RELATIONAL DATABASE STRUCTURE
FOR STORAGE AND MANIPULATION
OF DEPENDENCY GRAPHS

Sivagnanam Ramasundaram Easwar
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-88-13 April 1988

To my parents

RELATIONAL DATABASE STRUCTURE FOR
STORAGE AND MANIPULATION OF
DEPENDENCY GRAPHS

by

SIVAGNANAM RAMASUNDARAM EASWAR, B.E.

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN
May, 1988

Acknowledgments

I wish to place on record, my sincere thanks to my supervising pro-
fessor, Dr. J.C.Browne for his guidance, encouragement and support. I would
also like to acknowledge Prof. B.F.Womack for co-supervising this thesis. I
would also like to thank members of the Parallel Programming Group,
especially Dr. Ashok Adiga for his valuable guidance and help. I am grateful

to my wife, Ruma, and my parents for their encouragement throughout my

education.

SIVAGNANAM RAMASUNDARAM EASWAR

The University of Texas at Austin

May, 1988

i

Abstract

This thesis provides a first step towards resolution of the problem,
of converting sequential Fortran programs to parallel, by capturing the po-
tential parallel computation structure of a Fortran program in a Relational
Database. Parallel languages are required to fully utilize the Parallel ma-
chines that have been developed. Many Man-years of Sequential Programs
(in FORTRAN) have already been written. Re-writing these programs in
some parallel language would be almost impossible. The Database produced
by this thesis can then be used by other programs, to generate specific parallel

computation structures, appropriate for given environments.

Table of Contents

Acknowledgments
Abstract

Table of Contents
List of Figures

1. Introduction

1.1 Qutline e

1.1.1 Computation Model and Dependency Graph Concepts

1.1.2 Dependency Graphs For Fortran Programs
1.2 TheProblem
1.3 The Goal
14 The Approach.
1.5 Construction of Dependency Graphs

1.6 Organization of The Thesis

2. The Database
2.1 SunUnify o
2.1.1 Design and Create a New Database

2.1.2 Reconfigure Database

2.1.3 SQL e
2.14 Database Load

v

vi

ix

B> W N N

- oy Oy O [$14

©w W o

2.2 The Database Schema
MODINFO o e e
MODINPU oo et
CALINFO oo
SUCCLIN i i ittt
225 LINEDES
226 COMBLOK
227 VARINFO i,
228 DOLOOPS.,
2.3 Physical Database Design
231 B-Trees o

S
bbb
o b

B
B o

The NAG TOOLPACK

31 TheLexer i

32 TheParser e
321 TheParseTree oo oo ..
3.2.2 The Symbol Table

3.3 Parser Interface to the Database

. Example Queries on the Database

4.1 Generating the Database
4.2 Queries e
421 Example: 1
422 Example: 2 o
423 Example:3 e e e
424 Example: 4 oL

Vil

10
10
10
10
12
12
13
13
13
14
14

425 Example: 5 oo oo 42

426 Example: 6 oo 43

427 Example: 7 oo 43

428 Example: 8 oo 44

429 Example: 9o oo 45

4.2.10 Example: 10 oo oo 46

4.2.11 Example: 11 oo oL 47

4.2.12 Example: 12 oo oo 49

4213 Example: 13 Lo oo 49

4.3 Interface to a Grahical Display 52

5. Conclusion 55
A 56
A.1 Database Schemao 56
A2 B-Treeindices o 60
A3 Parser Node Types 63
A4 Symboltypes o 68

B 71
B.1 Sample Program 71
B2 TheParse Tree v v 74
B.3 The Symbol Table 78
B4 Dbload Format 79
BIBLIOGRAPHY 87

Vita

viil

2.1

3.1

3.2

3.3

4.1

4.2

List of Figures

The Database Schema« . v v v v v v v e e e

Schematic layout of the Thesis
Sample Parse Tree

Module and Line numbers in the Parse Tree

nnnnnnnnnn

Call Graph of the Sample Program

Control Graph of the Sample Program

.............

ix

22

37

53

Chapter 1

Introduction

The topic of Parallel Processing refers not only to parallel machines
and software systems which operate on them, but also to the organization
of computations which are to be executed in parallel. The development of
computer architecture with powerful parallel processing units has spawned
an interest in languages that permit the explicit specifications of parallel
operations. Parallel languages have been developed to assist programmers in

writing high level programs that fully utilize the (parallel) hardware.

Many millions of lines of Fortran code have been written without the
benefit of explicit parallel operations. The question now is, how to efficiently
convert the existing code to run on these machines without having to rewrite
the entire code in some new parallel language. This thesis provides a first
step towards resolution of the problem, by capturing the potential parallel
computation structure of a Fortran program in a Relational Database. This
Database can then be used by other programs, to generate specific parallel

computation structures, appropriate for given environments.

[\

1.1 Outline

1.1.1 Computation Model and Dependency Graph Concepts

Dependency Graphs are a basis for compiler optimizations and reco-
gnition of parallelism in programs [KUC 77] [BRO 85]. An extended form of
the Dependency graphs is used in this thesis as the basis for capturing the

parallel structure inherent in a Fortran program.

The computation model on which this ‘thesis is based, is the one
developed by J.C.Browne [BRO 85]. This model consists of a directed graph,
where the nodes represent Schedulable Units of Computations (SUCs) and
the arcs represent the dependencies between SUCs. Execution of the compu-
tation is obtained by traversal of the graph along the paths defined by the
dependency relationships associated with the arcs. A SUC is characterized by
its functionality and state. It may have one or more initial states, a sequence

of active states and a final state.

The granularity of the SUCs may vary from single instructions to
subroutines or functions. The granularity chosen here will be such that the

time required to create the SUC will be much lesser than the time to execute

the SUC.

Dependencies are relations among SUCs. There are different types
of dependencies : Data Dependencies, Mutual Exclusion Dependencies and

Control Dependencies.

A Data Dependency exists between two SUCS, if one SUC needs a
value from another SUC to reach a valid state for execution. Mutual Exclusion
Dependencies occur when two SUCs access common data, and can do so in

any order as long as their execution does not overlap. Control Dependencies

occur when one SUC has to execute only after some other SUC.

One advantage of this model is that it is inherently hierarchical. Any -
computation can be defined as a single SUC. The SUC can be decomposed
into a subgraph to allow specification of finer details. On the other hand, a
subgraph can be replaced with a SUC to allow a higher level of abstraction.

Refer to section 1.1.2 for more details.

Another advantage of this model is that of portability. There is a
clean separation among computations and dependency relations. This clean

separation allows each to be separately resolved and mapped.

1.1.2 Dependency Graphs For Fortran Programs

A Fortran program defines a family of dependency graphs at differ-
ent levels of resolution. Fortran, however, as is the case for other sequential
higher level languages, imposes constraints on the execution of the program
by adding control dependencies. Some of these control dependencies are not
essential to correct execution. Parallel programs are attained by stripping
away those control dependencies not required for a correct execution struc-

ture.

Individual statements are the smallest units which will be stored in
the database and considered as potential SUCs. This level of granularity for
SUCs creates an enormous dependency graph and an enormous scheduling

problem. It is, however, the level at which restructuring compilers typically

work.

The next largest level of granularity is the single-entry/single-e-

xit blocks(SE/SE) of statements [HECHTE Modules can be decomposed

by known algorithms into single-entry/single-exit blocks. Modules (subrou-
tines and functions) are especially important cases of single-entry/single-exit
blocks. They are, in effect, single-entry/single-exit blocks which are given
global names and can be recognized across the program structure. It may
often be useful to compose modules linked by calls into a single executable

unit. The largest possible granularity is the total program itself.

The representation of dependency graphs to be captured in the
database of this thesis will be able to support formulation of dependency

graphs for Fortran programs across all of these levels of granularity.

The dependencies to be captured in the data base are data depen-
dencies where one SUC generates inputs which are required by another SUC,
mutual exclusion dependencies, where data is used by several SUCs in no
particular order and certain essential control dependencies which cannot be
deleted and still maintain correct execution of the original Fortran program.
(We will have to keep all control dependencies since we cannot delete them
without analysis). These dependencies will be resolved down to the statement
level so that they can be utilized in synthesis of schedulable units of execution

at higher levels.

1.2 The Problem

Fortran, as is the case for other sequential higher level programming
languages, imposes non-essential constraints on the execution of the program
by adding control dependencies. Conversion to parallel computation struc-
tures (conversion of the sequential form imposed by the total order) of Fortran
programs could be easily accomplished by simply deleting the control depen-

dencies from the dependency graph, were it not for the fact that programs

[

are generally written in forms which implicitly require the sequential control
structure for correct execution. It is this implicit dependence on a particular
order of execution which renders it awkward and difficult to do complete and
total restructuring of Fortran programs. Human input and expertise is often

required to determine what is essential and what is non-essential.

1.3 The Goal

The goal of this thesis will be to be able to support formation of de-
pendency graphs across several levels of granularity, but with a focus on SUCs

whose execution time will be much greater than the overhead of initialization

and scheduling of the SUC.

The database will be structured to support the creation of programs
which utilize the information stored in the database to create a dependency
graph under supervision of a user who understands the program. The SUCs
so created will generally be of sufficient size that they are effective subjects
for application of the optimizing compilers, which are very effective at lower

levels of granularity.

1.4 The Approach

This thesis will specify and implement a system which will capture
the potential parallel computation structures of a sequential Fortran program
(the full dependency graph), and will store all of the relevant information in
a relational database. The database will describe the program on a line-by-
line and module-by-module basis. It will explicitly contain the relationships
between modules and the relationships between statements within modules.

With this information there can be extracted a dependency graph for the

entire program at variable levels of granularity.

There will also be defined auxiliary constructs in the database which
will be needed by the analysis programs. These include definition of the call
graph and definition of the dependency graph which results from application

of the restructuring functions.

1.5 Construction of Dependency Graphs

The construction of dependency graphs, although not a direct pur-

pose of the thesis, may proceed as follows.

1. The program dependency graph at module and statement levels will be

generated.

2. The call graph, which will be used to guide subsequent steps, will then

be generated.

3. The main program will be examined for invocations of modules and for

loops which contain invocations of modules.

The expected result of this thesis will be a database which will effectively
support the application of these functions to produced dependency graphs

and to manipulate dependency graphs.

1.6 Organization of The Thesis

The logical(schema) and physical Database design are presented
in chapter 2. chapter 3 describes the Lexer and the Parser and describes
how the parser is used to analyze Fortran programs, how data is extracted
and mapped to the Database. The final chapter illustrates the ability of the

Database to support the functions which have been defined above.

Chapter 2

The Database

The Relational data model [COD 70] represents the Database as
a collection of tables each of which has a unique name. A row in a table
represents a relationship among a set of values. Since a table is a collection of
such relationships, there is a close correspondence between the concept of a
table and the mathematical concept of a relation, from which the Relational

Data Model takes its name.

2.1 SunUnify

The database chosen to implement this thesis is SunUnify [SUN]. It
is a commercially available Database that is distributed by SUN MICROSYS-
TEMS. The SunUnify Database Management System is a powerful, general
purpose package that simplifies record keeping tasks, organizes information,
cross references data in ways that would be difficult to do manually. The
reason for choosing SunUnify is because it provides a number of convenient

facilities to perform a variety of functions. Some of these functions are:

e Ad Hoc user queries and updates in an English like Language.
e Fast data access from programmed applications.
e Logical data integrity checking.

e Database load, dump.

e Use of SUN’s window management system to provide different views of

the database.

The SunUnify Database package contains several tools. Some of the

tools that were used extensively are described below.

2.1.1 Design and Create a New Database

This tool has two different phases:

e Database Design

e Database Create

The design phase includes designing record types and their associ-
ated fields. The Database Create phase has the following set of application

development options:

Print a report of the Database Design.

¢ Create an empty Database using the new design.

Create data entry screens.

e Create a menu.

2.1.2 Reconfigure Database

This tool is part of the Database Design Utilities. It is used when
the Database design is modified, or when the size of the expected number of
records In a relation is to be increased beyond a previously defined limit or
when B-Tree indexes are added or dropped. Care must be taken to make a

backup of the Database in case of a hardware or software failure.

When executed, the tool prompts the user to rebuilt the hash table
index. This index has to be rebuild if the total expected number of records

in the Database has increased.

2.1.3 SQL

SQL (Structured Query Language) was introduced as the query lan-
guage for System R [CHA 76]. It is an English-keyword-based query language
that is powerful and flexible. SQL uses a combination of Relational Algebra
and Relational Calculus constructs. The basic structure of an SQL expression

consists of three clauses:

e Select corresponds to the projection operation in relational algebra.

e From gives the list of relations to be scanned.

e Where corresponds to the selection predicate of relational algebra.

Chapter 4 provides numerous examples where SQL is used to query

the Database.

2.1.4 Database Load

dbload is a program for loading data, schema information or B-tree
information, in ASCII format, into the Database. The text files need to be in
a specific format. Appendix A contains an example with the correct format.

The advantage of using dbload instead of SQL to load data into the Database

is that it is much faster.

10

2.2 The Database Schema

The Database schema consists of eight relations. The names of
the relations and a brief description of each follows. Refer to figure 2.1 for

the Database schema . A detailed description of the schema is included in

Appendix A.

2.2.1 MODINFO

This relation consists of two fields. The first field contains the mod-
ule number . This is a unique number assigned to each module as it appears
in the program. The values in this field are unique and hence this is the Key

field. The second field contains the name of each module.

2.2.2 MODINPU

MOD_INPU has four fields. The first field contains the module
number and the second field, the name of an input parameter. Since a module
can have several input parameters, the first fleld alone cannot make up the
key, but the two fields together can guarantee a unique record, and hence
make up the Key field. Field three gives the variable type (integer, real,
etc.) for the parameter in fleld two and field four provides information as to
whether or not the parameter is modified in the module. This information is

useful when questions regarding duplication of a SUC arises.

2.2.3 CAL_INFO

CALINFO consists of five flelds. They are, the Calling Module,

Calling Line, Called Module, Parameter number, Parameter. The first four

MOD_INFO

Mod.number | Mod.name

MOD.INPU

Mod.number |Input.param | Param.type Read. write

CALJINFO

Calling.mod Calling lin Called_mod Param.num Parameter
SUCCLIN .

Mod.number |Line.number Suce.mod Succ.line

LINE.DES

Mod.number |Line number |Line.descr

COMBLOK

Mod_ number |Common.name | Var_name Read_write

VARINFO

Mod._number | Line number Var_name Var_type Read.write
DO.LOOPS °

Mod.number | Start.line End line Label

Figure 2.1: The Database Schema

11

12

fields together make up the Key. This relation contains information such
as the number of calls made to a module from another module, or the calls
made from within Do Loops, or the Parameters passed to a module, etc. To
generate a Call Graph for the program, SQL can be used to query this

relation and generate unique values for fields one and three.

2.2.4 SUCC_LIN

This relation consists of four flields, all of which together make up
the Key. The four fields are Module number, Line number, Successor module
number and Successor line number. This relation generates the Control Flow
graph for the entire program. For any module number and line number, the
successor module number(s) and line number(s) are provided. In addition to
this, information is also available concerning the predecessor module(s) and
line(s) . This can be achieved by using SQL to generate all the records of this

relation for particular values in fields three and four.

2.2.5 LINE_DES

LINE_DES is made up of three fields, the first two of which make up
the Key. The fields are Module number, Line number and Line description.
The line numbers in the Database correspond to all the non-comment and
non-blank lines in the program. The reason for doing this is because of speed
and memory constraints. A detailed explanation of this is included in the

Parser section of Chapter 3.

13

2.2.6 COM_BLOK

COM_BLOK consists of four fields, the first three of which make
up the Key. Field one generates the module number in which the common
statement appears. Field two gives the name of the common block. In a
labeled common statement, this field contains the actual name of the block
and in an unlabeled common statement, the name field contains .COMMON.
The third field contains the name of each variable as it appears in the common
statement. Field four provides information as to if any of the variables are

modified in the module.

2.2.7 VARINFO

VAR_INFO consists of five fields, the first three of which make up the
Key. Field one contains the module number, field two has the line number
and field three has the name of the variable. Field four has the variable
type and fleld five describes whether the variable was modified or not in this
occurrence. This relation is used to create the Dependency Graph at the

statement level.

2.2.8 DO_LOOPS

This relation contains four fields. Field one contains the module
number. Field two and field three contain the starting and ending line num-
bers of 2 Do Loop. Fields one, two and three together make up the Key. Field
four contains the label that the Do loop references. This relation, when joined

with CAL_INFO, generates information about modules that are invoked from

within loops.

14

2.3 Physical Database Design

SunUnify supports four different access methods. They are:

[

. Hashing

b2

. Explicit relationships
3. B-Trees

4. Buffered sequential access

Each of these access methods is designed for a different kind of
data retrieval operation. Hashing is used when records are to be accessed
in a random fashion by supplying an exact key. Explicit relationships are
used when there is a need to join tables that were split apart as a result of
normalization. B-Trees are used when the queries concern ranges of values,
or partial, inexact matching. Buffered sequential access is most efficient when
all the records of a given table need to be accessed, starting at the first one

and proceeding one-by-one to the last.

2.2.1 B-Trees

The access method chosen to implement this thesis is the B-Tree
method. B-Trees are always balanced, so every search takes the same amount
of time. Also, the number of Disk accesses, and hence the search time, re-
quired to find an entry rises by a factor of Log N as the index gets larger. Fi-
nally, B-Trees reorganize themselves dynamically, so their performance stays

constant even after many additions and deletions.

The advantages of using B-Trees are as follows:

15

e B-Trees permit ordered access to all records of a given type, based on
the value of the indexed field. This thesis requires large numbers of
records be accessed very rapidly in sorted order. B-Trees are ideal for

this application.
e B-Trees can be added or dropped without reconfiguring the Database.

e B-Trees can be used on any field to create a secondary field. This feature

has been used extensively .

Chapter 3

The NAG TOOLPACK

The Lexer and Parser used to implement this thesis are part of the
NAG(National Algorithms Group) Toolpack/1, which is a collection of soft-
ware tools to perform various types of analysis on Fortran programs [COH 84].
The Fortran Source Code is passed through the Lexer, and the output from
here is sent to the Parser. The Parser produces a symbol table and a parsed
tree of the program. An interface program was written that picked up infor-

mation from these files and stored it in the Database. Refer to figure 3.1.

3.1 The Lexer

ISTLX [ILES] is a Fortran 77 scanner that converts Fortran 77
source text to a token stream and detects and reports lexical errors. The
scanner has been mechanically generated from a specification of the Fortran
77 language. The target language accepted, and a definition of the gram-
mar, are given in Appendix A. ISTLX reads Fortran 77 source text from the
source file (parameter:1). The different parameters are listed on page 18. The
resulting token stream is placed in the token file (parameter:3) and the com-
ments are placed in the comment file (parameter:4). Any errors discovered
are reported to the optional list file (parameter:2) and an attempt is made to

continue scanning by deleting or adding tokens. During operation the scanner

16

Fortran
Source

LEXER

PARSER

Interface
Program

DATA BASE

Figure 3.1: Schematic layout of the Thesis

17

18

optionally produces a list file which contains the input source text preceded
by the token number of the first token for each statement. If no list file is
required (producing a list file does slow the scanner down) then parameter 2

should be set to - .
Parameter 1: Name of Source File.
Parameter 2: Name of List File.
Parameter 3: Name of Token File or Files.
Parameter 4: Name of Comment File or Files.

The scanner may be instructed to place the tokens and comments
for each program unit in a separate file. To do this the token and comment file
names should each be placed in parentheses. If either the token or comment
file name is in parentheses then both must be. The file name in parentheses
is used as a base for a set of file names, one per program unit. The scanner
accepts Fortran 77 standard conforming software. All errors are reported to
the list file. The statement and token number when the error occurred are
also reported. This can be related back to the source code using the token
numbers given in the list file. The values at the start of each statement in
the list file are the statement number and the number of the first token in

that statement. Errors are as follows:

1. Token too long.

o

Error in token.
3. Error in token to be screened.
4. Unprocessed text remaining in token to be screened.

5. Screen ended in error.

19

6. Scan ended in error.

7. Screened token ends unexpectedly.

Fatal errors are reported separately.

3.2 The Parser

ISTYP parses a Fortran-77 program. It takes as its input a to-
ken stream produced by ISTLX and produces a parse tree, symbol table
and comment index. ISTYP is a table-driven parser generated using the
YACC [JOH 78| parser-generator. All error and warning messages produced
by ISTYP are written both to the standard error channel and the symbol ta-
ble file. When a tool which uses the symbol table is executed, these warning
and error messages are displayed again. As many error conditions render at
least part of the symbol table or parse tree information invalid, it is impor-
tant that the user is aware of the possibility that further processing may be

completely useless.
Parameter 1: Name of token stream file
Parameter 2: Name of comment stream file
Parameter 3: Name of parse tree file
Parameter 4: Name of symbol table file
Parameter 5: Name of comment index file.

ISTYP parses the standard Fortran-77 language with the Hollerith
extension and some additional data types including DOUBLE COMPLEX.
It will accept all legal Fortran-77 programs and reject most syntactically in-

correct programs. The semantic routines which produce the symbol table

20

do a modest amount of semantic checking, but were designed primarily to
generate correct symbol information for correct programs, not for checking a
program’s correctness. This means that even when ISTYP detects an incon-
sistency in the use of a symbol it may not produce a very informative error

message.

3.2.1 The Parse Tree

The parse tree is organized recursively as a list of lists. All the
subnodes of a node are grouped into a doubly-linked linear list with owner

pointers.

Thus each node in the parse tree has four pointers: Up, Down,
Next and Prev. The up pointer of the root of the tree points to itself; an up
pointer is only zero when a node is a "deleted” node, or orphan. Orphan nodes
only exist temporarily within the parse tree during the building operation or
during modification; the parser always links them into the parse tree. The
Next pointers form a chain of subnodes of a single node, from the first to the
last. The Next pointer of the last node in the chain is zero. The Prev pointers
form a circular list of the subnodes of a single parent node, the last node in
the chain can be simply found be going ”"prev” from the first node. The Down
pointer of a node points to the first subnode in its subnode list. A leaf node
has either a zero Down pointer, or a negative Down pointer. A negative Down
pointer is a pointer into the symbol table (for N NAME, N.CBLK_NAME,
N_LABEL and N_.LABELREF nodes) or into the string table (for other leaf
nodes NJICONST).

The program
PROGRAM MAIN
K=54+6

STOP

END

generates a tree as shown in figure 3.2. The numbers in each node,

are listed in Appendix B, under the section YNODES.

The structure of the parse tree is detailed by listing the possible
nodes which may be subnodes of any particular node type. For example,
when traversing the parse tree, if a Node of type Do is reached, it will have
children of type N.LABELREF and N.DOSPEC. N LABELREF is a leaf
node, with a pointer into the symbol table and N_.DOSPEC has children of
type N.NAME and three arithmetic expressions. This information is specified
in the listing below. Node types have the form "N XXXX”, where XXXX
consists of uppercase alphabetic characters and underlines. Macros for these

node types are defined in the macro file YNODES.

In the following listing:

- parentheses indicate grouping,

- vertical lines indicate alternatives,

- asterisks indicate closure (i.e. the previous item occurs
zero or more times),

- plus signs indicate positive closure (i.e. the previous
item occurs one or more times)

- question marks indicate the previous item is optional,

- /* and */ delimit comments. Token types are those listed

Figure 3.2: Sample Parse Tree

22

23

in the ISTLX documentation, and have the form TXXXXX where

XXXXX is up to five letters in upper case.

N_ROOT : (N_MAIN | N_F_SUBP | N_S_SUBP | N_BD_SUBP)+

N_MAIN : N_PROGRAM? Statement* N_END

/* Main program */

N_F_SUBP : N_FUNCTION Statement* N_END
N_S_SUBP : N_SUBROUTINE Statement* N_END
N_BD_SUBP : N_BLOCKDATA Statement* N_END
N_PROGRAM : N_NAME

N_FUNCTION : Datatype? N_NAME N_LIST?

N_SUBROUTINE: N_NAME N_LIST?

N_BLOCKDATA : N_NAME?

N_LIST : N_NAME+

/* function */

N_LIST : (N_NAME | N_ASTERISK)+
/* subroutine */

N_END : N_LABEL?

Datatype : N_INTEGER | N_REAL | N_DOUBLE_P | N_COMPLEX |
N_LOGICAL | N_CHARACTER | N_DCMPLX

N_DOUBLE_P, N_DCMPLX /* leaf nodes with no information */
N_CHARACTER : (Arithmetic_expression | N_ASTERISK)?
N_INTEGER, N_REAL, N_COMPLEX, N_LOGICAL: N_ICONST?
N_NAME /% leaf node, pointer into symbol table */
N_LABEL /#* leaf node, pointer intoc symbol table */
Statement : N_FORMAT | N_ENTRY | N_PARAMETER | N_IMPLICIT |
N_DATA | N_DIMENSION | N_EQUIV | N_COMMON |
N_TYPE | N_EXTERNAL | N_INTRINSIC | N_SAVE |
N_DO | N_LOG_IF | N_BLOCKIF | N_ELSE |
N_ELSEIF | N_ENDIF | N_ARITHIF | N_ASGN |
N_ASSIGN | N_STMT_FN | N_GOTO | N_STOP |
N_PAUSE | N_READ | N_WRITE | N_PRINT | N_REWIND |
N_BACKSPACE | N_ENDFILE | N_OPEN | N_CLOSE |
N_INQUIRE | W_CALL | N_RETURN

N_DIMENSION: N_ARR_DECL+

N_ARR_DECL : N_NAME (N_ARDIM+ N_DARDIM? | N_DARDIM)

N_ARDIM

N_DARDIM
N_EQUIV

N_EQVSET
N_COMMON
N_BLNKCM
N_LBLDCM

N_CBITEMS

N_TYPE

N_CHAR_LEN :

: Arithmetic_expression? Arithmetic_expression

: Arithmetic_expression?

: N_EQVSET+

(N_NAME | N_ARELM | N_SUBSTR)+

(N_BLNKCM | N_LBLDCM)+

: W_CBITEMS

: N_CBLE_NAME N_CBITEMS

(N_NAME | N_ARR_DECL)+

: Datatype (N_NAME | N_ARR_DECL | N_CHAR_LEN)+

(N_NAME | N_ARR_DECL) (Arithmetic_expression |

N_ASTERISK)

N_IMPLICIT :

N_IMPL_DECL+

N_IMPL_DECL: Datatype N_CHRRNG+

N_CHREHNG

: N_IMPCHAR N_IMPCHAR?

N_IMPCHAR /* leaf node with pointer inte string table */

N_PARAMETER: N_PARA_DECL+

N_PARA_DECL: N_NAME expression

N_EXTERNAL : N_NAME+

N_INTRINSIC: N_NAME+

N_SAVE : (N_NAME | N_CBLK_NAME)+

N_CBLK_NAME /* leaf node with pointer into symbol table */

N_DATA : N_DATA_DECL+

N_DATA_DECL: N_DATA_ITEMS N_DATA_VALS

N_DATA_ITEMS: (N_NAME | N_ARELM | N_SUBSTR | N_DATA_IMPDO)+

N_DATA_VALS: (N_MULT_VAL | N_NEG | Data_constant)+

N_MULT_VAL : (N_NAME | N_ICONST) (N_NEG | Data_constant)

Data_constant : N_ICONST | N_RCONST | N_DPCONST | N_SCONST |
N_LCONST | N_HCONST

3™}
=]

N_ARELM : N_NAME expression+
¥_SUBSTR : (N_NAME | N_ARELM) N_SSSPEC

N_SSSPEC : (N_DEFAULT | Arithmetic_expression)

(N_DEFAULT | Arithmetic_expression)
N_DEFAULT /* leaf node */
N_DATA_IMPDO: (N_ARELM | N_DATA_IMPDO)+ N_DOSPEC

N_DOSPEC : N_NAME Arithmetic_expression Arithmetic_expression

Arithmetic_expression?
N_ENTRY : N_NAME N_LIST?
N_ASGN : (N_ARELM | N_SUBSTR | N_NAME) expression
N_ASSIGN : N_LABELREF N_NAME
N_LABELREF /* leaf node with peiﬁter into symbol table =*/
N_STMT_FN : N_NAME N_LIST expression

N_LIST (statement function) : expression+

N_GOTC : N_LABELREF

N_CMGOTO : N_LABELLIST Arithmetic_expression

N_ASGOTO : N_NAME N_LABELLIST?

N_LABELLIST : N_LABELREF+

N_ARITHIF : expression N_LABELREF N_LABELREF N_LABELREF

N_LOG_IF : expression Statement

/* this occurrence of "Statement" will never have a label */

N_BLOCKIF : expression

N_ELSEIF : expression

N_ELSE, N_ENDIF /#* leaf nodes %/

N_DO : N_LABELREF N_DOSPEC

N_CONTINUE /% leaf node */

N_STOP, N_PAUSE : (N_ICONST | N_SCONST)?

N_WRITE : N_CILIST (expression | N_IDIMDL)=*

N_IOIMDL /* write and print */ : (expression | N_IOIMDL)+
N_DUOSPEC

N_CILIST : N_UNITID? (N_FMTID | N_CIITEM)=*

N_UNITID : expression | N_ASTERISK

N_FMTID : N_LABELREF | N_ASTERISK | expression

N_CIITEM : (N_IOKW (expression | N_ASTERISK)) |

((N_ERRKW | N_ENDKW) (expression | N_ASTERISK |

N_LABELREF))

N_READ : ((N_FMTID | N_CILIST) (N_NAME | N_ARELM |
N_IOIMDL)*) | N_AMBIGUOUS

N_IOIMDL /#* read %/ : (N_NAME | N_ARELM | N_IOIMDL)+
N_DOSPEC

N_PRINT : N_FMTID (expression | N_IOIMDL)*

N_OPEN, N_CLOSE, N_INQUIRE : N_CILIST

N_CILIST /# open close inquire */ : (N_UNITID | N_CIITEM)
N_CIITEM*

N_BACKSPACE, N_ENDFILE, N_REWIND : N_UNITID | N_CILIST

30

N_CILIST : (N_UNITID | N_CIITEM) N_CIITEM=

N_FORMAT : (N_FMTFLD | N_SCONST | N_HCONST | N_SLASH |
N_SUBFMT | N_COLON | N_REPEAT | N_SCALE)=*

N_SUBFMT : (/* same as for N_FORMAT */)+

N_FMTFLD, N_SCALE /* leaf nodes with text pointers */

N_CALL : N_NAME (expression | N_LABELREF)=*

N_RETURN : Arithmetic_expression?

expression : N_EQV | N_NEQV | N_OR | N_AND | N_NOT | N_LT |
N_LE | N.GT | N_GE | N_EQ | N_NE | N_CONCAT |
N_SCONST | N_HCONST | N_LCONST | N_SUBSTR |
Arithmetic_expression

Arithmetic_expression : N_PLUS | N_MINUS | N_POS | N_NEG |

N_MULTIPLY | N_DIVIDE | N_EXPONT |

N_NAME | N_ARELM | N_FUNREF | N_SPAREN

| N_ICONST | N_RCONST | N_DPCONST |
N_CCONST

N_EQV, N_NEQV, N_OR, N_AND, N_CONCAT : expression expression

31

N_NOT : expression

N_LT, N_LE, N_GT, N_GE, N_EQ, N_NE : Arithmetic_expression

Arithmetic_expression

N_POS, N_NEG : Arithmetic_expression

N_PLUS, N_MINUS, N_MULTIPLY, N_DIVIDE, N_EXPONT :

Arithmetic_expression Arithmetic_expression

N_SPAREN : expression

/* This is a parenthesised expression */

N_FUNREF : N_NAME expression*

N_ICONST, N_RCONST, N_LCONST, N_DPCONST, N_SCONST, N_HCONST

/* leaf nodes with pointers into the string table */

N_CCONST : (expression | N_IOIMDL) (N_NEG | N_RCONST |
N_ICONST | N_DPCONST)

N_NEG : N_RCONST | N_ICONST | N_DPCONST

32
3.2.2 The Symbeocl Table

The symbol table consists of two parts: the string table, which con-
tains the text of a symbol, and the symbol table proper [ISTYP]. Refer to
Appendix B for a sample Symbol Table. Constants do not have a symbol as-
sociated with them; these are simply stored in the string table, and a pointer
to the string table is stored in the node for these items in the parse tree.
A symbol consists of three fixed flelds, and up to five additional fields. The
additional flelds are called attributes, and vary according to the type of the
symbol. The three fixed fields uniquely identify each symbol, and are:

e SYMBOL_TYPE. This field contains the type of symbol, e.g. common

block name, label, variable, etc.

¢ SYMBOL.NAME. This field contains a pointer into the string table to

the textual representation of the symbol.

e SYMBOL_PUN . This field contains the program unit number within the

file in which the symbol appears.

The next five fields depend on the Symbol types used. The dif-
ferent Symbol types are S LABEL, S.COMMON, SNAME, S PU, S_VAR,
S.PARAM, S PROC, SSF, S.LENTRY.

The symbol type S_LLABEL has these attributes:

1. LABEL_DEFN. This fleld contains a pointer to the top node of the state-

ment which is labelled with this label.

2. LABEL_CF_REF. This field contains the number of control-fow references

to that label.

33

3. LABEL_DO _REF. This field contains the number of DO-loops (ASSIGN

statements) which reference the label.

4. LABEL_IO_REF. This field contains the number of i/o-statements which

reference this label as a format-identifier.

5. LABEL_SCOPE. This field contains the node number of the innermost
enclosing DO, IF-THEN, ELSEIF, or ELSE statement which contains
the label. If the label is referenced but not defined, this field will contain

the node number where the label was first referenced.

The symbol type S.COMMON has one attribute.

1. COMMON_DEFN. This field contains a pointer to the N_.LBLDCM or
N_BLNKCM node which has the first occurrence of that common block.
For blank (unlabelled) common, the symbol name is SCOMMON.

The symbol type S.NAME is a temporary symbol type which is
usually changed to another type once the full meaning of the symbol is known.
If it has not been changed, it means that the symbol has not been referenced
in the program-unit apart from its defining occurrence in a type statement.

All the following symbol types include the attributes of this symbol.

1. NAMEDTYPE. This fleld contains a small integer which specifies the

base data type of the name. The possible values are listed in the ap-

pendix.

2. NAME_CHRLEN. This field contains a value which specifies the length

of the character string for character data types. It is zero for all other

data types.

34

3. NAME_STATUS. This field contains a number of status bits which de-

scribe the specific occurrences of the symbol in the program-unit. The
bits which may be set by ISTYP are detailed below.
e DECL_EXTERNL: The name appears in an EXTERNAL statement.
e DECL_INTRINS: The name appears in an INTRINSIC statement.

e FORMAL_PARAM: The name is a formal parameter (dummy argu-

ment) of the program unit.

e EXPLICIT_TYP: The name appears in a type statement, or if it is
a function subprogram name, has the type specified in the FUNC-
TION statement.

e IN._ASSIGN: The name appears in an ASSIGN statement.

e ASSIGNED.TO: The name appears on the left-hand side of an as-

signment statement.

e IN.READ_ 11sT: The name appears in the input-list of a READ

statement.
e IN.DATA STMT: The name appears in a DATA statement.

e STMT_FN_PARA: The name is a formal parameter (dummy argu-

ment) of a statement function.
e IN.EQUIV: The name appears in an EQUIVALENCE statement.
e IN.COMMON: The name appears in a COMMON statement.

e USED_AS_ARG: The name is used as the actual argument to a called

function or subroutine.
e STD_INTRINSIC: The name is that of a standard intrinsic function.

e FUN_CALLED: The name is called as a function.

35

e IN_EXPR: The name appears in an expression.
e SUB_CALLED: The name is called as a subroutine.

e DOLOOP_INDEX: The name is used as the controlling variable in a

DO statement or implicit DO-loop.

e USE_BITS: This macro is actually the inclusive or of the bits: for-
mal_param, in_ASSIGN, assigned_to, in READ list, in DATA st,
stmt_fn_para, in . EQUIV, used_as_arg, fun_called, in_expr, sub_call-

ed and doloop.index.

The S_.PU symbol type is for the program-unit itself. There is always
exactly one S_PU symbol for each program-unit. If the program-unit is an
unnamed main program, then the string pointer for the symbol will point
to the string $MAIN. If it is an unnamed block data subprogram the string
pointer will point to the string $BLOCKDATA.

There are no additional attributes for this symbol type beyond those
of the S.NAME symbol type.

The S_-VAR symbol type includes local, common and argument vari-

ables. There is one additional attribute:

1. VAR_ARR.DECL. This attribute is zero for a simple variable, and a
pointer to the defining N_.ARR_DECL (array.declarator) node for an

array variable.
The S.PARAM symbol type has one additional attribute:

1. PARAMETER_DF. This attribute contains a pointer to the expression

which defines the value of the parameter.

36

The S_.PROC symbol type covers external functions, external sub-

routines and intrinsic functions. It has no additional attributes.

The S_SF symbol type has one addition attribute:

1. STMT_FN.DEFN. This contains a pointer to the N.STMT_FN node

which defines the statement function.

The S.LENTRY symbol type has no additional attributes.

The symbol type S.PROC (subroutines and functions) is treated
differently from other symbol types due to the complexity of deciding what
data type it has. The attribute bits used to determine the data type are:

fun.called, decl_externl decl.intrins, formal_param and used_as_arg.

3.3 Parser Interface to the Database

The interface program has three stages. In the first stage, the string
table, the symbol table and the parse tree are read into memory. The relation
MODINFO can be generated from the information present in the symbol
table.

The second stage consists of assigning module numbers and line
numbers to each node of the tree. This is done as follows: The parse iree
is constructed in a manner such that the nodes that are present, one level
below the root node of the tree, correspond to the modules in the program.

For example, if a program has three modules in it, the root of the tree will

have three children nodes.

The nodes that are present, one level below these, correspond to the

individual line numbers of the modules. Refer to figure 3.3.

37

Figure 3.3: Module and Line numbers in the Parse Tree

38

Here M stands for module and L stands for line. The program in

the figure contains two modules, containing five and three lines respectively.

The third and final stage consists of traversing the tree and extract-
ing information to map to the Database. Two methods were used to access
the data. To generate information for the relations DO _LOOPS, SUCC_LIN,
MODINFO, and CAL_INFO, the tree was scanned as a flat file. When,
for example, a node of type DO was accessed, the sub-tree under DO was

processed to get the label value and the index used.

To generate information for the remainder of the relations, a pre-
order traversal was done on the tree, till the occurrence of a particular node

type. The sub-tree was then processed for the required information.

Chapter 4

Example Queries on the Database

This chapter presents a sample session with the Database. Several
queries are presented here. Refer to Appendix B, for a sample program.
The parse tree and the symbol table for this program are also provided. In
addition to this, the data, that the interface program extracts from the tree,

to map on to the Database is also shown.

4.1 Generating the Database

A shell program has been provided, that accepts a FORTRAN pro-
gram as its input. The FORTRAN program is passed through the Lexer and
the Parser, and the output files from the parser are fed to the interface pro-
gram. The interface program then writes out a file called Final. This file is

in the appropriate format to be loaded into the Database.

The shell program copies the file (Final) to the Database direc-
tory, creates and loads the data into a new Database, and then invokes Su-
nUnify. The user can now bring up, either Databrowse, to view the data in

the Database, or SQL, to query the Database.

The Parser, writes out warnings and error messages to the Symbol
table file. These warning messages might appear for correct programs. These

messages must be removed, before the interface program can be called.

39

40

4.2 Queries

The following queries first extract the CALL GRAPH from the pro-
gram. Working with this information, a module level Dependency Graph can
be obtained. Example 1 shows how a call graph can be extracted from the
Database. The call graph shows that module one calls modules two, three

and four at lines 8, 9 and 10 respectively.

4.2.1 Example: 1

sql> select unique Mod_number, Line_number, Called_mod
sql> from CAL_INFO/

recognized query!

Mod_number|Line_number|Called_mod

T D WD R D S T T D TR D D T D L) T T D S D D D D S s D A D

11 8| 2
11 91 3
11 101 4

Example 2 shows the Parameters that are passed from module one
to module two and Example 3 shows what module two does to its input
Parameters. Two of the four parameters (P1 and M) are used to read data.
This shows two input Data Dependencies into module two. The other two
Parameters (E and SIZE) are modified in module two. This shows two output
Data Dependencies from module two. Similarly, Examples 4-7 extract the

Data Dependencies from the other modules.

4.2.2 Example: 2

sql> select Mod_number,Called_mod,Parameter_number,
sql> Parameter_passed from CAL_INFO where
sql> Mod_number = 1 and Line_number = 8/

recognized query!

Mod_number {Called_mod|Parameter_number|Parameter_passed

> o T D T D D R D T D U D D S D > U R D T Ty A LD D S D D D D WD U G D D WD D D D D S D D T D > D D D D

11 21 1Pt
1] 21 211
1] 21 3|E
1] 21 4|ESIZE

4.2.3 Example: 3

sgl> select Mod_number,Input_param,Read_written
sql> from MOD_INPU where Mod_number = 2/

recognized query!

Mod_number | Input_param |Read_written
21P1 |READ
21M |READ
21E IWRITE

2|SIZE IWRITE

4.2.4 Example: 4

sql> select Mod_number,Called_mod,Parameter_number,
sql> Parameter_passed from CAL_INF0O where
sql> Mod_number = 1 and Line_number = 9/

recognized query!

Mod_number|Called_mod|Parameter_number|Parameter_passed

a0 D T S T S D D W D T T I T D S T I e W I I W S O G e D U B D D W D S e

1l 3] 11p2
1] 3] 211
1l 3l 3l0
1] 31 4|0SIZE

4.2.5 Example: 3

sql> select Mod_number,Input_param,Read_written
sql> from MOD_INPU where Mod_number = 3/

recognized query!

Mod_nﬁmberl!nput_param |Read_written
3|P2 |READ
3IM |READ
30 |WRITE

3ISIZE |WRITE

43

4.2.6 Example: 6

sql> select Mod_number,Called_mod,Parameter_number,
sql> Parameter_passed from CAL_INFO where
sql> Mod_number = 1 and Line_number = 10/

recognized query!

Mod_number|Called_mod|Parameter_number|Parameter_passed

e e e S D SR S S D G W G D D D I D D GE O S D WD W S I W S N G T D D R G GNP G GIR D WD U D D R W NS U G GD O D W @ o

11 4| 1lE
1l 4] 210
11 4| 3|ESIZE
1} 4] 4|0SIZE

4.2.7 Example: 7

sql> select Mod_number,Input_param,Read_written
sql> from MOD_INPU where Mod_number = 4/

recognized query!

Mod_number | Input_param {Read_written
41E |READ
4|0 |READ
4|ESIZE [READ
4|0SIZE IREAD

Example 8 generates the conirol flow graph for module one. By

using the information here, along with standard algorithms, any module can

44

be split up into single-entry/single-exit blocks.

4.2.8 Example: 8

sql> select * from SUCC_LIN
sql> where Mod_number = 1
sql> order by Mod_number,Line_number asc /

recognized query!

Mod_number|Line_number|Successor_mod|Successor_line

e o D D G D D D I D D D T D T D I KD D S D D S D T D D T T s D D D D D KD S D WD D A S G iy i D

11 11 11 2
1] 21 11 3
1l 3] 1} 4
1] 4] 1l 5
1] 4] 1l 8
1} 5] 1l 6
11 61 11 7
11 71 11 4
1l 8l 1] 9

[y
o
[SV
[

1} 9l 1] 10
1] 9l 3] 1
11 101 : 11 11
1] 101 4| 1

11 11} 1l 12

43

The next example provides information as to what modules are avail-
able, their names and types (program, subroutines, functions, etc.). This
information can be very useful, because, assumptions need to be made about
those modules that are unavailable. This query provides the necessary infor-

mation.

4.2.9 Example: 9

sql> select Mod_number,Mod_name,Line_description,
sql> Mod_avail or_not from

sql> MOD_INFO,LINE_DES

sql> where

sql> MOD_INFO.Mod_number = LINE_DES.Mod_number
sql> and LINE_DES.Line_number = 1

sql> order by Mod_number asc /

recognized query!

Mod_number |Mod_name|Line_description|Mod_avail_or_not

s s s D o < G S W S D D D D T U D D T D T T T S D D S D R (D D R D T > R A D D D D A D A 90 s

11GEN |N_PROGRAM [AVAILABLE
2|EVEN |N_SUBROUTINE |AVAILABLE
310DD |N_SUBROUTINE |AVAILABLE
4|PRNT |N_SUBROUTINE [AVAILABLE

Example 10 shows all the variables that occur in the program,
and the modules they occur in. Once the program is split up into single-

entry/single-exit blocks, the information provided by this query, along with

46

the Read-Write information, can be used to illustrate the Data Dependencies

between the different blocks.

4.2.10 Example: 10

sql> select unique Mod_number,Variable_name
sql> from VAR_INFO
sql> /

recognized query!

Mod_number|Variable_name

> e S o T S S D G G S R D T G T D S D W D LD D D T VS D T 2D D

2]SIZE
2| TEMP
2| TEMP1
31T
317
310
31p2
3|SIZE

3| TEMP
3|TEMP1

The tool was also used on other larger programs. A 4000 line FOR-
TRAN program was used as input to the tool. The time taken to parse the
program and apply the information to the Database was approximately 20
minutes. The examples that follow, query the new Database. The program
was too cumbersome to include here, but a copy (longsample.f) is kept in

the Database directory.

Example 11 provides information to extract the Mutual Ezclusion

dependencies from this program.

4.2.11 Example: 11

sql> select unique Mod_number,Common_name,Read_written
sql> from COM_BLOK
sql> where Mod_number < 25 /

recognized query!

Mod_number |Common_name |Read_written
1|DEBUGC |READ
1|UBEAC |READ
1{USUBC |READ
4|IBEAC IWRITE
4|UBEAC |READ
4|USUBC |READ

4|USUBC |WRITE

5]UBEAC
5| UBEAC
5|USUBC
5|USUBC
6| IBEAC
6| IBEAC
6|ISUBC
6 |UBEAC
6 |UBEAC
6| USUBC
12|DEBUGC
13 |DEBUGC
14 |DEBUGC
14|REPLFC
15| DEBUG
24 |DEBUGC

|READ
|WRITE
[READ
[WRITE
|READ
|WRITE
|READ
|READ
|WRITE
|READ
|READ
|READ
|READ
|READ
|READ
|READ

48

49

The next example finds out the Do Loops in a module. This infor-
mation will be used in Example 13 to find all Calls to modules from within

a Do Loop .

4.2.12 Example: 12

sql> select * from DO_LOOPS
sql> where Mod_number = 1/

recognized query!

Mod_number|Line_num_start|Line_num_end|Index_used
1] 591 1361IYT
1] 731 7511

4.2.13 Example: 13

sql> select unique Mod_number,Line_number,Called_mod,
sql> Parameter_passed,from CAL_INFO,DO_LOQOPS

sql> where

sql> CAL_INFO.Mod_number = DO_LOOPS.Mod_number

sql> and CAL_INFO.Mod_number = 1

sql> and CAL_INFO.Line_number between

sql> (DO_LOOPS.Line_num_start + 1) and

sql> (DO_LOOPS.Line_num_end - 1) /

recognized query!

Mod_number|Line_number|Called_mod|Parameter_passed

s s S D G R D G G S G T W T D T O G O N D G G W D 5 S5 G G G o D S e D S 0 T G G S s S5 b

851
85|
85|
85 |
85|
85|
85|
85|
114]

64 |MODE
64| _I_CONSTANT
2211Y
20|LUOUT
20| NX
201X
20| _S_CONSTANT
4|BESTOP
4|BEX
4|IFLAG
4|ISTAB
4| IWORK
4 |MAXNFE
4 |MODE
4|NFE
4| NORMX
4| NORMY
4|NX
4iny
4|SCALE
4|TOL
41X
4| XBOUND
201NX

11
11
il
11
1]
1
1]
11
1l
1]
1]
1]
1]
1]
il
11
1]
1l
11
1l
11

114
114]
114]
1171
1171
1171
1191
119]
119}
1211
121]
121]
1271
1271
1271
1291
1291
1291
131}
131}
131]

201%

20| _I_CONSTANT
20| _S_CONSTANT
20 |FXSTAT

20| _I_CONSTANT
20| _S_CONSTANT
20 |EYSTAT

20| _I_CONSTANT
20| _S_CONSTANT
20|CSTAT

20| _I_CONSTANT
20| _S_CONSTANT
20 | FXSTAT

20| _I_CONSTANT
20| _S_CONSTANT
20 |EYSTAT

20| _I_CONSTANT
20| _S_CONSTANT
20| CSTAT

20| _I_CONSTANT
20| _S_CONSTANT

4.3 Interface to a Grahical Display

The Call Graph of the program (example 1), can be displayed and
manipulated using IDeA [SRI 88]. IDeA (Interactive Dependency Graph An-
alyzer) is a general purpose graphical tool, used for the display and manip-
ulation of the dependency graphs. Refer to figure 4.1 for the Call Graph of

the sample program.

A statement level Conitrol Flow Graph was also extracted from the
Database, by quering the relations LINE_DES and SUCC_LIN. Refer to fig-
ure 4.2 for the Control Flow Graph.

i Collapse

il Redispiay

pen EdaefiCpen Nodell Descend Ascend Expand it fepiicaze § New Root

L.abeis Zoom In B2oom Qut fMake Foot anter Undo Fead Fie Quit

j=Eabeh oud even

| s

Figure 4.1: Call Graph of the Sample Program

Collapse pen £Edge@Cpen Nodell Descend Ascoend Expand iy Repicate § New FRoot

sdispia Labeis gom in oom Qut Make Footf Center ndo Head Fie Quit
Click left bution on node or Right dutton 1o supe -ame/id

Figure 4.2: Control Graph of the Sample Program

Chapter 5

Conclusion

It has been established that the necessary elements for construction
of full hierarchical dependency graphs for large Fortran programs can be
captured and put in usable form through the use of standard commercial
software elements. This thesis has utilized a lexer/parser combination taken
from Toolpack and combined this with a commercial Relational Database
system, the Unify system for SUN workstations, to capture the statement-

level and module level dependency graph for Fortran programs.

This hierarchical dependency graph has been demonstrated to be
an effective basis for analysis and understanding of the parallel structure
implicit in programs in sequential languages. The database can serve as a
basis for converting Fortran programs to parallel computational structures.
One element of the conversion process, interface to a graphical display of

control flow graphs, has been demonstrated.

Appendix A

A.1 Database Schema

{SunUNIFY}

MOD_INFO MODULE_INFO 500
*Mod _number MO _mod
Mod_name MO _name
Mod_avail_or_not MO_avail

LINE_DES LINE_DESCRIPTION 10000

*Line_key LI_key
“Mod _number LI_mod
“Line_number LI_line
Line_description LI_desc

Num
Str

Str

Comb

Num

Str

30
20

30

MOD_INPU MODULE_INPUT 5000
*Mod_inpu_key MI_key Comb
“Mod _number MI_mod Num
“Input_param MI_var Str
Var_type MI_type Str
Read_written MI_r_w Str
CAL_INFC CALL_GRAPH_INFO 5000
#*Call_key CA_key Comb
“Mod _number CA_mod Num
“Line_number CA_line Num
“Called_mod CA_cmod Num
“Parameter_number CA_pnum Num

Parameter_passed CA_par Str

-J

(1]

COM_BLOb COMMON_BLOCK_INF 10000

*Common_key CO_key
“Mod_number CO_mod
“Common_name CO_name
“Variable_name CO_var

Read_written CO_r_w
VAR_INFO VARIABLE_INFO 10000

*Variable_key VA_key
“"Mod_number VA_mod
“Line_number VYA_line
“Variable_name VA _name
“Read_written Vi_r_w

Variable_type VA_type

Comb
Num
Str
Str

Str

Comb
Num
Nunm
Str
Str

Str

20
20

20

10

SUCC_LIN SUCCESSOR_INFO 10000
*Successor_key SU_key
“Mod _number SU_mod
“Line_number SU_line
“Successor_mod SU_smod
“Successor_line SU_slin
DO_LOOPS DO_LOCP_INFO 5000
*D0_key DO_key
“"Mod_number DO0_mod
“Line_num_start DO_start
“Line_num_end DO_end
Index_used DO_index

Comb
Num

Num

Num

Comb
Num
Num
Num

Str

© B W0 W

20

60

A.2 B-Tree indices

In this section, the row containing Y is the name of the record for
which a B-Tree index has been assigned and the row containing A’s are the

different fields the are used as indices.

i MOD_INFO Y

Mod_number A

2 MOD_INPU Y

Mod_number A

3 MOD_INPU Y

Input_param A

4 CAL_INFO Y
Mod_number A

Line_number A4

5 CAL_INFO Y

Called_mod A

6 VAR_INFO Y
Mod_number A

Line_number A

7 VAR_INFO Y

Variable_name A

8 COM_BLOK Y

Mod_number A

9 COM_BLOK Y

Common_name A

61

10 LINE_DES Y
Mod_number A

Line_number 4

11 SUCC_LIN Y
Mod_number A

Line_number 4

12 SUCC_LIN Y
Successor_mod A4

Successor_line A

13 DO_LDOPS Y
Mod_number 4
Line_num_start A

Line_num_end A

A.3 Parser Node Types

[N

w ~N o o e W W

10
11
12
13
14
i5
i6
17
i8
19
20
21
22
23

N_ERROR
N_ROCT
N_MAIN
N_F_SUBP
N_S_SUBP
N_BD_SUBP
N_END
N_PROGRAM
N_FUNCTICON
N_INTEGER
N_REAL
N_DOUBLE_P
N_COMPLEX
N_LOGICAL
N_CHARACTER
N_LIST
N_SUBROUTINE
N_ASTERISK
N_ENTRY
N_BLOCKDATA
N_DIMENSICH
N_ARR_DECLR
N_ARDIM
N_DARDIM

63

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
486
47
48
49
50

N_EQUIV
§_EQVSET
N_COMMON
N_BLNKCM
N_LBLDCM
N_CBITEMS
N_TYPE
N_CHAR_LEN
N_IMPLICIT
¥_IMPL_DECL
N_CHAR_RANGE
N_PARAMETER
N_PARAM_DECL
N_EXTERNAL
N_INTRINSIC
N_SAVE
N_CBLK_NAME
N_DATA
N_DATA_DECL
N_DATA_ITEMS
N_DATA_VALS
N_MULT_VAL
N_NEG
N_DATA_IMPDO
N_DOSPEC
N_ASGN
N_ASSIGN

64

51
52
53
54
55
56
57
58
59
€0
61
62
63
64
65
66
87
68
69
70
71
72
73
74
78
76
77

§

N_GOTO
N_CMGOTO
N_ASGOTO
N_LABELLIST
N_ARITHIF
N_LOG_IF
N_BLOCKIF
N_ELSEIF
N_ELSE
N_ENDIF
N_DO
N_CONTINUE
N_STOP
N_PAUSE
N_WRITE
N_READ
N_PRINT
N_CILIST
N_CIITEM
N_CONCAT
N_IOIMDL
N_OPEN
N_CLOSE
N_INQUIRE
N_BACKSPACE
N_ENDFILE
N_REWIND

65

78
79
80
81
82
83
84
85
86
87
88
89
g0
91
92
93
94
98
86
97
98
99
100
101
102
103
104

§

N_FORMAT
N_REPEAT

-N_SLASH

N_COLON
N_CALL
N_RETURN
N_EQV
N_NEQV
N_OR
N_AND
N_NOT
N_LT
N_LE
N_EQ
N_NE
N_GT
N_GE
N_PLUS
N_MINUS
N_POS

N_MULTIPLY

N_DIVIDE
N_EXPONT
N_SPAREN
N_CCONST
N_SUBSTR
N_ARELM

66

105
106
107
108
109
110
111
112
113
114
115
iie
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

N_SSSPEC
N_DEFAULT
N_ICONST
N_NAME
N_LCORST
N_RCONST
N_DPCONST
N_FMTFLD
N_HCONST
N_SCONST
N_LABEL
N_LABELREF
N_SUBFMT
N_IOKW
N_FUNREF
N_IMPCHAR
N_STMT_FN
N_UNITID
N_FMTID
N_AMBIGUQUS
N_DCMPLX
N_SCALE
N_INCLEQV
N_INCLDATA
N_INCLCOMM
N_INCLSAVE
N_COMMENT

A.4 Symbol types

15000 - max_nodes

1009 - max_strings

3557,4111,5003

7500 - string_area

20000
1318
8

199

[N

W 0 ~N 0 R W N

pt.ptr_size
max_symbols
symbol_size

nesting_size

S_LABEL
S_COMMON
S_NAME
S_PU
S_VAR
S_PARAM
S_PROC
S_SF
S_ENTRY

symbol_type
symbol_name

symbol_pun

Other values: 1723,2111.,3121,

This must be at least max_nodes

This is like max_strings

This is the width of the symbol table
Depth of DO/IF mnesting stack

Symbol types

Symbol table field names

68

w ~N & 0 b

(£ R

16
32
64
128
256

label_defn

label cf_ref
label _DO_ref
label_io_ref

label_scope

common_defn

name_dtype
name_chrlen

name_status

var_arr_decl

parameter_df

stmt_f£fn_defn

decl_externl
decl_intrins
formal_param
explicit_typ
in_ASSIGN
assigned_to
in_READ_list
in_DATA_stmt

stmt_£fn_para

Symbol table status bits (values)

69

512

]

1024
2048 -

4096
8192

16384 -

32768

65536
125836

B 8
Ny [= [s>) [44] S W [
]]] § §

in_EQUIV
in_COMMON
used_as_arg
std_intrinsic
fun_called
in_expr
sub_called
doloop_index

- use_bits

type_integer
type_real

type_logical
type_complex
type_dblprec
type_char

type_generic
type_routine

type_bd

Names for data types

B.1

10

temp

Appendix B

Sample Program

program GEN
integer P1(20), P2(20)
integer E(20) , 0(20), esize, osize

de 10 i = 1,20

P1(i) = i
P2(i) = i
continue

call even{(P1,i,E,esize)
call odd (P2,i,0,0size)
call prnt(E,0,esize,osize)
stop

end

subroutine even(Pi,m,E,size)
integer Pi(m) , E(m), size
integer temp, templ
j=1
do 20 i = i,m

= P1(i) / 2

71

templ = (P1(i) + 1) /2

if(temp .eq. templ) then

E(j) = P1(i)
j=3+t
endif

20 continue
size = j - 1
return

end

subroutine 0dd(P2,m,0,size)
integer P2(m) , O(m), size
integer temp, templ

jo=1

do 30 i = 1i,m

P2(i) / 2

(P2(i) + 1) /2

temp

templ

if(temp .1t. templ) then

0(j) = P2(i)
j=3j+1
endif

30 continue
size = j - 1
return

end

N

subroutine prant(E,0,esize,osize)

integer esize, osize, E(esize),0(osize)

do 40 1 = 1,esize

print *,E(i)

40

50

continue

do 50 1 = 1,0size
print *,0(i)

continue

return

end

B.2 The Parse Tree

64 272

108 -1 01207 11262630907 11 12 0

108 -2 6 67 0 107 -805602250470

21 4 11 3 12 0 108 -3 10 10 11 0 107 -8 0 9 10 O
2290811021807 12 0 30 3 24 2 63 0

9 0 17 23 24 0 108 -4 16 16 17 0 107 -8 0 15 16 O

22 15 0 14 17 0 21 14 21 13 24 0 108 -5 20 20 21 0O

107 -8 0 19 20 0 22 19 0 18 21 0 21 18 22 17 24 ©

108 -6 23 21 24 0 108 -7 0 22 24 0 30 13 30 12 63 0
116 -8 29 29 30 0 108 -9 27 28 29 0 107 -35 28 26 29 0
107 -8 0 27 29 0 48 26 0 25 30 0 61 25 35 24 63 0

108 -2 32 32 33 0 108 -9 0 31 33 0 104 31 34 34 35 0
108 -2 0 33 35 0 49 33 40 30 63 0 108 -3 37 37 38 0
108 -9 0 36 38 0 104 36 39 39 40 0 108 -9 0 38 40 ©

49 38 42 35 63 0 115 -8 0 41 42 0 62 41 48 40 63 0

108 -10 44 47 48 0 108 -2 45 43 48 0 108 =9 46 44 48 ©
108 -4 47 45 48 0 108 -6 0 46 48 0 82 43 54 42 63 0
108 -11 50 53 54 0 108 -3 51 49 54 0 108 -9 52 50 54 0
108 -5 53 51 54 0 108 -7 0 52 54 0 82 49 60 48 63 0
108 ~-12 56 59 60 0 108 -4 57 55 60 0 108 -5 58 56 60 0
108 -6 58 57 60 0 108 -7 0 58 60 0 82 55 61 54 63 0

63 0 62 60 63 0 6 0 0 61 63 0 2 2 139 272 64 0

1 63 064 64 0 108 -13 67 67 71 0 108 -14 68 70 67 ¢
15 66 0 65 71 0 108 -15 69 66 67 0 108 -16 70 68 67 0

|

[

108 =17 0 69 67 0 16 65 82 138 139 0 9 0 76 81 82 O

108 -14 75 75 76 0 108 -15 0 74 756 0 22 74 0 73 76 O

21 73 80 72 82 0 108 =16 79 79 80 0 108 -15 0 78 79 O

22 78 0 77 80 0 21 77 81 76 82 0 108 -17 0 80 82 0

30 72 86 71 139 0 9 0 84 85 86 0 108 -18 85 83 86 0

108 -19 0 84 86 0 30 83 89 82 139 0 108 -20 88 88 89 O

107 -35 0 87 89 0 49 87 95 86 139 0 116 -21 94 94 95 0

108 -22 92 93 94 0 107 -35 93 91 94 0 108 -15 0 92 84 O

48 91 0 90 95 0 61 90 102 89 139 0 108 -18 101 101 102 O

108 -14 98 98 99 0 108 =22 0 97 99 0 104 97 100 100 101 O

107 =71 0 99 101 0 99 99 0 96 102 0 49 96 112 95 139 O

108 -19 111 111 112 0 108 -14 105 105 106 O 108 =22 O 104 106 O
104 104 107 107 108 0 107 -35 0 106 108 0 95 106 O 108 109 ©
101 108 110 110 111 0 107 -71 0 109 111 0 99 109 0 103 112 0

49 103 116 102 139 0 108 -18 114 114 115 0 108 -19 0 113 115 ©
91 113 0 115 116 0 57 115 123 112 139 0 108 -16 118 118 119 0
108 =20 0 117 119 0 104 117 122 122 123 0 108 =14 121 121 122 0O
108 =22 0 120 122 0 104 120 O 119 123 0 49 119 128 116 139 ©
108 =20 127 127 128 0 108 -20 126 126 127 0 107 =35 0 125 127 ©
95 125 0 124 128 0 49 124 129 123 139 0 60 0 131 128 139 0

115 -21 0 130 131 0 62 130 136 129 139 0 108 -17 135 135 136 0
108 -20 134 134 135 0 107 -35 0 133 135 0 96 133 0 132 136 O

49 132 137 131 1392 0 83 0 138 136 139 0 6 0 0 137 139 O

4 71 214 63 64 0 108 -23 142 142 146 0 108 -24 143 145 142 ©

15 141 0 140 146 0 108 -25 144 141 142 0 108 -26 145 143 142 0
108 -27 0 144 142 0 16 140 157 213 214 0 9 O 151 156 157 ©

108 -24 150 150 151 0 108 -2B8 O 149 180 ¢ 22 148 0 148 151 ¢

76

21 148 155 147 157 0 108 -26 154 154 155 0 108 =25 0 153 154 0
22 153 0 152 155 0 21 152 156 151 157 O 108 =27 O 155 157 O

30 147 161 146 214 0 ¢ O 159 160 161 0 108 -28 160 158 161 0
108 -29 0 159 161 0 30 158 164 157 214 ¢ 108 -30 163 163 164 O
107 -35 0 162 164 0 49 162 170 161 214 0 116 -31 169 169 170 O
108 -32 167 168 169 0 107 -35 168 166 169 0 108 -25 0 167 169 O
48 166 0 165 170 0 61 165 177 164 214 0 108 -28 176 176 177 O
108 -24 173 173 174 0 108 -32 ¢ 172 174 0 104 172 175 175 176 O
107 =71 0 174 176 0 98 174 0 171 177 0 49 171 187 170 214 ©

108 -29 186 186 187 0 108 -24 180 180 181 0 108 -32 0 179 181 0
104 179 182 182 183 0 107 -35 0 181 183 0 95 181 0 183 184 0
101 183 185 185 186 0 107 -71 0 184 186 0 99 184 0 178 187 ©

49 178 191 177 214 0 108 -28 189 189 190 0 108 -29 0 188 190 O
89 188 0 190 191 0 57 190 198 187 214 0 108 -26 193 183 194 0
108 -30 0 192 194 0 104 1982 197 197 198 0 108 -24 196 196 187 0
108 =32 0 195 197 0 104 195 0 194 198 0 49 194 203 191 214 0
108 -30 202 202 203 0 108 -30 201 201 202 0 107 -35 0 200 202 ©
95 200 0 199 203 0 49 199 204 198 214 0 60 0 206 203 214 0

115 =31 0 205 206 0 62 205 211 204 214 0 108 =27 210 210 211 ©
108 -30 209 209 210 0 107 -35 0 208 210 0 S6 208 0 207 211 0

49 207 212 206 214 0 83 0 213 211 214 0 6 0 0 212 214 0

4 146 272 139 64 0 108 -33 217 217 221 0 108 =34 218 220 217 ©
15 216 0 215 221 0 108 -35 219 216 217 0 108 =36 220 218 217 0
108 =37 0 219 217 0 16 215 233 271 272 0 9 0 223 232 233 ¢

108 -36 224 222 233 0 108 -37 228 223 233 0 108 =34 227 227 228
108 -36 0 226 227 0 22 226 0 225 228 0 21 225 232 224 233 0

108 -35 231 231 232 0 108 -37 0 230 231 0 22 230 0 229 232 0

-]

=¥

21 229 0 228 233 0 30 222 237 221 272 0 17 0 0 234 235 ¢

123
116

108

234 236.236 237 0 114 -76 0 235 237 0 67 235 243 233 272 0O
-38 242 242 243 0 108 -39 240 241 242 0 107 =35 241 239 242
-36 0 240 242 0 48 239 0 238 243 0 61 238 249 237 272 0

17 0 O 244 245 0 123 244 248 248 249 0 108 =34 247 247 248 O

108
115
123
116

108

-39 0 246 248 0 104 246 0 245 249 0 67 245 251 243 272 0
-38 0 250 251 0 62 250 255 249 272 0 17 0 0 252 253 0

252 254 254 255 0 114 -96 0 253 255 0 67 253 261 251 272 O
-40 260 260 261 0 108 -39 258 259 260 0 107 -35 259 257 260

-37 0 258 260 0 48 257 0 256 261 0 61 256 267 255 272 0

17 0 O 262 263 0 123 262 266 266 267 0 108 =35 265 265 266 0

108

-39 0 264 266 0 104 264 0 263 267 O 67 263 269 261 272 0

115 -40 0 268 269 0 62 268 270 267 272 0 83 0 271 269 272 O

6 0 0 270 272 0 4 221 0 214 64 O

B.3 The Symbol Table

25 115
GEN’P1°20’P2’E’0’ESIZE’0SIZE’ 10’1’ 1’EVEN’CODD’ PRNT M’ 51ZE"
TEMP’TEMP1’J?27307 ===== EVEN ====- 7407w ODD ====- *50°
40 4 250 0

411 =3 00055110 18472 6 0

ol

i1 11 18472 10 0 5 14 1 1 0 18440 16 O

18440 0 0 1 30 1 42 0 1 0 30

0
0

16 1 1 0 18440 20 0 5 18 1 1 0 18440 0 0O
24 110
0

3311 83968 0 0 7 37 1 -1 0 32768 0 O
42 1 -1 0 32768 0 0 7 46 1 -1 0 32768 0 O
37 210000565210 16396 75 0
51 210 16388 005 14 2 1 0 44 79 0
B3 2 1044 0 0 5 B8 2 1 0 16424 ¢ ©

L4 I ¢ B e B 2 B B ¢

63 2 1 0 16424 0 0 5 69 2 1 0 16416 0 ©

[N

8 2 131 01 09855 33210 81920 00
42 3 -1 00005 11 31 0 16396 150 0
51 3 10 16388 0 0 5 16 3 1 0 44 154 0
53 31044 0 0 558 310 16424 0 0

[0 N ¢ £ T 1 I

63 10 16424 0 0 5 62 3 1 0 16416 0 0

[

73 206 0 1 0 170 5 33 3 1 0 81920 0 O

46 -1 00005 14 4 1 0 16396 227 ©

24

3
3
4
16 4 1 0 16396 231 0 5 18 4 1 0 16396 0 0
4 10 16396 0 0 1 93 4 251 0 1 0 243
4

o o o

33 1081920 0 0 1 112 4 269 0 1 0 261

[y

13 23 33

B.4 Dbload Format

[MOD_INFO]
|11GEN|AVAILABLE|
|2|EVEN|AVAILABLE]
|3]0DD|AVAILABLE|
|4|PRNTI|AVAILABLE|

[MOD_INPU]

1] _NOTHINGIN_AIN_A|
[21P1|INT|READ]
|2|M|INT|READ|
|2|EIINTIWRITE]
|2|SIZE|INT|WRITE|
|3|P2|INT|READ]
[3|MIINTIREAD!
3]0 INT|WRITE]
|3|SIZE|INTIWRITE]
[4|EIINT|READ]
{4101 INTIREAD]|
|4|ESIZE]INT|READ]
|4|0SIZE|INT|READ]|

=

9

[SUCC_LIN]
fii1l1i2]
11211131
111311141
11411151
l1i511iel
11611171
f1i8ltiol
11911110}
111011111}
f111]1]12]
2111212}
21212131
l2131214]
21412151
21512161
121612171
21712181
2181219l
21912110}
211012111}
l211112112]
2113121141
l211412115]
131113121

13121313}
(3131314l
(31413151
131513161
131613171
13{71318]
131813191
1319131101
(3110131111
311113112}
1311313114]
13114131151
41114121
[4121413]
14131414]
[4141415]
4151416l
14171418l
j418l4l9l
41914110}
i4l1114112]
111711141
f114]118l
211212151
(215121131
f218l2111]
(311213151

81

[31513113]
(3181311}
l4161414]
41414171
41101418}
l4l814l11]

[VAR_INFO]
|115|P1IWRITE|INT|
[115]IIWRITE|INT]
1151 I|{READ|INT|
1116 |P2|WRITE|INT]
116 TIWRITE|INT!
[116|I|READ|INTI
[214|JIWRITE|INT|
216 | TEMP |WRITE|INT|
|216|P1|READ|INT|
216 | IIREAD|INT]
217 | TEMP1 |WRITE| INT|
1217 |P1|READ|INT|
21 7II|READ|INTI
219 1EIWRITE|INT]
12191 JIWRITE|INT|
219 1P1|READ|INTI
[2191I|READ|INT]
121101 JIWRITE|INT]
12110 JIREAD]INT]

{2113 |SIZE|WRITE|INT]
{21131 JIREAD|INT]
{3141 JIWRITE|INT]|
1316 | TEMP |WRITE|INT]
1316 |P2|READ|INT
1316 I|READ|INT]

|317 | TEMP1 |WRITE|INT|
317 |P2|READ|INT]|
317/ IIREAD|INTI
[319I0|WRITE|INT|
13191 JIWRITE|INT]|
319 |P2|READ|INT
3191 I|READ|INT]
131101 JIWRITE|INT]
31101 JIREAD|INTI
13113 |SIZE|WRITE| INT|
13113] J|READ|INT]

[cOM_BLOK]

[LINE_DES]
|1]1|N_PROGRAMI
112 |N_TYPE|
[113|N_TYPE|
l114]8_DO}
[1]5|N_ASGN|
116IN_ASGN]

83

[1]7IN_CONTINUE|
[118|N_CALL|
[119|N_CALL|
[1]10|N_CALL|
[1]111|N_STOP]
[1]112|N_END|

211 |N_SUBROUTINE|
[2]12|N_TYPE]
|213|N_TYPE|

214 |N_ASGN|
12151N_DO|

{216 |N_ASGN|

217 |N_ASGN|
|218|N_BLOCKIF|
1219 1N_ASGN]
[2110|N_ASGN]
|2]11|N_ENDIF|
[2112|N_CONTINUE|
[2]13|N_ASGN|
2114 |N_RETURN]|
|2]15|N_END|

311 |N_SUBROUTINE|
I312|N_TYPE]
[313|N_TYPE]
|314|N_ASGHN]|
31518_DO}

13161 N_ASGHN|

84

|37 |N_ASGN|
|318|N_BLOCKIF|
3191 N_ASGN|
[3]10|N_ASGN|
|3/11|N_ENDIF|
|3112|N_CONTINUE]
3113 |N_ASGN]
3|14 N_RETURN]|
[3115|N_END]|
|4]1|N_SUBROUTINE]
1412 |N_TYPE]
|413|N_PRINT]|
l41418_DO]
{4]5|N_PRINT|
/416 |N_CONTINUE]
1417 |N_PRINT|
l4181N_DO}

419 |N_PRINT]
4110 |N_CONTINUE|
[411|N_RETURN|
[4]12|N_END|

[CAL_INFO]
f11812]11P1}
f118121211}
l11812131E]
1181214|ESIZE|

[11913111P2]
1191312111
f119131310l
1191314 |0SIZE|
111101411|E]
[1]1014l2101
111101413 |ESIZE|
f11101414]0SIZE]

[DO_LOOPS]
(11417111
21511211}
315112111
1414l611}
14181101I1

86

[ALL 83]

[BRO 85]

[BRO 86]

[CHA 76]

[COD 70]

[COH 84]

[HECHT]

[ILES]

BIBLIOGRAPHY

Allen, J.R., Kennedy, K., Porterfield, C., and Warren, J. :
A Conversion of Control Dependencies to Data Dependence ,
Proc 10th Annual ACM Symp on Princ of Prog Lang , pp
177-189, Jan 1983.

Browne, J.C.: Formulation and Programmang of Parallel Com-

putations : A Unified Approach ,pp.624-631, ICPP (1985).

Browne, J.C. : Hierarchical Dependency Graphs for Foriran
Programs , unpublished report.

Chamberlin, D.D., Astrahan, M.M., Eswaran, K.P., Griffith,
P.P., Lorie, R.A., Mehl, JJW., Reisner, P., and Wade, B.W. :
SEQUEL 2 : A unified approach to Data Definition, Manipu-
lation, and Control , IBM Journal of Research and Develope-
ment; Volume 20,November 6,1976, pp. 560-575.

Codd, E.F., A Relational Model of data for large shared data
banks , Commun, ACM13,6 (June), 377-387.

Toolpack/1 Target Fortran 77; Toolpack/1 , Version: 2.1, NAG
Publication: NP1313.

HECHT, MATTHEW S. : Flow Analysis for Computer Pro-

grams , Text Book.

ILES R; ISTLX User Guide , Toolpack/1, Version: 2.1, NAG
Publication(1984) : NP1289.

87

[ISTYP]

[JOH 78]

[KUC 77]

[SRI 88]

[SUN]

38

Cohen, M., ISTYP User Guide , NAG Publication(1984) : N-
P1300.

Yacc: Yet Another Compiler-Compiler , UNIX(TM) PROGR-
AMMER’S MANUAL, Seventh Edition Volume 2B, 1978 ; Bell

Telephone Laboratories, Incorporated, New Jersey.

Kuck, D.I. : A Survey of Parallel Machine Organization and

Programming , Computing Surveys 9, pp 29-60 (1977).

Sriram, R. : A Facility for the Display and Manipulation of
Dependency Graphs , ML.S. Thesis, Dept. of Elec. Engg., UT
Austin, (May 1988).

SunUnify Reference Manual.

VITA

Sivagnanam Ramasundaram Easwar was born in Madras, India on
April 24th 1962. He finished his Matriculation from Don Bosco Matric School,
Madras, in 1978. He received his B.E degree in Electronics and Communi-
cation Engineering from the University of Madras, India in June 1984. He
has been in the Graduate School at the University of Texas at Austin since
January 1985. He expects to obtain his Master of Science degree in Electrical
and Computer Engineering in May 1988.

Permanent address: B-6
Anna Nagar
Madras, India 600102

This thesis was typeset’ with IATEX by Ruma Easwar and the author.

1ETEX document preparation system was developed by Leslie Lamport as a special version
of Donald Knuth’s TgX program for computer typesetting. TgX is a trademark of the
American Mathematical Society. The IWTpX macro package for The University of Texas at
Austin thesis format was written by Khe-Sing The.

	tr88001-36
	tr88001-37

