Specifying an Implementation to Satisfy
Interface Specifications:
A State Transition Approach*®

Simon S. Lam** and A. Udaya Shankar***

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-12 April 1988

Abstract

We present a solution to the problem posed by Leslie Lamport 10 participants of the Specification
Logics session in the 1987 Lake Arrowhead workshop. Formal specifications are given for a database
interface offering serializable access to concurrent client programs, a two-phase locking implementation
of the client interface, and the physical-database interface accessed by the implementation. We sketch a
proof that the implementation satisfies the client interface specification, assuming that the physical-
database interface specification holds.

#Presented at the 26th Annual Lake Arrowhead workshop, Sept. 16-18, 1987.
#*Work supported by National Science Foundation under grant no. NCR-8613338.

##*Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park,
MDD 20742. Work supported by National Science Foundation under grant no. ECS-8502113.

TABLE OF CONTENTS

1 INTRODUGTION .o ooiiiireteteteteicteeesse s es bbb s
9 UPPER INTERFACE SPECIFICATION ..ot
9 1 SHate TATIADIES ©oveeevisiiriresesces sttt a e as e bbb
D 9 SHate TUTCEIONS .vevetesiveseeseseeeetesteme st ererrasa s ebes e as et h s oo
D 3 FEVEILES 1vveevevrenessesseeeseseseese et eneaseer e aeae e a e eE R RS
.4 Safety TEQUITETOIES ..oo.ovirusirsiusesetes et
2.5 PTOZTESS TEQUITEINENES ovurvvurverusresenschusiis s r s b e
3 LOWER INTERFACE SPECIFICATION ...cooioiiiiiii i
3.1 SHatE VATIADIES 1veovitireieetetieeiee sttt
3.9 Stabe FUDCHIOMS .vivvireitereseereesesteeresie et et e st
3.3 TEVEILES oroveveveeeeseasesaseesossseseseese e et cas e R L
3.4 Safety TEQUITEIMENTES ..o.vretirsertrrs ittt e
3.5 Progress TOQUITEIMENES ..oouiviirmseieriiniiiis et s e
4 TWO-PHASE LOCKING IMPLEMENTATION oo
4.7 SEAEE VAFIADIES ©.veeeieiseseisessssescseete et ettt es e e e r b b
4.9 SHAEE TUTLCEIONS ©vveeeiirisesseresees et eetesecoissirastassese st as st sns
4.3 TEVEIES teveeverreeesinseeeeseas e seeteebeeu e e b e R
5 VERIFLCATTION o ooooooitiiiiieisiseseesieesenes ettt
5.1 Proof Of TEATEMEIt .o.vivivieerererteitireree e asees e st et en s s r e
5.9 Proof of SeTialiZabilibT ..oiieriee et
5.3 PTOOT OF PIOZTESS ..vrvureeteseremmsesessnsss st s a0 b
5.4 COTCIUSION. «.veveeeererieesseseseseesete et ceeanseeeses s aE e e bbb s n s Sh e
REFERENOES ..o voviveieeeessese e eeeseses et masasasas s 1100404018100t

@@cOCQOOOO'J\l\l*J@@yPWWWH

[T T
ay =3 GO o b

1. INTRODUCTION

Consider the database system illustrated in Figure 1. Each client program performs a
sequence of transactions. Client programs can execute concurrently. We tefer to the interface
between the client programs and the two-phase locking system as the upper interface. We refer to
the interface between the two-phase locking system and the physical database as the lower inter-
face.

client programs

upper interface

two-phase locking system

lower interface

physical database
Figure 1. A database system.

Interface specification

The informal specification of each interface consists of a set of procedures that can be exe-
cuted concurrently. We will specify each interface by an event-driven system together with some
safety and progress requirements. An event-driven system consists of a set of state variables and
a set of events. Each event is specified by an enabling condition and an atomic action. The ena-
bling condition is a predicate in the state variables. The action specifies updates to the state vari-
ables when the event occurs.

An interface procedure P is modeled as two events: Call (P) and Return (P). Since several
invocations to P can be concurrently active, it is necessary to tag each call of P with a unique
identifier, which will be used in the corresponding return of P. Therefore each interface procedure
P is modeled by the two events: Call (i,P) and Refurn (i ,P), where the identifier 7 must be
unique for all possible concurrent invocations of P .

In summary, an interface specification includes the following:
(a) aset of state variables (including history variables) and state functions;
(b) a Call (i ,P)event and a Return (i ,P) event for each interface procedure P;
(c) asetof safety requirements;
(d) = set of progress requirements.

We note that state functions can always be transformed into state variables. Also, the
event-driven system in the specification can be very small. In the extreme case, 2 single state vari-
able is enough, i.e., a history variable recording the sequence of all procedure calls and returns;
each event is always enabled and its action consists of only updating the history variable. For the
interfaces to be specified in this paper, we found that some safety requirements can be more easily
expressed by state variables and the updating of state variables than by formulating assertions on
a history variable.

Implementation specification

An implementation of the two-phase locking system 1s specified by an event-driven system.
It is & “refinement” of the upper interface specification, obtained as follows [5]:

(a) Additional state variables are introduced, augmenting those in the upper interface
specification. Thus, there is a projection mapping from each state of the implementation to
s state of the upper interface, refered to as its image at the interface [2,3]. Some of the

-2

variables of the upper interface specification can be declared to be auxiliary (e.g., a history
variable).

(b) The upper interface events are refined and additional events are defined. The events can
include in their enabling conditions and actions, the state variables introduced in part (a), as
well as call and return events of the lower interface.

Each implementation event ¢; must be a refinement of some upper interface events, which
means that if e; can take the implementation from state s; t0 s, then there is an upper
interface event ey that can take the upper interface from state &3 to to, where f; is the
image of s;. This condition can be relaxed by introducing a safety requirement S, in which
case the condition has to be satisfied only for each (s 4,5) pair such that s, and s, satisfy S.
We will have to prove that such safety requirements introduced are in fact safety properties
of the implementation. A special case of event refinement is that ¢; has a null image (ie., 5
equals £,).

The implementation is a refinement of the upper interface if all implementation events are
refinements of upper interface events. In this case, safety properties of the event-driven system of
the upper interface are also safety properties of the implementation [2,5].

Specifying events by predicates

Consider a system with state variables {v; }. The enabling condition of an event is specified
by a predicate in {v; }. Instead of specifying the event’s action by algorithmic code, we use a
predicate in {v; } U {;' }, where v; denotes the value of a state variable immediately before the
event occurrence, and v;/ denotes its value immediately after the event occurrence [4]. For brev-
ity, if v;! does not appear in an event’s definition, then v;' = v; is implicitly assumed. For
example, an event ¢ that is enabled whenever the state variable v, is less than 5 and whose
action increments the state variable v by 1 is defined by 1 = (vo<S A vy =v+1).

Checking implementation events

Specifying events by predicates makes it easy to check if implementation events are
refinements of upper interface events [5]. Event e; is a refinement of the upper interface events,
€1, €9 ", &, I e =>e1VegV Ve,. Given the safety requirement S, e is a
refinement if S Aep => e VegV - Ve,.

For most implementation events, ¢; is a refinement of a single upper interface event ey. In
this case, we need only check either ¢ => ey or 5 Aef => €y .
Verification of an implementation

Having an implementation that is a refinement of the upper interface, it remains to show
that the implementation satisfies the following:

(i} Safety requirements that are not safety properties of the event-driven system of the upper
interface, e.g., serializability.
(i) Progress requirements in the upper interface specification.
For the two-phase locking implementation, we found that it is actually easier to give a direct
proof that the implementation satisfies the progress requirements in the upper interface

specification than to give a proof via the projection mapping. Our progress proof employs a novel
metric based upon lexicographic ordering.

-3

2. UPPER INTERFACE SPECIFICATION

Define the following constants. Let OBJECTS denote the set of objects in the database,
VALUES the set of values each object can have, KEYS the set of keys, and IDS the set of transac-
tion identifiers. The entries of IDS are needed to specify correct usage of keys. They are also ade-
quate as identifiers in interface procedure calls, since each transaction has at most one procedure
call outstanding. For each obj € OBJECTS, let its initial value be given by INITVALUE(0bj). We
will use key, obj, val, id as variables that range over the corresponding sets.

We say that a transaction has a procedure invocation outstanding if it has called the pro-
cedure and not yet returned. We say that the transaction is active if it has returned from a
BeginTr call with a key, and it has not yet ended.

2.1. State variables

Hy: sequence of {(id,BeginTr key), (id ,ReadTr key ,obj ,val), (id , WriteTr ,key ,0bj ,val ,OK),
(id ,EndTr ,key ,0K), (id ,AbortTr key)}
Initially, Hy is the null sequence.

History of the returns of procedure invocations. The (id ,AbortTr key) entry is used to
record all returns aborting transactions. The other entries indicate successful returns. An
unsuccessful BeginTr return is not recorded in Hy . Hy is adequate for stating serializa-
bility.

statusy (id): {NOTBEGUN, READY, COMMITTED, ABORTED} U {(BeginTr),

(ReadTr ,key ,obj), (WriteTr key ,obj val), (EndTr key), (AbortTr key)}.
Initially, statusy (id) = NOTBEGUN.

Indicates the status of transaction id . NOTBEGUN means that the transaction has not
yet issued a BeginTr call, or such a call returned with FAILED. READY means that the
transaction is active and has no interface procedure invocation outstanding. A procedure
call, such as (ReadTr key ,obj), means that the transaction is active and has that pro-
cedure invocation outstanding. COMMITTED means that the transaction has ended suc-
cessfully. ABORTED means that the transaction has ended by aborting.

allocated (key): boolean. Initially false.
True iff key is allocated to a transaction.

When we refer to a tuple in the domain of statusy (id), such as (ReadTr key ,obj), where 2
component in the tuple can have any of its allowed values, we shall omit that component in our
reference. For example, statusy (id) = (ReadTr ,obj) means statusy (id) = (ReadTr ,key ,obj)
for some value of key . More than one component in a tuple may be omitted. For example, (0b)
refers to (ReadTr key ,obj) for some key or (WriteTr key ,obj ,val) for some key and some val .
The same notational abbreviation will be used in referring to elements of Hy . For example,

(id ,obj) € Hy means that Hy has a (id ,ReadTr ,obj ,key ,val) or a
(id ,WriteTr ,obj key ,val ,OK) entry for some key and some val .

2.2. State functions

active (id): boolean
True iff (id ,BeginTr) € Hy, and neither (id ,EndTr) nor (id JAbortTr) isin Hy .
accessed (id): powerset of OBJECTS

The set of objects that have been accessed by an active transaction d .
= empty, if —active (id).

e

— {obj : statusy (id)=(obj) V (id ,0bj) € Hy }, if active (id).

concurrentaccess (1d): boolean
True iff there is an § € IDS—{id } such that accessed (i) N accessed (id) is not empty.

committedvalue (obf): VALUES
— INITVALUE(0bj), if there is no (id,WriteTr ,0bj) € Hy such that statusy (id) =
COMMITTED.
—ual, if there is an id such that statusy(id)=COMMITTED and Hy contains a
(id , WriteTr ,obj) entry, and (id , WriteTr ,0bj ,val) is the last such entry.

currentvalue (obj ,id): VALUES U {NULL}
= NULL, if —active (id).
— committedvalue (obj), if active (id) and (id ,WriteTr ,0bj) ¢ Hy.
—val , if active (id), there is a (id ,WriteTr ,0bj) entry in Hy, and (id ,WriteTr ,obj ,val)
is the last such entry.

2.3. Events

For readability, we model each procedure return by two return events, one for success and
one for abort. Also, the enabling condition of an event is placed on the first line of the definition.

Call (id ,BeginTr) =
statusy (4d)=NOTBEGUN
A statusy (id) =(BeginTr)

Return (id ,BeginTr key) =
statusy (id)=(BeginTr) A —allocated (key)
A statusy (id) =READY
A allocated (key)
A Hy' =Hy Q@ (id ,BeginTr key)

Return (id ,BeginTr FAILED) =
statusy (id }=(BeginTr) A (V key : allocated (key))
A statusy (1d) =NOTBEGUN

Call (4d ,ReadTr key ,obj) =
statusy (id)=READY A allocated (key)
A statusy (id Y =(ReadTr key ,o0bj)

Return (id ,ReadTr key ,0bj ,val) =
statusy (id y=(ReadTr ,key ,obj)
A statusy (id)} =READY
A val =currentvalue (obj ,id)
A Hy' =Hy @ (id ,ReadTr key ,obj ,val)

~Be

Return (id ,ReadTr key ,0bj LABORT) ==

statusy (id)=(ReadTr ,key ,0bj) A concurrentaccess (id)
A statusy (id) =ABORTED
A —allocated (key)

A Hy' =Hy @ (id ,AbortTr key)

Call (id , WriteTr ,key ,0bj ,val) =
statusy (id }=READY A allocated (key)
A statusy (id) =(WriteTr key ,0bj ,val)

Return (id ,WriteTr ,key ,0bj ,val J0K) =
statusy (id)=(WriteTr ,key ,0bj ,val)
A statusy (1d) =READY
AHy' =Hy @ (id ,WriteTr ,key ,0b5 ,val ,0K)

Return (id , WriteTr ,key ,0bj ,val ,ABORT) =

statusy (id)= WriteTr key ,obj ,val) A concurrentaccess (id)
A statusy (id) =ABORTED
A —allocated (key)

A Hy' =Hy @ (id ,AbortTr key)
Call (id ,EndTr key) =

statusy (id }=READY A allocated (key)
A statusy (id) =(EndTr key)

Return (id ,EndTr key ,OK) =

statusy (id)=(EndTr ,key)

A statusy (id)} =COMMITTED
A —allocated (key)

A Hy' =Hy@ (id ,EndTr key ,0K)

Return (id ,EndTr key LABORT) =

statusy (id }=(EndTr ,key) A concurrentaccess (id)
A statusy (id)} =ABORTED
A —allocated (key)

A Hy' =Hy @ (id ,AbortTr key)
Cali (id ,AbortTr key) =

statusy (id)=READY A allocated (key)
A statusy (id) =(AbortTr key)

Return (id ,AbortTr key) =
statusy (id)=(AbortTr ,key)

A statusy (id) =ABORTED
A —allocated (key)

AHy' =Hy @ (id ,AbortTr key)

.

2.4. Safety requirements

The interface system events ensure that each transaction issues 2 correct sequence of pro-
cedure calls. Formally, define the following state function:

legal (id): boolean
True if the subsequence of (id) entries in Hy s a prefix of
(id ,BeginTr J@<successes>@<final>, where < successes>> is a sequence of zero or more
(id ,0bj) entries, and <final>> is either (id ,AbortTr) or (id ,EndTr).

It can be proved that legal (id) is a safety property of the event-driven system in the inter-
face specification. (Proof omitted.)

An invocation of ReadTr, WriteTr , or EndTr by transaction id aborts only if it accesses
an object that is also accessed by another concurrently executing transaction. This has been cap-
tured formally by including concurrentaccess (id) in the enabling conditions of the corresponding
return events.

The definition of committedvalue ensures that writes of aborted transactions do not influence
the committed values. The definition of currenivalue ensures that the values read by a transac-
tion are not affected by writes of other concurrently executing transactions. Observe that
currentvalue (obj ,id) can differ from currentvalue (obj ,id), for two concurrently executing tran-
sactions i¢d; and id .

Let us review some basic definitions from serializability theory [1]. The committed history
C(Hy) is the subsequence of Hy obtained by including all (¢d) entries such that
statusy (¢d)=COMMITTED.

For any two transactions id; and id,, define the boolean function dependency (id,id 5) to be
true iff for some obs , (id , Write Tr ,0bj)@ (id ,087) or (id 1,067)@ (id o, WriteTr ,0bj) is 2 subse-
quence of O (Hy).

We say that dependency is acyclic if for every n >2, there does not exist distinct id 1, id o,

-, id, , such that dependency (idy, idy +1), for k=1, - - - ,n-1, and dependency (id, ,id1). A
fundamental theorem of serializability is that Hy s serializable iff dependency is acyclic [1].

Define the following state functions:
keydf (id): KEYS U {NULL}
=NULL, if —active (id).
—key, if active (id) and (id ,BeginTr key) in Hy .

correctkeyuse : boolean.

True iff every transaction has used the correct key in all its procedure calls, i.e., every
(id ,key) € Hy satisfies key =keyof (id).

The upper interface specification includes the following:

Safety requirement: correctkeyuse => dependency is acyclic.

2.5. Progress requirements

The progress guarantee that every procedure call eventually returns is formally specified by:
L, = statusy(id) € {(BeginTr), (ReadTr), (WriteTr), (EndTr), (AbortTr)}
leads ~to statusy (id) € {READY, ABORTED, COMMITTED, NOTBEGUN}

The assumption that every active transaction that does not abort eventually issues an
EndTr call can be stated as follows: If every ReadTr and WriteTr call made by the transaction

|

.

returns successfully, then the transaction will eventually issue an EndTr call. Formally:

Ly = (statusy(id) € {(ReadTr),(WriteTr)} leads—to statusy (1d }=READY)
—> (statusy (id }=READY leads —to statusy (id }=(EndTr)

The upper interface specification includes the following:

Progress requirement: correctkeyuse A\ Lo => L.

3. LOWER INTERFACE SPECIFICATION

Note that outstanding procedure calls at the lower interface can be uniquely identified by the
entries of KEYS.

3.1. State variables

statusy, (key): {READY, (AcqLock ,0b;), (RelLock ,o0b;), (Read ,0bj), (Write ,obj ,val)}
Initially READY.

Indicates the status of any procedure invocation identified by key. READY means that
key has no lower interface procedure invocation outstanding. Otherwise, indicates the
outstanding procedure invocation.

owned (key ,obj): boolean. Initially false.
True iff key has locked obj .

storedvalue (obj): VALUES. Initially, storedvalue (obj }=INITVALUE(0bj).
The value of the object in the physical database.

3.2. State functions

waiting (key ,0bj): boolean.
True iff status;, (key)=(AcgLock ,0bj). Defined for notational convenience.

deadlock (key ,0bj): boolean.
True iff there is a cycle including the edge (key ,obj) in the directed graph of nodes
KEYS U OBJECTS, and edges {(z ,k): owned (k,z)} U {(k,o): waiting (k ,z)}.

3.3. Events |

The events of the interface are the calls and returns of the interface procedures AcgLock , Rel-
Lock , Read , and Write .

Call (key ,AcqLock ,0bj) =
statusy, (key)=READY
A statusy, (key Y =(AcqLock ,obj)

Return (key ,AcqLock ,0bj GRANTED) =
statusy, (key)=(AcqLock ,obj) \ (Y k :=owned (k ,0b;))
A statusy, (key) =READY
A owned (key ,0bj)

B

Return (key ,AcgLock ,obj REJECTED) =
statusy (key }=(AcgLock ,obj) A deadlock (key ,0b7)
A statusy (key) =READY

Call (key ,RelLock ,0bj) =
statusy, (key)=READY
A statusy (key) =(RelLock ,0bj)

Return (key ,RelLock ,0bj) =
statusy, (key }=(RelLock ,0bj) A\ owned (key ,0b5)
A statusy, (key) =READY
A —owned (key ,obj)

Call (key ,Read ,0bj) =
statusy, (key)=READY
A statusy, (key Y ==(Read ,0bj)

Return (key ,Read ,0bj ,val) =
statusy, (key)=(Read ,0bj)
A statusy, (key) =READY
A val =storedvalue {obf)

Call (key ,Write ,obj ,val) =
statusy, (key)=READY
A statusy (key Y =(Write ,obj ,val)

Return (key ,Write ,0bj ,val) =
statusy, (key)=(Write ,obj ,val)
A statusy (key) =READY
A storedvalue (oby)| =val

3.4. Safety requirements

The enabling condition of Return (key,AcqLock ,0bj GRANTED) ensures that obj is not
owned by any other key. Its action updates owned (key ,0bj) to true. The enabling condition of
Return (key ,RelLock ,0bj) ensures that obj is owned by key . Its action updates owned (key ,0bj)
to false. No other event updates owned (key ,0bj).

The enabling condition of Return (key,AcqLock ,obj REJECTED) ensures that (key ,0bj) is
involved in a deadlock.

3.5. Progress requirements

The lower layer guarantees the progress properties Q ; through ¢ 4
Q, = statusy (key)=(Read) leads —to statusy, (key)J=READY
Q, statusy (key)=(Write) leads —to statusy, (key)=READY

Qs statusy, (key)=(RelLock ,0bj) A owned (key ,0bj)
leads —to statusy, (key)=READY A —owned (key ,obj)

f

Il

Q, = R, ,=> G,where
R, = waiting (k,,0b5) A owned (ko 0b7) leads —to —owned (k 5,0b7))
G, = waiting (k1,05) leads —to —waiting (k 1,0b5)

l

Q , specifies the property that every call to AcgLock will eventually return provided that every
granted lock is eventually returned.

4. TWO-PHASE LOCKING IMPLEMENTATION

The two-phase locking implementation is obtained from the upper interface system by
adding state variables, refining the upper interface events, and adding new events. The events
can include events of the lower interface.

4.1. State variables

In addition to the upper interface state variables Hy , statusy, and allocated , we add the fol-
lowing:

locked (key ,obj): boolean. Initially false.
Indicates whether key has locked obj .

localvalue (obj ,key): VALUES U {NULL}. Initially NULL.
The current value of obj as seen by transaction using key .

The upper interface variable Hy becomes auxiliary. This also makes auxiliary all state func-
tions defined in terms of Hy, such as concurrentaccess, currentvalue , commitiedvalue , etc. An
event cannot use an auxiliary variable or function in its enabling condition or in its update of a
nonauxiliary variable.

4.2. State functions

holdinglocks (key): boolean.
True iff locked (key ,0bj) is true for some oby .

4.3. Events

Implementation events that are refinements of the upper interface events are listed first. In
an event predicate, the notation < previous definition> refers to the event’s predicate definition
given in Section 2.3. This notation is used whenever the refinement consists of adding conjuncts
only. When the refinement is not of this simple form, we add a safety requirement which will
have to be proved later.

Call (id ,BeginTr) = < previous definition>

Return (id ,BeginTr result) =
statusy (id y=(BeginTr)
A ((Fkey : —allocated (key) A —holdinglocks (key)
A allocated (key) A statusy (id)} =READY A result =key
A Hy'! =Hy @ (id ,BeginTr ,key))
V ((Vkey : allocated (key))
A statusy (id Y =NOTBEGUN A result =FAILED A Hy' =Hy))

The above event is a refinement of the upper interface events, Refurn (id ,BeginTr Jkey) and
Return (id ,BeginTr JFAILED). We have combined the two returns in the implementation because

-10-

it facilitates the progress proof; specifically, statusy (id }=(BeginTr) ensures thab
Return (id ,BeginTr) is continuously enabled, and therefore will eventually occur.

Call (id ,ReadTr ,key ,obj) = <previous definition>

Return (id ,ReadTr key ,0bj ywal) =
statusy (¢d }=(ReadTr ,key ,0b5 } A localvalue (obj ,key J54NULL
A statusy (id) =READY
A Hy' =Hy @ (id ,ReadTr ,key ,0bj val)
A val =localvalue (obj key)

In order for the above to be a refinement, we specify the following safety requirement:

A, = keyd (id)=key A localvalue (obj ,key J#~NULL
—> localvalue (obj ,key)=currentvalue (obj ,id)

Return (id ,ReadTr key ,obj ,ABORT) =
statusy (id)=(ReadTr key ,obj) A Return (key ,AcqLock ,0b] JREJECTED)
A statusy (id) =ABORTED
A Hy'! =Hy @ (id ,AbortTr key)
A —allocated (key)
A (Vz: localvalue (z ,key) =NULL)

For the above to be a refinement, it is sufficient if concurrenfaccess (id) is true whenever
Return (key ,AcqLock ,0b] JREJECTED) occurs. Because the latter event is enabled only when
deadlock (key ,obj) is true, the following safety requirement is adequate:

A, = keyd (id)=key A deadlock (key ,obj) == concurrentaccess (id)

Call (id , WriteTr ,key ,0bj wal) = <previous definition>

Return (id ,WriteTr ,key ,0bs wval ,OK) = <previous definition> A locked (key ,0b7)
A localvalue (obj ,key) =wal

Return (id , WriteTr ,key ,o0bj ,val LABORT) =
statusy (id)=(WriteTr key ,0bj ,val) A Eeturn (key ,AcqLock ,obj REJECTED)
A statusy (1d) =ABORTED
A Hy' =Hy @ (id ,AbortTr key)

A —allocated (key)
AV : localvalue (z key Y =NULL)

A o ensures that the above is g refinement.

Call (1d ,EndTr Jkey) = <previous definition>
Return (id ,EndTr key ,OK) = < previous definition> A (Vz : localvalue (z ,key }=NULL)

Return (id ,EndTr key ,ABORT) is never enabled, and is absent in the implementation.

«1i-

Cali (id ,AbortTr key) = <previous definition>

Return (id ,AbortTr ;key) = <previous definition >
A (Y7 : localvalue (z ,key) =NULL)

In addition to the above refinements of the upper interface events, we define the following events.
These events have null images at the upper interface because they do not update any upper inter-
face variables.

RequestLock (id ,key ,obj) =
statusy (id) € {(ReadTr key ,obj), (WriteTr key ,0b)} A —locked (key ,0b3)
A Call (key ,AcqLock ,0bj)

LockAcquired (key ,obj) =
Return (key ,AcgLock ,0bj GRANTED)
A locked (key ,0b5)

RequestRead (id ,key ,0bj) =
statusy (1d)=(ReadTr ,key ,0bj) A locked (key ,0bj) A localvalue (obj ,key)=NULL
A Call (key ,Read ,0bj)

ReadCompleted (key ,0bj ,val) =
Return (key ,Read ,0bj ,val)
A localvalue (obj key) =val

RequestWrite (id key ,obj) =
statusy (id)=(EndTr key) A localvalue (obj ,key }7NULL
A Call (key ,Write ,0bj localvalue (obj ,key 1)

WriteCompleted (key ,0bf) =
Return (key ,Write ,obj ,val)
A localvalue (obf ,key) =NULL

ReqRelLock (key ,obj) =
—allocated (key) A locked (key ,0b;)
A Call (key ,RelLock ,obj)

LockReleased (key ,obj) =
Return (key ,RelLock ,0bj)
A —locked (key ,0bj Y

5. VERIFICATION

We first prove that A ; and A, are invariant, thereby establishing the implementation events
to be refinements of the upper interface events. We then prove the safety requirement (that

-12.

dependency is acyclic) and the progress requirement (that every call eventually returns) in the
upper interface specification.

Given a predicate A in the state variables {v; }, we use A’ to denote A with every free
occurrence of v; replaced by v;! . We say that A is invariant given B if the following are logi-
cally valid: (i) Indtial => A ; and (i) A AB ANe => A’ for every event ¢ [4]. Initial is a predi-
cate specifying initial conditions on the state variables. B is a safety property that is either
assumed, as in the case of correctkeyuse , or has been proved to be invariant separately, as in the
case of legal (1d).

5.1. Proof of refinement

In order to establish A; and A, we need additional safety requirements. The following
requirements specify that every allocated key is associated with a unique active transaction:

B, = =allocated (key) => (Vid : keyof (id)stkey)
B, = allocated (key) => (Jexactly one id : keydf (id)=key)
Lemma 1. B, A By is invariant, given correctkeyuse . (Proof omitted.)

The following assertions specify relationships between state variables during the growing
phase of a transaction, during which it acquires a key and then locks:

C, = statusy(id) € {NOTBEGUN,(BeginTr)} => (id) ¢ Hy
Co, = keyd (id)=key A statusy (id }=READY => statusy, (key)=READY
Cy = keyd (id)=key A —locked (key ,obj) => (id ,obj) ¢ Hy
The consequent of 'y implies currentvalue (oby ,key J=commiitedvalue (0bj).
C, = keyd (id)=key A statusy (key)=(AcqLock ,0bj)
=> —locked (key ,0bj) A statusy (id j=(key ,0bj)
Cs = keyd (id)=key A locked (key ,obj) A statusy (id }74(EndTr)
=> storedvalue (obj }=commitiedvalue (obj)
Co = keyd (id)=key A statusy (id }=(key ,obj) A locked (key ,obj)
A localvalue (obj \key }=NULL => (id ,obj) ¢ Hy
C, = keyd (id)==key A status; (key)=(Read ,0bj) => locked (key ,obj)
A localvalue (obj ,key)=NULL A (id ,0bj) & Hy A statusy (id }=(ReadTr key ,0bs)
Cg = keyd (id)=key A locked (key ,obj) => obj € accessed (id)
Ay = keyd (id)=key A localvalue (obj ,key }~NULL

=> localvalue (obf ,key }==currentvalue (obj ,id)
where we have repeated A ; for convenience of reference.
The following assertions specify relationships when a transaction is committing its writes:

D, = keyd (id)=key A locked (key ,obj) A statusy (id)=(EndTr) A localvalue (0bj ,key }54NULL
=> storedvalue (obj }=commitiedvalue (obj)

Dy, = keyd (id)=key A status; (key)=(Write ,0bj ,val)
=> statusy (id)=(EndTr key) A val =currentvalue (obj ,id) A locked (key ,0b5)
Dy = keyd (id)=key A locked (key ,obj) A statusy (id }=(EndTr) A localvalue (0bj ,key }=NULL

=> storedvalue (obj)=currenitvalue (obj ,id)

-33-

The following assertions specify relationships during the lock releasing phase of a transaction:
—allocated (key) => localvalue (obf key }=NULL

statusy, (key)=(RelLock ,0bj) => —allocated (key) A locked (key ,0b5)

E, = ~locked (key ,obj) == localvalue (obj ,key)=NULL

Two additional assertions are needed:

S
i

F, = (Vkey: ~locked (key,obj)) => storedvalue (obj y=committedvalue (obj)
F, = owned (key,obj) <=> locked (key ,0b5)
We use the notation C_g to denote the conjunction Gy A Cg - -+ A Cs.

Lemma 2. A A C13ADysAE3AF,isinvariant, given B A By (Proof omitted.)

Lemma 2 establishes A; We next show that it also establishes A, Assume
deadlock (key ,obj) to be true. From the definition of deadlock , we have waiting (key ,0bj) and
owned (k ,obj) for some k s£key. From the definition of waiting and C, waiting (key ,obj)
implies statusy (id }=(obj) for some id, which implies obj € accessed (id). From F, and Uy,
owned (k ,0bj) implies obj € accessed (id ;) for some id;. From Bj A By, we have id5%1d . Con-
sequently, concurrentaccess (id) is true.

5.2. Proof of serializability
The following assertions are to be proved:
G, = (idq,obj) € Hy A(idy,EndTr)& Hy A (idy,AbortTr) & Hy
— keyof (id {)54NULL A locked (keyof (id1),0b5)
(id4,0bj)@ (id ,0b5) is a subsequence of Hy
= (id ;,0b5)@ (¢d 1,EndTr)@ (id 5,0b7) is a subsequence of Hy
v (id 1,08f)@ (id 1, AbortTr JQ (id 4,07) is a subsequence of Hy

Lemma 3. G A G is invariant, given By A By A legal (id). (Proof omitted.)

G,

f

Lemma 3 implies that the following is invariant:

Gy = dependency (idy,idg) => (id 1, EndTr)@ (id 5, EndTr) is a subsequence of C (Hy)

This can be proved as follows. Given dependency (idy,id). From the definitions of C (Hy)
and legal (idy), (idg,o0bj) € C(Hy) implies that (idg0bs)@ (id o,EndTr) is a subsequence of
C(Hy). Combining this with G, we see that (id 1,0b5)@ (id 5,07) is a subsequence of C(Hy)
implies (id,0bj) @ (id1,EndTr) @ (idg,0b5) @ (id 5, EndTr) is a subsequence of C (Hy).

G 5 implies that dependency is acyclic. Assume the contrary: For some n >2, there exist dis-

tinct idy, idg, -, id,, such that dependency (idy , 1dy, ;) for k=1, - n-l, and
dependency (id, ,id). From G, O (Hy) contains the subsequences (idy, ,EndTr)@ (idg 41,EndTr),
for k=1, - - - ,n—1, and (id, ,EndTr)@ (id,EndTr). But this implies that there are at least two

occurrences of (id,EndTr) in C (Hy), which violates legal (id).

5.3, Proof of progress

Given predicates A and B and an event ¢y, we say that A leads —to B wvia e if the follow-
ing are logically valid: (i) A => enabled(ey), (i) A Ney=> B' ,and (i) A Ae = A' VB'
for every event e [4]. Whenever A holds, parts (1) and (ii) ensure that e; is enabled and its
occurrence makes B hold. Part (iii) ensures that no event can violate A without establishing B .
Thus, in any fair implementation B will hold at some point. We use leads —to to denote the

~1d-

closure of the leads—to—via rtelation; e.g., A leads—to B if A leads—to B VC and
C leads—to B.

We first show that the progress properties @, @, Q 5, and Q 4 offered by the lower interface
can be assumed in the verification. Each such property has the form A leads~io B and is
achieved by the execution of a lower interface event ey . Let ey be imbedded together with ena-
bling condition b in event e¢; of the implementation. In order to assume the property
A leads—to B, we need to establish that A => b is invariant.

Consider @i, which is achieved by executing the Return (key ,Read ,obj ,val) event. This
event is imbedded in the implementation event ReadCompleted (key ,0bj ,val). The latter event is
enabled whenever the former is enabled, because it has no other requirement in its enabling condi-
tion. Consequently, @ ; can be assumed.

Similarly, we can assume Q , because WriteCompleied (key ,obj) is enabled whenever
Return (key , Write ,0bj ,val) is enabled.

We can assume Q 3 because LockReleased (key ,0b7) is enabled whenever
Return (key ,RelLock ,0bj) is enabled.

We can assume Q4 because (i) LockAcquired is enabled whenever
Return (AcqLock ,GRANTED) is enabled; and (ii) either Return (ReadTr ,ABORT) or
Return (Write Tr ,ABORT) is continuously enabled whenever Return (AcgLock REJECTED) is
enabled. Part (ii) holds because of U

From Q s, RegRelLock , and LockReleased , we can establish:
holdinglocks (key) A —allocated (key) leads —to —holdinglocks (key)
From this and Return (BeginTr), we can establish:
W, = statusy (id)=(BeginTr) leads —to statusy (id) € {READY,NOTBEGUN}
From Q,, RegWrite , and WriteCompleted , we have:

statusy (1d }=(EndTr ,key) A localvalue (obj ,key J5£NULL
leads ~to statusy (id }=(EndTr key) A localvalue (obj ,key J=NULL

From Return (EndTr key), we have:

statusy (id)=(EndTr ,key) A localvalue (obj ,key }=NULL
leads —to statusy (id }=COMMITTED

Combining the above two, we have:

W, = statusy (id)=(EndTr key) leads—to statusy (id)J=COMMITTED
From Return (AbortTr), we have:

W, = statusy (id)=(AbortTr) leads —to statusy (id }=ABORTED
From Q,, ReqRead and ReadCompleted , we have:

statusy (id)=(Read Tr ,key ,obj) A locked (key ,0b5)
leads —to statusy (id }=(ReadTr ,key ,0bj) A localvalue (oby ,key J5ANULL

From above and Refurn (ReadTr ,val), we have:

W, = statusy (id)=(ReadTr key ,0bj) A locked (key ,0bj) leads—to statusy(id)J=READY
From Return (WriteTr ,OK), we have:

= statusy (id)=(WriteTr ,key ,obj) A locked (key ,obj) leads —to statusy (¢d }=READY

=
|

~15-

From RequestLock , we have:
W = statusy (id }=(key ,0bj) A —locked (key ,obj) leads ~to waiting (key ,0bj)
From W, W, W3, W, Wg, and Wy, all that is left to establish the desired progress pro-
perty is:
statusy (id)=(key ,obj) A waiting (key ,0bj) leads ~to —waiting {key ,obf).
Observe that this is the same as G 4, the consequent of Q4 We now provide a proof of this.

Lexicographic induction

Consider the directed graph of nodes KEYS U OBJECTS, and edges {(z ,k): owned (k,z)} U
{(k ,z): waiting (k ,z)}. Consider any key k| waiting on object z;. We need to show that even-
tually ~waiting (k1,7 ;) holds. Let M = | KEYS |

Each node in this graph can have several incoming edges, but at most one outgoing edge.
We say kq, 1, ko, 29, *°, k; is a path if wailing (k; ,z;) and owned (k;_q,;) for 1<i<j, and
all the k;’s and 2;’s are distinct. We say that z; is not locked if YV key :—locked (key ,z;). We say
that k; is not waiting if ¥ obj :~waiting (k; ,0b5).

Define the following state functions on the directed graph, where 1<j;j<M:

waitstate 1{7): boolean

True iff there are ko, 9, - - , k; such that ky, 24, -, k; is a path and k; is not
waiting.

waitstate o(7): boolean
True iff there are ko, @9, - , k
watting (k; ,z;) and z; is not locked.

i, T; such that k¢, 2o -, k; is a path, and
watistate 5(7): boolean
True iff there are ko x4, - , k; such that ki 2o -, k; is a path, and

waiting (k; ,7;) for some a; such that 1<é <j or owned (kq,2;); i.e., k; is deadlocked.

Observe that for any state of the directed graph, exactly one of the 3M functions
{waitstate 1(7), waitstate o J), waitstate 3(7) 1< <M} is true. At any time, let the function
depth denote that value of 7.

Define the following functions, where 1<¢ <M :

B(7): integer
If ¢ <depth, or if i=depth and k; is waiting: f(7) equals the number of times z; has
been unlocked since the last time that k; started to wait.
If i =depth and k; is not waiting: B(7)=0.
If 4 >depth: B(i)=-1.

o7): integer
If i <depth , or if i =depih and k; is not releasing locks (i.e., allocated (k;) is true): ofi)
equals the number of objects held by &;.
If s =depth and k; is releasing locks: a(i) equals the number of objects locked by %; just
before it started releasing locks.
If ¢ >depth : o7)=0.

Define the function a == (B(1), »(2), B(2), &(3), - - -, o(M), B(M)). The values of & can be
well-ordered using the lexicographic ordering. We will show that o increases without bound unless
—waiting (k,2,) becomes true. This establishes the desired progress property as follows: «

-16-

increasing without bound implies that either B(i) or ofi) increases without bound for some 1.
The former is not allowed by the fairness assumption of the lock manager (i.e., @4). The latter is
not allowed by the assumption that every transaction needs at most a finite set of locks (ie., L)

Let o have the value a=1(by, a9 bo a3 - oM, by). The notation a = alf(i)=z

means that every function in o has the same value as in a except for B(1) which has the value z .
Other relations can be used in place of equality; e.g., & = a[@(¢)>0]. This notation is extended in
the usual fashion: e.g., @ = ale(i)=5;8(j)=y |, a = alo(i)=g; 1 <i <k

The following leads—to properties can be established.
W, = waitstate(J) A a=a leads —to Waee VWo V Wy, V Weg, where
Wqe = waitstate o j 1) A ae=alB(j -1)=b; 1+1; aj)=0; B(j)=1] > a
waststate (k) A 57 <k A a=a[f(i)=0; o(i)=>0: j <t <k]|>a
waitstate o(k) A 5 <k A a=a[B(i)=0; oAi)>0 j<i<k] > a
Wy = waitstates(k) A j <k A a=a[f(i }=0; ofi)>0: j <i <k|>a

3
[

Wy, results if k; returns the lock on z;_y, In the process of releasing its locks. The value of
o increases because f(j—1) increases and it is lexicographically the most significant of the func-
tions whose values are changed. Wgq, with j=k results if k; requests an object that is not
locked. Wy V Wqe A j <k results if the object is already locked but not by any k;, 1 <J.
Wq4 results if the object is already locked by some k; where i<j. In Wy VWq VW, if
k>4, the value of « increases because B(j +1) increases from -1 to O, afj +1) stays at 0 or
increases, and the other functions whose values are changed are less significant. If k= 7, « stays
constant. One of the above transitions will eventually occur because k; is ready in waitstate {7),
i.e., statusy (1d)=READY where keyof (id)=k;.

We = waitstate () A o=a leads —to —~waiting (k1,7 1)V Wg, V Wy, where
W ga waitstate (5) A o=ala(j)=a; +1; B(J)=0] > a
Wgy = waitstate (7 +1) A a=3a[f(j +1)=0; ofJ +1)>0] > a

f

The LockAcquired (k;,z;) event is continuously enabled in waiistate (7). Its occurrence
results in —waiting (k1,7) if j=1, and in W, if 7 >1. This will eventually occur unless z; is
locked by a key other that k;. In this case, that key becomes k; g and Wg; holds. In the case
of Wg,, the value of a increases because o) increases and it is the most significant function
changed. In the case of Wg;, the value of o increases because B(j +1) increases from -1 to 0,
afj +1) stays at 0 or increases, and no other functions change values.

Wo = waitstates(j) A a=a leads —to —waiting (k1,71) V Wy, , where
We, = waitstateq(k) A J>k A a=alf(k)=b; +1; B(2)==0; ofi)=-1k<i<j]|>a

waitstate 5(j) implies a cycle involving k;. This cycle only involves keys from kq, ko, ",
kj. LockRejected (k; ;) for every k; involved in the cycle is enabled, and the lock manager will
execube one of them eventually. —waiting (k1,2 1) results if ky is involved in the deadlock and
LockRejected (k2 1) occurs. If LockRejected (ky 41,7 +1) occurs, then ky 41 is aborted, and it
gives up its locks. W, results when it gives up its lock on z;. At this point, the value of o
increases because (k) increases, and all other function changes are less significant.

Substituting Wg and Wg for Wq, and Wy, , we have waitstate () A a=2a leads—to
o>a V —waiting (k1,7,). From Wsg, we have waitstate o) A a=2a leads—to a>a
v —~waiting (k1,2,). From Wg, we have waitstate 3(j) A a=2a leads—to a>a

17

v —wasting (k1,7 ;). Combining these three leads —to statements, we have a=a leads {0
a>a V —waiting (k1,7 1), which establishes that o increases without bound unless k; stops wait-
ing.

5.4. Conclusion

We have provided the sketch of a proof that the two-phase locking implementation satisfies
the upper interface specification, assuming that the lower interface specification holds, as follows:

(i) Implementation events are refinements of the upper interface events; thus, safety properties
of the event-driven system in the upper interface specification are also safety properties of
the implementation.

(i) The implementation satisfies the safety and progress requirements in the upper interface
specification.

REFERENCES

1] P. A Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in
Database Systems, Addison-Wesley, Reading, Massachusetts, 1987.

[2] Simon S. Lam and A. Udaya Shankar, “Protocol Verification via Projections,” IEEE Tran-
sactions on Software Engineering, Vol. SE-10, No. 10, July 1984, pp. 325-342.

[3] A.Udaya Shankar and Simon S. Lam, “An HDLC Protocol Specification and Its Verification
Using Image Protocols,” ACM Transactions on Computer Systems, Vol. 1, No. 4, November
1983, pp. 331-368.

[4] A. Udaya Shankar and Simon S. Lam, “Time-dependent distributed systems: proving safety,
liveness and real-time properties,” Distributed Computing, Vol. 2, No. 2, 1987; available as
technical report UMIACS-TR-85-4.1, University of Maryland, College Park, and as technical
report TR-85-24, University of Texas at Austin.

5] A. Udaya Shankar and Simon S. Lam, “A Stepwise Refinement Heuristic for Protocol Con-
struction,” technical report UMIACS-TR-87-12, University of Maryland, College Park,
March 1987. ‘

