OBJECT IDENTITY IN OMEGA:
AN OBJECT-ORIENTED DATABASE SYSTEM
FOR MANAGING MULTIMEDIA DATA

Yoshifumi Masunaga
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-88-19 May 1988

Object Identity in OMEGA : An Object-Oriented Database System
for Managing Multimedia Data

Yoshifumi Masunagat

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188

ABSTRACT

OMEGA is a database system for managing multimedia data under development
at the University of Library and Information Science. It takes an object-oriented
approach, and its data model is called OMEGA. In order to make the object concept
and basic object management scheme in OMEGA clear, we focused our investigation
on the object identity and related topics. In this paper, it is revealed that three types of
object identity exist in OMEGA; the trivial identity, the referential identity, and the
arbitrary identity. Based on this result, various types of object identity which exist in
the real world are characterized in OMEGA. The contents identity, the identity of com-
plex objects, and the object similarity are such examples. Because object identity and
similarity satisfy the condition of the equivalence relation on a set, the quotient class
can be defined. By using this, other types of object identity such as the substantial iden-
tity and the relational identity are characterized. Moreover the object copy, the object
naming, and the comparison between single class and multiclass object management
schemes are investigated in this paper.

1. Introduction

In order to increase the productivity of offices and factories as much as possible, it is necessary o
integrate various types of data such as text, figures, images, documents, sounds and voices into a single
database. Such a database is called a multimedia database where users can interact with multimedia data
without being aware of the heterogeneity of media. For example, if one wants to organize a database for
remote sensing research support, then not only image data such as LANDSAT and NOAA images, but
also figure data such as geographical maps as well as alphanumeric data such as land data, rain data, snow
data, sunshine data, industry data, population data, and so on must be integrated into one database.

Due to the following reasons, we are now in a position to develop multimedia databases and their
management system [Masu87]. Tremendous progress on

(i) storage media such as opiical disk storage systems,
(ii) input/output media such as graphics, multi-windows, facsimile and digitizer, and

(iiiy communication media such as optical communication systems and the standardization of communi-
cation protocols such as OSI.

+ The author is on leave from the University of Library and Information Science, Tsukuba-Science-City, Tbaraki 305,
Japan.

We can list other reasons such as
(iv) recent progress on semantic data model theory including the object-oriented data model, and
(v) increase of users’ demand for multimedia databases.

Research and development of multimedia database management systems were initiated at the begin-
ning of the 1980s. The term multimedia was first seen in the paper [TCE83], and extensive research is
reported in [CVL84], [Masu85], [ChHT86], [WoKL86], [Bada87], [Masu87], [WoKi87], [BKW87] and
others. Research and development of object-oriented database systems are also very active and very close
to the multimedia database field. Extensive research is reported in [CoMa84], [NiTs85], [IEEESS5],
[Oren86], [LyKe86], [MaDa86], [BuCV86], [MBH86] and others.

In this paper, we first overview an object-oriented multimedia database management system named
OMEGA (an abbreviation of Object-oriented Multimedia database Environment for General Application)
which is now under development at the University of Library and Information Science. This is done par-
ticularly from the data model point of view in section 2. We call the data model of OMEGA the OMEGA
model. In section 3, we discuss the meaning of objects in the OMEGA model. The OMEGA objects and
the real world objects are clearly distinguished. Particularly, we focus our discussion on object identity
and related topics. Three types of object identity exist in OMEGA,; the the trivial identity, the referential
identity, and the arbitrary identity, which characterize various types of object identity which exist in the
real world. The contents identity, the identity of complex objects, and the object similarity are such
examples. Because object identity and similarity satisfy the condition of an equivalence relation on a set,
the quotient class can be defined. By using this, other types of object identity such as the substantial
identity and the relational identity are characterized. Object copy is also discussed. In section 4, basic
object management schemes are investigated. Particularly, the object naming and the comparison
between single class and multiclass object management schemes are investigated in this section. Section
5 summarizes this paper.

2. Multimedia Data Model OMEGA

Figure 1 shows a concept of multimedia data modeling of the real world. The real world can be
recognized and described by acceptors using certain symbol systems which are allowed in a specified
media. These representations are called conceptual models. Four types of media are comsidered:
alphanumeric media, figure media, image media, and sound media. The essential point in building a mul-
timedia database is to make clear how to integrate these conceptual models into a single model which is
called as a multimedia conceptual model. By multimedia data model we mean a symbol system which
can describe any multimedia conceptual model. A multimedia conceptual model is then translated into a
logical representation model called as a multimedia database schema by using another symbol system.
An instance of the schema is a multimedia database.

OMEGA is a multimedia data model in the above sense. Although it is not explicitly mentioned, an
outline of OMEGA model has already been described in [Masu87]. It is an object-oriented data model,
and two types of objects can be explicitly supported in it; the Smalltalk-80 objects [GoRo83] and the
complex objects [HaLo082]. These two types of objects are necessary to manage multimedia data, or even
single media data in offices and factories because real world objects in those fields usually have not only
the IS-A relations (i.e., the class hierarchy or the generalization hierarchy) but also the IS-PART-OF rela-
tions (i.e., the design hierarchy or the aggregation hierarchy). For example, since an (electric) circuit can
be decomposed into functions and connections according to the design hierarchy, two IS-PART-OF rela-
tions can be defined between class Circuit and class Function, and class Circuit and class Conmnection,
respectively.

In OMEGA these two types of objects can be treated in a unified manner. The notation of
Smalltalk-80 objects will be used to describe objects and classes with extension and modification. The
following three concepts are clearly distinguished in our approach.

H Class template
2. Class
3. Object.

The class template is a schematic definition of a class. It is time variant in the sense of schema evolution
[BKKKS87]. The parent class is introduced to specify the parent class in the design hierarchy. The
referred class is introduced 1o specify the referred object class for multimedia database integration. The
rules are introduced to describe both non-procedural methods and database integrity constraint. We use
attribute instead of instance variables. Others are similar to Smallialk-80. A sample class template is
shown in Figure 2.

An object is defined as a package of information, i.e., a list of attribute values, and description of
object manipulation (methods) including rules. Thus, when a class template is given, we can list the set
of all objects which meet the class template. By class we mean the set of all objects of the class template
at a given time. The class varies time to time, i.e., time variant. The class template-class-object relation-
ship is analogous to the schema-relation-tuple relationship in the relational database [Codd70]. Some-
times, the term class will be also used to represent the class template unless it is not confused.

As we mentioned earlier, rules are introduced in our system primarily to describe certain knowledge
associated with IS-PART-OF relations. Let us consider an example of rules. Suppose that class EleCir-
Dia (an abbreviation of Electrical Circuit Diagram) has class EleCirDiaFunction and class EleCirDDiaCon-
nection as children according to the design hierarchy (see Figure 2). Now suppose that we want to make
an object in class EleCirDia secret if any of its components in the design hierarchy is secret. In this case
it is possible to find all electric circuit diagrams which are secret if the following rule is specified in the
EleCirDia class template, where IS-PART-OF(x, y) represents that x is a part of y. (PROLOG like nota-
tion is used here, but it is not essential).

secret (y) « IS-PART-OF (x,), secret (x)

A similar idea can be seen in [BKWS87] as value propagation. A class inherits atiributes, messages,
methods, and rules from its super classes.

To integrate different conceptual models into one in OMEGA, a method called referred object
integration method is proposed in [Masu87]. This is basically a bottom-up approach. In order to make
integration as perfect as possible, we introduce a multimedia conceptual model designer to show his/her
view of the real world in terms of objects. It in fact is a structural and semantic representation of the
designer’s knowledge about the real world objects. The proposed object base will be used as a clue to
integrate different conceptual models which were constructed in different media into a single database. A
simple example of data integration is shown in Figure 3(a), and the corresponding multimedia data model
in OMEGA is shown in Figure 3(b).

3. Object Identity in OMEGA

3.1. Objects and Object Creation

Objects are the most fundamental OMEGA elements. It is very important 1o clearly distinguish
objects in OMEGA and objects in the real world. The former is called the OMEGA objects, while the
latter is called the real world objects. OMEGA objects can be created by OMEGA users 1o represent real
world objects. For example, suppose that John Smith entered a university. Then in order to represent this
fact, a user may create an OMEGA object by sending the following message o class Student,

new:{870100, John Smith, male, Tsukuba-Science-City)

By this message, an OMEGA object *‘0’" could be created which has 870100 as the student
identification number, John Smith as name, male as sex, and Tsukuba-Science-City as address. (By the

-4-

way Tsukuba-Science-City is a newly developed area in Japan which is 40 miles north of Tokyo where
more than fifty Japanese national institutes are located.) The Smalltalk-80 like expression is used only o
carry our idea, and is not essential.

In OMEGA, attributes are regarded as functions as in [LyKe86]. For example, suppose class Stu-
dent has attributes sid (student identification number), name, sex, and address as defined above. Then the
following holds.

sid(o) = 870100, name(o) = John Smith, sex(0) = male,
address(o) = Tsukuba-Science-City.

Of course, the domain of an attribute could be set-valued. For example, if attribute ‘‘dependent’ is
defined and suppose that student o has three dependents, then the attribute value could be the set of three
objects which represent them. Any numerical value of a character string is again an object in OMEGA.

3.2. Object Identification Number

Whenever an object is created, OMEGA allocates a system-wide unique object identifier. This
could be a serial number, or a time stamp, and therefore we call it object identification number.

This means that an attribute named oid is automatically assigned to a class template definition
whenever it is defined. Attribute oid is for system use purpose, and not for users. Therefore users are not
aware of the existence of attribute oid in the normal use.

3.3. Object Identity

In OMEGA, several OMEGA objects could be created in various classes in order to represent dif-
ferent aspects of the same object in the real world. Therefore one might want to regard those OMEGA
objects as identical because they refer to the same real world object. Also, one might want to regard a
bunch of objects as identical because of a certain reason. This means that it is necessary to investigate
what OMEGA objects are identical in what sense. In this section three types of object identity will be
introduced. Before going to details, a general definition of object identity will be given below. We
presume that whenever we can say that object o is identical with object o” in class C, the identity must be
determined by using a certain rule which is either defined explicitly in class C or inherited from one of its
super classes.

Definition 3.1: Let o and o’ be objects in class C. A rule is said to be an object identity rule if it is
defined in the following form:

(vo,0 € C) (P(o,0") = 0=0),

where P represents a two variable predicate defined on C, and o = o’ represents that object o is identical
with object o’. That is, object 0 and o’ can be said to be identical if they satisfy predicate P. Three types
of object identity will be given below.

[1] Trivial identity.
Let 0 and o' be OMEGA objects. The o is said to be trivially identical with o’ if oid(o) = oid(0").
This could be defined as follows:
(V¥ 0, 0’ € Object) (0id(0) = 0id(0") = 0 =0"),

where Obiject is the system-defined class which locates on the top of all other classes of OMEGA in the
sense of class hierarchy. Since every class in OMEGA can inherit this rule along with super class chain,
the trivial identity of objects can be used in any class.

[2] Referential identity.

-5-

There is another type of object identity in OMEGA which is called referential identity. As we men-
tioned before, every OMEGA object refers to a certain object in the real world. Therefore, it is assumed
that there may exist two objects o and o” in class C which are not identical in the trivial sense, i.e. oid(0) #
oid(0”), but is identical in the referential sense, i.e. both of them refer to the same real world object. In
this case, we say that they are referentially identical. A formal definition will be given below.

Definition 3.2: Suppose that class C has an object identity rule p(o, 0") — o = o’[C]. Then, the rule is
said to be a referential identity rule of object, if whenever P(o, 0") hold, then o and o’ must refer to the
same object in the real world.

We will extend our investigation to cover a more general and useful case in which we can determine
the identity of object o and o” which belong to different classes, say class A and B, respectively. In order
to explain our idea, let us consider an example first. Suppose that three classes named Student,
ForeignStudent, and MaleStudent are defined in OMEGA, where class Student is a super class of other
two classes. (ForeignStudent consists of students who came from abroad, while MaleStudent consists of
male students.) Now suppose that a foreign male student (this means that a male student who cam from
abroad) is on the university register. Then in order to reflect this fact, objects o and o’ will be created in
class ForeignStudent and class MaleStudent respectively. We also assume that class Student has sid,
name, sex, and address as attributes, class ForeignStudent has its own attribute nationality in addition to
the attributes inherited from Student, and class MaleStudent inherits attributes from Student. Since
OMEGA allocates different oid values to o and o', they are not identical in the trivial identity sense.
However, since those two objects represent the same object in the real world, i.e. both refer to the same
real world object, we want to say that they are identical in the referential identity sense. To do so, we pay
attention to the fact that the values of the attribute sid of o must be identical with that of o’ if both
represent the same student. This is true because the same student identification number may not be allo-
cated to more than one student. Therefore we can introduce referential identity rule of objects in class
Student, and we can determine the referential identity of object o in class ForeignStudent and o” in class
MaleStudent by using this rule. This is described as follows:

(V o € ForeignStudent, V 0" € MaleStudent) (sid(o) = sid(0”) — o = o’ [Student])
Figure 4 shows the above situation.
The discussion will be formalized below.
Definition 3.3: Class A is said to be an ancestor of class B if there exists a super chain from B to A.

Definition 3.4: Class A and B are said to be of family ties under class C if they have C as a minimal
common ancestor, where the term minimal means that any subclass of C can not be a common ancestor of
A and B.

Since multiple inheritance may happen in OMEGA, in general more than one minimal common
ancestor could be found. It is also assumed that the minimal common ancestor may not be class Object.
Such a situation can be illustrated in Figure 5.

Now suppose that o and o are objects created in class A and B, respectively, and that A and B are
family ties under class C. Since both classes are the subclass of class C, it can be possible to determine
whether o and o’ are identical or not by using an object identity rule defined in C.

Definition 3.5: Let o and o’ be objects in class A and B, respectively. Then o is referentially identical
with o’ under class C, denoted by o = o’[C], if there exists a referential identity rule of object in a minimal
common ancestor C of class A and B by which o and o’ are determined to be referentially identical.

[3] Arbitrary identity.

There exists yet another type of object identity in OMEGA which is neither the trivial identity nor
the referential identity. This is called the arbitrary identity. The term arbitrary means that one can define
object identity in a class arbitrarily. For example, one might want to regard that two OMEGA objects,
each of which represents water and ice, respectively, as identical because the substance of water and ice

-6-

are identical. Or one might want to regard two companies as identical because both locate in Tokyo.
(Therefore the concept of Tokyo company will be established. See section 3.9 for more details.) In this
sense, it could be said that the arbitrary identity is based on the result of science, say natural, political,
and social sciences, and culture.

Definition 3.6: An object identity rule is called arbitrary identity rule if it is neither the trivial identity
rule nor the referential identity rule.

A typical example might be the following case. Suppose that class ChemicalCompund is defined
with which an attribute named chemical-formula is associated. Chemists might say that we do not want
to distinguish those objects which have the same chemical formula. In order to reflect this wisdom in
OMEGA, we can define the following arbitrary identity rule in class ChemicalCompound.

(V¥ 0, 0o’ € ChemicalCompound) (chemical-formula(o) = chemical-formula(o”) — 0 =0")

The above discussion can be expanded to cover a more general and useful case so that the arbitrary
identity of objects o and o” which belong to different classes, say class A and B, respectively, could be
determined. For example, suppose that there are three classes in OMEGA which are named Chemical-
Compound, LiquidChemicalCompound, and SolidChemicalCompound, where class ChemicalCompound
is a super class of the other two. Suppose also that on the other hand there are three real world objects
which are alcohol, water, and ice. Then in oder to represent this fact, objects ol (the representative of
alcohol) and o2 (the representative of water) will be created in LiquidChemicalCompound and o3 (the
representative of ice) will be created in SolidChemicalCompound class. We also assume that Chemical-
Compound class has chemical-formula attribute, and therefore its subclasses have it. Since OMEGA allo-
cates different oid values to ol, 02, and 03, they are not identical with each other in the trivial sense.
Moreover they are not identical in the referential sense, because they refer to different objects in the real
world. However, as we mentioned before, there might be a situation in which water and ice could be
regarded as identical as chemists usually do. Now the identity of object ¢ in LiquidChemicalComipound
and object o’ in SolidChemicalCompound can be defined as follows:

(¥ 0 € LiquidChemicalCompound, V¥ 0" € SolidChemicalCompound)
(chemical-formula(o) = chemical-formula(o”) — o = o [ChemicalCompound])

Figure 6 shows the above situation. A cycle from 02 to 02 indicates that water changes its state o ice
when it is cooled and ice becomes water when it is warmed. That is, they are identical in terms of sub-
stance, but they differ in terms of state. One might object that the above equation chemical-formula(o) =
chemical-formula(o”) is incorrect because the term which indicate the melting heat is not included. If this
fact is necessary to be included, then why not add a term of melting heat on the right hand side. Of
course we can introduce class GasChemicalCompound similarly.

A formal definition will be given below.

Definition 3.7: Let o and o’ be objects in class A and B , respectively. Then o is arbitrarily identical with
o’ under class C, denoted by o = o’ [C], if there exists a minimal common ancestor C of A and B and o is
determined to be arbitrarily identical with o” by using an arbitrary identity rule of object defined in it.

3.4. Absence of Keys

One difference between the object base model OMEGA and the traditional relational data model
[Codd70] is the absence of keys in OMEGA. In the relational database, because a relation is a set, the set
of attributes (the set of all attributes in the worst case) constitutes a key, i.e. a unique tuple identifier.
However, it does not hold in OMEGA. There are many cases in which an object can not be uniquely
identified even though all its attribute values are specified.

For example, suppose that class Bolt is defined in an object base of a part manufacturing company,
and that the following three attributes are defined in it (including inherited attributes): part-name, size,
and color. Now, suppose that a type A bolt (abbreviated A-bolt) with size 50 and color red is produced.

-7

Then in order to represent this production, an OMEGA object will be created which has (A-bolt, 50, red)
as its attribute value list. Moreover, suppose that another bolt with the same standard is produced. Then
in order to represent this production, another OMEGA object will be created which has the same attribute
list, i.e. (A-bolt, 50, red). Of course this object has different oid value from that of the object created
before. However, since the atiribute lists of those two objects are the identical, we can not distinguish
them even though their atiribute lists are given.

In this case, it is supposed that it may not be necessary for users to distinguish this bolt from that
bolt of type-A. Class Bolt can be seen to users as a multi set t0 which they may issue queries and
updates. For example, they may want to create a thousand bolis of the same type, or they may want to
retrieve any one bolt of a specified type. That is, in class Bolt, key is not necessary to be provided for
usual applications.

There are a couple of comments here. In order to create a thousand bolts of type-A with size 100
and color green, we might issue the following message to class Bolt.

new: {(bolt-A, 100, green), 1000}

Although OMEGA allocates different (consecutive) oid values to a thousand bolts, they are irrelevant to
users. The following type of query might be needed to support OMEGA users to retrieve any one bolt of
type-A.

SELECT 1
FROM Bolt
WHERE part-name="°A-bolt”’

3.5. Contents Identity

Users may want to handle contents identity. For example, suppose that you have two documents,
one of which, say document D1, is written in English, while the other, say document D2, is written in
Japanese. You might want to identify D1 with D2 if the contents of those two documents are ideniical.
This identity, called contents identity, can be supported in OMEGA by defining the following object
identity rule in class Document.

(v d, d’ € Document) (contents(d) = contents(d’) - d =d")

Notice first that “‘contents’’ is defined as a method in class Document, or it is inherited from its
super classes. Second, it should be noticed that this object identity rule is a kind of the arbitrary identity
rule which was introduced before. That is, even though two OMEGA objects in class Document do not
refer to the identical document in the real world, we can say that they are identical if their contents are
identical.

3.6. Identity of Complex Ohjects

As it was mentioned before, one of the characteristics of OMEGA 1is to support complex objects
explicitly by using IS-PART-OF (binary) relations. A basic consideration on the identity of complex
object will be done here.

Suppose we have two complex objects o and o’. Since oid is a system-wide unique object
identifier, we can say that o is trivially identical with o’ if 0id(0) = oid(0”). Next suppose that o and o’ (in
the same class) have different oid values. Here it should be mentioned that the essential difference
between a complex object and non-complex object in OMEGA is that the former is created not only to
refer to a certain object in the real world but also to represent its design hierarchy structure. Therefore,
the design hierarchy structure must also be taken into account when we discuss the identity of complex
object. For example, suppose that there is a rectangle R (in the real world) which consists of three
squares S1, S2, and S3 put side by side from left to right. This rectangle could be represented in OMEGA

in the following way:
r=((s1,s2), s3) and ¥’ = (51, (52, s3)),

where object r and r’ in class Rectangle represent retangle R, and object s1, s2, and s3 in class Square
represent square S1, S2, and S3, respectively. Now what kind of object identity can we introduce
between r and r'? Our idea is as follows. Although oid values of r and 1’ differ and the design hierarchy
trees of r and T’ are also different, we can think of r as referentially identical with r’ because what r refers
to and what r’ refers to are the identical real world object, i.e. rectangle R. A little bit more formally, we
can say that list ((s1, s2), s3) and (s1, (s2, s3)) are identical in the sense that the latter can be obtained
from the former by applying a similar law of the associative law of multiplication, i.e. ((a*B)*¢c) =(a*
(b #¢)). Therefore we can define the following referential identity rule of complex object in class Rectan-
gle:

(V 1, ¥’ € Rectangle) (structure(r) = [associative-law] structure) —r=1),

where ‘‘structure’’ is a method defined in class Rectangle (or an inherited one) such that structure(r) =
((s1, s2), s3) and structure(r') = (s1, (s2, s3)) in this case, and ‘= [associative-law]”’ means that the right
hand side can be obtained from the left hand side by applying the associative law and vice versa. Of
course we can expand our discussion to include the case in which complex object o and o’ belong to class
A and B (# A) as it was done in section 3.3. The arbitrary identity can be defined in an analogous
manner.

3.7. Object Similarity

Object similarity can also be supported in OMEGA. The similarity is very close to the arbitrary
identity. But they are totally different from semantic point of view. For example, we say that whales are
similar to fishes (in shape), but we usually do not say that whales are identical with fishes.

46 LR

The similarity is denoted by . It is defined in the same manner as the arbitrary identity is
defined. For example, if we want to say that all objects in class Bolt which have the same bolt-name,
size, and color are similar, then the following similarity rule can be defined in that class.

(¥ 0, 0" € Bolt) (bolt-name(o) = bolt-name (0”) AND
size(o) = size(o”) AND color(o) = color(®’) = 0~0")

Mathematical similarity, such as similar triangle, can also be treated in the same manner.

3.8. Quotient Class

We have investigated the trivial, referential and arbitrary identity of object and object similarity. It
must be pointed out that an important characteristic is hidden there. That is, it is expected that such an
identity and similarity satisfy the condition of equivalence relation on a set, i.e., the reflexive, symmetric,
and transitive law. Therefore, we can partition a class using an object identity or similarity and define a
quotient class with respect to it.

Suppose that such an equivalence relation, denoted by =, is defined on class C. Then we can define
a new class which consists of all equivalence classes of C with respect to =, which is called the quotient
class of C with respect to =. It is denoted by C/=.

By introducing the quotient class, OMEGA becomes very powerful to represent various aspects of
the reals world. For example, suppose that there are Seller class and Buyer class. It happens quite often
that company A sells item i1 to company B, while B sells item i2 to A. To represent them, object s1 and
2 are created in Seller class to refer to company A and B as sellers, respectively, while object b1 and b2
are created to refer to A and B as buyers, respectively. Since a seller and a buyer are dealers, we want 10
define class Dealer which consists of the representatives of A and B as dealers. In order to do so, we first
define class SellerOrBuyer as the set union of class Seller and class Buyer. Now we introduce the

following obiject identity rule in it
(V¥ 0, 0’ € SellerOrBuyer) (company-name(o) = company-name(0’) — 0 = o)

Then by using the equivalence relation = defined in the above rule, we can define a quotient class Sel-
lerOrBuyer/=, where an equivalence class containing s1 and bl represents company A as a dealer, while
an equivalence class containing s2 and b2 represents company B as a dealer. Therefore class Dealer can
be defined as the quotient class. This is shown in Figure 7. Another example of a quotient class will be
given in the next section.

3.9. Substantial Identity and Relational Identity in the Real World

In the real world two types of object identity exist in the following sense. For example, suppose
someone said that ‘I took the same flight.”” This statement could be used to represent either one of the
following two meanings; either 1) I took the same flight, but I didn’t meet you, or 2) I usually took the
same flight rather than other flights because it was convenient. The identity in the former case is called
the substantial identity, while the latter is called the relational identity.

In OMEGA we can support those two types of identity. Suppose that class AllFlights is defined.
The substantial identity could be defined by the following referential identity rule:

(¥ o, 0" e AllFlights) (flight-number(o) = flight-number(o’) AND
date(o) = date(0”) > 0=0")

On the other hand, the relational identity could be defined in the following way. To do so we first
iniroduce another type of object identity rule in it

(V 0, 0" e AllFlights) (flight-number(o) = flight-number(c’) = 0=10")

Then, by using this identity we can define a quotient class of AllFlights, i.e. AllFlights/=, which is
denoted by Flight. Now we define a referential identity rule in Flight:

(¥ 0, 0’ e Flight) (flight-number(o) = flight-number(c’) - 0 =0")
It is easy 10 see that this identity rule represents the relational identity of flight in the real world.

3.10. Object Copy

Let o be an object of class C. Then we can create a new object, say o', which has the same attribute
values of 0. We call o’ a copy of 0. Since o’ becomes a new object in OMEGA, a system wide unique
object identifier (oid value) is given 1o it. Depending on the similarity or identity rule defined in class C,
0" could be similar, or identical or not with 0. Of course, such an operation as creating a thousand copies
of a bolt may be necessary. Depending on application, sometimes it may be necessary to keep informa-
tion about what copies are made from what object.

4. Basic Object Management Scheme in OMEGA

4.1. Object Naming

In OMEGA, a creator is able to name objects which he/she creates. The object name is completely
irrelevant to oid, i.e. the object identification number which is given by OMEGA. Since a creator can
name objects arbitrarily, the object name does not have unique object identification capability in general,
while oid has.

Suppose that there is class Car, and John created a car object to register his car and named it myCar.
Also, suppose that George registered his car and named it myCar. Then it is impossible to distinguish
which myCar represents John’s car. In order to resolve this ambiguity, we assume that OMEGA qualifies
the user specified name by adding the creator name. That is, John’s car has name John.myCar, while

-10-

George’s car has name George.myCar.

However, this naming scheme is still unsuitable. For example, suppose that there is class Toy, and
John created a toy object to represent his favorite radio control car and named it myCar. Then it becomes
again impossible to distinguish whether John.myCar represents his real car or a toy. To resolve this
ambiguity, we again qualify the object name by using class name. That is, the above three objects may
have the following names:

John.myCar@Car
George.myCar@Car
John.myCar@Toy

Formally, an OMEGA object may have the user define object name which is a triple:

creator-name.user-specified-object-name@class-name

Notice that this naming scheme is still insufficient for unique object identification purpose. A sim-
ple example is as follows. Suppose that John has three cars and created three car objects in class Car to
represent them. If all of them are named myCar, then it is impossible to distinguish this car from that car
by the object name John.myCar@Car. We understand this situation in this way. If John really wants to
distinguish each of his cars in OMEGA, he must assign different names to each of them, i.e. myCarl,
myCar2, and myCar3 to his first, second and third car, respectively. Then if he says John.myCar2@Car,
then his second car object can by uniquely obtained. It is up to users how to name objects so that they
have unique object identification capability or not.

4.2. Single Class vs. Multiclass Object Management

When the object management scheme in OMEGA is discussed, object identity must be taken into
consideration. Two types of object management schemes are investigated here which are called single
class management scheme and multiclass management scheme. Let us take a typical example 10 explain
our investigation.

Suppose that there is a foreign male student on the university register. His attributes are: 870123 as
student identification number (sid), Jacky Chen as name, male as sex, Tsukuba-Science-City as address,
and Hong Kong as nationality. Also suppose that ForeignStudent, MaleStudent, and Student classes are
defined as it was done in section 3.3. Then in order to represent Jacky, object s1 will be created in class
ForeignStudent, while object s2 will be created in class MaleStudent. A referential identity rule of object

(Vs, s’ € Student) (sid(s) = sid(s") = s=5")

will be defined in class Student so that any objects in class Student which refer to the same studernt in the
real world can be regarded as identical in OMEGA. This situation is shown in Figure 8. Notice that
when Jacky leaves university, two operations are necessary to reflect this fact. That is, since there are two
representatives (i.e. s1 and s2) of Jacky in OMEGA, s1 and s2 must be deleted from ForeignStudent and
MaleStudent classes, respectively, to reflect the withdrawal. In general, if there are n representatives of
Jacky, n operations are necessary to reflect it. We call this type of object management scheme multiclass
object management scheme.

In order to reduce the number of such deletion operations to one, one might define a new class
which may be called ForeignMaleStudent. Conceptually, this is defined as an intersection of class
ForeignStudent and class MaleStudent. Therefore, the class inherits properties form class ForeignStudent
and class MaleStudent. Then, it is clear that creation of one object, say s3, in class ForeignMale Student
is enough to represent Jacky who is a foreign male student as is shown in Figure 8. Now, notice here that
only one operation is enough to reflect his withdrawal; the deletion of s3 from class ForeignMaleStudent.
We call this object management scheme single class object management scheme.

-11-

Now the problem is as follows. Although we must introduce a new class ForeignMaleStudent, can
we say that the single class approach is better than the multiclass approach in terms of the number of
operations needed to reflect real world changes? The answer is no because the tables are turned if we
meet another situation: Suppose that Jacky succeeded to be naturalized. Since he is not a foreigner any
more, this must be reflected in OMEGA. The following alternatives are observed:

1. [Single Class Management Scheme]. Delete object s3 from ForeignMaleStudent class and create a
new object, say s4, in MaleStudent class.

2. [Multiclass Management Scheme]. Delete object s1 from ForeignStudent class.

That is, the multiclass approach needs only one operation, while the single class approach needs two
operations. Therefore both approaches have merits and demerits. However, the multiclass approach
seems attractive because it could be possible to provide a set of very powerful, i.e. semantical object
manipulation operations if the multiclass approach is taken under good management of object identity.
Let us consider the above example again. By using the object identity rule

(¥ s € ForeignStudent, vV s” € MaleStudent) (sid(s) = sid(s’) — s = ¢’ [Student])
we can introduce two types of object delete operations:

DELETE s1
FROM ForeignStudent, and

DELETE s1 WITH = IN Student
FROM ForeignStudent,

where = is the above object identity defined in Student. The former intends to delete exactly one object
s1 from class ForeignStudent, while the latter intends to delete not only s1 but also every object in any
subclass of class Student which is determined identical with s1 by using the object identity rule R. It is
clear that the former deletion will be issued when Jacky is naturalized, while the latter will be issued
when Jacky leaves university. Because of this reason, OMEGA adopted the multiclass object manage-
ment scheme.

5. Summary

In this paper we have discussed objects concept and basic object management scheme in OMEGA
which is now under development at the University of Library and Information Science. Particularly the
concept of object identity was introduced and investigated. Three types of object identity were made
clear, which are the trivial identity, the referential identity, and the arbitrary identity. Based on this
result, various types of object identity which exist in the real world were characterized in OMEGA. The
contents identity, the identity of complex objects, and the object similarity were such examples. Because
object identity and similarity satisfy the condition of the equivalence relation on a set, the quotient class
was defined. By using this, other types of object identity such as the substantial identity and the relational
identity were characterized. Object copy was also discussed. Moreover, the object naming and the com-
parison between single class and multiclass object management schemes were investigated. It was made
clear that multiclass object management scheme could be powerful to represent the real world semantics
if object identity is will managed. Design of object manipulation language based on our approach and
implementation of OMEGA are left as future works.

Acknowledgements

The author appreciates comments given by Dr. Henry F. Korth of the University of Texas at Austin.
This research was partly supported by the Japanese Ministry of Education, Culture, and Science, Grant
number 61580017,

References
[BKKKZ87]

[BKW87]

[BuCV86]

[ChHT86]

[Codd70]
[CoMaB4]

[CVLEg4]

[GoRo83]
[Halo82]
[TEEESS]

[LyKe86]
{MaDa86]

[Masu85]

[Masu87]

[MBHS85]

[NiTs85]
[Oren86]

[TCES3]

[WoKI86]

-12-

Banerjee, J., W. Kim, H-J. Kim, and H. F. Korth, ‘‘Semantics and Implementation of Schema
Evolution in Object-Oriented Databases,”” Proc. 1987 ACM-SIGMOD Conference, 311 -322.

Banerjee, J., W. Kim, D. Woelk, N. Ballou, H-T, Chou, “‘A Data Model for Object-Oriented
Persistent Databases,”” ACM Trans. on Office Information Systems, to appear 1987.

Buchman, A.P., R. S. Carrera, and Bazquez-Galindo, ‘‘A Generalized Constraint and Excep-
tion Handler for an Object-Oriented CAD-DBMS,’’ Proc. 1986 International Workshop on
Object-Oriented Database systems, (Sept. 1986), 38-49,

Christodoulakis, S., F. Ho, and M. Theodoridou, ‘ The Multimedia Object Presentation
Manager of MINOS: A Systematic Approach,” Proc. 1986 ACM-SIGMOD Conference,
295-310.

Codd, E. F., ““A Relational Model of Data for Large Shared Data Banks,”” Comm. of the
ACM, 13.6, (1970), 377-387.

Copeland, G., and D. Maier, ‘* Making Smalltalk a Database System,’” Proc. 1984 ACM-
SIGMOD Conference, (1984), 316-325.

Christodoulakis, S., J. Vanderbroek, J. Li, T. Li, S. Wan, Y. Wang, M. Papa, and E. Bertino,
“Development of a Multimedia Information System for an Office Environment,”” Proc. 16th
International Conference on VLDB, (1984), 261-271.

Goldberg, A., and D. Robson, Smalltalk-80: Language and its Implementation. Addison-
Wesley, (1983).

Haskin, R.L., and R. A. Lorie, *‘On Extending the Functions of a Relational Database Sys-
tem,”” Proc 1982 ACM-SIGMOD Conference, (1982), 201-212.

Special Issue on Object-Oriented Systems,”” IEEE Database Engineering, 8.4, (1985).
Lyngbaek, P., and W. Kent, ‘‘A Data Modeling Methodology for the Design and Implemen-
tation of Information Systems,”” Proc 1986 International Workshop on Object-Oriented Data-
base Systems, (1986), 6-16.

Manola, F., and U. Dayal, ‘‘PDM: an Object-Oriented Data Model,”” Proc. of the Interna-
tional Conference on Object-Oriented Database Systems, (1986), 18-25.

Masunaga, Y., “‘A Conceptual Design of Multimedia Database Management Systems,”
Research Report of Univ. of Library and Information Science, 4.1, (December 19857, 9-26,
(in Japanese).

Masunaga, Y., *° Multimedia Databases: A Formal Framework,”” Proc. IEEE Computer
Society Symposium on Office Automation, (April 1987), 36-45.

Maryanski, F., J. Bedell, S. Hoelsher, S., Hong, L-A. McDonald, J. Peckham, and D. Stock,
““The Data Model Compiler: A Tool for Generating Object-Oriented Database Systems,”
Proc. of the International Conference on Object-Oriented Database Systems, (1986), 73-84.
Nierstrasz, O.M., and D.C. Tsichritzis, ‘‘ An Object-Oriented Environment for OIS Applica-
tions,”’ Proc. 11th International Conference on VLDB, (1985), 335-345.

Orenstein, J.A., ““Spatial Query Processing in an Object-Oriented Database System,”” Proc.
1986 ACM-SIGMOD Conference, (1986), 326-336.

Tsichritzis, D., S. Christodoulakis, P. Economopoulos, C. Faioutsos, A. Lee, D. Lee, J. Van-
derbroek, and C. Woo, ‘A Multimedia Office Filing System,”” Proc. 9th Intermational
Conference on VLDB, (1983), 2-7.

Woelk, D., W. Kim, and W. Luther, ‘‘An Object-Oriented Approach to Multimedia Data-
bases,” Proc. 1986 ACM-SIGMOD Conference, (1986), 311-325.

-13 -

[WoKi87] Woelk, D., and W. Kim, ‘*Multimedia Information Management in an Object-Oriented Data-
base System,’” Proc. 13th International Conference on VLDB, (September 1987), 319-329.

, N .
/// \\ // \\\
/ \ / \
i \ ’, \1
&% medium=~1 § ! |
|
conceptual Ly ‘ logical | |
nodel-1 "1 ||rep. model-1
| l 1 —]
! Lo |
1] |
acceptor-1 | : } |
‘ [|
| L |
| P : |
‘ - Lo |
’ bl |
! conceptual L logical
y o] - [-
i [
‘ b |
l | |
| o~ L !
| P |
| | | @ |
‘ . | . |
{ | : !
» | @ |
acceptor-n { . | ; |
|
| }
| |
| ,
medium-n { : ;
b e |
conceptual Lo logical | !
model-n ! | rep. model-n
| ! |
i
) \ J

-
AN

’ AN e

/' .
N /S integration
’ synbol
system i nultimedia
batabase

nultimedia Mmultimedia

database schena (trans- conceptual
lation) model

Figure 1. Multimedia Data Modelling.

l

class name: CirDia
super class:
parent class:
attributes:
designer
designDate

e ¢ ¢ o

class name: EleCirDia
super class: CirDia
parent class:
attributes:
itsAbstraction
itsComponents
itsNodes
itsConnection
itsDocuments
itsTinmmingCharts

messages and methods:

status’! designDate

.....

Figure 2.

IS-PART-OF

class name:
super class:
parent class: ElelirDia

EleCirDiaConnection
Connection

Class Description in OMEGA.

-

e

A
alphanumeric medium

nultimedia conceptual model

multimedia
db designer

Peter Pan acceptor

(picture book:
real world)

object base for integrati

i
1
i
. : fon
1
1
text-p Peter Pan
ha]
conceptual ;gael 1S-PART-OF
RS \ e L .
~l page-1|-»| page=2 |-————] pagE-N [
conceptual model (trans-
lation)
I IS-PART-
picture*l,\\\\\\ \\ !
\ - 1 A T~ "
; tp-1{=lpp-1| |tp=2/=|pp=-2| -+ [tP-ni{= PPN
[: /'
: -
. B 1a)
_— _‘///e\aii()“ (med\
: .. — gerred ’
picture=-q re tpit
pitext part
pptpicture part
picture mediunm
————:referred relation ======:ireferred relation

eev—»-referred relation

(nedia)

Figure 3 (a).

(sequence)

The Referred Object Integration Method (Concept).

(synchronization)

pmultimedia database schera

7 PictureBook

_ Text

[S-PART-OF

v Page
Picture R

[S-PART-OF

Text?art‘r PicturePart}

Figure 3 (b). OMEGA Description of HMultimedia
Conceptual Hodel of Figure 3 (a).

identity rule:)
Student (¥o, o' ¢ Student) (sid(o)=

sid(o') -> o=0")

/

ForeignStudent // IS-A MaleStudent

a male student who came from abroad

Figure 4. The Referential Identity.

minimal common ancestor minimal common ancestor

class B

Figure 5,
class A and class B.

Minimal Common Ancestors of

identity rule:
0' € ChemicalCompound) (chemical-formulalo)=

(Vo,

chemical-formulaf(c') -> o0=0")

OMEGA I \

(o)
3
I =

| [|
real world, \ < I
! \ {
|
{
{
I
{

{

|

{

i i
!

¢

ice

alcohol wvater

Figure 6. The Arbitrary Identity.

Dealer:
(SellerOrBuyer/=)

identity rule: PR
(Yo, o'e€ SellerOrBuyer) (company-name (o) =
company-name{o') - > op=o') e

OMEGA

real world !

company A company B

Figure 7. (Quotient Class.

« ¥

ForeignStudent

Student identity rule: \ o
(Vo, o' € Student) (sid(o)=

sid(o') -> o=0")

MaleStudent

¢ .
iForelgnMaleStudenﬁ
OMEGA e /
\ i o
A 43
AN ! / £,
real world \ ! /g
\ i / S
\ f /2
Voo VA
4\ | /
\\ : /
/
i
\\ L/

Figure 8.

a male student who casme from abroad

Single Class vs. MHulticlass Object Managenment.

