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Abstract

This paper presents the implementation of an AND-parallel execution model
of logic programs on a shared-memory multiprocessor. The major features of the
implementation are (i) dependency analysis between literals of a clause 1s done dy-
namically without incurring excessive run-time overhead; (ii) backtracking is done
intelligently at the clause level without incurring any extra cost for the determination
of the backtrack literal; (iii) the implementation is based upon the Warren Abstract
Machine (WAM), hence retains most of the efficiency of the WAM for sequential seg-
ments of logic programs. Performance results on Sequent Balance 21000 show that
our parallel implementation can achieve reasonable speedup on dozens of processors.
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1 Introduction

Many different kinds of parallelism are present in logic programs[9]. AND-parallelism refers to
executing more than one literal of a clause at the same time. Exploiting AND-parallelism is hard
due to the possibilities of binding conflicts and backtracking. Among the schemes developed so
far, some [34,5,37] abandon the backtracking feature of logic programming, and thus change the
semantics (by excluding “don’t know nondeterminism”). The scheme described in this paper is
meant for logic programs with “don’t know nondeterminism”, and handles binding conflicts by
detecting the dependency relations among literals.

A number of solutions have been proposed to determine the dependency between literals of a
clause. The early solution proposed by Conery and Kibler [8] uses an ordering algorithm to deter-
mine dependencies at run time, but incurs substantial overhead. In response, other schemes were
proposed by Chang, et al. [4] and DeGroot [11]. These schemes sacrifice the degree of parallelism to
reduce the run-time overhead. In [28,31], we presented an execution model that uses tokens asso-
ciated with shared variables to do the dependency analysis dynamically. In [28,31] we also showed
that this model provides roughly the same degree of parallelism as Conery’s Model, and provides
more parallelism than the schemes of Chang, et al. [4] and DeGroot [11]. Our model also performs
more accurate intelligent backtracking than the ones presented in [3,20]. This paper presents an
implementation of (a slightly simplified version of) this execution model on Sequent Balance 21000,
a shared-memory multiprocessor. The implementation is based upon the Warren Abstract Machine
(WAM), hence it retains most of the efficiency of the WAM for sequential segments of programs. In
this implementation, tokens are efficiently represented in terms of bit vectors. Since the information
needed for intelligent backtracking is already maintained to perform dependency analysis, no extra
overhead is incurred in the determination of the backtrack literal. Experimental results on Sequent
Balance 21000 show that our parallel implementation can achieve reasonable speedup on dozens of
PTOCessors.

Hermenegildo[17,18,20,19] proposed a WAM-based implementation of an extension of the exe-
cution model developed by DeGroot[11]. Borgwardt[1,2] proposed a stack-based implementation of
the execution model developed by Chang, et al.[4]. To the best of our knowledge, our implementa-
tion is the first actual WAM-based implementation of an AND-parallel execution model on a parallel
hardware. Other AND-parallel implementations are either process-based (e. g., PRISM[25]) or for
committed choice languages (e. g., GHC[22], PARLOGJ27] and Flat Concurrent PROLOGI35]).

2 The Execution Model

Our execution model consists of the following two algorithms: a forward ezecution algorithm which
detects executable literals dynamically; and a backward ezecution algorithm which is executed
when some literal fails. A detailed description of these two algorithms appears in [31]. Preliminary
versions of forward execution and backward execution appear in [29] and [28], respectively.

Conceptually, our forward execution algorithm can be viewed as a token passing scheme. A



token is created for each variables that appears during the execution of each clause. Each newly
created token (for a new variable V) is given to the leftmost (at the clause level) literal P which has
V in its binding environment. A literal P is selected as the generator of V when it holds the token
for V. A literal becomes executable when it receives tokens for all the uninstantiated variables in
its current binding environment. Parallelism is exploited automatically when there are more than
one executable literal in a clause.

Our backward execution algorithm performs intelligent backtracking at the clause level. Each
literal P; dynamically maintains a list of literals denoted as B-list(F;). B-list(P;) consists of those
literals in the clause which may be able to cure the failure of P; (if P; fails) by producing new
solutions. The literals P in each B-list are sorted according to the descending order of k. When a
literal P; starts execution, B-list(F;) consists of those literals that have contributed to the bindings
of the variables in the arguments of P;. When P; fails, P; = head(B-list(P;)) is selected as the
backtrack literal. The tail of B-list(F;) is also passed to P; and merged into B-list(P;) so that if P;
is unable to cure the failure of P;, backtracking may be done to other literals in B-list( 7).

After a backtrack literal P; is chosen, we need to find an appropriate choicepoint in the proof
tree rooted at P;, and rollback the computation so that no invalid information is used in further

execution. The rollback can be done in many different ways, which are discussed later in Section 4.

3 Implementing the Forward Execution Algorithm

A straightforward implementation of tokens in the WAM would require constructing linked lists
to keep track of unbound variables in the binding environment of each literal. It will also require
much dereferencing to check the variable bindings in order to update the lists of unbound variables.
Moreover, after a failure has occurred, the rollback of computation will have to reconstruct the token
lists (in addition to rewinding trail). All these together can easily ruin the efficiency of memory
management in the WAM and impose substantial overhead. Since our objective is to detect the
executable literals dynamically and yet efficiently, we have implemented a slightly modified version
of the token passing scheme using bit vectors.

In the following discussion, a nonground binding is a term which contains some unbound
variables, and a ground binding is a term without any unbound variable. Bindings of two variables
X and Y are nonground dependent if they share an unbound variable; otherwise they are

nonground independent.

3.1 The Bit-Vector Implementation

Let P; denote the ¢-th literal (counting from left to right) in the clause body. We associate a bit
vector with each shared variable V of a clause C. The length of the vector is equal to the number of
literals in the clause body. The i-th bit (counting from the most significant bit) of each bit vector

is 1 if P; could contribute (or have contributed) binding to the current binding of V.! For example,

n our implementation, we use a 32-bit word to represent every bit vector so that any clause body can consist of

up to 32 literals. If a clause has more than 32 literals, then we break the clause into more than one clause each of



consider the following clause.
pG(X:Y) - pl(X7Y>’ pQ(X)v pS(Y)

Suppose after the unification of Py, X and Y are nonground and independent. Before the execution
of the clause body begins, the bit vector of X is 110, which means that pl and p2 can contribute to
the binding of X; whereas the bit vector of Y is 101, which means that pl and p3 can contribute to
the binding of Y. A literal P; is executable if for every shared variable V of F;, there is no unsolved
literal P; (j < i) such that the j-th bit in the bit vector of V is 1. Clearly, if P; is executable, then
it is the generator of all the uninstantiated variables in its binding environment.

How do we check if a literal P; is executable based on the bit vectors? For each literal 7,
we maintain a bit-vector mask which has 1 from bit 1 to bit ¢ — 1 and 0 everywhere else. For
example, in the above clause, the bit-vector masks of pl, p2, p3 are 000, 100, 110, respectively.
For each clause, we maintain a finish vector such that its j-th bit represents the execution status
of P; (0 means that the execution of F; has succeeded). For example, just after the unification
of p0, the finish vector of the above clause is 111. The executability of P; can be determined by
computing READY(V,P;) for each shared variable V of P; as follows:

Step 1. DD(V,P;) « (bit vector of V) A (bit-vector mask of F;)
Step 2. READY(V,P) « DD(V,P;) A (finish vector)

If READY(V,F;) # 0, then there is an unsolved literal P; such that j < 4, and the j-th bit of the
bit vector V is 1. If READY(V,F;) is 0 for every shared variable V of P;, then P; can be executed.
In the above example, after the unification of p0, both READY(X,p2) and READY(Y,p3) are
nonzero. Hence p2(X) and p3(Y) have to wait until p1(X,Y) has finished execution.

Clearly, related bit vectors need to be updated at the end of the execution of each literal to
reflect the change of binding conditions. If a variable V is bound to a ground term after the
execution of a literal P;, then all the bits corresponding to P; (j > ¢) in the bit vector of V are
set to 0 (since P; cannot contribute anything to a ground term). If two variables X and Y become
dependent, then both bit vectors of X and Y are updated to be the logical OR of the original bit
vector of X and that of Y. In the above example, if p1{X,Y) binds X and Y to ground terms, then
after the execution of p1(X,Y) the bit vectors of both X and Y are modified to 100 (and hence both
p2(X) and p3(Y) become executable). On the other hand, if p1(X,Y) makes X and Y nonground
dependent, then the bit vectors of X and Y are updated to 111. In this case, only p2(X) becomes
executable, and p3(Y) has to wait. Table 1 lists some possible situations and the corresponding bit
vector changes. Symbols a; and b; can be either 0 or 1.

Note that we don’t have to compute the bit vectors of different variables from scratch each
time a clause is invoked (due to the unification of the head literal with a parent goal). At compile
time, we compute bit vectors for each shared variable assuming that all variables in the head are
nonground and independent. When the head literal is unified with the parent goal, the bit vectors

of the variables in the head are modified according to Table 1.

which has less than 32 literals in its body.



Variable Binding Condition Bit Vector Before Update | Bit Vector After Update

X ground a1 090304 ayas00
X nonground independent 1090304 @y 090304
X nonground dependent 1090304 aiaqazas V b1bobshy
Y nonground dependent b1bobsbs a1agazas V bybobshy

Table 1 The rules for updating bit vectors after the execution of P; (assuming the length of

vectors is 4, and i = 2).

The most important advantage of this bit vector implementation is that the checking (of whether
a literal is the generator of a shared variable) is simple (two bitwise AND operations, to be exact).
Moreover, since at any given time the bit vector of V can be changed only by one processor (the
one that just finished the execution of the generator of V), it is not necessary to lock these vectors
before changing them. Also, the executability of different literals can be checked simultaneously by
different processors without having to lock the vectors.

Compared with the token passing scheme, the date-dependency information in the bit vector

approach is less precise in some cases. For example, consider the following clause.
p0(X,Y) - pL(X,Y), p2(X), p3(Y), p4(X).

Suppose after the execution of pl, X is bound to f(R,W) and Y is bound to g(W,Q). Since these
two bindings share a variable W, the bit vector of X and Y are updated to 1111. At this time
only p2(X) can start executing. Assume that the execution of p2 binds W to a ground term ¢, and
leaves R unbound (i.e., the binding of X becomes f(R,c)). Since the binding of X is still nonground,
p2 does not change the bit vector of X. Now, even though X and Y are independent, the execution
of p4 is still suspended. This happens because, in the bit vector implementation, the binding
situations of the variables that are not originally in the clause (W, R and Q in this example) is
not checked. This example shows that the bit vector implementation can be more conservative in
detecting executable literals than the original token passing scheme. However, in many cases, this

lost parallelism can be recovered using the technique described in [30].

3.2 Incorporating Information from the Programmer

It is worth pointing out that our execution model (and its bit-vector implementation) does not
require program annotation. All the information needed by this scheme (such as the position of
a literal in the clause, the appearance of a variable on a literal, etc.) are syntactic and can be
accumulated easily during compile time. However, independence and ground checkings of variables
at the end of the execution of literals could still be expensive. It is easy to incorporate the informa-
tion provided by the user or by compile time analysis to reduce these checks and hence reduce the
overhead. For example, if a ground binding is always imported to a shared variable X in a clause
during the head unification, then no checking is necessary for any literal that accesses X. Also, if

two variables are known not to become dependent any time, the independence checking between

It



these two variables can be omitted. Programmer can also mark those clauses that are known to
result in sequential execution. We do not have to create parallel goals for such clauses. See [30] for

more details.

3.3 Accumulating B-lists for Intelligent Backtracking

Recall from Section 3.1 that two masking steps are needed to check if a literal has the authority
to generate bindings for a variable. If, for a literal P, the checking of a variable V succeeds in two
steps, then the result of the first masking step, DD(V,P), actually represents the data dependency
of P due to the variable V;i.e., P depends on every literal P; such that j-th bit in DD(V,P) is 1.
Clearly, the logical OR of DD(V,P) for each variable V in P gives us the initial B-list (represented
as a bit vector) of P (if j-th bit of this vector is 1, then P; € B-list(P)). The least significant 1 bit
of a B-list vector represents the head of that B-list. The literals in B-list are automatically sorted,
and two B-lists can be merged by a simple logical OR operation. This makes the implementation
of clause-level backtracking presented in [29] very fast.

Consider the following clause:
pO(X7Y>Z) - pl(X)a pQ(Y), p3(YaZ)7 p4(X>Y7Z)

The bit-vector mask of p4(X,Y,Z)is 1110. Suppose that p0(X,Y,Z) is unified with pO(A,B,c). After
the unification, the bit vector for X is 1001, for Y is 0111, and for Z is 0000. When both p1(X)
and p2(Y) succeed and generate ground bindings, the bit vector for X is updated to 1000, and that
of Y is updated to 0100. The finish vector becomes 0011. Since READY(X,p4), READY(Y,p4)
and READY(Z,p4) are all 0, p4(X,Y,Z) becomes executable. At this moment DD(X,p4) = 1000,
DD(Y,p4) = 0100, and DD(Z,p4) = 0000. Therefore the B-list vector of p4 is 1100, which means
that p4(X,Y,Z) depends on only p1(X) and p2(Y), but not on p3(Y,Z) for this particular case. If
p4(X,Y,Z) fails, then p2(Y) is chosen as the backtracking literal, and the remaining B-list vector
(1000) is merged into the B-list vector of p2(Y) (= 0000); i.e., the new B-list vector of p2(Y)
becomes 1000 (= 0000 v 1000). Should p2(Y) fail later, p1(X) is chosen as the backtracking literal.

Note that when backtracking happens, these bit vectors need to be unwound to the value just
before the execution of the backtracking literal. We use an extra bit-vector trail stack to keep the

address and value of any bit vector that gets changed after the execution of a literal.

4 The Rollback of Computation

Once a literal fails and a backtrack literal P; is chosen, the following two questions arise in any
possible implementation;

e Which part of computation should be discarded?

o How to make sure that the job of discarding computation is carried out properly?
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Figure 1 A proof tree

4.1 Which part of computation should be discarded?

Figure 1 represents a proof tree for a set of clauses given therein, where each goal is numbered
according to the depth-first, left-to-right order. Suppose the execution of e failed and we choose
q as the backtrack point. The simplest strategy is to discard every goal which is to the right of
q (i.e., every goal whose number is greater than 5) — a proof tree level discarding strategy.
However, if b and ¢ can be executed independently, then we know that redoing g should not have
any effect on the execution of ¢, g, and h. Therefore we can limit the discarding domain within the
scope of b. Inside this discarding domain, we can do it conservatively by discarding all those goals
in the scope of b whose number is greater than 5 — a conservative clause level discarding; or
do it selectively by discarding only those goals which can ‘possibly’ be affected by the redoing of g
— a selective clause level discarding.

The choice of the discarding strategy also determines what goals can be stacked on top of
others. A goal G; should be stacked on top of GG; only if backtracking to G; requires discarding G.
Thus a processor has to follow a steal rule to determine if, after finishing a sequential segment?
of execution, it can take some goal from the goal list of any processor in the system (including
that of itself). The importance of steal rule was independently recognized by Borgwardt [1,2]
and Hermenegildo [17,19]. Hermenegildo also presented a detailed discussion of the problems (the
trapped goal problem and the garbage slot problem) that may be encountered if a proper steal rule
is not followed [19]. Of the three discarding strategies, the proof tree level strategy is identical to
that presented in [19], whereas the selective clause level strategy is similar to that presented in [2].

In our implementation, we choose to perform conservative clause level discarding based upon

the trade-off between saving repeated work and limiting the ability of picking up available goals. To

2 As defined in [2], 2 sequential segment refers to a sequence of goals which a processor would have executed

in sequential implementation without a break.



avoid the trapped goal problem and the garbage slot problem, we restrict our steal rule as follows:

Suppose after the execution of a sequential segment, the last recorded goal at a
processor CPU,, is G;. CPU,, can take a goal G; from any processor (including itself
if its goal list is not empty) if

1. G; is a right sibling of G; or a descendant of any of those siblings; or

2. all the siblings of G; have been solved successfully and G is a right sibling (or a
descendant of any of those siblings) of the parent goal of G;.

The second criterion can be recursively applied to the ancestor of G;. Any such G; is
then called an available goal for C PU,, at this time.

How restrictive this steal rule will be is another issue yet to be investigated. However, in our
implementation, we can have more stacks than processors. Hence, if a processor is unable to pick

up any goal due to this steal rule, then it may be able to start execution with a different stack.

4.2 The Labeling Scheme

In a sequential implementation, the depth-first, left-to-right ordering of goals in the proof tree is
implicitly maintained by the physical address of each goal in the stacks. This makes the comparison
of ordering between goals very efficient (i. e., just a simple address comparison). In a distributed
stack implementation, since goals can be located in different stacks, physical addresses no longer
reflect the ordering of goals. In order to enforce the steal rule mentioned in the previous section, we
need to associate with each parallel goal (i. e., the literal in the body of a parallel clause®) a label.
Since the proof tree is not complete until the execution terminates, we need an algorithm which
can (based upon the chosen ordering criteria) always generate a “greater” value dynamically for a
parallel goal appearing later in the ordering. One such algorithm is given in [30]. Hermenegildo
presented another algorithm in [19]. Either algorithm is applicable to any implementation which
requires dynamic labeling to determine the ordering between different goals. Note that if a program
is deterministic, then all the parallel goals can be given identical labels. This means that any

processor can execute any available goal.

4.3 How to discard the computation properly?

Once we have decided which part of computation should be discarded, we need to perform the
rollback carefully. In the sequential implementation there is no fear of accessing invalid bindings,
as (after deep backtracking has occurred) the forward execution does not resume until the rollback
of computation is completed. In a parallel implementation also, if the computation affected by the
backtracking resides only in one processor, then the rollback can be done just as it is done in a
sequential execution. However, if the computation affected by backtracking has spread to several

processors, then the rollback of computation would require the coordination of several processors.

3 A parallel clause is a clause for which AND-parallel execution would be exploited.



To preserve the correctness of execution, a processor should resume forward execution only if it
knows either that the rollback is completed or that any information that is created or accessed by
this processor will not be canceled by the rollback of other processors (unless a new failure occurs).

One way of implementing the rollback is to send messages to the relevant processors to inform
them that certain failure has occurred, and that they may have to clean up certain goals from
their stacks. Note that many failures can happen at the same time. Therefore it is possible for
one failure to be wiped out (before being processed completely) due to another failure. When a
processor Teceives a message due to a failure, it has to know whether or not the failure has been
wiped out by some other failure. This requires the use of time-stamps (discussed in [31]) which can
be quite expensive to implement.

Another possibility is to just handle only one failure at a time, and start processing a new
failure only after the previous one has been fully processed. This requires global synchronization
among all the processors, which can be expensive if the number of processors is very large. Since
our implementation is meant for a tightly coupled multiprocessor with a small number (dozens) of

processors, we have chosen to implement the second alternative.

5 Implementation on Sequent Balance and Performance Results

5.1 The Overview

The APEX (AND-Parallel EXecution) is the implementation of our scheme on the Sequent Balance
21000 multiprocessor. This implementation, written in C, executes byte-code representation of the
APEX instructions?. Before the execution begins, we specify the number of processors (p) and the
number of DATA portions® (s), s > p, to be used in a particular run. We also specify the size of
memory (m) for each DATA portion. Since the virtual space on Sequent Balance is only 16 Mbytes,
m X s must be less than 16 Mbytes.

Associated with each DATA portion, there is a goal list for storing goals that can be picked up
by any processor in the system. Each processor is first assigned a unique DATA portion to work
with, and the remaining DATA portions (if s > p) are maintained in a spare list. Any time during
the execution, there is a one-to-one mapping between the processors and the DATA portions which
are not in the spare list. If a processor is unable to execute available goals on its current DATA
portion, it exchanges its DATA portion with some other portion in the spare list®.

One processor is selected to start the execution. Other processors become idle and look for
available goals (using the steal rule stated in Section 4.1) from the goal list of any DATA portion
in the system, including that of DATA portions in the spare list. When an idle processor succeeds

¢ The APEX instruction set is an extension of the WAM instruction set. The details regarding extended

instructions are given in [30].

5  Fach DATA portion is a collection of heap, local stack, trail, goal list, etc.
8 Another possible arrangement is to have a fixed number of DATA portions per processor. A processor can
work only on its DATA portions, switching between them as necessary. This scheme {(similar to the one presented by

Hermenegildo in [17]) requires too many DATA portions, and does not use memory as effectively as the other scheme.



in stealing some goal, it starts execution. Any time when a processor encounters the execution of a
parallel clause, it creates a special “ clause frame” on its local stack, and then adds a “job frame” in
the goal list of its DATA portion for every literal in the clause body (except the leftmost literal). It
then continues its execution on the leftmost literal of that clause. After a processor P has finished
executing some parallel goal, it tries to find an available” goal in the goal list of its own DATA
portion. If an available goal is not present in its own DATA portion, then it starts polling the goal
list of other DATA portions. If the polling is successful, then P starts executing the stolen goal.
Otherwise, after polling for a certain amount of time, P exchanges its DATA portion with some
portion in the spare list and resumes polling based upon the status of the new DATA portion. This
steal-by-demand strategy releases the burden of a busy processor for distributing goals to other
Processors.

Note that precise checking of the type of a term, or checking the dependency between two terms
can be expensive if the terms are large structures. To minimize the overhead, we have implemented
a simple (but approximate) method proposed by DeGroot [11]. In this method all the ground
terms appearing in the original program (including ground structures and ground lists) are tagged
as constants so that checking the type of any such term at run time is very fast. Type-checking for
other structures and lists is done conservatively (i.e., the arguments are checked only in the first
level). Two nonground terms are considered dependent if any of them is a list or structure; or they
are variables with the same address.

The implementation has been tested on many programs. Each Horn-clause program is first
compiled into a WAM-code program using a modified version® of the Berkeley PLM compiler [38].
The APEX-code program is then constructed by adding our extended instructions for parallel ex-
ecution to the WAM-code program®. Both the WAM-code and the APEX-code programs are then
transformed into the byte-code representations to be executed by our implementation. The byte-
code representation of the WAM-code program is run on one processor and one DATA portion to
obtain the STIME shown in Table 2. This figure does not include any overhead due to parallel
execution, and truly reflects the sequential execution time of the program. The byte-code represen-
tation of the APEX-code program is run on p processors and s DATA portions for different values
of p and s. The timings for different programs is given in Table 2. In this table, PTIME(?) refers to
the execution time of running the APEX-code program on i processors and ¢ DATA portions. To
compare the sequential speed with other implementations, we also list the time needed by Quintus
PROLOG and SBProlog respectively to execute the same Horn-clause logic programs (in compiled
mode) on SUN-3/50. Since SUN-3/50 is roughly three times faster than Sequent Balance, clearly
the sequential execution of the APEX is competitive with SBProlog.

Among the programs tested, HANOI generates solution steps for a 15-disk ‘Towers of Hanot’

7 See Section 4.1 for definition.

& The main difference is that our version does not include cdr-coding. As stated in [36], in the absence of hardware
support, cdr-coding does not result in an efficient implementation.

% Actually, 2 compiler can be developed that could generate the APEX-code programs for parallel execution
directly from the Horn-clause programs.
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HANOI MATRIX QSORT TAK CDESIGN IBTAK

Quintus* 7.92 11.60 2.95  1.64 0.85 8.10
SBProlog* 32.86 97.82 — 970 2.72 59.16
STIME! 115.65 237.84 6.17 19.40 555  114.73
PTIME(1)! 116.93 242.41 6.90 25.68 1.60  152.53
PTIME(2) 58.56 122.50 3.89 13.08 1.29 76.88
PTIME(3)! 39.19 83.29 3.17  8.86 1.30  38.64
PTIME(4) 29.46 62.97 254  6.70 1.31 30.62
PTIME(5)! 23.72 50.91 2.38  5.44 .32 26.09
PTIME(6)! 19.74 42.73 223  4.58 1.33 2100
PTIME(7)! 17.06 37.15 213 4.11 1.10 15.54
PTIME(8)! 14.89 32.84 1.98 364 1.37 16.31
PTIME(9)! 13.33 29.60 1.93  3.31 1.16 15.73
PTIME(10)f 12.10 26.92 1.91  3.02 1.41 12.60
PTIME(11) 11.01 24.71 1.87  2.96 1.44 12.45
PTIME(12) 10.19 22.91 1.84 270 1.42 11.75
PTIME(13)! 9.43 21.38
PTIME(14)1 8.81 20.10
PTIME(15) 8.31 18.91
PTIME(16)! 7.82 17.98
PTIME(17)! 7.36 17.21
PTIME(18)! 7.05 16.24
PTIME(19)! 6.68 15.65
PTIME(20)! 6.47 14.97

* (on SUN 3/50 — 1.5 MIPS)
! (on Sequent Balance 21000 ~ 0.5 MIPS)

Table 2 Performance Results on Sequent Balance 21000 (all the numbers are in seconds)
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problem; MATRIX, given in [6], multiplies two 50 x 50 matrices; QSORT, taken from [15], ex-
ecutes ‘quicksort’ to sort a list of 511 numbers; TAK is a program for computing the function
‘takeuchi(15,10,5)*% CDESIGN is the circuit design program given in [15,26]. IBTAK is a pro-
gram (built on top of the Takeuchi function) which could take advantages of both AND-parallel
execution and intelligent backtracking. The listings of HANOI, TAK and IBTAK are given in
Appendix A. In each program, parallelism is exploited only on selected clauses. For the first four
programs (HANOI, MATRIX, QSORT and TAK), we also make use of the fact that they are all

deterministic programs and hence generate the same label for all the parallel goals (See Section 4.2).

5.2 'The Overheads

The overheads due to parallel execution in the APEX can be categorized into five groups.

1. The overhead due to the creation of new data objects such as clause and job frames.
2. The overhead due to updating information in those new data objects.

3. The overhead due to manipulating bit vectors. This consists of (i) checking bit vectors to
decide if a goal is executable, and (ii) updating bit vectors to reflect the change in binding
conditions after a goal has finished execution.

4. The overhead of polling DATA portions to steal goals.

5. The overhead due to backward execution coordination. This consists of the synchronization
overhead, the reset_cancel overhead and the clean.up overhead.

For deterministic programs, the difference between PTIME(1) and STIME is only due to the
first three kinds of overhead. Note that the sum of the first two kinds of overheads is usually
proportional to the number of frames created for parallel execution. Since we know the number of
frames created for the first three programs in Table 2, we are able to estimate that creating and
manipulating each frame costs around 0.3 ms overhead. Clearly, for good performance, the parallel
activities should have granularity larger than 0.3 ms.

It is very hard to estimate the other three kinds of overheads, as they are dependent on run-
time situation. The overhead of manipulating bit vectors varies from one program to another. But
in many cases it can be minimized by a compile-time analysis (see Section 3.2). In the first five
benchmark programs, this overhead is minimal because of such analysis. The overhead of polling
increases with the number of processors and the number of DATA portions. The relationship
between the backward-execution-coordination overhead and the number of processors p is not so
clear-cut. When p goes up, the synchronization overhead goes up, the reset_cancel overhead remains
roughly the same, and the clean_up overhead may even go down depending on how well the work
of clean_up is distributed.

10 Takeuchi function is a simple benchmark that Tkuo Takeuchi of Japan used for Lisp.
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5.3 The Benchmarks

In this section we analyze the performance of the APEX on each benchmark. For deterministic
programs, the APEX can only speed up the execution by executing independent literals in parallel.
For nondeterministic programs, both AND-parallel execution and intelligent backtracking mecha-
nisms of the APEX can potentially reduce the execution time, which can even result in superlinear

speedups.

5.3.1 Deterministic Programs

“Towers of Hanoi’ is a typical divide-and-conquer problem. It is suitable for AND-parallel execution,
as its execution tree is well balanced. However, the parallel activities will be too fine-grain if the
granularity is not controlled. To avoid creating activities of small granularity, HANOI is coded in
such a way that the execution becomes sequential when problem size!! drops below 7. The solution
steps are accumulated in a tree structure and are printed at the end of computation. The timing
shown in Table 2 does not include printing time. Clearly, the APEX is able to achieve almost linear
speedup on HANOI for twenty processors.

Although logic programming is not particularly suited for numerical computation, we choose
‘matriz multiplication’ as a benchmark simply because that it has been used by many other re-
searchers [7,17]. MATRIX contains a long sequential segment in the beginning of the computation
(for constructing a 50 x 50 matrix and transposing a copy of it). When the number of processors
increases, so does the influence of the sequential segment over the overall performance. Although
the execution tree skews to the right, it does not have large impact on the speedup. On twenty
processors, the APEX can achieve a speedup of 16.

‘Quicksort’ is another divide-and-conquer problem. It differs from the ‘Towers of Hano?’ prob-
lem in the sense that it needs a long computation (which has O(n) complexity, where n is the length
of the list to be sorted) to split the problem into two subproblems. Since the total computation is
O(nlogn), the speedup can be no more than O(logn). Moreover, the splitting may result in an
unbalanced execution tree. For these reasons we do not expect the APEX (or any other parallel
implementation) to achieve good speedup on this problem. On the 511-element list (which was
chosen to avoid the effect of unbalanced tree), the APEX is able to get roughly three times speedup
on eight processors. In this case, no effort was made to avoid creating small granularity tasks.

The execution tree of ‘takeuchi’ benchmark is somewhat different from the other three bench-
marks discussed above. After the ‘takeuchi’ procedure is called at the top level, the number of
parallel activities grows rapidly, and then shrinks to zero at one point before the same procedure
is called recursively with different arguments. This means that processors could spend more time
idling. This explains the poor performance of TAK on large number of processors.

Note that all the APEX-code programs of the benchmarks discussed so far have been optimized
for deterministic computation. As discussed in Section 4.2, all the parallel literals created will have

the same label. Hence parallelism is not restricted by the steal rule at all. To show how the steal

11 The problem size is given by the number of disks to move.
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I 11 111
PTIME(1) 25.68 2457 —
PTIME(2) 13.08 1441 1297

PTIME(3) 886 948 921
PTIME(4) 670 893 750
PTIME(5) 544 892  6.63
PTIME(6) 458 791 5.69
PTIME(7) 411 732 6.09
PTIME(8) 364 688 555
PTIME(9) 331 592 536

PTIME(10)  3.02 548  4.69
PTIME(11) 296 520 5.1
PTIME(12) 270 449 461

Table 3 The Effect of Code Optimization and Spare DATA Portions on Deterministic Programs

rule can affect the performance, we executed the same ‘takeuchi’ program without optimizing the
compiled code. In Table 3, column I is the execution time of running ‘takeuchi’ program with
determinism optimization, whereas column II is the result of running the same program without
such optimization. It is not surprising to see that the performance becomes worse. Also, adding
an extra processor is not guaranteed to improve the performance (e. g., compare the values of
PTIME(4) and PTIME(5) in column II). Clearly, the performance is dependent upon how often
processors get stuck due to the steal rule at run time.

To reduce the influence of the steal rule, our implementation permits more DATA portions
than the number of processors. Column III in Table 3 shows the results of the APEX running the
nonoptimized ‘takeuchi’ program with s = 2 X p. We can see that the performance improves when
the number of processors is small. But due to the polling overhead, the improvement becomes
insignificant or even negative (e. g., see the value of PTIME(12) in columns II and III). We argue
that the possibility of getting stuck due to the steal rule decreases when the number of processors
increases. Therefore the need for extra DATA portions decreases as well.

5.3.2 Nondeterministic Programs

As pointed out by Fagin in [15], the ‘circuit design’ program does not have much AND-parallelism,
but has much room for performance improvement due to intelligent backtracking. Our results in
Table 2 on CDESIGN verify this. In fact, despite the overheads of parallel execution, the APEX
achieves more than three times speedup using just one processor (STIME/PTIME(1) > 3). This
shows that even without exploiting AND-parallelism, the intelligent backtracking scheme of the
APEX can improve the execution performance of nondeterministic programs. On two processors,
the speedup is improved to more than four times. Beyond that, the speedup saturates. There are
several possible explanations for the saturation, but we suspect that it is mainly caused by the lack

of AND-parallel activities. To examine the performance of the APEX on programs with potential
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Conditional Graph Expression:
() () POCX,Y) - (ground([X,Y]) | (indep(IX,Y]) | p1(X) & p2(Y))
) © & (ground(X) | p3(X) & p4(X, V).
(b c

Figure 2 An Example Clause, its Dependency Graph, and a CGE

of both AND-parallelism and intelligent backtracking, we constructed the IBTAK program (see
Appendix A.3).

IBTAK contains a clause that can potentially benefit from intelligent backtracking. The data
dependency graph of that clause is similar to the one shown in Figure 2b. The first two literals in the
clause body call the ‘takeuchi’ procedure with different set of arguments to generate numbers. The
last two literals test those numbers to see if they are satisfiable. IBTAK is essentially a collection of
several ‘takeuchi’ calls. Hence, in absence of intelligent backtracking and the backward execution
coordination overhead, we should expect the speedup performance of IBTAK to be similar to
that of TAK. Therefore by comparing the performance results of running IBTAK and TAK, we
can see how the gain from intelligent backtracking and the overhead for the backward execution
coordination balance each other. From Table 2, the ratio (PTIME(1) for TAK)/(PTIME(1) for
IBTAK) is about the same as (STIME for TAK)/(STIME for IBTAK). This indicates that the
gain due to intelligent backtracking in IBTAK is nullified by the overhead of backtracking. While
running the same program with more processors, we observe dramatic performance improvement,
or even super-linear speedup (see PTIME(7)). This is due to the early detection of unsatisfactory
bindings in parallel execution which in turn reduces the overhead of creating frames, updating, and

cleaning up.

6 Related Works

6.1 Borgwardt’s Scheme

Borgwardt [1] proposed the first stack-based execution scheme that exploits AND, OR and stream
parallelism in the execution of logic programs on a shared-memory multiprocessor. The execution
model for AND-parallelism in his model is the one developed by Chang, et al.[4]. In [2], Borgwardt
presents a distributed implementation of the semi-intelligent backtracking scheme of Chang, et al.[3].

There are several problems with the discarding mechanism in Borgwardt’s scheme[2]. He cancels
only dependent forward siblings on type I backtracking. This can result in incorrect computation.
For example, given data dependency graph of Figure 2(b), it is possible that the first solution
generated by pl could cause both p3 and p4 to fail. Suppose p4 fails first and initiates type I
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backtracking to p2*2. Since p3 is not a dependent forward sibling of p2, p3 is not canceled. Later
when p3 fails and causes a type I backtracking to pl, canceling only p3 and p4 (as Borgwardt
has proposed) without restoring the state of p2 will prevent p4 from trying the combination of the
second solution from pl and the first solution from p2.

Another problem is due to his use of partially distributed coordinating mechanism. As discussed
in Section 4.1 this type of coordinating system does not work in general unless some sort of time-
stamp mechanism is incorporated. Consider the execution of the clause in Figure 2(a). Suppose
the dependence relations between those literals are as shown in Figure 2(b). It is possible that both
p3 and p4 fail almost at the same time. Assume that the following scenario happens in sequence:

e p3 fails and asks pl to redo.

e pl receives the request and asks p2, p3, and p4 to rollback.

e Before p4 receives the rollback request, p4 fails and asks p2 to redo.
e p2, p3, and p4 receive and acknowledge the rollback message.

e pl receives rollback-complete messages from all of the literals. It tells every one to resume
execution.

e p2 finishes its execution and, at this time, receives the redo request from p4.

Clearly, the redo request p2 just received should have been wiped out earlier by the redo at pl.
But, in the absence of time-stamps, we are unable to tell when the request was sent, and hence

cannot prevent the extra redo action from happening.

6.2 Hermenegildo’s Abstract Machine

In [17,18,20,19], Hermenegildo developed a WAM-based implementation of an extended version of
DeGroot’s RAP. In [21], Hermenegildo and Tick presented simulation results of memory referencing
characteristics of RAP-WAM on a shared memory multiprocessor architecture.

A limitation of CGE (Conditional Graph Expression) is that it adds spurious dependencies
between literals causing loss of concurrency. For example, the CGE of Fig 2(c) adds an extra
dependency between p2 and p3. Hence, p3 cannot start execution until p2 has finished. Also, if p3
fails, it has to backtrack to p2, where a more precise choice would be pl. Any other way of writing
CGE for this clause would add some other unnecessary dependency between literals. As discussed
in [28] and [31], these drawbacks are not shared by our execution model.

One advantage of Hermenegildo’s implementation of RAP is that a parallel goal is created only
if it can be executed in parallel. For example, in the clause of Fig 2, if X and Y are dependent then
in Hermenegildo’s implementation pl and p2 are executed just as in the sequential execution. In
our scheme, once the clause has been tagged as a parallel clause, a parallel goal is created for every

literal in the clause.

129ithount cause-of-failure analysis, p4 cannot backirack directly to pl.
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6.3 Fagin and Despain’s PPP

Fagin and Despain [14] have developed PPP as an extension of PLM [13] to incorporate AND-
parallelism, OR-parallelism and intelligent backtracking. They use static data-dependency analysis
scheme of Chang, et al.[4,3] to detect AND-parallelism and to perform intelligent backtracking.
Fagin and Despain present extensive simulation results of the performance of PPP on a variety
of benchmark programs. In most of these programs, the performance improvement due to parallel
execution is very limited. Itis not clear whether the lack of good performance is due to a weak AND-
parallel execution model, due to the overheads of their implementation assumed in the simulation,

or due to the lack of parallelism in the programs tested.

7 Concluding Remarks

This paper presented the implementation of an AND-parallel execution model on a shared-memory
architecture. Our experimental results have shown that it is possible to perform data-dependency
analysis dynamically without incurring excessive run-time overhead. Since the implementation is
WAM based, we are able to retain the execution efficiency of WAM for sequential segments of the
execution. This was crucial to obtain performance improvement over sequential implementations.

Although our results are very encouraging, we need to perform a more thorough evaluation by
testing its performance on a variety of programs. In particular, we would like to find the classes
of programs that can benefit from AND-parallel execution and intelligent backtracking. We would
also like to test the suitability of different steal rules and discarding strategies.

The parallel execution scheme presented in this paper deals only with pure Horn-Clause logic
programs. Most practical logic programs contain non-logical constructs such as CUT, assert, re-
tract, etc.. DeGroot has recently presented an approach to handle side-effects in the Restricted
AND-Parallelism scheme [12]. This approach can be adopted to apply to our execution model.

A major drawback of WAM-based parallel implementations is that they require the target archi-
tecture to have a large shared memory equally (and rapidly) accessible to all the processors (e. g.,
as in Sequent Balance multiprocessor). This kind of tightly-coupled architectures can be built only
for a small number of processors. Hence if parallelism is to be exploited at a large scale (several
orders of magnitude), then some sort of deviation from WAM appears necessary. Process based
models do not require a shared-memory multiprocessor system and can be implemented on a mes-
sage passing architecture (e. g., the Hypercube [33]) which are much more scalable. Hence process
oriented implementations do hold great promise and have been investigated by many researchers
[10,16,32,23,39,24]. In fact, both WAM based and process based implementations can be used to-
gether in a multiprocessor that has a large number of loosely coupled clusters, each cluster having
many tightly coupled processors. In such a system, a process based model can be implemented on

the top level, and a WAM based model can be implemented within each cluster.
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Appendix

A The Listing of Benchmarks
A.1 HANOI

% generate solution steps for 15-disk “towers of hanci” problem
goal :- hanoi(15,R),write(R).

hanoi(N,R) :- move(N left,center,right,R).

% for parallel computation

move(N,A,B,C,R) - N < 7, |, movel(N,A,B,C,R,[ ]).

% the parallel clause

move(N,A,B,C,[R1,movedisk(A,B),R2]) :- M is N-1, move(M,A,C,B,R1), move(M,C,B,A,R2).

% for sequential computation
movel(0,.,-,-,.R,R) - L
movel(N,A,B,C,RO,RI) :- M is N-1, movel(M,C,B,A,RT,RI), movel(M,A C B RO, [movedisk(A,B)|RT]).

A.2 TAK

% compute the function takeuchi(15,10,5)
goal - tak(15,10,5,X), write(X).

tak(X,Y,Z,W) = X > Y, |, tak2(X,Y,2,X1,Y1,21), tak(X1,Y1,21,W).
sak(_,.,7Z,Z).

% the parallel clause
tak2(X,Y,Z,X1,Y1,21) - tak1(X,Y,Z,X1), tak1(Y,2,X,Y1), tak1(Z,X,Y Z1).

tak1(X,Y,2,W) - X1 is X-1, tak(X1,Y,Z,W).

A.3 IBTAK

% the test program for both AND-parallel execution and intelligent backtracking
goal :- p(5,10,15,W), write(W).

% The main clause for intelligent backtracking.
p(X,Y,Z,W) - pL(X,Y,ZK), pI(Z,Y, X, W), p2(K), p3(K,W).

pl(X,Y,Z,W) = tak(X,Y,Z,W).

pL(X,Y,Z,W) = tak(Y ,X,Z,W).

plI(X,Y,Z,W) - tak(Z,Y X W),

pL(X,-,-X).

% The procedure for computing “tak” is the same as that in TAK.

p2(2). p2(5). p2(8).

p3XY) - X =< Y.
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