

PCSIM: A Performance Evaluation Tool

This Chapter describes PCSIM, a tool for the design and performance evalua-
tion of parallel computations. The tool consists of a graphics front end to edit PCM net
instances, and a simulator which takes the net generated, simulates the Petri Net’s
dynamic behavior, and generates performance statistics. Section 5.1 discusses some
features of the simulator and specifies the types of results that can be obtained. Places
in the net contain special functions which are active during the simulation, and are
used to gather performance statistics by monitoring the movement of the timestamped
tokens. A specification of this time resolution mechanism is given in Section 5.2. Sec-
tion 5.3 describes the attributes associated with the transitions and places in the net.
Finally, Section 5.4 shows some validation results obtained for the simulator, where
results obtained from the simulator are compared with results obtained from various
sources. The simulator results are compared with analytical results as well as results
obtained from actual execution of computations on parallel machines.

5.1 The Simulator Package

The simulator package consists of a graphics front-end and the PCM
simulator which accepts nets created using the editor as its input, simulates them, and
generates the required performance statistics. The graphics front-end facilitates the
creation and modification of net instances prior to simulation. The package shares a
common graphics editor with the Stochastic Petrinet Analyzer (SPAN, [MOLS86]).

Since the statistics reported are all mean values, there is a need to ensure that
the simulation has been conducted for long enough so as to give accurate results. The
best method of ensuring this is to build in confidence intervals to control the length of
the simulation [LAWE2]. The implementation of PCSIM used in this dissertation,
however, does nor include the confidence intervals. Instead, the length of the simula-

50

51

tion is controlled externally by specifying either the length of the simulation, or the
number of runs desired. Careful study of the results must be done to ascertain that they
are accurate.

The input specification for each simulation (other than the net itself), are as
follows:

e Trace Level

e Trace File

e Number of executions of the net
e Length of simulation

e Initialization function for program variables.

The simulator prints a report of the various intermediate states during the ex-
ecution of the net. This report can be used to verify the correctness of the model by
studying the sequence of events in the system. This report can be in varying degrees
of detail. This is controlled using the trace level, which can vary between zero and
five. A trace level of zero produces no output whatsoever. The only output from the
simulator is the total execution time. As the trace level increases, more information is
printed on the specified trace file. Typical information printed is the enabling and
firing times of transitions, the state of the net including the values of its program vari-
ables, and values returned by the transition delay functions.

There are two ways to control the length of a simulation. The Number of
executions specifies how many times the net is to be executed. Each execution of the
net begins with the initial marking and ends when no transitions are enabled. The
length of the simulation run simply specifies that the simulation be interrupted when
the simulation clock reaches a value greater than the specified length. The simulation
results are normalized for the number of net executions. The initialization function
specifies the initial values of the set of state variables. This function is invoked at the
start of the simulation as part of the initialization of the net, and also whenever the net
needs to be reinitialized.

The simulation is carried out using the conventional event list, where each
event is the completion of firing of a transition at a fixed time. A list of enabled
transitions is maintained and after firing all transitions at any instant, this list is
scanned for more transitions which can start firing. An execution of the net is com-
plete when the event list is empty. The transition input and output functions are
represented using Vector Replacement Systems [KEL74]. The actual implementation
uses sparse matrix techniques to compact the size of these vectors.

£.2 Time Resolution Mechanism

This section describes extensions to the model to allow performance evalua-
tion. The basic idea is to associate time delays with each transition, as in ([KAP82],
[BER79], [NUT72]). This is achieved by partitioning places into two regions - hold
and enable. When a token arrives at a place, it is put in the enable region. When a
transition starts firing, it moves its enabling tokens from the hold to enable regions of
its input places, where they are delayed by a certain time specified by the transition.
After this delay, the transition completes firing, removing the tokens from the hold
regions of its input places, and placing tokens in the enable regions of its output
places. The actual attributes required at places, transitions, and tokens are discussed
next.

Since tokens are created and destroyed by transition firings, it is not suf-
ficient for tokens alone to carry timing information. In addition, places are defined to
have performance functions which are called whenever tokens in that place are
moved. The definition and placement of place and token attributes is predicated upon
a performance evaluation viewpoint rather than a theoretical view of Petri nets. The
addition of these attributes, however, does not alter the semantic behavior of the un-
derlying net.

The PCM transition is a composite entity defined as follows:
e Transition Delay Function (TDF): Each transition has a set of delay func-
tions which can be deterministic, exponential, etc. This function is used to
determine how long a transition takes to complete firing.

¢ Transition Delay (TD): Each time a transition is fired, its TDF is executed
to determine the delay for this firing.

53

In addition to executing its delay function, the transition also invokes the place perfor-
mance functions for its input and output places.

The PCM place is a composite entity defined by the following attributes:
e Place enable set: This holds a set of tokens which can be used to enable
fransitions.

e Place hold set: This holds a set of tokens held by a firing transition, i.e.
tokens receiving service in conjunction with tokens from other places.

e Place performance functions: Functions to keep track of total times spent
in the enable and hold set, number of tokens passing through the place,
etc.
These place performance functions are invoked by a transition at two instances: when
a transition begins firing, and when it finishes firing. These are the only two times
when token movement takes place. The details of the place performance functions will
be given later.

The PCM token is modified to have the following attributes:
e Token arrival time stamp (TAS): The time at which a token arrives at a
place. When a transition fires and creates tokens, it initializes this times-
tamp using the time it completes firing.

¢ Token enable time stamp (TES): The time at which a token moves from
the enable region to the hold region. The enabled transition will now fire
after a time equal to the transition firing time.

e Token firing time stamp (TFS): The sum of TES and TD for that token.

Performance metrics can be extracted from the values stored in places and
tokens. Alternately, if a state history of the execution of the net is maintained, this
history can be used to derive the desired metrics. If intermediate values of tokens
need to be stored, a copy of the token can be placed in a special place with no output
arcs using a special transition which simply replicates the input token.

54

The different place performance functions are specified next. These func-
tions collect performance figures while tokens are passed through the place. Each
place has a set of local variables which are operated on by the functions:

e Num_enable is the number of tokens currently in the enable region of the
place.

e Tot_enable is the total (cumulative) time spent by tokens in the enable
region.

e Token_enable is the sum of the product of the number of tokens in the
enable region and the time spent in the region. This product is useful for
evaluating the mean number of tokens in a place.

e Last_enable is the time that Token_enable was last updated. This value is
used to update Token_enable each time token movement occurs in the en-
able region of a place.

e Num_hold, Tot_hold, Token_hold and Last_hold are similar variables for
the hold region.

e Traffic is the number of tokens which have passed through the place.

The place performance functions specified in Figure 5-1 are called by the
transitions when they enter the firing state. The enabling tokens for a transition are
those tokens which have caused the transition to be enabled.

The transition starts firing at the moment the last of its enabling tokens arrive
at its input place. This is the maximum of all the TAS values of the enabling tokens.
The transition delay function is used to calculate Transition_delay, the time for which
the enabling tokens will be in the hold region. The TES and TFS values of each ena-
bling token can now be updated.

The place variables are now updated as follows. The total time tokens spend
in the enable region (Tor_enable) is merely the difference between the firing (TES)
and arrival (TAS) time for each enabling token. Since the number of tokens in the
enable and hold regions is being modified, the values of Token enable and

55

Trans_start_firing ()

{
TIME start_firing time;

start_firing time = MAX(TAS of enabling tokens);
Transition_delay = invoke Trans Delay Function:

For each enabling token t,
t.TES = start_firing time;
t.TFS = Transition delay;

For each input place p & each enabling token ¢,
p.Tot_enable += t.TES - t.TAS;

For each input place p,

p.Token_enable += p.Num_ enabled
*(start_firing time - p.Last_enabled);

p.Token_hold += p.Num hold
*(start_firing time - p.Last_hold);

p.Last_enabled = start_firing time;

p.Last_hold start_firing time;

p.Num_enabled -= # enabling toks for place p:

p.Num_hold += No enabling toks for place p:

o

Figure 5-1: Function invoked when a transition begins firing

Token_hold are updated by adding to their old value, the new product of the number of
tokens and the time since the last update. Finally, the time of the last updates
(Last_enabled and Las:_hold) are updated, and the number of tokens in the hold and
enable regions is adjusted to reflect the start of transition firing.

The function called when a transition completes firing (Figure 5-2) is similar
to the starting function. The main difference is that both input and output places are
involved now, since tokens are moved from the hold region of the input places to the
enable region of the output places. Also, when the tokens leave the hold region, the
traffic variable of the input place is updated.

These functions update the place variables as tokens move through the net.

56

Trans_end firing ()

{
TIME end firing time;

end firing time = t.TFS of any enabling token;

For each input place p & each enabling token t,
p.Tot_hold += t.TFS - t.TES;

For each input place p,
p.Token_hold += p.Num hold
*(end_firing time - p.Last_hold);

p.Last_hold = end firing time;
p.Num_hold -= No. of trans enabling tokens;
p.traffic += No. of trans enabling tokens;

For each output place p,
p.Token_enable += p.Num enabled
"% (end _firing time - p.Last_enabled) ;
p.Last_enable = end_firing time;
p.Num _ enabled += # output toks for trans;

Figure 5-2: Function invoked when a transition completes firing

When the simulation is completed, these variable values are interpreted to give statis-
tics like mean number of tokens in the hold and enable regions, mean time spent in the
hold and enable regions and throughput at each place. The interpretation given
depends on the place type specified before simulation. Place types, and other at-
tributes, are discussed in the next section.

5.3 Specification of Node Attributes

Places, transitions and subnets have associated attributes. In this section,
these attributes are described in greater detail.

57

5.3.1 Place Attributes

The definition of the model in the previous chapter did not assign any at-
tributes to places, other than the initial number of tokens in the place. The attributes
are mainly to aid in the interpretation of timestamp values collected at the place. Each
place in the net has the following attributes:

e place tag, a unique name identifying the place

e initial marking, the initial number of tokens in the place
e place parameter list, if the place is parameterized

e place type, for interpretation of timestamp values

The first two attributes need no explanation. The place parameter list is as
described in the previous chapter. Place types can be of types:
e resource, token represents an available resource

e condition, token represents presence of a condition
¢ process, token represents a process waiting for some service

e cumulative time, place used to accumulate total elapsed time for some
event

e duplicate, place definition is given elsewhere

e default, used for uninterpreted places

For resource places, the mean utilization of resources is the only metric reported. Con-
dition places report the mean time the condition was true. The most important place is
the process place, used to model processes queueing up for some service. They could
also be requesting some resource, or be waiting for some synchronization condition to
become true. The metrics reported for resource places include the mean queue length
(mean number of tokens in the enable region), the mean number in service (mean
number of tokens in the hold region), the mean wait time (mean time spent in the
enable region), mean service time (mean time spent in the hold region) and throughput
(mean rate tokens pass through the place).

58

£.3.2 Transition and Subnet Attributes

Transitions and subnets have similar attributes, except that subnets can be
parameterized. If a subnet has no subgraph defined, it behaves exactly like a transition.
Its delay is calculated using the delay attributes specified. If a subgraph is defined,
however, the delay attributes are ignored and the subnet ’fires’ until the subgraph
completes execution. Transitions and Subnets have the following attributes:

e transition tag, a unique name identifying the transition.

e transition delay, the value is interpreted according to the delay type at-
tribute specification

e transition delay type, the type of delay associated with the transition.
Delay specifications can be of the following types:

e Instant, or zero delay
e Fixed, where the transition delay value is used

* Uniform, where any value between zero and the transition delay
value is selected with equal probability

* Exponential, where the delay value is a random variable exponen-

tially distributed with mean equal to the transition delay value

¢ Function, where the delay value is obtained by invoking a user
defined delay function

e transition delay function, an arbitrary functon specified by the user if the
transition delay type is function

e transition predicate, a user defined function
e transition procedure, a user defined function

e subnet parameter list, to be applied to the associated subgraph (for subnets
only)
In the PCM package, all user defined functions are specified using the C programming
language.

59

£.4 Validation of Simulator

The results of any simulation are meaningless unless the simulator can be
validated. Validation of a simulator can be done in several ways. The obvious method
for validating the simulator would be to model an existing system, and compare the
simulator results with figures obtained from the actual system. In most cases,
however, this is not possible, since the modelled system often does not exist yet, or it
is not possible to obtain accurate figures from the existing system. An alternate valida-
tion method would be to analyze the system using analytical techniques, and to com-
pare the results with the simulation results. The PCM simulator has been validated
using both methods.

Results from the simulator are compared with analytical results obtained
using the Stochastic Petrinet analyzer [MOLS81]. The PCM model is also used to
model the multiprocessor memory and bus interference problem and the results ob-
tained are compared with exact (analytical) results published in [HOLS7]. Further
validation is provided by comparing results from the simulator with actual executions
of TDFL programs on a Sequent Balance-21000 system.

5.4.1 Validation against results using Stochastic Petri Nets

Stochastic Petri Nets (SPNs) were introduced earlier in chapter 2. The distin-
guishing feature of SPNs is that all transitions have exponentially distributed transition
firing times. In other words, each transition delay is specified as an exponentially dis-
tributed random variable with some mean A. Since the PCM model permits the
specification of exponentially distributed transition delays, it is easy to model systems
which can be modelled using SPNs. The only other difference is the transition selec-
tion policy. SPNs allow all transitions that are simultaneously enabled to begin firing.
The first transition to complete firing is the one selected to fire. This policy is different
from that used by the PCM, where each transition has equal probability of being
selected. For the comparisons shown below, the PCM simulator was modified to
reflect a selection policy equivalent to that used by the SPN model.

The example used in [MOLS1] is shown in Figure 5-3. The delay values
shown in the figure are the mean (A) values for each transition. The results show the
throughput and the mean number of tokens at each place for different initial markings.

60

T4

P5

P4
T5 2.0

Figure 5-3: SPN Example

The results are shown in Tables 5-1 & 5-2 for different numbers of initial tokens at
place Pl. It can be seen that the difference is mostly less than one percent, which is
acceptable.

5.4.2 Other Validation Results

The PCM simulator has also been validated by two other means. The mul-
tiprocessor memory and bus interference problem described in [HOL87] was
modelled, and the results compared with previous results. The execution of a parallel
algorithm for the Block Triangular Matrix system was modelled using PCM, and the
results were validated using actual execution times from an implementation of the al-
gorithm on a parallel computer. The previous section compared results obtained using
the PCM model with analytical results obtained using the SPN model. Since the PCM
simulator was modified to reflect the same transition selection policy as the SPN
model, the actual Petri Net graphs used in both models were identical. In the rest of
the validations, this is not the case. These validations are done by actually modelling a
system, and comparing the results with those obtained by other means. Having suc-
cessfully validated the model, further performance predictions are made with changes

Initial Marking Vector = [1,0,0,0,0]
Throughput | Throughput # tokens # tokens
Place (A) S) (A) (S)
P1 0.2326 0.2340 0.1163 0.1150
P2 0.7209 0.7186 0.7209 0.7249
P3 0.2326 0.2340 0.2326 0.2287
P4 0.7209 0.7186 0.1628 0.1600
PS5 0.2326 0.2340 0.6511 0.6562
Initial Marking Vector = [2,0,0,0,0]
Throughput | Throughput # tokens # tokens
Place (A) S) (A) S)
P1 0.3342 0.3342 0.1862 0.1857
P2 0.9244 0.9233 1.5873 1.5880
P3 0.3342 0.3342 04154 0.3987
P4 0.9244 0.9233 0.2265 0.2263
P5 0.3342 0.3342 1.3980 1.4156

Table 5-1: Comparison of Simulation Results with SPAN

61

in the system parameters. Since this now involves the actual modelling of parallel
computations, presentation of the associated validation results is deferred until later.
The multiprocessor memory and bus interference problem is described in the Chapter
on modelling architectures (Chapter 6), while the Block Triangular Matrix solution
results are presented in Chapter 7.

Initial Marking Vector = [3,0,0,0,0]

Throughput | Throughput # tokens # tokens
Place (A) (8 (A)
Pl 0.3745 0.3702 0.2218 0.2154
P2 0.9804 0.9743 2.5320 2.5410
P3 0.3745 0.3702 0.5330 0.5030
P4 0.9804 0.9743 0.2461 0.2436
P5 0.3745 0.3702 2.2450 2.2810
Initial Marking Vector = [4,0,0,0,0]
Throughput | Throughput # tokens # tokens
Place (A) (S) (A) - S)
P1 0.3901 0.3870 0.2382 0.2362
P2 0.9951 0.9908 3.5314 3.5165
P3 0.3901 0.3970 0.5997 0.5825
P4 0.9951 0.9908 0.2504 0.2477
P5 0.3901 0.3870 3.1621 3.2015
Table 5-2: Comparison of Simulation Results with SPAN (cont’d)

Chapter 6

Modelling Parallel Architectures

Petri Nets have been widely used to represent computer architectures
([PET81], [NUT72], [MARS6]). In this chapter, the ability of the PCM model to
represent parallel architectures is investigated. In particular, a class of architectures
called shared memory architectures is studied, and the PCM models created are in-
cluded, with minor modifications, in the library of architecture submodels specified in
Chapter 4. The distinguishing feature of shared memory architectures is that the
various processors in the system are all capable of accessing one or more (shared)
memory modules. The main difference in the various architectures is the method of
interconnection between the processors and the memory modules.

The models constructed in this Chapter are used to study the behavior of the
architectures under probabilistically generated loads and access patterns. This leads to
a better understanding of the performance of the architecture for a wide range of situa-
tions which could occur when the architecture is being utilized. To study the
suitability of an architecture for a particular computation, however, the access patterns
and load should be generated in a deterministic, rather than probabilistic way. By ex-
ploiting the hierarchical nature of the PCM, only minor changes are needed to replace
the probabilistic accesses by the standard architecture submodel interface which can
respond to access requests generated by an actual computation.

The main results of this Chapter can be stated as follows:
¢ The various models constructed demonstrate the suitability of the PCM
model for representing shared memory architectures.

e The study of the probabilistic behavior of these architectures has two ad-
vantages: Results obtained can be used to validare the models whenever
similar results are available from other studies; new results can be ob-

63

tained which characterize the behavior of the architecture for configura-
tions that have not been previously studied.

e Due to the hierarchical nature of PCM, these models can be converted to
the standard form shown in Chapter 4. Using the standard interface, the
behavior of the architecture can be studied for deterministic access pat-
terns generated for some computation. These modified models can then
be included in the architecture submodel library.

The rest of this chapter describes two common multiprocessor architectures,
and their representation using the PCM model. Section 6.1 illustrates the modelling of
a multiple bus system, while section 6.2 describes an interconnection network based
architecture. Some of the results obtained for the multiple bus system are compared
with previously published results for validation purposes.

In both examples, memory requests are generated by the processors based on
a geometrically distributed random variable. This is sufficient in this case, since the
aim of the study is to observe the effect of various access patterns on the system.
When modelling the actual computation, however, the requests are generated when-
ever the process executing on the processor requires the use of a shared object (which
is stored in a shared memory module). The models of the architecture will, therefore,
form the lowest level of the computation hierarchy.

In each of the examples given below, the system to be modelled is described
first, followed by the equivalent PCM representation, and, finally, performance results
for various configurations of the system. Section 6.3 summarizes some observations
on the modelling of multiprocessor architectures using Petri Nets.

6.1 Multibus Architectures

Figure 6-1 shows the configuration of a multiprocessor system where
processing elements access shared memory modules through a single stage multibus
(as opposed to multiple stage networks such as banyan networks). The processors are
assumed to have local storage, and only access the shared memory modules oc-
casionally. In the figure, three processors and three memory modules are intercon-

65

nected using a multibus consisting of three bidirectional buses. In general, if the num-
ber of buses is equal to the number of memories, the resulting conﬁgurétion is equiv-
alent to a crossbar, and the only contention among the processors is for the memory
modules. If the number of buses is reduced, however, processors will contend for
buses as well as memories.

. _ O PROCESSORS

VAN

MEMORIES O Q Q

Figure 6-1: A 3x3 Multibus Multiprocessor System

6.1.1 System Description

The system description and terminology used here is derived from an earlier
study done by Holliday and Vemon ([HOLS87]). The process associated with each
processor in Figure 6-1 can be in one of three states: local processing, waiting for a
shared memory, or accessing a shared memory. The amount of time between requests
(the time spent doing local processing) is called the inrerrequest time. This time is
assumed to be a geometric random variable specified by the memory reques:

66

probability (MRP). The MRP is the probability that a process will generate a request
in the next clock cycle. As the MRP approaches 1, processes spend most of their time
accessing or waiting to access the memory modules. A process with an outstanding
memory request blocks until it obtains an arbitrary bus and the desired memory
module. The time spent actively accessing a memory module is called the memory
access time, while the distribution of accesses over the memory modules is the
memory access probability. A uniform memory request probability distribution sig-
nifies that a process is equally likely to access any of the memory modules. Non-
uniform accesses are usually modelled by specifying a favorite memory probability
which is the probability that a process selects a special (favorite) memory over the
others.

The performance metrics of interest are defined next. Memory utilization is
the fraction of time that a memory is being accessed by some process. Processor
utilization is the fraction of time that a processor has its associated process running on
it (versus accessing or waiting for a memory). Processor productivity is the probabil-
ity that a typical process is doing useful work (executing on its processor or accessing
a memory). Memory utilization summed over all memories is the expected number of
busy memory modules or the effective memory bandwidth. Processor utilization
summed over all processors is called the processing power. Processor productivity
summed over all processors is called the speedup.

This system has been the subject of several analytical and simulation studies
to evaluate the effective memory bandwidth and processing power under variations in
the configuration. Configuration parameters that are varied are the number of proces-
sors and memories, the number of buses, the memory request probability, and the
favorite memory probability. A survey of these studies, along with their results, can be
found in [HOLS87]. The existence of a large set of results provides the means for
validating the PCM model. Results obtained using the PCM model are compared with
corresponding results from previous sources. Having validated the model, further
configurations are set up to obtain new results.

67

6.1.2 Modelling the Mulfibus System

The PCM model instance for the multibus multiprocessor system is shown in
Figure 6-2. The state variables for the net are shown below:

p : number of processors

m : number of memory modules

mrp : memory request probability

fmp : favorite memory probability

mat : memory access time

steady state : time at which system is reset

gueue[m] : gueues containing processor requests
flaglp] : procs flagged when memocry access is complete

The top level of the net (Figure 6-2(a)) consists of one transition (Reset) and two sub-
nets (Procs and Mems). The Reset transition has a predicate which is true only when
the simulation clock value exceeds the value of state variable sready state, and its
firing causes all timing information in the net to be erased. Using this special tran-
sition, performance statistics are only gathered after the system has reached a steady
state. Procs and Mems are subnets modelling the processors and memories respec-
tively. Also shown in the figure are four places which are common to both subnets.
Tokens in the bus place represent free buses. The initial marking of this place denotes
the number of buses in the current configuration. The other three places are used to
evaluate the performance metrics described earlier. mem_bw initially contains no
tokens, and denotes the memory bandwidth, while speedup and proc_power represent
the speedup and processing power respectively, and are both initialized with a number
of tokens equal to the number of processors in the configuration.

The processor subnet (Procs) is parameterized by the number of processors.
When the subnet is activated, p copies of the subgraph are initiated, and tokens placed
in each P _local. P_local denotes that a processor is engaged in local processing. It
remains in this state until transition P_setreq fires, at which time a request is made to a
shared memory. The delay introduced by transiton P_setreq is a binomial random
variable with mean { (1/MRP) - 1 }. The procedure associated with P_serreg selects a
memory module using the memory access probability, and places a request in the ap-
propriate memory queue. The request contains the processor id and the length of data

Pi

Reset

Broc_start
#=0,p-1
P_local(i)
s
el T B8TEG(E)
proc,_power
Tig)
P_waitmem(i)

6)]

PB()

Proc_end

®

©

Mem iy

=0m-1

speedup

by

68

O mem_bw
bus
9 mmoc_power
(°°) speecup

s BAern_Start

mem{i)

) bus
M_req()

<> P9

s i_acoess(i)

PO

M_release(i)

O P1IG)

Mem_end
i)

Figure 6-2: PCM Model for Multbus System

69

required. TI is an instantaneous transition which removes tokens from the speedup
and proc_power places. The predicate at transition T2 fires only when the flag cor-
responding to the processor has been set, denoting the completion of access. since the
processor is now waiting to access the selected memory.

The memory subnet (Mems) is parameterized by the number of memory
modules (). M_req fires only when a request appears in the memory quene, and a
bus is available (i.e. there is a token in place bus). A token is placed in place mem_bw
for the duration of the memory access. Transition Mem_access has a delay propor-
tional to the number of data bytes requested by the processor for the current access.
Finally, M_release replaces tokens in the mem and bus places, and sets the flag for the
waiting processor to signal completion of the access.

6.1.3 Modelling Results

Results obtained for various configurations of the multibus system are
presented here.

Processors | Memories GTPN PCM
2 2 1.5000 1.4960
4 4 2.6210 2.5960
6 6 3.7809 3.7280
8 8 49471 49070
10 10 6.1150 6.0120
12 12 7.2835 7.2550
14 14 8.4527 8.3700
16 16 9.6225 9.6380

Table 6-1: Effective Memory Bandwidth Crossbar MRP = 1

The first four configurations assume constant memory access times of 1 cycle, and
uniform memory accesses (i.e. no favorite memories). The results obtained from these
configurations are compared with the results from [HOLS87] using the GTPN model

70

mentioned in Chapter 2. Table 6-1 shows the effective memory bandwidth for
crossbars (ranging from 2 to 16 processors) with a memory request probability of one.
The GTPN and PCM results for this configuration differ by less than one percent.
Table 6-2 shows the effective memory bandwidth for a 16 processor/16 memory sys-
tem for different numbers of buses. Again, the MRP is assumed to be one, implying
that processors are never spending time on local processing. An interesting point here
is that upto 6 buses can be removed from the crossbar configuration with minimal
degradation in the overall performance.

Buses GTPN PCM
8 7.977 7.937

9 8.825 8.782
10 9.357 9.278
11 9.566 9.608
16 9.623 9.638

Table 6-2: Effective Memory Bandwidth 16x16 Multibus MRP = 1

Buses GTPN PCM

1 1.000 1.000
2.000 1.996
2.898 2.872
3.352 3.336
3.458 3.457
3.469 3447
3.469 3.466
3.469 3.514

oo ~d] N W] Wb

Table 6-3: Effective Memory Bandwidth 8x8 Multibus MRP = 0.5

71

The next configuration (Table 6-3) is an 8 processor/8 memory system with
MRP = 0.5, studied under vanations in the number of buses. In this case, if the num-
ber of buses is less than 3, the buses are the bottleneck. On the other hand, having
more than 4 buses does not result in significant improvement in performance. Finally,
Table 6-4 shows the effective memory bandwidth for different values of the MRP.
The table shows the mean Inter Request Time (IRT), where the mean IRT is
(1I/MRP - 1).

Buses | Mean IRT GTPN PCM

1 8 0.9998 1.0000
16 0.8588 0.8516

32 0.4745 0.4814

2 4 1.9983 1.9996

8 1.6560 1.6782

16 0.9365 0.9274

32 0.4793 0.4766

Table 6-4: Effective Memory Bandwidth 16x16 Multibus

In each of the configurations described above, the results obtained using the

PCM simulator were within one percent of the exact results calculated using the
GTPN model.

The next configuration studied is the effect of varying the MRP on the
speedup. Figure 6-3 shows speedup as a function of the MRP and the number of buses
for an 8 Processor/8 Memory system. As expected, the speedup decreases as the MRP
is increased, since an increased MRP indicates that processors make more frequent
requests to the memories thereby causing greater contention for the buses and
memories. The speedup curves for 4 and 8 buses reiterate the earlier observation that
using half the number of buses does not degrade the system performance significantly.
In fact, further buses can be removed from the configuration if the MRP is low

72

of Buses

e el

-e -2

10 = —— 3
- e

g9 - —— 8

Speedup

T T 1 ! s
0. 0.2 0.4 0.6 0.8 1.0

Memory Regquest Probability

Figure 6-3: Speedup vs MRP for an 8 Processor/8 Memory System

enough. The sharp drops in the curves for smaller numbers of buses indicate, however,
that these configurations have a critical value of MRP beyond which the system per-
formance degrades rapidly.

In the previous examples, all memories had equal probabilities of being

mrp
10 — —p— 3

- -e-0.4

Speedup

| P ,
0. 0.2 0.4 0.6 0.8 1.C

Favorite Memory Probability

Figure 6-4: Speedup vs Favorite Memory Probability
for an 8 Processor/8 Memory System
selected by a processor. In the next case, the probability of selecting a certain memory
module is varied. The favorite memory probability (FMP) is the probability that a
processor selects a certain "favorite” memory for its next access. All the other
memories have an equal probability of being selected (this probability is [1 -
FMP]/[m-1]). As the probability of selecting this "favorite” memory is increased,
there will be greater contention by all processors for it. Figure 6-4 shows the variation

of speedup with the favorite memory probability for an 8 processor/8 memory/4 bus
system. A FMP of zero implies that the favorite memory is never selected, thus result-
ing in a system containing effectively only 7 memories. Until the FMP reaches 0.125,
the favorite memory has a poorer chance of being selected than the other memory
modules, and the speedup remains unchanged. Even as the FMP is increased beyond
0.125, the speedup is not significantly affected up to a certain point. The bottleneck as
the FMP is increased is the contention by all processors for the favorite memory. As
expected, this bottleneck is more pronounced for higher values of MRP, since proces-
sors are more likely to make memory requests.

Figure 6-5 shows the effect of varying the message lengths on the speedup
for a 8 processor/8 memory/4 bus system. For each message length, the speedup is
plotted as a function of the MRP. The effect of having a larger message length is that
processors hold buses and memory modules for several cycles instead of just one.
Regardless of the message size, the system always saturates at a speedup value of
3.95. This is due to the fact that there are only four buses in the system, and after a
certain level of waffic in the system, on the average, four processors are engaged in
useful work, while others wait for buses to become available. This traffic level is
reached more rapidly for larger message lengths. The speedup obtained with a mes-
sage length of 8 indicates that this configuration is very sensitive to message lengths,
and a large message length coupled with even a moderate MRP of about 0.25 will
result in poor system performance.

6.2 Interconnection Network Architectures

Many of the recently designed multiprocessor systems fall into the category
of Interconnection Network (ICN) architectures ([PFI85], [SEJ80], [CROS&5],
[SIE81]). Figure 6-6 shows the topology of an ICN Architecture. The main charac-
teristic of these architectures is the switching network that interconnects the proces-
sors and memories. One of the features of these networks is the existence of a unique
path between each processor memory pair. While this is cost effective in terms of
number of switch nodes required (compared to a crossbar), there is now the possibility
of processors getting blocked when they attempt to access a memory. This blocking
results from the fact that processors now contend with each other for switch nodes that
lie in their path to a selected memory. To be able to capture this contention for

Msg Length
.....,.*._..‘}
10 — -8 -2
. —— 4
9 — e B
8
7
oN
3 S
3
© 5
©
a
N 4
3__
2_
‘}.._
0 I z T T T
0. 0.2 0.4 0.6 0.8 1.0

Memory Request Probability

Figure 6-5: Effect of Message Lengths on Speedup

switches, it is necessary to model each individual switch and the interconnection be-
tween switches. The hierarchical nature of the PCM model allows the representation
of high level processes executing on processors, as well as low level switch behavior.

The system under consideration is an 8 processor/8 memory system as shown

76

PROCESSORS

INTERCONNECTION NETWORK

Figure C-6: Interconnection Network Architectures

in Figure 6-7. The interconnection (or switching) network used here is a 2x2 Banyan
network ([GOK73]) similar to that used in the TRAC Computer ([SEJ80]). Each
processor in the system is an independent unit with local storage for data and instruc-
tions. The memory modules shown in the figure are used to share data between
cooperating processes. Two different access methods are supported by the system.
When a processor accesses a memory in the packet switched mode, the memory sends
out streams of packets which are then routed through the appropriate switches to the
requesting processor. In this mode, a packet takes one clock cycle to move between
adjacent switches. A packet consists of a tag word and a data word. The tag word is
the address (or id) of the destination processor. Each switch level interp a different
bit of the tag, and depending on its value, routes the packet either on its left or right
link. An alternate method of memory access supported by the system is circuir
switching, where a direct path is established between the communicating processor
and memory. The link is maintained until the processor has completed its access. The
establishment of circuits in the network is handled by a distributed architectural

77

Processor

Switch

Memory

Figure 6-7: 8x8 Banyan Interconnection Network

resource called the Network Controller [JEN82]. The results of a study of the effec-
tiveness of these two access methods for different MRPs and message lengths is
reporied in [ADI87a]. The description given here concentrates mainly on the modell-
ing aspects of the study, to show the utility of the model for representing complex
computer architectures.

6.2.1 System Description

The system to be modelled can be divided into four functional parts: Proces-
sors, Memories, Switches and Network Controller. A description of each component is
given next. The switch behavior for both the packet and circuit switched modes goes
down to the gate level in detail in order to model switch contention accurately.

78

6.2.1.1. Processors
A processor can be in one of four states: local, request, wait or receive. Each
processor operates as follows:
e The processor begins in the local state, where it executes instructions
from its local memory, and remains there until it is ready to begin access-
ing shared data. The period of time it remains in this state is selected ran-
domly, and has a binomial distribution based on the loading factor of the
network. The loading factor is the probability that a processor in the local
state would make a request on the next cycle, and is equivalent to the
MRP described in the previous section.

e Upon entering the request phase, a processor sends a request to a ran-
domly selected memory module. Each memory module has an equal
probability of being selected. In the packet switched mode, the request is
sent directly to the selected memory module, while in the circuit switched
mode, the request is first sent to the network controller to set up a circuit
between the processor and memory. It is assumed that the number of data
words to be accessed by all processors is a constant, and the effect of
varying this message size on the network is studied. The processor keeps
a record of this size until it receives the data. The processor spends a
fixed amount of time in this state.

e After the processor has sent its request, it moves to the wair state where it
waits for the response from the memory (or the network controller). The
time spent by a processor in this state depends on, a) whether the memory
is available, and b) the amount of time it takes for the data to reach the
Processor.

e When the first response packet reaches the processor, it moves into the
receive state. In the case of circuit switched data transfer, it moves to this
state when the required circuit is established. It remains in this state until
the entire message has been received, at which point it returns to the local
state.

79

6.2.1.2. Memories

Each memory is identical, and is in one of two states: idle or sending. Each
memory is assumed to have a queue of processor requests. The memory modules
behave as follows:

¢ The module remains idle until it gets request from a processor.

e Having received the request, the memory moves io the sending state,
where it begins to send a message to the processor. When the entire mes-
sage has been sent, the memory retumns to the idle state. If there are other
processor requests, the memory does not stay in the idle state, but moves
back to the sending state.

6.2.1.3. Interconnection Network

The network consists of switches interconnected to form a regular (2,2)
banyan (Fig. 6-7). Since only the messages sent by the memories are modelled, all
data movement flows towards the processors. The switches are labeled [i,j], where i is
the level and j the offser within the level. The network is modelled differently for
packet and circuit switched modes of communicaticn. For circuit switching, once a
circuit is established within the network, the switches themselves provide passive data
paths. The packet switched model is described next.

Packet Mode Switch

Each switch is modelled as shown in Figure 6-8. The switch consists of a buffer of
fixed size which models the packet storage capacity of the switch, and the four inter-
connection links connecting the switch to its neighbors. Associated with each link are
the variables req and ack shown in the figure. These two variables represent signals
used in the network. reg is set when a switch requests permission to send a packet
along the link, while ack is set when permission to send on the link has been granted.
In the figure, these variables are prefixed by 1_ and r_ (left and right) and the incoming
and outgoing links are distinguished by the "prime". Each switch is in one of three
states: request, transmit & acknowledge or receive. Each of these states is described
next:
e During the request phase, a switch requests permission to send a packet to
its "parent”. It executes the following steps:

ireg Teq
lack rack
Switch(i,i]
ireq’ ,
mweg
lack’
rack’

Figure 6-8: A Packet Mode Switch

if (not empty(buffer))
if (route(front[buffer]) is left link)
set 1 _req
else
set r_req
where route is a function of the tag word of the packet at the head of the
buffer queue and decides which link it should be sent to. The correspond-

ing req is set.

e After completing the request phase, the switch goes into the rransmir &
acknowledge phase. Here it checks if permission to send the packet was
granted. If it was granted, it puts the head packet from the buffer queue
on the appropriate link determined by its tag.

if (1_ack or r_ack) {
if (1_ack)
reset 1_ack;
place front[buffer] in 1_pkt;

80

else

reset r_ack:

place front[buffer] in r pkt;
}

If neither 1_ack nor r_ack are set, it implies that either no request was
made, or permission to transmit a packet was not granted; hence nothing
is done. After this the switch enters the acknowledge part of the phase:

if (not full (buffer)) {
if (1_reqg’ and not r req’)
set 1 _ack’; reset 1 _req’;
else if (not 1_req’ and r_req’)
set r_ack’; reset r req’;
else if (1_req’ and r_reg’') ({
reset 1_req’; reset r reg’;
if (priority(switch) is left)
set 1_ack’;
else
set r_ack’;
change priority;
}
else (* No buffer space *)
reset 1 req’; reset r reqg’;
}

If no buffer space is available, the requests are turned down. If only one
request was made, it is granted. If both children request, the switch uses a
function "priority” to break the tie.

e The last state is the receive state, where the switch reads a packet into its
buffer.

if (1_ack’ was set)

store 1 _pkt’ in back[buffer]:;
else if (r_ack’ was set)

store r_pkt’ in back[buffer]:;

else (* No packets to be received *)
do nothing;

After completing this, the switch reenters the request state.
Each switch goes through an entire cycle of states in exactly one clock cycle.

81

83

The model of the switch is as shown in Figure 6-9. As before, the baseward
links are suffixed with a "prime" and the two links on each side are prefixed1_andr_.
With each link are associated four variables: Rq (request), Can (cancel), Gr (grant) and
Busy. The variables Rg and Can are mutually exclusive in time; the former is used to
set up the circuits while the latter is used to disable them. The switch is in one of the
three states: reset, propagate or set starus.

e The switch begins in reset state. If any of the Rq, Can or Gt variables are
set, it moves to the propagate state.

e In propagate state, it transmits the values of variables from its apexward
end to baseward end, or vice versa:

if (1_can’ or r_can’)
if (1_busy) set 1 can;
else set r can;
else if (not (1_busy’ or r busy’))
if (1_regq’ or r_rq’)
set 1_rq; set r_rq;

else {* One of grants is set #%)
set 1 gt’; set r gt’;
else (* The switch is busy *)

do nothing;

If neither [busy’ nor r_busy’ are true, it indicates that the switch is not
busy, and can propagate the rg and/or gr signals. From this state, the
switch moves to the state where it either activate or disables circuits.

e In the ser status state, each switch evaluates the status of its baseward
links, and sets or resets busy:

if (1_can’) reset 1 busy’;

else if (r_can’) reset r busy’;

else if (1_gt’ and 1 _xrq’) set 1_busy’;

else if (r_gt’ and r _rqg’) set r busy’;

else do nothing;
The switch then reenters the reset phase, where it resets all rg and gr signals that were
set in the previous cycle. The switch goes through the three states in exactly one clock
cycle. It is assumed that the Network Controller attempts to set up or reset a circuit
only once every cycle. The success of a set-up attempt is detected by the setting of
busy on links interfacing with the processor and memory pair.

82

Circuit Mode Switch

As mentioned before, in the circuit switched mode, the switches play a passive role in
transfer of data. Their important function however, is to allow or block activation of
potential circuit depending on their current state. No two independent circuits are al-
lowed to share a switch.

The banyan network provides a unique path between a pair of apex and base
nodes. Every apex node is at the root of a tree which connects it to all base nodes.
Similarly, each base node is at the root of an inverted tree which connects it to all apex
nodes. The unique path between an apex node and a base node is found by topologi-
cally intersecting the trees rooted at the two nodes. This is done by propagating two
signals in opposite directions in the network. These signals originate at the base and
apex nodes to be connected, and are propagated along the two trees rooted at the base
and apex nodes. Only nodes lying in both trees receive both the signals, and these
nodes form the only path between the selected apex and base.

Igt rgt
Ireq freq
Ican rcan
Ibusy rbusy
Switchfij]
igt’ rgt’
freg’ mmeq’
lcan’ rcan’
Ibusy fhusy’

Figure 6-9: A Circuit Mode Switch Node

84

6.2.2 PCM Representation of the ICN

In this section, representations for the ICN system in the extended Petri net
model are given. The parameterization features allow replications of subnets, and it
only becomes necessary to specify one instance each of the processor, niemory and
switch nodes. Also, by changing a single size parameter in the state variable set, the
model could be changed from an 8x8 system to a 16x16 system.

PO Pi P2 P3
<0,2> <04> <(.6>
[0,0] [0,1] [0,2] [0,3]
<1,3>»
<1,1> 12> <l4d> <1,5> <16> <1.7>
(1,01 [1,1] 1,21 [1,3]

<2 1>
<2,2> <2.6> <2,7>
2,0] [2.1] [2.2] [2.3]
<32> <34> <3,6>
| MO Ml M2 M3

Figure 6-10: Labelling the ICN Switches

8s

The link indices are set up so that the appropriate switches in the banyan
network share a link. The switch and link labels are shown in Figure 6-10. The lower
left and right indices for the bottom switch level is different from the other levels. If
the system used an interconnection network other than the banyan, only the link in-
dices would need to be changed 1o model the new network. In the rest of this section,
the links and their variables will be referred to as 1_, r_ etc., as before. The equivalent
indexed representation for link variable reg is shown below:

for switch levels 0 to log(n)-1:

1_reg(i,j) req(i, 2j)
r_req(i,j) req(i, 2j+1) . .
1_req’(i,j) req(i+1, 2j - ((i/2hmod2)*(2*+1-1))
r_req’(i,j) req(i+1, 2j + 2*1 - ((5/2Hmod2)*(21+1-1))
"/
Delay: 0.5 cycles Delay: 0.5 cycles
[w————— | es—
Proc: clock = Receive Proc: clock = Transmit

__O(____

Figure 6-11: Implementation of a Global Clock

Since the architecture under consideration is completely synchronous, there
is a requirement in the model to synchronize the firing of various transitions in the
Petri Net model. This synchronization is enforced by implementing a "global clock”
as shown in Figure 6-11. The clock shown in the figure is used for the packet switch-
ing case, where only two clock phases need to be distinguished (the transmit and
receive switch phases). Both transitions have half cycle delays, and they modify a

86

state variable which is set to either transmit or receive. When clock synchronization is
required, this variable is used in transition predicates to introduce the appropriate
delay.

6.2.2.1. Model for the Packet Switched ICHN

The packet switched ICN consists of the processor, memory and switch
nodes described earlier. The global clock consists of two phases: transmit and receive.
Since packets carry routing information, they must be modelled explicitly as state
variables. Also, each memory has a buffer for storing processor requests, and each
switch has a buffer to hold intermediate packets between clock cycles. When a proces-
sor makes a request, it enqueues its request in the buffer of the selected memory. The
memory checks this buffer whenever it is idle.

The set of state variables required for the packet switched model is given

below:
n : the number of processors
sw : the number of switch levels

msg_len : length of each message

gueue[sw] [n] : one gqueue for each switch node
priority[sw] [n] : priority for each switch

link pkt[sw+l][2*n] : packet buffer for each link
mem_buf[n] : memory queue containing proc id & msg_len
clk_phase : clock phase: either transmit or receive

The switch node

Figure 6-12 shows the Petri net equivalent for each switch node. Associated with each
switch node is a buffer to store messages in transit, which is represented as a state
variable. The link signals req and ack are modelled by four places (req, nreg, ack and
nack) to detect the presence as well as absence of the signal. Each message in the
buffer contains the destination processor’s id. When the subnet becomes active, TO
fires, and the net is replicated as specified by the ranges of i and j. Transition T1’s
predicate is true if its message buffer is not full (implying that the switch is ready to
accept another packet). On the other hand, T6’s predicate is true if the buffer is full.
Depending on the state of the message buffer, either T1 or T6 will fire. T2 and T3 are
represent the routing choice made at the switch. Depending on the destination proces-

TiG)
Lreg I_nreq r_reg

Q & O

i et T3(i)

l_k ! Y_k’
O O 00 O O X}

R y ! i ijj

Sndi(ij) . Sndr(i) MNo_ack

Figure 6-12: Packet Switched Switch Model

sor id of the message to be sent, the predicate of either T2 or T3 becomes true, and the
appropriate request is placed on the link, following which, the switch awaits either an
ack or a nack. Sndl (Sndr) can fire only after it receives a 1_ack (r_ack) on the link.
Upon firing, Sndl places a packet on the link. All transitions other than Rl, Rr, No_req
and No_ack can fire during the transmit phase.

If the switch buffer is not full, NF_buff fires, and the switch can ack a req it

88

receives. If no reques:s were made (I_nreq’ and r_nreq’), No_req fires during the
receive phase. If only one request is made, (I_req’ and r_nreq’; |_nreq’ and r_req’) the
corresponding ack is set. If both regs are set, transitions T4 and T5 compete to decide
which request to ack. A state variable is maintained to specify the priority (either left
or right). The predicates of T4 and TS5 are set up so that they check this variable, and
only one of them is true. Also, upon firing, they execute a procedure to flip the
priority. Finally, Rl and Rr fire only in the receive phase, and they accept a message
from the link and place it in the message buffer. F_buff fires if the switch buffer is full
and cannot accept another packet. T6, T7, etc. are used to send nack signals to any
requests made by neighboring switch nodes. No_ack then fires during the receive
phase.

Transition T5 never becomes enabled (since its input place is disconnected
from the rest of the subnet), which ensures that the subnet remains active at all times.

The Processor Node

The processor node is shown in Figure 6-13. When the subnet becomes ac-
tive, TO fires, and a token is placed in P_local. Setreq has a delay time which is
selected randomly from a binomial distribution with mean equal to the loading factor,
a state variable. The procedure associated with Setreq selects a memory module at
random, and upon firing, a request is placed in the buffer of that memory module. The
processor now waits for a response from the memory module. This waiting time is
represented by the amount of time a token remains in the place First_pkt. Wait_msg
fires only when it gets a request for transmission of a packet from the switch below it.
Setreq also sets a state variable with the message size which is decremented by
Rec_pkt each time it fires. Msg_done can fire only when this state variable reaches
zero, signifying completion of reception of the message. The processor then returns to
the local processing state.

The additional place Full_msg has been introduced only for evaluating the
time taken to receive the entire message. The other transitions T1 and T2 simply
remove nregs sent to the processor from the switch. Again, T3 never fires, and the
subnet remains active forever.

89

Ti()

Msg_more(i) t:ec _pki(i) Msg_done(i)

Figure 6-13: Packet Switched Processor Model

The Memory Node

A token in place Idle (Figure 6-14) implies that the memory is lying idle,
awaiting a processor request. The predicate for P_req checks the buffer associated
with this memory, and returns true only when it is not empty. The procedure for P_req
dequeues the request from the buffer, and sets the number of packets to be sent. T3
simply sends a request to the switch above it. If an ack is received, M_send fires,
placing a token on the link connecting the memory to the switch. M_send also decre-
ments the number of packets to be sent. While this number is not zero, M_more fires,
and the memory continues to send packets. If a nack is received, T4 fires, and the
memory retries the send. When the entire message is sent, M_done fires, and the
memory returns to the idle state.

90

0 =ON P16)

Ti T2

1 mreq

M_done(i)

W _more(i}

T5()

Figure 6-14: Packet Switched Memory Model

The small loop consisting of transitions T1 and T2 is used to generate nregs
once every cycle when the memory is idle. The special place Send_time captures the
total ime taken by the memory to send the entire message.

6.2.2.2. Model for the Circuit Switched ICN

The circuit switched model has an additional entity to be modelled: the net-
work controller. All requests from the processors are sent to the network controller,
which queues them and tries to satisfy each request in FIFO fashion. If a request can-
not be satisfied, the network controller requeues the request in its buffer, and proceeds
with the next request. Each request takes exactly one cycle to be resolved. The two

91

types of requests allowed are serup and cancel. The setup request is made by a proces-
sor when it wants a circuit to be set up to some selected memory module. After the
ensuing message transfer, the processor issues a cancel request to break the circuit.
Both types of requests compete for the network controller’s attention (i.e. they are
treated with equal priority).

The clock implementation here has three cycles: propagate, set and reset, as
described earlier. Again, the network controller buffer is modelled using the state vari-
ables.

Switch Node

The model for a circuit switched switch node is shown in Figure 6-15. Again, the link
variable busy is modelled using two places (busy and nbusy). The switch node consists
of two independent components. The upper part represents the function when a cancel
request is being satisfied, while the lower part is used during a serup request to check
if the circuit can be set up. If the switch receives a lcan’ signal, T4 fires, and resets
Ibusy’. The can signal is then propagated to either the upper left switch, or the upper
right switch, depending on which link is busy.

The second part of the model handles the setting up of circuits using the reg
and gt signals. During the propagate phase, if any req or gt signal is received, the
switch propagates the signal unless it is busy. Transitions T6 and T7 fire if the switch
is not busy (rmbusy’ and Inbusy’ are true), and a req arrives either either link (Ireq’ or
rreq’). Transition T _loop fires during the set phase, and ensures that the signal is
propagated exactly once. During the set phase, T12 fires if both Igt’ and rgt’ contain
tokens. Firing T12 causes lbusy’ to be set, indicating that the link (switch) is now
busy. The gt signal is treated in the same manner, except that it is propagated from the
upper to lower links.

During the reset phase, transitions T10, T11, etc. fire and reset any signals
that were set in the propagate phase.

Processor Mode

Ti
il sw-1 -g

#0a-1

fbusy’ fcan’ scan’ rousy’

mbusy’ Inbusy’

T _loop TO(.0)

- TIED
TI0G) @

Ti2G.5) O é)'m(ié}

Thusy’ tousy’

Figure 6-15: Circuit Switched Switch Model

93

Ti()

7 [sereay t ™0

hold() C

(&)
p._end

éd},ﬂ' 1 M san

Mem-Sﬁﬂ@K§ idle(i)

Mem_end(i) (1 busy(i)

D)

O

)
M_end

Figure 6-16: Circuit Switched Processor and Memory Models

Each processor node is modelled as shown in Figure 6-16(a). When P_start
fires, it places tokens in the local places of each processor. Transition setreq models
the time spent in local processing. It has a delay specified as a random variable with a
binomial distribution with the probability of success in the next cycle being specified
by the loading factor. Upon firing, this transition selects a memory, and places its

94

setup request in the network controller’s buffer. The processor then awaits an ac-
knowledgement from the network controller indicating successful setup of the circuit.
When the network controller places a token in place Ack_proc, the processor shifts to
the receive phase. The delay introduced at transition process is the message size (since
each word takes one cycle for transmission). When transition process completes
firing, a cancel request is made to the network controller. Transitions T1 and T2 are
used to reset any req signals during the req phase.

Memory Node

The only function of the memory model is to capture idle and busy times for
each memory module. The model (Figure 6-16(b)) shows that the memory awaits a
token in Mem_start to become busy, and Mem_end to become idle. These tokens are
placed by the network controller at those instants when a circuit is set up or cancelled.

Network Controller

The network controller model shown in Figure 6-17(a) completes the circuit
switched ICN model. Initially, the network controller is idle as it awaits requests from
processors. When a request arrives in its buffer, getreq fires, and the request is de-
queued. Depending on the type of request, either subnet Cancel or set is activated. The
set subnet (Figure 6-17(b)) has two parameters 1 and j. These parameters are set to the
requesting processor and selected memory before the subnet is activated. Though there
is only one replication of the subgraph, the correct values of 1 and j are substituted in
all node attributes. Firing of transition setup places tokens in gt(0,21), the gt signal on
the link connecting the processor to the top level switch and req(sw,2j), the link con-
necting the memory to the bottom level switch. This causes the two signals to be
propagated through the interconnection network. When the phase changes to set, T2
fires if the req signal at the processor link is set. Firing T2 causes busy(0,21) to be set,
and a state variable is set to indicate successful circuit setup. A token is also placed in
Mem_start, causing the selected memory to move to the busy state. If T2 has not fired
until the reset phase, T1 fires, removes the gt signal, and sets the success state variable
to false.

95

—— s2t(i,j)
NC_idie ’
Dana

Cancel(i)

Send_ack(l __| requeune _S_ﬁm e semup{ij)
\ g021)
reg(sw.2})

NC_gueue abusy(0,2i)
set{ij)
7eg(0.21)
T2
Tt busy(0,2i)

{8)

Ny

Mem_sian(j)
Cancel(i,)) R
o
— Send_ack(i)
Ti(i)

can(sw, 29) O
busy(0, 21) Cb

o Ti()

T2

O d P_ack(i)
abusy(©, 2i) O Hem.ei0

" can_end
@
1]

Figure 6-17: Network Controller Model

After the set subnet has completed, the success state variable reflects decides
whether the request was satisfied, or must be requeued for future consideration. In the
latter case, transition requeue fires, placing the request back in the network controller

96

queue. If the request was successful, subnet send_ack becomes active
(Figure 6-17(d)). The firing of T1 places a token in P_ack, informing the appropriate
process that the circuit has been set up.

The cancel subnet (Figure 6-17(c)) is active if the request is of type cancel.
T1 places a token in can(sw, 2j) which propagates upwards resetting all busy links in
the circuit. T2 fires in the reset phase, resetting the top level can signal as well as the
top level busy signal. It also places a token in Mem_end, causing the memory to
become idle.

6.2.3 Modelling Results for Banyan ICN

Figure 6-18 shows the variation of the Network Controller Queue Length for
different load levels in the network. Since the NC is a centralized resource in an other-
wise distributed system, it is crucial that it should not become a bottleneck.

It can be seen that for a given sized network, there is an upper bound on the
queue size which is twice the number of processors in the system, since a processor
may delete a connection and immediately request a new connection, and thereby be
present twice in the queue.

Several observations can be made from the graph. Obviously, the Network
Controller Queue length is directly proportional to the loading factor. This is due to
the fact that at lower loading factors, processors spend more time doing local process-
ing, and do not make requests for circuits. Thus they do not contribute to the NC
queue length. Another interesting point is that for a loading factor of 1, processors
never do local processing. Therefore, they are either actively accessing shared
memory, or have placed a request in the NC queue and are awaiting the setup of a
circuit. For large message lengths, the circuits can be thought to be stable, implying
that the 8x8 banyan under a maximum load, supports about 4 active circuits. It can
also be seen that regardless of the loading factor, the network reaches this steady state
for large message lengths. For smaller message lengths, the circuits are no longer st-
able; they are created and destroyed much more frequently. Now, for high loading
factors, processors often have two outstanding requests in the queue at a time, since
they cancel a previous circuit and immediately make a new request. Also, since can-

Queue Length

r

Network Controll

b
L&

97

&\ Load Factor
‘\\ —s— 0.1

\’é_ -e-0.3

O —=— 0.5

\\ — 1.0
£

! 1 1 N U R B B B
O B8 16 24 32 40 48 56 64

Message Length (Words)

Figure 6-18: Variation of Network Controller Queue Length

cel requests are queued along with the setup requests, they are delayed by a period of
time equal to the length of the NC queue (the NC satisfies only 1 request per clock
cycle). This, in turn, causes additional congestion in the network, leading to a larger
mean queue length at the controller. The network controller does not seem to be a
bottleneck when the network is heavily loaded. Significant performance improve-
ments, especially at low loads, can be achieved by prioritizing the cancel requests.

From Figure 6-19 it can be seen that, for the load factor of 1.0, for the

98

v 140.0 — °
L i
3 Switch Type
> 12007 —w— Circuit
~ - -e-Pocket
, 100.0 -
L -
E 8B0.0 —
[
3 60.0 —
5 i
[
m 40'0 =
o -
o 20.0 —-/
w0
2 _
0. | N B S B R A A O

0 B 16 24 32 40 48 56 64
Message Length (Words)

Figure 6-19: Comparison of Message Receive Times

smaller message lengths, the performance of packet switched communication is better
than that for circuit switched communication. However, the difference between the
message receive times for the two modes narrows as the message size is increased,
and in fact, beyond a message length of about 40, circuit switching performs better.
This is to be expected, since with increased message lengths, packets tend to collide
more often at switch nodes, whereas for circuit switching, after obtaining a circuit, a
fixed delay is sufficient to transfer the entire message.

99

40.0 -
) 7 Msg Len
o 36.0 4 _, 37 ckt
) 7 -e -4
= 7 ——4 _e-----=TT7 =
28.0 o P
0 - - ;
© 24,0 — i
- - /
— 20.0 4 '
_ ol
@
S 16.0 A /
O 12.0 - B
© - W - B -
= 8.0 —
o |
b 4.0 -
§ -
0. LI N B R B R R z
0. 0.2 0.4 0.6 0.8 1.0

Load Factor

Figure 6-20: Message Receive Times vs Load Factor

Figure 6-20 shows variation of message receive times for message lengths of
1 and 4 for both packet and circuit switching. There are several interesting points to
be observed here. Firstly, as expected, the message receive times for the packet mode
are lower than those for the circuit mode. This is a result of blocking within the net-

work.

As the load factor increases, more requests are made for making and break-

100

ing circuits. This increases the effect of both the Network Controller bottleneck and
blocking, resulting in rapid increase in the message receive times for circuit switching.
However, beyond a certain point, the increase in the Network Controller queue due to
bottleneck has an effect opposite to that of increasing loading factor, since the proces-
sors spend more time in the Network Controller queue. This results in flattening of
the circuit switching curves. For packet switching, on the other hand, the curves are
almost straight lines and the load factor has little effect.

6.0 —

5.5
2 5.0 -
ER
"'—J e
g 40"" a/gi‘"e-\‘_~
© 35“!’ ;\\ﬁ‘ —————— _..::-- _——:‘-2
o 357 R E L
1 3.0 - //
g 25—-,{./
0 17
o 207, Load Factor
O 1.5«1 —z— .1
S - -e-0.3
a0 —»—0.5

5 1.0

0. T T I T B

0 4 B 12 16 20 24 28 32
Message Length (Words)

Figure 6-21: Processor Productivity vs Msg Length (packet)

Figure 6-21 shows variation of processor productivity with message length
for various values of load factor. The curves for higher load factors lie below those
for lower load factors. This is to be expected, since at higher load factors processors
spend less time doing local processing and more time waiting for messages. Since a
packet passes through at most four layers of switches and since the priority of the
switches alternates, there is an upper bound on the amount of delay a packet un-
dergoes before it reaches its destination. This collective overhead decreases relatively
as the message length increases for higher load factors. On the other hand, for lower
load factors, the collective overhead of all packets of a message has an adverse effect
on the relative amount of time a processor spends in the local state, since that is inde-
pendent of the time spent receiving a message. This results in depressing processor
productivity at lower load factors while enhancing it at higher load factors. Finally,
for large message lengths, the processors spend most of their time waiting for mes-
sages to arrive. The difference between the times they spend in the local state, as an
effect of load factor, becomes relatively unimportant, and all curves approach a com-
mon value asymptotically.

The productivity curves shown for circuit switching (Figure 6-22) are, in
fact, mirror images of the network controller queue lengths. By the definition of
productivity used here, a processor does useful work while it is either engaged in local
processing or actively accessing shared memory. In other words, the only time a
processor is not ‘useful’ is when it has a pending request at the Network Controller.

6.3 Concluding Remarks

Petri Net based models are well suited to modelling computer architectures.
The PCM model has been shown to be capable of representing complex multiproces-
sor architectures such as the ICN architectures. The parameterization features of the
model make it necessary to specify precisely one instance of each component in the
system. It is, for example, necessary to specify only one switch instance. The subnet
parameterization used in conjunction with the functions mapping switch indices onto
link indices effectively result in a banyan interconnection when the switch subnet be-
comes active. Further, other interconnection networks such as the Omega or Baseline
networks can be synthesized merely by changing the mapping function.

102

‘roductivity
(7Y
194
!

3.0 -
2.5 —
. B
o 2.0 - K
o - // Load Factor
o 1.5 - —%— 0.1
g 7 -e-0.3
O —=—0.5
o o 5 - —— 1.0
0. T T T T T }

0 4 8 12 16 20 24 28 32
Message Length (Words)

Figure 6-22: Processor Productivity vs Msg Length (circuit)

The multibus architecture shown here demonstrates the simple and compact
nature of the PCM model. An advantage of using this model is that each processor,
memory and bus are modelled separately, thus preserving their identities. This is in
contrast with previous models in which all processors, for example, are modelled in
one combined net. The advantage of preserving the identities of the architectural
resources becomes obvious when modelling the execution of computations on the ar-
chitecture, since the access patterns are no longer probabilistic.

103

There are some problems with using Petri nets to model computer architec-
ture. In particular, most actions taken in a digital circuit usually depend on either the
presence or absence of a signal. If the signal is modelled by a Petri net place, it be-
comes impossible to force an action to occur when the signal is absent (i.e. there is no
token in the place). In the extended model, there are two ways to avoid this situation.
As in the case of standard Petri nets, the signal could be modelled by two places: one
representing the absence of the signal. A token would then be always present in either
of these two places, and this token would cause subsequent actions. Another method is
to include as a state variable a boolean counter for each place which models a signal.

This counter could then be used in transition predicates which could check for the
absence of the signal.

Another problem is the lack of a global clock in Petri Nets. Most computer
systems do contain several components which behave in a synchronous manner. The
only way to enforce this synchronous behavior among the transitions in the PCM
model is to implement a clock as shown earlier.

Chapter 7

Modelling Computations using the PCM

This Chapter demonstrates the utility of the PCM model and its
development/execution environment, PCSIM, through model studies of the effects of
task and communication unit granularity and of the effectiveness of different realiza-
tions of processor-memory connections on two example computations. These studies
begin with models of programs for the computations which capture the patterns of
resource usage of the computations. Introduction of patterned resource usage allows
detailed analysis of the effects of varying parameters in both the computation and the
underlying architecture.

The two computations modelled are CSL programs for the solution of a
Block Lower Triangular (BLT) system and solution of a Block Tridiagonal matrix by
the odd-even elimination method in a formulation due to Kapur [KAP82]. The com-
putation structures of these programs are expressed in PCM and mapped upon several
variations of the multibus and banyan ICN network architecture described in the pre-
vious Chapter. The PCM models are parameterized to implement a spectrum of
granularity for the computational tasks and the elementary units of communication
(access to non-local memory by a processor). The granularity of the units of computa-
tion is determined by the block size for the submatrix in each algorithm while the
granularity of communication is either copying of an entire submatrix block, or word-
by-word access. The architecture variants are a banyan ICN and a multiple bus con-
nections of processors to memories.

Section 7.2 contains the modelling results for the Block Lower Triangular
System. A parallel algorithm for solving the BLT system, along with encodings of the
algorithm in CSL and TDFL are presented. The programs are presented mainly to al-
low the comparison of the actual models created with the equivalent CSL programs to
highlight the similarity between them. The results obtained for a message based for-

104

105

mulation of the Block Lower Triangular system are validated against results obtained
from actual execution of the algorithm on a Sequent Balance-21000. The simulation
studies of the BLT system are discussed at the conclusion of the Section.

The computations are expressed using the parallel languages described in
Appendix B (TDFL and CSL). The two formulations differ mainly in that computa-
tions expressed in CSL include both shared variables and messages as means of com-
munication, while TDFL, being a data flow language, allows only message based
communication between concurrent processes. The PCM model instances for each of
these programs are then obtained by using the transformations given in the Appendix.
The transformation from CSL or TDFL programs to the model instance is incomplete
since it lacks timing information as well as details of the underlying architecture.
After including these details, the model is used to study the performance of the com-
putation. Though the models used in this Chapter closely resemble those that would
have been obtained using the transforms, they have been simplified for clarity. As
illustrated by the examples in this Chapter, the performance of the computation can be
studied for several interesting configurations.

Section 7.3 describes the Odd-Even Elimination algorithm for solving Block
Tridiagonal System, and then outlines the model and simulation results for several
configurations of the computation. The final section contains some concluding
remarks.

7.1 Interface between the Architecture and Mapping Submodels

The architectural models specified in Chapter 6 were designed to study the
behavior of the architectures under probabilistic loads. In order to use them in con-
junction with parallel computations, they are modified to present a standard interface
to the mapping submodel, as described in the methodology. The mapping submodel
binds processes (or tasks) to processors and fransmits process requests to processors,
and the processor response back to the process.

A process S behaves in the following manner. When it is initiated, it sends a
load request, by placing a token in S load. It then awaits confirmation from the
processor (a token in S_ready). An initiated process can execute by placing a request

106

to its processor. A request consists of a (possibly empty) sequence of remote accesses
and a computation delay. A remote access is merely a two-tuple specifﬁng a remote
memory number and the number of words to be transferred from that memory. Since
all the applications that are studied here are numeric and involve only floating point
numbers, the size of the request will be specified in terms of floating point words (one
floating point word is equivalent to four words). The remote accesses are assumed to
be uniformly distributed over the computation delay.

O P_req(i)

P_setreq(i)

P_local(i)

P_done(i)
P,_Wi)

P_access(i)

M_acce

[

Tot_paccess

Figure 7-1: Processor and Memory Models for the Multibus Architecture

A processor can be in one of four states: idle, busy, accessing a remote
memory, Or waiting to access a remote memory. The processor is initially in the idle
state until it receives a process request for loading. This causes the processor to move

107

to the busy state, signalled by a token in P_busy (Figure 7-1). When a process starts
execution, it makes a request to the processor, which is signalled by a token in P_regq.
It is assumed that a processor is dedicated to a single process once the process has
been loaded. The arrival of a token in P_reg causes P_Setreg to fire. The transition
procedure for P_Setreg sets up the request in a request queue associated with the
processor. It also calculates the number of bus accesses required to complete the entire
request, and the resulting computation delay between successive accesses. P_local
models this computation delay, after which the remote access is made. Tof paccess
and Tot pwait are used to collect overall statistics for all processors. After each ac-
cess, P_setreq updates the processor’s request queue, and the next computation delay
ensues. When the last access is complete, the predicate for P_final becomes true, and
a token is placed in P_Done signifying the completion of the execution/remote access.
Execution of a process without remote accesses is modelled by making a request with
a computation delay, but no remote accesses, and results in the firing of P_final with-
out ever enabling P_local. The entire computation delay is assigned to this transition.

The memory model for the multibus architecture is the same as that shown in
the previous Chapter. Each memory has a FCFS queue which contains processor re-
quests, and when a request is present in the queue, the memory checks if a bus is
available before introducing a delay equal to the access delay. After this delay, the
memory signals completion of the access to the processor.

The model for the Banyan interconnection network architecture is similarly
modified. The only other interesting detail for the Banyan architecture model is the
introduction of a "micro clock” to reduce the number of events in the system. The
micro clock has the effect of only enabling the interconnection network when there is
at least one processor actively accessing a remote memory.

Both architectures are assumed to be based on the Motorola 68020
microprocessor. All computation delays are assigned using timing values obtained
using a SUN-3/50 workstation with a 68881 floating point coprocessor. Using the in-
dividual delays for each high level statement, the delay for an entire process is ex-
pressed in terms of its size (or granularity). The cost of transferring a floating point
word from a remote memory is specified as Ty, and is of the order of two to five times

108

the cost of a local access. A local access is assumed to be equal 10 0.24 psec. T is the
overhead incurred when loading a process on a processor. It is assumed that this is a
fixed cost, and is not affected by the nature or size of the process itself. A simplified
model is used for representing I/O. The assumption made here is that each processor
has access to a single I/O device which has DMA capability. This device can satisfy
several requests simultaneously, and each DMA transfer causes a processor to incur a
delay proportional to the number of words transferred. In particular, it is assumed in
the following examples that the DMA transfer of floating point data from the device
into the local store of a processor causes a delay equal to 0.8*n, where n is the number
of floating point words transferred.

7.2 Block Lower Triangular System

The Block Lower Triangular Algorithm is a parallel solution of a lower tri-
angular matrix:
Tx=b
where T is an nxn lower triangular matrix, x and b are n-vectors.

|

T X B

Figure 7-2: A Triangular System

The algorithm decomposes the matrix into blocks as illustrated in Figure 7-2, and al-
lows the solution of different blocks to be carried out in parallel. There are three types
of tasks in the computation: init, solve and marvect. The tasks are described next:

init(i) initializes one block row of the system.

109

solve(d) triangular solver for the ith triangular diagonal block. It solves for
X; in the system:
Tiix; = by
This can be done only after all matvect tasks for row 1 have com-
pleted. Observe that solve(l) (solve for block 1) can begin im-
mediately after initialization, and does not depend on any matvect

tasks.
matvect(i, j) executes the transformation
Tl}xj - b1 -— bi

on the ith block in column j. This step can only be executed if
solve(j) has been completed.

7.2.1 BLT Solution using CSL and TDFL

Figure 7-3 shows the CSL program which specifies the Block Lower Tri-
angular computation. The CONSTRUCT statement contains declarations of the tasks,
shared variables and communication channels involved in the computation. The decla-
ration of Solve, for example, specifies N tasks Solve(l), Solve(2)..Solve(N). All
Solve tasks are identica’, and their compiled (object) code is found in file C2. A list of
shared objects accessible to each task completes the specification of the Solve tasks.
The Matvect tasks process the non-diagonal blocks of the matrix. Associated with
each Matvect is a boolean task condition which is set after each execution of the task.

The program starts off N parallel streams, as denoted by the outer
COBEGIN. Each parallel stream begins by executing a diagonal (solve) task first, and
then all non-diagonal (matvect) tasks in that column in parallel (inner cobegin). The
WAIT statement ensures that the execution of each solve task begins only after all
matvect tasks in its row signal their completion by setting their task conditions. The
statement:

WITH T(3,1i), X(3) : X(i) DO
EXECUTE Matvect (3j,i):
specifies that the task matvect requires exclusive access to shared objects T(j,i) and
X(j), and wishes to use X(i) in read-only, or non-exclusive mode. Finally, the CSL
program demonstrates the power of the RANGE statement as a construct for
parameterizing the computation.

110

JOB Triangle:

VAR H : integerxr;

BEGIN
N o= 4;
CONSTRUCT

TASKS
Init(i) : C1 [T(i,3), X(i)]
RANGE j = 1 to i,
i=1to N;
Sclve (i) : C2 [T(i,i}y, X{(i)]
RANGE i = 1 to HN;
Matvect (i,3) : C3[T(i,3), X(i), X(3)]
CONDITION C(i,3)
RANGE j = 1 to i-1,
i=1%o N;
END; { CONSTRUCT %

WITH T(i,3), X(i) DO
EXECUTE Init (i) RANGE 3
i

1 to i,
1 to N;

Won

COBEGIN
(// WAIT C(i,3) RANGE j = 1 to i-1;
WITH X(i)}, Ti{i,i) DO
EXECUTE Solve(i):
COREGIN
(// WITH T(3,1i), X(3) : X(i) DO
EXECUTE Matvect (3, 1)
} RANGE 3§ = i+l to N;
COEND
} RANGE i = 1 to N;
COEND;
END.

Figure 7-3: CSL Program for Triangular Solver

The TDFL solution is shown in Figure 7-4. The single Initialize task in the
CSL solution has been partitioned into two tasks, one to read and distribute the blocks
of the T matrix, and the other to read and distribute the initial values of B. Each Solve

111

task, as before, solves a smaller system, and passes its results to all MVs in its column.
The MVs receive this solution and use this value to update the B vector. All final
results are collected by a special Write task.

Figure 7-4: TDFL Solution for BLT System

One difference between the two solutions is that the TDFL solution, being message
based by nature, avoids conflicts for shared data by having multiple copies of data
required by more than one task, thereby increasing the communication delays. A
Detailed description of the PCM model for the TDFL formulation can be found in
[ADI87b].

The PCM model was used to model the behavior of an implementation of
BLT using TDFL on a Sequent Balance-10000. The delay values for individual tasks
were obtained by running the tasks in isolation on the Balance. The validation com-
prised of several configurations of number of partitions as well as number of proces-
sors. The resulting metrics were the overall execution time, and the processor utiliza-
tion, both of which agreed closely with the timing values from the actual runs. The
PCM model for this experiment was as shown in Figure 7-5.

T@A1 B(.i)

O O

X(@{) B_COLG,1)
—t j=i+1.N

Subnet S
i=1.N

(®)

112

BdG,)) TG.H

/

O O

B_COLG,D) BG,j+D)

Subnet MV
i=i.N
j=i+1.N

(c)

Figure 7-5: PCM model for TDFL Solution

Validation results for TDFL Executions

exec time exec time proc util proc util
nxp A) () (A) &)
1x1 13001.1 12295.5 0.9997 1.000
2x1 13158.5 13167.8 0.9994 1.000
2x2 13111.6 13081.7 0.5032 0.5033
3x1 12977.2 12919.6 0.9989 1.0000
3x2 10055.1 10058.9 0.6418 0.6422
3x3 10043.9 10058.9 0.4292 0.4281
4x1 12918.6 12863.8 0.9982 1.000
4x2 8073.4 8083.6 0.7958 0.7957
4x3 8108.2 8083.6 0.5313 0.5305
4x4 8115.0 8083.6 0.4032 0.3979
6x1 12907.2 12787.2 0.9956 1.000
6x2 7186.6 7158.4 0.8908 0.8932
6x3 6123.0 6112.2 0.6965 0.6974
6x4 5780.2 57729 0.5533 0.5538
6x5 5779.0 57729 0.4428 0.4430
6x6 5794.6 5772.9 0.3687 0.3692

Table 7-1: Comparison of Simulation Results with actual executions

7.2.2 Modelling the BLT System

The X vector is the only shared data object in this algorithm, and is placed in
the remote memories. Figure 7-6(a) shows the PCM model for the inir tasks which
initialize the values of X. The mechanism used for modelling the loading of tasks on
processors, making requests for reading/writing remote memories and for signalling
the completion of execution of a task is identical for all tasks, and will be described
only for the init tasks shown here. When a token is placed in I_load, the process (or
task) is loaded on a processor specified by the mapping function. The loading may be
delayed if the requested processor is busy. When the process has been loaded, a token

114

arrives in I_ready. Requests for remote memories are flagged by placing a token in
I_req. Associated with each req place (i.e. with each request) are two state variables
containing the id of the requested memory and the number of data words to be trans-
ferred. The request is relayed to the appropriate processor using the mapping function,
and when the the transfer is complete, a token is placed in I_rec. Finally, placing a
token in I_done signals the termination of the task and causes its associated processor
to be released.

(S ER))

S _load(i) S_ready(i)

1_load(i) I_ready(i)

S_get_x(i)

Solve()

Init(i) S_rec(i)

Ireg(®) O/(% Mv_synch(i+1,i)

$_done(i)

I_done(i) _L‘ g
i S_end

Figure 7-6: PCM Representation of Init (a) and Solve (b) tasks

After iniz(i} is loaded, the shared object X(i) is locked and transition I_init(i) fires,
placing a token in I_req. The request is accompanied by the name X(i) and the delay

115

for copying (or accessing) it. The mapping submodel converts this logical name (X(i))
into a physical memory module number (say, memory number 2). A token arrives in
I _rec only after the access and the delay have been carried out.

Each Solve task (Figure 7-6(b)) awaits completion of all Matvect tasks in its
row (tokens in places C(,1), C@,2),..., C(i,i-1)) before it initiates loading. Transition
S_get_xi is used to lock X(i) and initiate the copying of X(i) into local memory. Tran-
sition Solve models the actual execution of the task by introducing a delay which is
specified as a function of the size of a block. After Solve(i) completes, all Matvect
tasks in its column can begin. This is represented by the subnet Mv(i) which is
parameterized as shown in Figure 7-7. The model for each Matvect task is similar to
that for the Solve, and requires no further explanation.

Figure 7-8 shows the delays assumed for each of the tasks in the computa-
tion. The delays are all in [isecs, and are specified in terms of the size of each block.

The modelling results presented here are for a 512x512 BLT system. The
execution behavior of this system is studied on both the Banyan and the multibus ar-
chitectures. The number of partitions is varied (causing a variation in the granularity
of a task), and its effect on the performance is studied. For the multibus architecture,
two sets of runs are conducted: one with T, = 1.2 msecs and 8 buses, and the other
with 7., = 0.2 msecs and only 4 buses. Henceforth, the 4 bus multibus will be referred
to as multibus I, and the 8 bus multibus as multibus II.

Figure 7-9 shows the variation of execution time with the number of par-
titions for the banyan and multibus (II) cases. The general trends for both the curves
are similar, and can be easily explained. When the number of partitions is increased
from 1 to 2, the algorithm remains, in essence, a sequential algorithm, since the order
Solve(1), Matveci(2,1), Solve(2) must be followed sequentially. In fact, there is the
extra overhead caused by the additional reads and writes from the remote memory
module, which actually causes an increase in the execution time! As the number of
partitions is further increased, the execution time drops rapidly at first, but then starts
to even out. This is because as the number of partitions is increased, the overheads in
the computation also increase, and the greater parallelism is offset by this overhead. In

116

Mv_synch(i.i) v j=i+LN

My _load(.i) Myv_ready(j.i)

Mv_ger_xi(ji)
Mv_rec(i,i)

\-——/ Mv_synch(j,i)

Mv_get_xj(j.i)

Mv_req(i.i)

XD

Mv‘mq(},i) F
XG) MG

Mv_rec(3.D)

Mv_release(],i)

Mv_done(i,i) O/ CG.A)

Figure 7-7: PCM Representation of Matvect tasks

For block size s,

matvect $(30.48s + 1.96)
Solve 5(15.24 - 6.96)
Init 0.8s

Figure 7-8: Delays (in usec) associated with some operations

this case, the most significant overhead is T, since it is directly associated with the

117

Time (sec)

0 8 16 24 32

Number of Partitions

Figure 7-9: Execution Time vs No. of Partitions

number of partitions in the system. The Banyan case has higher execution times, since
the granularity of each access is much larger than for the multibus (II) case. Once a
circuit has been set up, it is held for the entire period of time that the remote memory
is accessed, and thus contributes towards blocking in the network. Figure 7-10 shows
that as the number of partitions is increased from 32 to 64, the execution fime in-
creases, since the overheads become prohibitively large. Also, it can be seen that bus
contention does not seem to be a problem for the 4 bus case, since there is no sig-
nificant performance degradation.

118

5.00 ~

Time (sec)

0 16 32 48 64

Number of Partitions

Figure 7-10: Execution Time vs No. of Partitions

Figure 7-11 shows the effect of granularity on the Speedup. (Speedup is used
in the raditional sense as being the ratio of the sequential execution time to the time
taken for the parallel solution.) The ideal curve was calculated using a simplified
model which assumes a PRAM - CRCW type of architecture with infinite numbers of
processors, and no overheads of any kind, which leads to the following expression:

Teomp = Tinit * Nigoive + (N-1)175
This follows from the observation that if there is no contention for resources

119

18 =

10 4 —=—ideal
o 4 -e~-bus
.g _———*——bcn
o
q) e
a
A _
5....
ﬁ// o
_ e
P
0 NN B s B A Y N B D B B B

0 8 16 24 32

Number of Partitions

Figure 7-11: Speedup vs No. of Partitions

(processors and memories), execution of the solve and matvect tasks will be inter-
leaved. This is a lower bound on the time taken to execute the BLT solution on any
architecture. The multibus case shows near ideal speedups for upto 16 partitions, but
then begins to decrease as processor contention as well as communication overheads
take effect. Again, the larger granularity of the memory accesses in the banyan case
are reflected in the lower speedups.

Figure 7-12 shows the processor utilizations for all three cases. When the

120

—s— bus
-e-bus?
—— ban

o O

N4 o ©
!

o
o))
1

Utilization
o on
|

() o O O O O
]
|

0 8 16 24 32

Number of Partitions

Figure 7-12: Processor Utilizations vs No. of Partitions

number of partitions is increased beyond 16, the processor utilizations actually in-
crease, since the smaller granularity of each task now causes a decrease in the time
spent by other processes for synchronization. Figure 7-13 shows that the network con-
troller queue length increases with the number of partitions. This is because the
processes make more frequent, but smaller, accesses from remote memories. This has
the same effect as a larger "loading factor” as defined in the previous Chapter.

121

Queue Length

0 — 1 1 T I B 5
0 8 16 24 32

Number of Partitions

Figure 7-13: Network Controller Queue Lengths

7.3 Block Tridiagonal System
A Block Tridiagonal matrix can be defined as follows.
A = (a@), b(j), iy
where b(i) is an nxn matrix and a(1) = 0, and c¢(N) = 0. A Block Tridiagonal System is
then a system of equations:

Ax =v, A =(a(}), b(®), c(y

Figure 7-14: A Block Tridiagonal System

as shown in Figure 7-14. One solution to this system is called the Odd Even Elimina-
tion technique [HEL77] and can be described as follows: First, select three consecu-
tive block equations.

8 Xgp + b X * Cra¥x = vigp &1
Xy o obpx o+ Xy = Vi &)
B 1Xk +t DryiXpgr o Cpa1¥ke2 = Ve k+D)

Multiplying equation (k-1) by -a.b;’, and equation (k+1) by -c;b,., and add, the
resulting equation can be seen to have only factors with Xy 5, X, and x; 5. In other
words, the resulting system still has only three non zero block diagonals, but they are
now further apart. This process is repeated until only one block diagonal remains, and
the system can be easily solved. The algorithm can be expressed in the following
manner [KAP&2]:

1. Solve for bek) [a’(k)c’ (k)v' &)] = [atk)c(k)v(k)]

2. b(k).2 « bk).1 - ak).1c’(k-1) - c(k).1a’(k+1)
3.v(k).2 « v(k).1-ak).1v'(k-1) - c(k).1v'(k+1)
4.ak).2 « -ak).1a’(k-1)

5.¢(k).2 « -c(k).1c’(k+1)
The algorithm modelled here consists of the following tasks:

Init(i) Initializes the ith row. In this algorithm, a, b, ¢, v, a’, ¢’ and v’
must all be in shared memory. However, 2°, ¢ and v’ need not be
initialized.

LU®W Does the LU decomposition for b(i). This is then used to solve for

a’(i), ¢’() and v’(3) in (1) above.

Oe(i) For the ith row, uses a’(k-1), a’k+1), ¢’(k-1), ¢’(k+1), v'(k-1) and
v’(k+1) to evaluate the new values of a, b, ¢, and v. Since each Oe
needs values from each of its neighboring rows, and updates its
own row, the algorithm imposes a synchronization by first execut-
ing Oe(i) for odd i, and subsequently for even 1.

Swap(i) The swaps do an inverse perfect shuffle of the rows, thus giving

rise to two tridiagonal systems of half the size.

Solve(d) After log(n) iterations (where n is the initial number of block
rows, and the logarithm is to base 2), the system is reduced to a
single block diagonal. This can then be solved using the Solve
tasks.

7.3.1 Model for the Tridiagonal System

The PCM model for the Tridiagonal System is described next. Only a brief
description is given, since it is regular in structure, and merely carries out the opera-
tions specified earlier for each task. The topmost level of the model (Figure 7-15) is
simply a loop which iterates k times (where k is log of the number diagonal blocks),
finally reducing the system to a block diagonal system which can then be solved. The
state variables "g" and "s" trace the number of groups and the size of each group,
respectively. For each iteration, subnet Tridia is initiated once, while after the final

iteration, Solve is called to obtain the final solution.

Since subnet Tridia (Figure 7-16) is parameterized with "g", the number of
groups, each initiation causes twice as many streams. The index "s" is used within the

124

Init

k=k-1 k<>0 k=0
S-':S[2 frmm——
g=g*2 Tridia Solve

Figure 7-15: Top Level of Tridiagonal Solution

subnets comprising Tridia (Lu, Oe and Swap), which leads to the binary tree-like com-
putation structure. The reason two Oe(odd) subnets are required is that the first row in
the system (initially, row 1) does not need to access the previous row (row zero), and
hence can evaluate its functions with only rows i and i+1. Similarly, the Oe(even)
tasks have two copies since the last row (say, i), does not need a next row (i+1).

Finally, the swap merely copies the contents of one memory into another, to achieve
an inverse perfect shuffle.

Since all the subnets are essentially the same, only one, Lu(i,j), is described.
Note that the indices i and j specify the group number and position within the group
respectively. Lu_load, Lu_ready, and Lu_done have the same interpretations as in the
BLT case. Once the process is loaded, it executes in three phases:

e accesses by, ; and evaluates its LU decomposition

e evaluates the values of a’, b’ and ¢’ for the same row (i.e. index i*s+j),
and writes them back to remote memory.

The configuration parameters varied in this study are the following:

Oe(odd)

Oeleven)

Swap(i)

Figure 7-16: Model for Tridiagonal Subnet

e number of buses for the multibus architecture (examples use 1 or 2
buses),

e the time delay for the access of each floating point word (examples use
0.5 or 1.0 usec),

e size of the computation, keeping the number of partitions fixed (i.e. there
are always 16 diagonal blocks, but the size of each block is varied from 2
to 16)

e remote accesses with and without copying.
The decision of whether to copy or not has a large impact on the performance of a

126

lu_load lu_read

Figure 7-17: Model for Lu Subnet

computation, due to the fact that remote access are more expensive, as well as the fact
that they contribute towards the bus (or network, in the case of the banyan) conges-
tion. Another critical factor is the complexity of the computation itself in terms of the
number of remote accesses. If the number of accesses grows rapidly, it may be better
to first copy the entire object into local store, and then begin the computing. Table 7-2
shows the effects of the various options on the overall computation time.

Tre = 0.5
Size of block 2 4 8 i6

1 bus, no copy | 40.0 | 132.0 | 756.5 | 5317.9

2 bus, no copy || 39.8 | 131.8 | 755.8 | 5317.7
1 bus, copy 41.8 1 130.2 | 686.6 | 4557.7
2 bus, copy 41.6 | 130.1 | 686.5 | 4557.5

Tre == 1.0

Size of block 2 4 8 16

1 bus, no copy || 42.8 | 137.1 | 781.6 | 5483.0

2 bus, no copy || 40.5 | 135.1 | 776.8 | 5467.0

1 bus, copy 43.3 | 134.1 | 701.1 | 4612.2
2 bus, copy 42.1 1 131.2 | 690.5 | 4573.0

Table 7-2: Tridiagonal Simulation Results

From the table, it can be seen that the architecture is being operated well
below its capacity. The addition of a second bus does not effect the performance, since
the first bus itself is underutilized. Since the computation being modelled consists
mainly of matrix operations (O(n%)), copying quickly becomes an attractive alternative
to all the extra bus accesses. In all the cases, for block sizes larger than 2, it is benefi-
cial to use copying.

128

7.4 Conclusions

The studies presented in this Chapter have demonstrated that PCM models
which are compact and easy to develop can return accurate evaluations of the impact
on performance of fairly subtle variations in computation structure and architecture.
The validation of the model across a spectrum of task granularities was very satis-
factory. The methodology was demonstrated to fulfil its claims of facilitating varia-
tions in model structure and isolation of cause and effect relationships.

Chapter 8

Conclusions

The model proposed in this dissertation is an extended form of Standard Petri
Nets which allows the representation and performance evaluation of the execution
behavior of parallel computations on given architectures. One enhancement in the
PCM model over other models is the introduction of hierarchy and parameterization
into the model. Parameterization was shown to be of immense value when modelling
parallel computations and architectures. The representation of the entire switching
interconnection network, for example, was reduced to the specification of just one
switch, properly parameterized to reflect its nearest neighbors. The models of the com-
putations, too, required the specification of only one process of each kind, with proper
parameterization accounting for the rest. This has the added advantage that only the
basic structure or pattern of the computation or architecture need be captured while
building the model.

The introduction of a systematic hierarchy allows development of a
methodology for building models. The methodology allows the systematic develop-
ment of correct models, and makes the technique extremely flexible. Once a computa-
tion has been modelled, factors such as the underlying architecture and the mapping
between the computation and the architecture can be easily modified. The library of
architectures proposed can be extended to include shared memory architectures as
well as message based, or distributed systems. This would require a redefinition of the
mapping interface between a process and a processor to include the concept of sending
a message to another processor. The library concept can also be extended to include
abstract computation structures.

The model has the advantage over other analytical models in that it can simu-
late the behavior of large, complex systems, since it does not have to enumerate the
entire state space. However, as the nets begin to get large, the memory requirement of

128

130

the model also increases rapidly, eventually becoming a bottleneck. One solution to
this would be to attempt some type of reduction of the nodes in the net by clustering
several nodes if the clustering does not effect the flow of control, and by assigning the
aggregate transition a new delay representing the entire cluster.

The example studies here have shown both the convenience of using PCSIM
and the capability of PCM for accurately capturing small variations in both logical
computation structures and architectures.

There are several streams of future research. The most immediate and impor-
tant is to conduct a series of model studies of the impact of variations in computation
structures and architecture on widely used algorithms from several disciplines. Each
study will be grounded in validation on some real architecture. There are also further
possible enhancements that may further enhance the representation convenience of
PCM. Addition of types of tokens is one such enhancement, a third area of research is
efficiency of execution. Model formulation strategies which compact the state
representation by masking out unnecessary events and utilizing hierarchy to reduce
execution time will be studied. Finally, a parallel structuring of PCSIM, itself, will be
formulated and studied.

Appendix A.

Equivalence of the PCM Model to Petri Nets with Inhibitor Arcs

The modelling power of Standard Petri Nets is known to be less than that of
Turing machines due to their inability to test for the absence of tokens in a place
[PET81]. It has been shown that Petri Nets with inhibitor arcs are equivalent in their
modelling power to Turing machines [AGE74]. In this Section, the PCM model is
shown to be equivalen: to Petri Nets with Inhibitor arcs (IPNs). The equivalence is
proven by showing that for any instance of and IPN, there exists an equivalent PCM
instance.

A.1 Definition of the IPN model

The IPN model is the Standard Petri Net with the addition of inhibitor arcs
which are used to test for the absence of tokens at a place. The IPN model is defined

as:

IPN = (P, T, I, J, O, M}, a Petri WNet, where
P = {py,..-,Pp}, @ set of places,n 2 0
T = {t;,..,t,}, a set of transitions,m =2 0
I is the transition input funection, I : T =---> 2%,
or, I is a subset of P2xT;
J is the transition inhibitor funection, J : T =-==> 28,
or, J is a subset of PxT;
O is the transition output fuanction, O : T =---> 27,
or, O is a subset of TxP;
M= [l3,...,4,], @ vector of integers specifying

the initial marking of the net;
and the sets P and T are disjoint

The main difference between this definition and that of standard Petri Nets is the ad-
dition of inhibitor arcs specified by J. A transition is now enabled when all its inpus
places contain tokens, and all its inhibitor places contain NO tokens. More formally,
the dynamic behavior of an IPN can be stated as follows:

-

131

e transition t; is enabled iff:

‘V’pj
and
Vpy € J(ty), Uy =0

e at any instant, an enabled transition can be selected and fired

e firing a transition, t;, is instantaneous and has the following effect:

Vpy € I(ty), Kby e py - 1

Vpy € O(ty), Hy « Hy + 1

A.2 Conversion from IPN to PCM
Givenan IPN = (P, T, 1, J, O, M), an equivalent PCM is constructed.

Define:
J; = {py | Py, € J(t;)} 0 £1 < m
J = VYieo,m I3
II; ={p, |l pPs € TAp, € I(t;)} 0 £ i <m
I0; ={p, P, € AP, € O(t;)} 0 £ i €£m

For each transition t;, J; specifies the set of places connected to it by inhibitor
arcs. J is the union of all J;s. For a transition t;, IL; specifies the subset of its input
places which are inhibitor places for some transition (i.e. which belong to I).
Similarly, 10, specifies the subset of the output places of transition t; which are in-
hibitor places for some transition.

The equivalent PCM is defined as:
PCHM = <PH, 8V, TaA>

where
PH = (,7,1,0,M)

8V = <V, IV>

where
V={vpiipie J }

and IV = { ive s the initial value of Vp,r = My }

TA = <II, >
where

?tj(V) = A(Vpi =0), Vp, € J4

¢j (V) = sequence of assignments:
v, =v, -1V p; € 11,

Py P
vpi=vpi+1‘v’pie 104

In the equivalent PCM model, the basic Petri Net (PN) is simply the original IPN
without the inhibitor arcs. Since the only way of testing a place for zero tokens in the
PCM model is by using a state variable, each place P; in the IPN which is an inhibitor
place for any transition has a state variable (ng) in the PCM, which counts the number
of tokens in the place. The transition predicates are defined so that whenever an IPN
transition has an inhibitor place, the corresponding PCM transition’s predicate checks
that the associated variable is equal to zero. Similarly, if an IPN tansition either
removes or adds tokens to a place which is an inhibitor for some transition, the PCM
transition procedure correctly updates the corresponding state variable.

IPN PCM

Figure A-1: An Example

134

The construction is demonstrated by means of an example (Figure A-1). The
IPN shown graphically in the figure corresponds to:
IPN = (P,T,I,J,0,M) '
where

P = {p;, Py Pas 94}

I(ty) = {py, P2} J(t;) = {T}

I(ty) = {py} J(ty) = {py}
O(ty) = {pz, P3} O(ty) = {p4!}
M= [4,1]

In the equivalent PCM model, the only state variable is Vp,:

PCM = <PHN, 8V, Ta>
where
PN = (P,T,I,0,M), as for the IPN

SV = <V, IV>

Vo= {vpl}; IV = {lvpl = 4}

T2 = <II, O>
T, = True, Ty, = (vpl

¢1 = (vPl = ‘VP1 = 13

0)

It has been shown that the PCM model can represent any IPN net. To com-
plete the proof of equivalence between the PCM and IPN nets, the reverse transfor-
mation (from PCM to IPN) must be shown. The proof is based on representing all
integer state variables as places, and their values as tokens within the places. Each
PCM transition is now replaced by IPN fragments which simulate the transition predi-
cate and procedure. The existence of such an equivalent IPN fragment for a PCM
predicate (or procedure) is proved by providing equivalent IPN structures for each
grammar rule of the predicate (or procedure), and chaining them together to obtain the
IPN fragment equivalent to the entire predicate. The details of the transformation can
be found in [ADI88]. Thus, the PCM model is equivalent to the IPN model (and,
therefore, to the Turing Machine Model).

Appendix B.

Modelling high level languages

This Appendix outlines a method for translating programs written in high
level languages into instances of the PCM model. The two languages selected here
are the Computation Structures Language (CSL, [BRO82]) and the Task-level Data
Flow Language (TDFL) [SUH87], both of which are experimental languages
developed at the University of Texas. The choice of these languages is appropriate
since they belong to the two different approaches to parallel languages - CSL is a
language that expresses explicit parallelism, while TDFL is a typical dataflow lan-
guage which expresses implicit parallelism with procedure level units of computation.
Since implementations of these systems exist, it becomes possible to validate the
results obtained from the model against actual executions of the computations. In the
following sections, each language is discussed separately, with details of how different
constructs in the languages are represented in the model.

B.1 Representation of CSL Constructs

The Computation Structures Language is a language that allows the
specification and programming of multitype, multiphase computations It supports
dynamic structuring of computations through multiple phases, each of which may dis-
play different types and degrees of parallelism and differing requirements of data and
interprocess communication. CSL was originally designed for the Texas Recon-
figurable Array Computer (TRAC) [SEJ80], but has since been implemented on alter-
nate architectures.

CSL is a block structured language with several Pascal-like constructs, with
constructs to specify synchronization and communication, in addition to typical se-
quential constructs such as branching and iteration. The basic computation unit in CSL
is a rask, which is a sequential unit of code that is encoded using a standard high level

language (like Pascal or C). The state of the CSL program includes only the infor-
mation necessary for control of the computation. A CSL program specifies only the
synchronization and communication between these tasks, while the actual task bodies
are specified in an ordinary high level language. In this section, some of the main CSL
constructs are introduced and their equivalent model instance is presented.

B.1.1 CSL Variables

CSL job variables can be of three types - integer, boolean and condition. All
integer and boolean variables are represented as state variables and form the vector V
defined previously. These variables can occur in transition predicates, and can be
modified by transition procedures. Since condition variables behave like binary
semaphores, it seems more natural to represent them as places. Each condition is
modelled by two places. A token in one place means the condition is ’on’, while a
token in the other place indicates the condition is ’off’. These conditions are used in
the WAIT and SIGNAL synchronization primitives described later.

B.1.2 The CONSTRUCT statement

The CONSTRUCT statement is used to define the resources used in a seg-
ment of a CSL program. In particular, the types of resources declared are the tasks to
be executed, the variables they share among themselves, and channels through which
they may exchange messages. Each shared variable is modelled by a single place with
one initial token. Channel declarations are specified with buffer sizes, which indicate
how many outstanding messages are allowed between any two tasks. Each channel is
modelled by two places- one indicating the number of free buffers, and the other in-
dicating the number of buffers used. These places are described further in the section
on Communication.

B.1.3 Execution of tasks

The EXECUTE statement is used to initiate execution of a task. Task execu-
tions are modelled by transitions, where the transition delay represents the task execu-
tion time. As shown in Figure B-1, parallel execution of tasks is achieved using a
COBEGIN-COEND pair with any number of parallel streams contained within. Tran-
sition T1 models the COBEGIN, and forks two parallel streams. both streams are
complete, tokens arrive in P1 and P2, and T4 fires. Control does not pass beyond the

S
L2
.}

T1
COBEGIN
J/EXECUTE (Task1);
o
T2 -——%= T3 b3
2 3 J/ EXECUTE (Task2):
© e
[+]
o
P1 P2 COEND;

T4

Figure B-1: CSL EXECUTE and COBEGIN Statements

COEND until all sweams have completed execution. After both streams are complete,
tokens arrive in P1 and P2, and T4 fires.

B.1.4 Iteration and Branching

CSL provides most of the common branching and iteration constructs like
IF-THEN-ELSE, FOR-DO and REPEAT-UNTIL. Figure B-2 shows the IF statement
and its equivalent representation. All variables in cond are modelled by state variables.
When a token is present in P1, if cond evaluates to true, transition T1’s predicate is
true, and T1 becomes enabled. Similarly, if cond is false, T2 becomes enabled. The
FOR statement (Figure B-3) is modelled by having a special transition (T4) which
increments the loop variable (i) when it fires. Transition T1 initializes the loop vari-
able, while T2 and T3 decide if the loop has completed.

138

P1

T1 = T

IF <cond>
5 o THEN
& e P
} y 3

ELSE
o
[~
o

Figure B-2: CSL IF Statement

B.1.5 Synchronization

CSL provides synchronization primitives based on Dijksira’s semaphores.
The two most constructs are the WAIT and SIGNAL statements, both of which
operate on CSL condition variables. Figure B-4 shows how these statements can be
expressed very naturally using Petri Nets. In addition to the CSL condition variables,
each task has a condition (boolean) variable which can be set from within the task
body. C and C’ are used to model the condition. The statement WAIT(C) is modelled
by transition T1 awaiting a token in C. Since SIGNAL(C) is non-blocking, it must be
modelled by two transitions T2 and T3. If C is already set, T2 fires, resulting in no
change in the system. If C is not set, a token is present in C’, and T3 fires. In both
cases, after the SIGNAL, C becomes set.

B.1.6 Communication

Tasks in CSL can communicate either by sending messages or by means of
shared variables. Messages can be sent between tasks on a channel. Figure B-5 shows
how message channels are modelled. A SEND can occur only when an empty buffer is
available (place buff_avail has a token), while a RECEIVE would cause the receiving

Procii=a == TI
FORi:=aTObDO
Stream 1;
T2
Pred:i>b T3| Pred:i<=b

T4 CZL:' Stream 1
Proc: i =i+l f

Figure B-3: CSL FOR Statement

WAIT(C) SIGNAL(C)

Figure B-4: CSL WAIT and SIGNAL Statements

task to wait for a token in place msg_avail. Depending on the underlying architecture,

140

msg_avail : P1 P2 \S

.
send receive § stream1
WITH S1 DO
Streaml;
buff_avail
() (b)

Figure B-5: CSL SEND, RECEIVE and WITH Statements

the delay at the send transition would model the message delay. Since message delays
can be functions of the state variables, it is possible to specify load dependent message
delays. Further, if desired, transition send may be replaced by a subnet which models
the underlying architecture in greater detail.

Figure B-5 shows the basic synchronization primitive: the WITH-DO state-
ment. Shared variables can be accessed either in exclusive (write) mode, or in non-
exclusive (read only) mode. Since shared variables are modelled by single tokens, ex-
clusive access is easily modelled by holding the token for the duration of the execution
of the task. In most cases, the underlying architecture enforces exclusive access to
shared memory (as in TRAC), and non-exclusive access is modelled by accessing the
variable in exclusive mode, copying its contents into local memory, and releasing the
exclusive “lock’. If the architecture permits non-exclusive access, state variables have
to be introduced as shown in Figure B-6. Here, the state variables (R & W) track the
number of active readers and writers at all times. The writers are guaranteed exclusive
access by removing the ’shared’ token (in P3) as before. The readers, however, incre-
ment the ‘read-count’ to indicate that they are using the variable. No writer can gain

i41

WITH $1:52 DO Pl P2
Stream1: Proc: W = W+1
Ti P3
D ' T4
Pred: R=0 -
T2 Pred: W =0
o o Proc: R=R+1
O o
e o
Proc: W =W-1 Proc: R=R-1
T —
) 15

Figure B-6: Shared Access with Readers and Writers

access to the shared variable until all readers have completed (R = 0). Transition T1
enforces priority for the writers by incrementing W.

Given a CSL program, it is possible to automatically generate its equivalent
net. The constructs for each statement are concatenated by overlapping the ‘output’
place of one construct with the ’input’ place of the next. This method leads to a net
containing many unnecessary places and transitions. Automatic generation of the net,
however, guarantees that the net faithfully reproduces the CSL program. It also
provides an excellent initial model for further refinement. This approach of providing
equivalent Petri Net nets for each high level construct of a language has also been
reported in [SHAS8S], where the technique is used to detect communication patterns in
ADA programs.

142

B.2 Task-level Data Flow Language

TDFL is a coarse-grain data-driven data flow language [SUH&7]. The nodes
of the data flow graph represent functions written in C or Pascal, and are equivalent to
CSL tasks. The execution of the node function is triggered by the presence of tokens
on its input arcs and after a node function completes, tokens are placed on its output
arcs. TDFL consists of six different types of nodes which have different rules for trig-
gering execution, as well as removal and placement of input and output tokens. All
global state information is carried in the tokens, and some of the nodes can save inter-
nal state between executions.

The general representation of TDFL graphs (programs) in the PCM model is
as follows. TDFL nodes are represented by transitions in the model, with the transition
delay being the time taken by the TDFL node functon to execute. TDFL arcs are
naturally modelled by places, since they represent the entire state of the system. The
rest of this section describes each of the six types of TDFL nodes, and presents an
equivalent representation in the model.

B.2.1 General Node

11 1

01 0z 03

Figure B-7: A TDFL General Node

A general node has an arbitrary number of input arcs and an arbitrary number
of output arcs. An output arc of a general node may coincide with an input arc of the

143

same node. This looping arc denotes the retention of state within the node. A general
node fires when it has a token on each of its input arcs. It removes one token from
each node, executes its node function, and places one token on each output arc. The
definition of the general node coincides with the firing rule for firing Petri net tran-
sitions, and the equivalent representation in the PCM model is simply a single tran-
sition (Figure B-7).

B.2.2 Merge Node

Figure B-8: A TDFL Merge Node

The merge node fires whenever a token is available on any input arc. Upon
firing, the merge node removes exactly one input token, executes its node function,
and places one token on each output arc. If more than one input arc has a token, the
arc is selected nondeterministically. Figure B-8 shows the equivalent PCM represen-
tation, where T1 and T2 model the selection of the input token, while TO introduces a
delay equal to the node function execution time, and then places tokens on all outputs.
P1 prevents the node from firing twice simultaneously.

144

B.2.3 Do-all Node

10 I1 I

01 02 03

Figure B-9: A TDFL Do-all Node

The do-all node is a special case of the general node in that it has an extra
input arc that delivers a non-negative integer with each firing. The value of this in-
teger determines the number of parallel executions of of the node function. Each ex-
ecution uses the same set of input tokens, and when all executions are complete, one
token is placed on each output arc. This is modelled using a state variable (n) which
contains the number of executions desired. Using this variable as a subnet parameter
(for subnet S1) causes n replications of transition T(i) to fire, as shown in Figure B-9.

B.2.4 Loop Node

A loop node (Figure B-10) has two pairs of arcs called the main (input and
output) and feedback (input and output) arcs. It has a boolean predicate that can be
evaluated taking as argument a token that arrives on an input arc. This node also holds
internal state information telling it whether to accept a token from the main input (MI)
or the feedback input (FI). Initially, a token is accepted from MI, and, depending on
the boolean predicate, a token is placed on either MO or FO. If FO was selected, the

145

——=>= LO

r LI

CM

MO

Figure B-10: A TDFL Loop Node

node now awaits the return of a token on the feedback input arc (FI), else it waits for
MI. The equivalent PCM fragment has places (MI, MO, FI and FO) corresponding to
the four arcs. In addition, the internal state is represented by two places CM and CI,
with a token present initially in CM. The boolean predicate is modelled by the two
transition predicates T2 and T3 which are complements of each other.

B.2.8 Case and EndCase Nodes

The Case and Endcase nodes are described together, since they perform com-
plementary operations. The Case node takes all input tokens and places a token on one
output arc (Figure B-11. In addition, a token is placed on a special ‘conwol’ arc
specifying which output arc received the token. The EndCase node receives this
‘control’ token, and waits to receive a token on the corresponding input arc. Upon
receiving this token, it places tokens on all output arcs. The control token arc ensures
that tokens enter and leave the case-endcase pair in the same order. Since tokens in the
Petri net model are not typed, the state information required is a queue, specifying the
order in which tokens enter the case node. The transition predicates of the first set of
transitions (T1(1), T1(2), etc.) are set up so that exactly one of them is enabled. Upon

146

CI] TI(1) T12)

l T2(1) T22)

Figure B-11: TDFL Case and Endcase Nodes

firing, the selected transition’s procedure enqueues the value of its index. Similarly,
the transition predicates of transitions T2(i) are true if their index matches the index at
the front of the queue, and upon firing, the procedure causes the index to be removed.

[ADI&6]

[ADI87a]

[ADI87b]

[ADIgE]

[AGE74]

[BAST5]

[BER79]

Bibliography

Adiga, AK, & Browne, J.C., "A Graph Model for Parallel Com-
putations Expressed in the Computation Structures Language”,
Proceedings of the 1986 Intl. Conf. on Parallel Processing,
August 1986, pp.880-887.

Adiga, AK., & Deshpande, S.R., "Evaluation of Effectiveness of
Circuit Based and Packet Based Interconnection Networks via
Petri Net Models", Proceedings of the 1987 Intl. Conf. on Parallel
Processing, August 1987, pp.533-542.

Adiga, A.K., & Browne, J.C., "Performance Modelling of Parallel
Programs”, working paper, Department of Computer Science,
University of Texas, Austin, Texas 78712, January, 1987.

Adiga, A K., "Equivalence of the PCM Model to Petri Nets with
Inhibitor Arcs", Technical Report, Department of Computer
Science, University of Texas, Austin, Texas 78712.

Agerwala, Tilak, "A Complete Model for Representing the Coor-
dination of Asynchronous Processes”, Hopkins Computer
Research Report #32, Computer Science Program, The Johns
Hopkins University, Baltimore, Maryland, July 1974.

Baskett, F., Chandy, K.M., Muntz, R.R., & Palacios, F., "Open,
Closed and Mixed Networks of Queues with Different Classes of
Customers”, Journal of the ACM, vol. 22, no. 2, April 1975,
pp.248-260.

Berlin, F.B., "Time Extended Petri Nets", Masters Thesis, Depart-
ment of Computer Science, The University of Texas at Austin,
August 1979, 152 pages.

147

[BROS82]

[BROSS]

[BRO87]

[CROS85]

[DEN72]

[DUGSS5]

[EFR64]

[EST86]

[GENS81]

148

Browne, J.C. et al., "A Language for Specification and Program-
ming of Reconfigurable Parallel Computation Structures',
Proceedings of the 1982 International Conference on Parallel
Processing, August 1982.

Browne, J. C., "Formulation and Programming of Parallel Com-
putations: A Unified Approach”, Proceedings of the 1985 Inter-
national Conference on Parallel Processing, August 1985,
pp.624-631.

Browne, J.C., & Adiga, AK., "Graph Structured Performance
Models", Performance Modeling of Supercomputers, J.L.Martin
ed. North Holland, in preparation.

Crowther, W., et. al., "The Butterfly™™ Parallel Processor", IEEE

Computer Architecture Technical Committee Newslener, Septem-
ber 1985, pp. 18-45.

Dennis, J.B., Fosseen, J.B., & Linderman, I.P., "Dataflow
Schemas", Theoretical Programming, Springer-Verlag, Berlin,
1972, pp.187-216.

Dugan, J. B, Bobbio, A., Ciardo, G. & Trivedi, K.,"The Design of
a Unified Package for the Solution of Stochastic Petri Net
Models", Proceedings of the International Workshop on Timed
Petri Nets, Torino, Italy, July 1-3, 1985, pp.6-13.

Efron, R., & Gordon, G., "A General Purpose Digital Simulator
and Examples of its Application, Part I: Description of the
Simulator”, IBM System Journal, vol 3, no. 1, 1964, pp.22-34.

Estrin, G,, et. al., "SARA (System Architects Apprentice): Model-
ing, Analysis, and Simulation Support for Design of Concurrent
Systems", IEEE Trans. on Software Engineering, Vol. SE-12, No.
2, February 1986.

Genrich, H.J., & Lautenbach, K., "System Modelling with High-
Level Petri Nets", Theoretical Computer Science, North-Holland,
vol 13, 1981, pp.109-136.

[GOK73]

[HEL77]

[HOLSS]

[HOL87]

[IRAB6]

[JENS82]

[JON77]

[KAP82]

[KARG66]

[KARG9]

149

Goke, G.R. & Lipovski, G.J., "Banyan Networks for Partitioning
Multiprocessor Systems", 15" Annual Symposium on Computer
Architecture, December 1973, pp. 21-28.

Heller, D., "Direct and Iterative Methods for Block Tridiagonal
Linear Systems", PhD. Dissertation, Computer Science Depart-
ment, Camegie-Mellon University, Pittsburgh, PA, 1977.

Holliday, M. A. & Vernon, M. K., "A Generalized Timed Petri
Net Model for Performance Analysis”, Computer Sciences Tech-

nical Report #593, Computer Sciences Department, University of
Wisconsin-Madison, May 1985.

Holliday, M.A. & Vemnon, M.K., "Exact Performance Estimates
for Multiprocessor and Bus Interference", IEEE Transactions on
Computers, January 1987, Vol. C-36 No. 1, pp.76-85.

"PAWS: Introduction and Technical Summary”, Information
Research Associates, Austin, Texas, 1986.

Jenevein, RM. & Browne, J.C.,, "A Control Processor for a
Reconfigurable Array Processor”, Proc. of the 9th Symposium on
Computer Architecture, Silver Spring, MD, 1982, pp. 81-89.

Jones, N.D., Landweber, L.H. & Lien, E.Y., Complexity of some
Problems in Petri Nets", Theoretical Computer Science, North-
Holland, vol 4, 1977, pp.277-299.

Kapur, R.N,, "On the Synthesis and Analysis of Reconfigurable
Computer Programs”, PhD. Dissertation, Department of Electrical
Engineering, University of Texas at Austin, May 1982.

Karp, RM. & Miller, R.E., "Properties of a Model for Parallel
Computations: Determinacy, Termination, Queueing”, SIAM Jour-

nal of Applied Math, vol.l4, No.6, November 1966,
pp.1390-1411. ‘

Karp, R. M., & Miller, R. E., "Parallel Program Schemata”,
Journal of Computer and System Sciences, pp. 147-195, 1969,

[KEL74]

[KEL76]

[KLE75]

[KOS73]

[LAWE2]

[MARS84]

[MARS6]

[MOLS81]

[MOLB82]

[MOLSg6]

150

Keller, R., "Vector Replacement Systems: A Formalism for
Modelling Asynchronous Systems”, TR-117, CS Laboratory, Prin-
ceton University, Princeton, New Jersey, December 1972, Revised
January 1974,

Keller, R., "Formal Verification of Parallel Programs",
Communications of the ACM, Vol. 17, No. 7, July 1976,
pp.371-384.

Kleinrock, L., "Queueing Systems Vol I: Theory”, Publishers John
Wiley and Sons, New York, 1975.

Kosaraju, S., "Limitations of Dijkstra’s Semaphore Primitives and
Petri Nets", Operaring Systems Review, Vol. 7, No. 4, pp.
122-126, October 1973.

Law, AM., & Kelton, W.D., "Simulation Modeling and
Analysis", McGraw Hill, 1982, 400 pages.

Marsan, A.M., Balbo, G., & Conte, G., "A Class of Generalized
Stochastic Petri MNets for the Performance Evaluation of Mul-

tiprocessor Systems", ACM Transactions on Computer Systems,
May 1984, pp.93-122.

Marsan, M.A., Balbo, G. & Conte, G., "Performance Models of
Multiprocessor Systems”, MIT Press Series in Computer Systems,
The MIT Press, Cambridge, Massachusetts, 1986, 281 pages.

Molloy, MK., "On the Integration of Delay and Throughput
Measures in Distributed Processing Models", PhD. Dissertation,
Department of Computer Science, University of California at Los
Angeles, September 1981.

Molloy, M. K., "Performance Analysis using Stochastic Petri
Nets", IEEE Transactions on Computers Vol.C-31 No.9 pp.
913-917.

Molloy, M.K., "A CAD Tool for Stochastic Pemi Nets”,

[NIE69]

[NOE73]

[NOE78]

INUT72]

[PETS0]

[PETE&1]

[PFI85]

[RAMEO0]

[REI82]

[SAU8Z]

151

Proceedings of the Fall Joint Computer Conference, November
1986, pp. 1082-1091.

Nielsen,N.R., "ECSS: An Extendable Computer System
Simulator”, Proceedings of the Third Conference on Applications
of Simulation, 1969, pp.114-129.

Noe, J.D., & Nutt, G.J., "Macro E-nets for Representation of
Parallel Systems", JEEE Transactions on Computers, vol. C-22,
No.8., August 1973, pp.718-727.

Noe, J.D., "Hierarchical Modeling with Pro-Nets", Proc. of the
National Electronics Conference, vol. 23, October 1978,
pp-155-160.

Nutt, G.J., "Evaluation Nets for Computer Systems Performance
Analysis", Proceedings of the 1972 Fall Joint Computer
Conference, Montvale, New Jersey: AFIPS Press, December
1972, pp. 279-286.

Peterson, J.L., "A Note on Colored Petri Nets", Information
Processing Letters, August 1980, pp.40-43.

Peterson, J.L., "Petri Net Theory and the Modelling of Systems”,
Prentiss Hall Inc., Englewood Cliffs, NJ 07632, 1981, 290 pages.

Pfister, G.F., et. al.,, "The IBM Research Parallel Processor
Prototype (RP3): Introduction and Architecture”, Proc. 1985 Conf.
on Parallel Processing, August 1985, pp. 764-771.

Ramamoorthy, C. V., & Ho, G. S., "Performance Analysis of
Asynchronous Concurrent Systems using Petri Nets”,
IEEE-Transactions on Software Engineering, vol. SE-6, No.5,
Sept. 1980, pp. 440-449.

Reisig, W., "Petri Nets, An Introduction”, EATCS Monographs on
Theoretical Computer Science, Springer-Verlag, 1982, 161 pages.

Sauer, CH., MacNair, E.A., & Kurose, J.F., "The Research

[SEJ&0]

[SHABS5]

[SIE&1]

[SIF79]

[STO8S]

[SUHS87]

[VAL78]

[VER83]

[YAUS83]

152

Queueing Package Version 2: Introduction and Examples”, /BM
Research Report, RA-138, Yorktown Heights, New York, 1982.

Sejnowski, M.C,, et.\ai., "An Overview of the Texas Recon-
figurable Array Computer”, Proc. of AFIPS NCC Conference,
1980.

Shatz, S.M., & Cheng, W K., "Static Analysis of ADA Programs
Using the Petri Net Model", Proceedings of the International Sym-
posium on Circuits and Systems, ISCAS 1985, pp.719-722.

Siegel, H.J.,, "PASM: A Partitionable SIMD/MIMD System for
Image Processing and Pattern Recognition”, JEEE Transactions
on Computers, December 1981.

Sifakis, J., "Performance Evaluation of Systems using Nets" Proc.
of the Advanced Course on General Net Theory of Processes and
Systems, Hamburg, Oct. 1979, pp. 307-320.

Stotts, P.D., "A Hierarchical Graph Model of Concurrent Software
Systems", PhD. Dissertation, Department of Computer Science,
University of Virginia, Charlottesville, Virginia, May 1985.

Suhler P.A. & Biswas J., "The Task-Level Data Flow Language",
Technical Report, Department of Computer Sciences, University
of Texas, Austin, January 1987.

Valk, R., "On the Computational Power of Extended Petri Nets",
Lecture Notes in Computer Science, Springer-Verlag, No. 64,
1978, pp.526-535.

Vernon, M., de Souza e Silva, E. & Estrin, G., "Performance
Evaluation of Asynchronous Concurrent Systems: The UCLA
Graph Model of Behavior”, Proc. of the 9th International Sym-
posium on Computer Performance Modelling, Measurement, and
Evaluation, PERFORMANCE 1983, pp. 153-171, May 1983.

Yau, S. S., & Caglayan, M. U., "Distributed Software System

[ZUB8O]

Design Using Modified Petri Nets”, JEEE Transactions on
Software Engineering, Vol. SE-9, No. 6, Nov. 1983.

Zuberek, W.M., "Timed Petri Nets and Preliminary Performance

Evaluation”, Proc. of the 7% annual Symposium on Computer
Architecture, 1980, pp. 88-96.

	tr88001-29
	tr88001-32
	tr88001-34

