ISSUES IN OBJECT-ORIENTED
DATABASE SCHEMAS

Hyoung Joo Kim
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-88-20 May 1988

8861 Aeiy

NILSNV IV SYXAL 40 ALISHHAINA HHL

AHJOSOTIHd 40 HOLO04

Jo 9013a(] 9Y) 10§
sjuawannbay ayy jo
rusuIynyg feiired Ut
Uy e SBXa], JO AYsIsAtu() Y],
JO [ooYog 2)BNPRIN 3Y) JO A}NORY 2Y) 0} PAjussaid
og-Bunokpy ajim Aux
NOILVIHISSIA

pue

uomy] Buse-ung pue unyf wip-Suep

S gUg ‘wiy oop Sunoky
sjusred Aw oF,

£q

SYWHAHOS ASVEVIVA JIINIIYO-LOIELHO NI SHNSSI

Abstract

The successful use of database management systems in data-processing
applications has created a substantial amount of interest in applying database
techniques to such areas as knowledge bases and artificial intelligence (AI},
computer-aided design (CAD), and office information systems {OIS). In order
to provide the additional semantics necessary to model these new applications,
many researchers have adopted the object-oriented programming paradigm to
serve as a data model. In order to use the object-oriented approach in a
database system, it was necessary to add persistence and sharability to the
object-oriented programming paradigm. Several database systems based on
this approach are under implementation. Therefore, object-oriented database
systems combine the strengths of object-oriented programming languages and

conventional database systems.

The object-oriented data models are more powerful than conventional
data models due to the support of inheritance in class hierarchies, composite
objects and new data types. The notions of inheritance and composite objects
are enormously important in supporting new database applications of Al, CAD,
and OIS. However, the object-oriented database schema is more complicated
than conventional database schemas because both class hierarchy and compos-
ite object structures are directed acyclic graphs (DAG). In this dissertation, we
examine various issues of object-oriented database schemas: schema evolution,
graphics schema editor, schema versioning, DAG rearrangement views, logical

design of object-oriented database schema, and subclassing.

The practical applications of object-oriented databases, such as CAD,
AX, and OIS, require the ability to dynamically make a wide variety of changes
to the database schema. This process is called schema evolution. We estab-

jish a consistent and complete framework of schema evolution. Based on our

framework, the MCC ODBS group implemented a schema manager within their

vi

prototype object-oriented database system, ORION. On top of the schema man-
ager of ORION, we implemented a graphical schema editor, PSYCHO.

We present a technique that enables users to manipulate schema versions
explicitly and maintain schema evolution histories in object-oriented database
environments. We also examine a new concept, DAG rearrangement views,
which are rearrangements of DAG structures of composite objects and class

hierarchies in object-oriented databases.

Since schema evolution is closely related with the logical design of data-
base schema, we investigate the logical design of object-oriented database
schema. We establish a unified framework for the logical design of object-
oriented database schema by synthesizing research results of the areas such as
AT knowledge representation, database dependency theory, Al theorem prov-
ing, and graph algorithms. Finally, we elaborate on subclassing which is the

most frequently used schema change operation.

vii

CONTENTS 3.2 Graphics Schema Editor PSYCHO R

3.2.1 System Structure of PSYCHO/ORION Environment 72

Acknowledgements 0 o .. AR 17 3.2.2 Overall Structure of PSYCHO R 1
Abstract e ..o 3.23 PSYCHO Facilities16
Contents e e e e e e e Lo .. vidl 3.2.4 Object-Oriented Implementation, 95
1 Introduction e L 1 3.25 Discussion L. I X
1.1 Overview and Motivation 1 4 Schema Versions« . .« 104
1.2 Object-Oriented Data Models 5 4.1 Motivation . . . P £ ¢
1.1.1 Core Concepts 5 4.2 Introduction to Our Approach P & 1¢]

1.1.2 The ORION Data Model 7 4.3 Schema Version Semantics L. L. L 112

1.3 Sequence of Presentation17 4.4 Integration with Chou and Kim’s ()b)ect Version Model 121

2 Schema Evolution . . . o o o 18 4.5 Operational Interface 130
2.1 The Schema Evolution Framework18 4.6 Related Work 18D
2.1.1 Invariants of Consistent Schemas19 5 DAG Rearrangement Views 135

2.1.2 Schema Transformation Rules« + .«20 5.1 Motivation of DAG Rearrangement Views 135

2.1.3 Taxonomy of Schema Change Operation 26 5.2 DAG Rearrangement Views on Composite Objects 136

2.1.4 Semantics of Schema Change Operation 33 5.3 DAG Rearrangement Views on Class Hierarchies 145

2.1.5 Impacts of Schema Changes on Existing Instances 39 5.4 Operational Interface 154

99 PIG: The Formal Model« v v v v v o43 6 Logical Design of Object-Oriented Database Schema . . . 156
2.2.1 Motivation behind PIG43 6.1 The Unified Framework 156
2.2.2 Basic Concepts of PIG« . .«45 6.1.1 Type Subsumption Problem 1863

2.2.3 Operations of PIG R 1+ 6.1.2 Constraint Membership Problem 168

2.9.4 Soundness and Completeness of PIG59 6.1.3 Undesirable Property Detection Problem 174

2.3 Related Works . . v o v v v e e 64 6.2 The Framework and the ORION Data Model 179
2.3.1 Data Base Restructuring « . «64 6.3 The Framework and the ORION Schema Evolution Model . . . 181

2.3.2 Penny and Stein R 7 More on Subclassing P i1

2.3.3 Fishman,etal.66 7.1 Taxonomy of Subclassings 184

3 Schema Manager and Graphics Schema Editor 68 7.2 Subclassings and Subclassing Conditions 188
3.1 Schema Manager of the ORION System68 7.3 Subclassing Condition Management 200

' 3.1.1 System-Defined Classes for the Schemas 68 7.4 Properties of Subclassing Conditions 205
3.1.2 Schema Evolution without a Database Reorganization . 69 7.5 Applications of Subclassing Conditions 206

viii X

7.6 Desubclassing
8 Future Directions .

8.1 Schema Evolution .
8.1.1 Method Conversion . . e e e
8.1.2 Grouping Schema Change Operations .
8.1.3 Concurrency Control
8.1.4 Authorization

8.2 The Formal Model PIG

8.3 Towards an Integrated Graphical Environment .

8.4 Schema Versions .

8.5 DAG Rearrangement Views

8.6 Predicate Manager

9 Summary and Discussion .

9.1 Thesis Summary

9.2 Discussion: What Is Really An Object-Oriented Database? .

Bibliography

209
211

211
212
212
212
213
213
214
215
215
216
216
219
222

Chapter 1
Introduction

1.1 Overview and Motivation

The successful use of database management systems in data-processing appli-
cations has created a substantial amount of interest in applying database tech-
niques to such areas as knowledge bases and artificial intelligence (Al) [SB86,
Weid86), computer-aided design {CAD) [AKMP86, KLW87, Zdo85}, and of-
fice information systems (OIS) [ABHS5, Ahls84, IEEE85, WKL86, WKS87a,
WKB87b]. In order to provide the additional semantics necessary to model
these new applications, many researchers, have adopted the object-oriented
programming paradigm to serve as a data model [{Gold81, GR83, BS83, CA84,
Rowe86a, Symb84]. In order to use the object-oriented approach in a data-
base system, it was necessary to add persistence and sharability to the object-
oriented programming paradigm. Several database systems based on this ap-
proach are under implementation [K'TKB88, PSM87|, including GEMSTONE
[MOP85, MSOP86, Serv8s], IRIS [Fish87], and ORION [Ban87]. Therefore,
object-oriented database systems combine the strengths of object-oriented pro-

gramming languages and conventional database systems.

Object-oriented data models are more powerful than conventional data
models due to the support of elass hserarchies and composite objects. A class
can have one or more superclasses and also one or more subclasses. Thus, the
structure of a class hierarchy is essentially a directed acyclic graph (DAG). 4
class hierarchy captures the IS-A relationship between a class and its subclass.
All subclasses of a class inherit all of the properties defined for the class, and
can have additional properties local to them. The notion of property inheri-
tance along the hierarchy facilitates top-down design of the database as well as
applications. The notion of composite object explicitly captures the IS-PART-
OF relationship: a composite object is a collection of related objects that form
a hierarchical structure that captures the IS-PART-OF relationship among the

objects. As we will show later, the structure of composite object schema is a
directed acyclic graph (DAG), but the structure of an instance of composite
object is strictly hierarchical (tree). The notions of inheritance and composite
object are enormously important in supporting new database applications of
Al, CAD, and OIS. However, the object-oriented database schema is more com-
plicated than conventional database schemas because both the class hierarchy

and the composite object structure are DAGs.

In this dissertation, we investigate various issues of object-oriented data-
base schemas, such as schema evolution, graphics schema editor, schema ver-
stoning, DAG rearrangement views, logical design of object-oriented database
schema, and subclassing. Coping with these issues includes solving theoreti-
cally and practically non-trivial problems which stem from the complexity of
object-oriented database schemas and the requirements of new database appli-

cations.

Schema Evolution [BKKK88, BKKK87, Ban87, KK86]: One of
the important requirements of non-traditional applications such as CAD/CAM,
Al, and OIS is schema evolution, that is, the ability to make a wide variety of
changes to the database schema dynamically. There are several applications to
which schema evolution is essential: (1) in a CAD environment, the users tend
to arrive at the schema for design objects through trial and error [WKL86],
(2) it is important for a design database to be able to deal with change at
all levels including the schema level [SZ86], and (3) in expert or knowledge
based systems of Al, when new knowledge is acquired, the new knowledge may
require the addition of new relationships, new structures, or revisions to existing
structures to maintain a valid representation [IRA83]. We provide a consistent
and complete framework of schema evolution in object-oriented databases and
the framework was realized in an object-oriented database system, ORION
at MCC {Microelectronics and Computer Technology Corporation). We show
the soundness and completeness of our schema evolution framework through a

formal model, PIG (Property Inheritance Graph).

Graphics Schema Editor [KK88b]: Based on the schema evolu-
tion framework, the MCC ODBS group implemented a schema manager within
their prototype object-oriented database system, ORION. Schema modifica-
tions using line-oriented interaction are difficult for the user to manage if class
hierarchies are complicated. The difficulty is even greater because there are
a large number of types of schema modifications. We have designed and im-
plemented a graphical interface PSYCHO (Pictorial Schema-editor Yielding
Class Hierarchies and Qbjects) on top of the ORION system for the fol-
lowing purposes: (1) A user-friendly interface of the schema management of
ORION, (2) A tool for empirically validating the correctness and usefulness of
the ORION schema evolution framework. We discuss the use of PSYCHO and
its implementation.

Schema Versioning [KX88c]: As we mentioned earlier, one of the
important requirements of non-traditional database applications such as CAD,
Al, and OIS is the support of application evolution. Application evolution
includes evolution of object schemas as well as evolution of objects in the ap-
plication. In the schema evolution framework, it is assumed that whenever a
schema definition is updated, the previous schema is changed to a new one and
existing object instances are modified in order to comply with the new schema
(i.e., overriding the previous schema and its instances). We extend our schema
evolution framework by allowing schema versions in object-oriented databases.
Even though there has been a substantial amount of research on object ver-
sioning, the issue of schema versioning has not been addressed in the database
literature. We present a technique that enables users to manipulate schema
versions explicitly and maintain schema evolution histories in object-oriented
database environment. Our solution for schema versions is consistent with our
schema evolution framework, guarantees minimum storage redundancy and al-
lows us to get around the problem of update anomaly. We define semantics of
schema versions. For our schema version model to be complete, we integrate
our model with the object version model formulated by H.T. Chou and W. Kim
[CKS86).

DAG Rearrangement Views [KK88c]: As we mentioned above, two
distinct notions in object-oriented data models are composite objects and class
hierarchies. The semantics of the two notions are captured in directed acyclic
graphs {DAG). Most of the applications in object-oriented databases assume
a group of cooperative workers (i.e., team) who are sharing the same objects.
However, users may not need to see the whole database and objects in it. They
would like to see only relevant parts of composite objects and relevant classes of
class hierarchies which are necessary to their applications. This premise gives
rise to the notion of DA G Rearrangement Views. We identify new types of DAG
rearrangement views of composite objects and class hierarchies. We present sets
of useful operators for defining DAG rearrangement views of composite objects
and class hierarchies respectively. We identify sets of composite object views
with the property that queries on the views are processable on instances of
the original composite object schema. We also discuss how instances would be

viewed and reorganized in DAG rearrangement views of class hierarchies.

The logical design of object-oriented database schema [KK88al:
The logical design of object-oriented database schema has not been fully under-
stood in the database literature. Schema evolution is closely related with the
logical design of object-oriented database schema. Class hierarchy design is the
main theme of schema design for object-oriented databases. We establish a vni-
fied framework for logical database design for object-oriented database schema
by synthesizing research results from the areas of Al knowledge representation,
database dependency theory, Al theorem proving, and graph algorithms. We
revisit the ORION data model and the ORION schema evolution model from
the viewpoint of the unified framework of object-oriented database design that

we establish.

Subclassing [KK88a]: We pay special attention to subclassing (cre-
ating a new subclass from a class) which is the most frequently used schema
change operation. A new class needs to be created from a class when a new
concept, which cannot be accommodated in the existing classes, has to be in-

troduced. Most subclassings that are motivated from imposing restrictions on

instance variables of a parent class are accompanied by associated constraints,
called subclassing conditions, which are predicate expressions on instance vari-
ables. We present the results of our research into various issues of subclassing:
First, we present a taxonomy of subclassing and the semantics of each case.
Second, we address the issue of subclassing condition management because
most subclassings are accompanied by subclassing conditions. As a database
and schema grow in size and complexity, it is very difficult to maintain consis-
tent class hierarchies without taking advantage of subclassing conditions. We
also consider the inverse operation of subclassing, desubclassing (dropping an
existing class). Third, subclassing conditions are useful in many applications
of object-oriented databases. We identify those applications and introduce the

techniques of applying subclassing conditions to the applications.

1.2 Object-Oriented Data Models

In this section we review the core concepts of object-oriented data models. The
ORION data model is the base data model for this dissertation. The results
of this dissertation can be applied to most mainstream object-oriented data
models because the ORION data model includes the usual core concepts of
object-oriented data models. Besides the core concepts, we also indicate some
assumptions or conventions in the ORION data model which are necessary in
the rest of the dissertation. The full description of the ORION data model is

available elsewhere [Ban87].

1.2.1 Core Concepts

Object-oriented data models [Ban87, MOP86, Fish87] support the usual fea-
tures of object-oriented languages, including the notions of classes, subclasses,
class hierarchies, and objects. Each entity in a database is an object. Objects
include instance variables that describe the state of the object. The value of
an instance variable may itself be an object with its own internal state, or it
m‘ay be a primitive object such as integers and strings which have no instance

variables. Objects also include methods which contain code used to manipulate

the object or to return part of their state. These methods are invoked from
outside the object by means of messages. Thus, the public interface of an object

is a collection of messages to which the object responds by returning an object.

Although each object has its own set of instance variables and methods,
several objects may have the same types of instance variables and the same
methods. Such objects are grouped into a class and are said to be instances
of the class. Usually each instance of a class has its own instance variables.
If, however, all instances must have the same value for some instance variable,
that variable is called a shared-value variable. A default value can be defined
for a variable. This value is assigned to all instances for which a value is not
specified. Such variables are called default-valued variables. The domain of an
instance variable is a class. The domain of an instance variable is to be bound

to a specific class and all subclasses of the class.

Similar classes are grouped together into a class hierarchy. The result is
a directed acyclic graph (DAG) containing an edge from C; to Oy, i.e., (Cy,Cy)
if class Cy is a superclass of C3. A class inherits properties (instance variables
and methods) from its immediate superclasses, and thus, inductively, from
every class from which a path exists to it. The class-superclass relationship
{C1,Cs) is an “ISA” relationship in the sense that every instance of a class
is also an instance of the superclass. Using the terminology of the extended
entity-relationship model (see, e.g., [KS86]), we say that C, is a generalization

of Cy and C, is a specsalization of C,.

Because we allow the use of a DAG to represent the ISA relationship
among classes, it is possible for a class to inherit properties from several su-
perclasses. This is called multiple snheritance |GR&83, $B86]. This leads to
possible naming conflicts between properties inherited from superclasses. An-
other source of conflict is the possibility that a locally-defined class variable
or method has the same name as an inherited property. These conflicts are
resolved by giving the local definition precedence. Other conflicts are resolved

based upon a user-supplied total ordering of the superclasses. This ordering can

be changed at any time by the user. Furthermore, the user may override the
default conflict resolution scheme either by renaming or by explicitly choosing

the property to be inherited.

1.2.2 The ORION Data Model

Instances with One and Only One Type

The inheritance mechanism causes inclusion relationships among sets of in-
stances. For example, if a class S is a subclass of a class C, any instance of 8
is also an instance of C. These inclusion relationships should be maintained to

make ISA relationships among classes of a class hierarchy meaningful.

Even if an instance is logically a member of a class C and all of its
superclasses, the instance is not necessarily stored physically to C and C’s su-
perclasses in duplicate. There are two ways of positioning (physically storing)
instances in class hierarchies. One can allow an instance to (physically) be-
long to more than one class, or one can require that an instance (physically)
belong to one and only one class. While some object-oriented systems, such
as GALILEO [ACO85], ADAPLEX [SFL83], and TAXIS [MBW80}, follow the
former approach, others, such as ORION [Ban87], GEMSTONE [MOP86], and
COMMONLOOPS [Bob8s] follow the latter approach. The class hierarchies in

Figure 1.a and 1.b illustrate the former and latter approach respectively.

We believe that requiring instances to belong to one and only one class
is better in applications that involve many instances (i.e., data-intensive ap-
plications), since this reduces data redundancy. By allowing instances to be-
long to more than one class, storage waste and update costs are increased.
As shown in Figure l.a., if the user deletes an instance (e.g., H.J. Kim)
from the UNIVERSITY-PERSON, the system must also delete correspond-
ing instances from all subclasses of UNIVERSITY-PERSON, ie.,, GRAD-
STUDENT, STAFF, and TA, in order to keep the database in a consistent
and meaningful state. The same argument applies to insert and update op-

erations. One disadvantage of requiring instances to belong to one and only

OBJECT

{

Legend: UNIVERSITY-PERSON
a Name | Agel Salary
HJIKim {29 | $10000
R. Rama 127 180
M.Hurt 133 | $18000
M.Brown |42 | $56000
GRAD-STUDENT STAFF
Name | Age| Salary Name |Age |Salary |[Office
H.1Kim, 29 1810000 H.J Kim | 29 |$10000 | PAI02
- Ramal 27 180 M.Hurt | 33 |$18000 |PAI05
\ M.Brown | 42 1$56000 [TAY10
//\
TA PROFESSOR
Name | Agel Salary [Office Name |Age|Salary [Office
H.J.Kim | 291{$10000 {PAJO2 M.Brown| 42 [$56000 | TAY10
Figure 1.a: Instances belonging to more than one class
OBIJECT
UNIVERSITY-PERSON
["Name| Age | Salary J
GRAD-STUDENT STAFF
Name | Age| Salary Name | Age |Salary |Office
R.Rama | 27 | $0 M.Hurt | 33 [$18000 | PAIOS
TA PROFESSOR
Name | Agel Salary | Office Name 1AgelSalary 1Office
H.J.Kim!| 29 1310000 | PAIO2 M.Brown| 42 {$56000 | TAY10

Figure 1.b: Instances belonging to one and only one class

OBg ECT
I;gf:nd: VEHICLE
= id Owner | Weight
01 _1H.J.Kim | 3500
09 US-GOV | 500000

//\

NUCLEAR-VEHICLE

WATER-VEHICLE

Id | Owner |Weight | Reactor 14! Owner | Weight {Sneed
09 1US-GOV | 500000 | NR-10 09| US-GOV 500000 [400KT
(a)
OE}JECT
VEHICLE
1d Owner | Weight
01 H.1XKim | 3500
NUCLEAR-VEHICLE WATER—VEHICLE
12 !Owner] Welghtl Reactor]

NUCLEAR-WATER-VEHICLE

Id

Owner

Weight

Reactor

Speed.

09 {US-GOV]

500000

NR-10

400KT]

(b)

Figure 2: Modeling instances in VEHICLE database

one class is that the query language is more complicated (addressed in next

section); two types of retrieval and update operations are needed.

The difference between the two approaches can also be seen in Figure 2.
In Figure 2.a, the object 09 can belong to NUCLEAR-VEHICLE and WATER-
VEHICLE (and, of course, to VEHICLE), whereas in Figure 2.b, a new class,
called NUCLEAR-WATER-VEHICLE, must be created for storing the object

09 in a single class.

In this dissertation, we follow the approach in Figure 1.b and Figure 2.b
and assume that instances cannot (physically) belong to more than one class,
as in the ORION data model. In particular, this assumption influences the

semantics of schema versioning as we will show in Chapter 4.
Operations on Instances

The user’s view of a single class is similar a relational view. SQL-like query
languages (SELECT-FROM-WHERE type) can be adapted for object-oriented
databases. However, the inheritance mechanism and the assumption “an in-
stance can belong to one and only one class” (i.e., the approach in Figure 1.b)
force us to provide two kinds of SELECT, DELETE and UPDATE operations.
In this section we introduce a set of operations which are necessary under our

assumptions.

o SELECT-ONLY (instance variables) FROM (classes) WHERE (query
predicates): This type of query, when posed to a class C, causes a selection of
all instances of C that satisfy the query qualification. Instances of subclasses of
C, if any, are ignored. For example, the meaning of the query “SELECT-ONLY
* FROM GRAD-STUDENT?” is “retrieve all graduate students who are not a
TA”.

o SELECT-ALL (instance variables) FROM (classes) WHERE (query
predicates): In many cases, it may be desirable to retrieve instances of all

subclasses of a class as well as its own instances. SELECT-ALL type queries
are the same as SELECT-ONLY queries, except all instances of C and C’s

10

subclasses are evaluated. For example, the meaning of the query “SELECT-
ALL * FROM GRAD-STUDENT” is “retrieve all graduate students”.

o The properties of the SELECT-ONLY operation extend to the
DELETE-ONLY and UPDATE-ONLY operations, and the properties of the
SELECT-ALL operation extend to the DELETE-ALL and UPDATE-ALL op-

erations.

o INSERT (an instance) TO (a class): Inserting an instance into a par-
ticular class is straightforward as long as the type of the instance corresponds

to the class.

¢ MOVE (an instance) FROM (a class) TO (another class): During the
lifetime of a database, the role of an instance may evolve. For example, H.J.
Kim in Figure 1.a has four roles: T.A., GRADUATE-STUDENT, STAFF, and
UNIVERSITY-PERSON. Suppose H.J. Kim gets his PhD degree and takes a
teaching job at the same university. Now H.J. Kim has a different set of roles:
PROFESSOR, STAFF, and UNIVERSITY-PERSON, The instance H.J. Kim,
which belonged to T.A., should be moved from T.A. to PROFESSOR, using
the MOVE operation. When an instance is moved from a class to another class,
the user must provide appropriate values for the evolving instance. The MOVE
operation is an atomic operation subsuming both the INSERT and DELETE

operations.
Composite Object

The notion of composite objects explicitly captures the IS-PART-OF relation-
ship. A composite object is a hierarchical structure of related instances that cap-
tures the IS-PART-OF relationships between an object and its parents. {In the
literature, what we call composite objects have variously been called complex
objects {LP83, Lor84, Kim85b}, molecular aggregations |[BK85a], composite ob-
jects [Bob85, Kim87], and aggregation hierarchies [AtwoB5].) As such, most of

the object-oriented data models support the notion of composite objects.

11

12

OBJECT GENERAL

VEHICLE

~
~
~

L e o o e - -

WATER-VEHICLE SPECIFIC
MOTOR-VEHICLE

1
£

b

§

¥

3

4

]

i

:
NUCLEAR-VEHICLE |
i

¥

b

¥

1

1

1

i

'
4
¢
t
t
'
t
i
+
)
1
t
i
§
)
)
[
t
i

AUTO :
t
\
1
i
)
'
[
[
'
'

'
L v
RN
Sy 2
W
v

2DOOR 4DOOR SUBMARINE MORE SPECIFIC

Figure 3: VEHICLE Class Hierarchy

13

Legend:
is-part-of
————— o
BODY e = (CHASSIS
/' Chassis Year: String
," Interior: String Size: String
! Color: String Model: String
E
VEHICLE _.~" DRIVETRAIN
Body ' T Engine 77T Umeeeeenell ,
Drivetrain =~ 7~ Transmission /
Color: String) . /
1d: Integer . s /’
Manufacturer: String e o
_..--"7" 4BOLT
K e g ..éd I‘ngeg?r
/, ENGINE /, : ize: SBiring
//' Size: String J :
S Weight: Integer /) ;
(‘« Model: String ,/ s
n Bolt ~TTTTTTTTTT :
N . Nut ““““““““““““““““““ ”:>_ NUT
S Ay Integer
Y 1 Size: String
TRANSMISSION

Weight: Integer
Model: String
Sige: String
Bolt

Figure 4: VEHICLE composite object

A composite object has a single root object that references multiple
child objects, each through an instance variable. Each child object can in turn
reference its own child objects, again through instance variables. A parent
object ezclusively owns child objects; thus, the existence of child objects is
predicated on the existence of their parent. Child objects of an object are thus
dependent objects. The instances that constitute a composite object belong to
classes that are also organized in a DAG. This hierarchical collection of classes
is called a composite object schema. A composite object schema consists of a

single root class and a number of dependent classes.

We shall use a vehicle class hierarchy and a vehicle composite object as an
example in several chapters of the dissertation. The class hierarchy for vehicles
is shown in Figure 3: VEHICLE class has two subclasses MOTOR-VEHICLE
and WATER-VEHICLE, and, in turn, MOTOR-VEHICLE has AUTO and
NUCLEAR-VEHICLE as subclasses, and so on. In Figure 4, we illustrate a
composite object schema for vehicles. The classes that are connected by dotted
lines form the composite object schema. The root class is the class VEHI-
CLE. Through the instance variables Body and Drivetrain, vehicle instances
are linked to their dependent objects, which belong to the classes BODY and
DRIVETRAIN. The instances of BODY and DRIVETRAIN, in turn, are con-

nected to other dependent objects and so on.

We call instance variables such as Body and Drivetrain composite in-
stance variables, that serve as links to dependent classes. The link between
a class and the domain of a composite instance variable of a class is called @

composite link. The dotted lines in Figure 4 are a composite link.

WName Conflict Resolution

SmallTalk [Gold81] originally restricted a class to have only a single superclass,
thus limiting the class hierarchy to a tree (called single inheritance). Most
other object-oriented systems, as well as the recent version of SmallTalk, have
relaxed this restriction. In these systems (and in ORION}) a class can have more

than one superclass, generalizing the class hierarchy to a DAG {directed acyclic

14

15

VEHICLE

Vehicleld

Manufacturer

Weight

MOTORIZED-VEHICLE WATER-VEHICLE

Horsepower MinWaterLevel
FuelCapacity Size
TuelCategory
Size

NUCLEAR-POWERED-VEHICLE

Fuel

ReactorType

SUBMARINE

MaxDepth
Weight

Figure 5: Resolution of name conflicts among instance variables

graph). Since a class has multiple superclasses and thus inherits properties from
each of the superclasses. This feature is often referred to as multiple inheritance
[LMIS85, SB86)|.

Multiple inheritance simplifies data modeling and often requires fewer
classes to be specified than with single inheritance. However, it gives rise to
two types of conflicts in the names of instance variables and methods. One is
the conflict between a class and its superclass (this type of problem also arises
with single inheritance). Another is among the superclasses of a class; this is

purely a consequence of multiple inheritance.

Name conflicts between a class and its superclasses are resolved in all
systems we are aware of by giving precedence to the definition within the class
over that in its superclasses. For example, if the class definition for a class
AIRCRAFT specifies an instance variable Vehicleld, it is the definition used
for every AIRCRAFT instance. This definition overrides any definition that

may be inherited from any superclass.

The approach used in many systems to resolve name conflicts among
superclasses of a given class is as follows. If an instance variable or a method
with the same name appears in more than one superclass of a class C, the
one chosen by default is that of the first superclass in the list of (immedi-
ate) superclasses of C, which the application will have specified. For example,
as shown in Figure 5, the class SUBMARINE has to inherit an instance vari-
able Size either from the superclass WATER-VEHICLE (which defined Size) or
from NUCLEAR-POWERED-VEHICLE (which inherited Size from its super-
class MOTORIZED-VEHICLE). If in the definition of the class SUBMARINE,
NUCLEAR-POWERED-VEHICLE was specified as the first superclass, Size
will be inherited from NUCLEAR-POWERED-VEHICLE.

Since this default conflict resolution scheme hinges on the permutation of
the superclasses of a class, ORION allows the user to change this permutation
explicitly at any time. It also provides ways in which the user can override

the default conflict resolution, by explicitly inheriting an instance variable or

16

method of the user’s choice from a number of conflicting instance variables
or methods, or inheriting more than instance variables or methods by first

renaming them.

1.3 Sequence of Presentation

The remainder of the dissertation is organized as follows. Chapter 2 presents
schema evolution. The schema evolution framework for ORION is introduced in
Section 2.1. We discuss the soundness and completeness of the schema change
operations in our framework via a formal model, called Property Inheritance
Graph (PIG) in Section 2.2. In Chapter 3, after briefly mentioning the schema
manager of the ORION system, we discuss the use of PSYCHO and its im-
plementation. In Chapter 4, we investigate a technique that enables users to
deal with schema versions explicitly and maintain schema evolution histories
in object-oriented database environment. We also define semantics of schema
versioning operations. In Chapter 5, we study new type of views, called DAG
rearrangement views of class hierarchies and composite objects. We introduce a
set of operations for defining DAG rearrangement views and address the query
processing aspects of DAG rearrangement views. In Chapter 6, we establish
a unified framework for the logical design of object-oriented database schema
by synthesizing research results from the areas of Al knowledge representation,
database dependency theory, Al theorem proving, and graph algorithms. Fi-
nally, in Chapter 7, we elaborate on the most frequently used schema change

operation, subclassing. We deal with several issues pertaining to subclassing.

17

Chapter 2
Schema Evolution

In this chapter, we provide a schema evolution framework for object-oriented
databases. Portions of section 2.1 are due to Banerjee et al. [BKKK86,
BKKKS87). Section 2.2 is also available elsewhere [KK86]. In section 2.3, we

present related work pertaining to schema evolution.

2.1 The Schema Evolution Framework

In this section, we present our formal framework for schema evolution under
the ORION data model, and then, using the framework, define the semantics
of schema evolution in a systematic way. We emphasize that, although our
framework has been developed for the ORION data model, we believe that our
methodology for the development of the framework is applicable to most main-
stream object-oriented programming language systems and database systems.
This is because the ORION data model has incorporated all of the basic ob-
ject concepts for which there is a wide acceptance, and has enhanced the basic

object-oriented model with the notion of composite objects.

Since there are so many schema change operations, we need a framework
for defining consistent semantics of each of schema change operations. Our
formal framework consists of a set of properties of the schema called snvariants,

and a set of schema transformation rules.

The invariants must hold at every stable state of the schema, that is,
before and after a schema change operation. They guide the definition of the
semantics of every meaningful schema change, by ensuring that the change does
not leave the schema in an inconsistent state (one that violates any invariant).
However, in defining semantics of some schema change operations, there was
more than one way of preserving schema invariants. The set of rules that
we have guides the selection of one most meaningful way. Some rules reflect

our effort to avoid drastic changes due to schema changes to the database.

18

Therefore, we could derive globally consistent and meaningful semantics for
each of schema change operations by applying the sets of invariants and schema

transformation rules.

2.1.1 Invariants of Consistent Schemas

We have been able to identify five invariants of the object-oriented schema from
the ORION data model. They define the consistency requirements of the class

hierarchy under our data model.

Class Hierarchy Invariant

The class hierarchy is a single rooted and connected directed acyclic graph with
named nodes and labeled edges. This DAG has only one root, a system-defined
class called OBJECT. The DAG is connected, that is, there are no isolated
nodes. Every node is reachable from the root. Each node in the DAG has a
unique name. Edges are labeled so that all edges directed toward any given
node have distinct labels.

Distinct Name Invariant

All instance variables of a class, whether defined or inherited, have distinct
names. Similarly, all methods of a class, whether defined or inherited, must

have distinct names.

Distinct Identity (Origin) Invariant

All instance variables, and methods, of a class have distinct identity (class of
origin). For example, in Figure 5, the class SUBMARINFE can inherit the in-
stance variable Weight from either the class WATER-VEHICLE or NUCLEAR-
POWERED-VEHICLE. However, in both these superclasses, Weight has the
same origin, namely, the instance variable Weight of the class VEHICLE, where
Weight was originally defined. Therefore, the class SUBMARINE must have

only one occurrence of the instance variable Weight.

19

¥ull Inheritance Invariant

A class inherits all instance variables and methods from each of its superclasses,
except when full inheritance causes a violation of the distinct name and distinct
identity invariants. In other words, if two instance variables have distinct origin
but the same name in two different superclasses, at least one of them must be
inherited., If two instance variables have the same origin in two different super-
classes, only one of them must be inherited. For example, in Figure 5, SUBMA-
RINE must inherit Size, whether it is from NUCLEAR-POWERED-VEHICLE
or from WATER-VEHICLE, or even from both {by assigning new names, in
order to maintain the distinct name invariant). Further, SUBMARINE must
inherit Weight only once, from either NUCLEAR-POWERED-VEHICLE or
WATER-VEHICLE.

Domain Compatibility Invariant

If an instance variable V2 of a class C is inherited from an instance variable V1
of a superclass of €, then the domain of V2 is either the same as that of V1,
or a subclass of that of V1. For example, if the domain of the instance variable
Manufacturer in the VEHICLE class is the COMPANY class, then the domain
of Manufacturer in the MOTORIZED-VEHICLE class, a subclass of VEHI-
CLE, can be COMPANY or a subclass of COMPANY, say, MOTORIZED-
VEHICLE-COMPANY.

Another aspect of the domain compatibility invariant is that the shared
value or default value of an instance variable must be an instance of the class

that is the domain of that instance variable.

2.1.2 Schema Transformation Rules

A class hierarchy in a stable state must preserve all the invariants. For some
of the schema changes, however, there is more than one way to preserve the
invariants. For example, if there is a name conflict among instance variables

10 be inherited from superclasses, the full inheritance invariant requires that

20

at least one of the instance variables be inherited, but it does not say which.
In order to guide the selection of one option among many in an algorithmic
and meaningful way, we have established twelve essential rules, including some
which we have adopted from existing object-oriented systems. These rules
fall into four categories: default conflict resolution rules, property propagation

rules, DAG manipulation rules, and composite object rules.
Default Conflict Resoclution Rules

The following three rules permit the selection of a single inheritance option
whenever there is a name or identity conflict. They ensure that the distinct
name and distinct identity invariants are satisfied in a deterministic way. The
ORION user may, however, override these rules by explicit requests to resolve

conflicts differently.

Rule 1: If an instance variable is defined within a class C, and its name
is the same as that of an instance variable of one of its superclasses, the locally
defined instance variable is selected over that of the superclass. The same rule

applies to methods.

Rule 2: If two or more superclasses of a class C have instance variables
with the same name but distinct origin, the instance variable selected for in-
heritance is that from the first superclass (corresponding to the node with the
lowest numbered edge coming into C) among conflicting superclasses. If two
or more superclasses have methods with the same name, the method inherited

is from the first among conflicting superclasses.

Inheritance of methods with embedded references to inherited instance
variables and methods present an interesting problem. We will address this

problem in Section 4.2.

Rule 3: If two or more superclasses of a class C have instance variables
with the same origin, the instance variable with the most specialized (restricted)

domain is selected for inheritance. However, if the domains are the same, or if

21

one domain is not a superclass of the other, the instance variable inherited is

that of the first superclass among conflicting superclasses.

For example, in Figure 5, if the domain of Manufacturer of NUCLEAR-
POWERED-VEHICLE is COMPANY, and the domain of Manufacturer of
WATER-VEHICLE is WATER-VEHICLE-COMPANY which is a subclass of
COMPANY, the Manufacturer instance variable from the class SUBMARINE
is inherited from the class WATER-VEHICLE.

Property Propagation and Change Rules

The properties of an instance variable, once defined or inherited into a class,
can be modified in a number of ways. In particular, its name, domain, default
value, shared value, or the composite link property may be changed. Also,
an instance variable that is not shared-valued can be made shared-valued, or
vice versa. Further, the properties of a method belonging to a class may be
modified by changing its name or code. The following rule provides guidelines

for supporting all changes to the properties of instance variables and methods.

Rule 4; When the properties of an instance variable or method in a class
C are changed, the changes are propagated to all subclasses of C that inherited

them, unless these properties have been re-defined within the subclasses.

For example, if the instance variable Weight of the class VEHICLE has
its default value changed to 2000, then the same must be done to Weight in all
subclasses of VEHICLE. However, if Weight had earlier been assigned a new
default value of 1000 in the class MOTORIZED-VEHICLE (which is a sub-
class of VEHICLE), then MOTORIZED-VEHICLE will not accept the change.
Consequently, the change is not propagated to any subclass of MOTORIZED-
VEHICLE that inherited Weight from MOTORIZED-VEHICLE.

Rule 4 requires that changes to names of instance variables and methods
are also propagated. However, propagation of name changes or new instance
variables and methods in a class may introduce new conflicts in the subclasses.

We take the position that name changes are made primarily to resolve conflicts,

22

and as such should not introduce new conflicts. By a similar reasoning, we take
the view that new instance variables and methods that give rise to new conflicts

should not be propagated. Hence, we have the following rule, which modifies
Rule 4.

Rule 8: A newly added instance variable or method, or a name change
to an instance variable or method, is propagated to only those subclasses that
encounter no new name conflicts as a consequence of this schema modification.
A subclass that does not inherit this modification does not propagate it to its
own subclasses. For the purposes of propagation of changes to subclasses, Rule

5 overrides Rule 2.

Requests for changes to instance variables must sometimes be rejected.
In particular, in ORION the domain of an instance variable, once defined or
inherited, can be generalized, that is, changed to one of the superclasses on
its superclass chain, but cannot be specialized. Otherwise, the domain may be
incompatible with that of the shared value, default value, or the values in the
instances of the class. The domain may be generalized, but only to the extent
that the domain compatibility invariant is not violated. For example, the do-
main of Manufacturer in the class MOTORIZED-VEHICLE can be generalized
from MOTORIZED-VEHICLE-COMPANY to COMPANY (which is the do-
main of Manufacturer in the class VEHICLE}, but not to ORGANIZATION,
which is a superclass of COMPANY.

Rule 6 (Domain Change Rule): The domain of an instance variable
can only be generalized. Further, the domain of an inherited instance variable

cannot be generalized beyond the domain of the original instance variable.
DAG Manipulation Rules

We need a set of rules that govern the addition and deletion of nodes and edges
from the class hierarchy. First, the addition of an edge from node 4 to node

B on a class hierarchy means that class A is made a new superclass of class B.

23

The following rule ensures that drastic changes are avoided when a new edge

is added to a class hierarchy.

Rule 7 (Edge Addition Rule): If class A is made a superclass of class
B, then A becomes the last superclass of B. In other words, the edge from A
to B is assigned the highest label among all edges directed into B. Thus, any
name conflicts, that may be triggered by the addition of this superclass, can
be ignored. However, if a newly inherited instance variable causes an identity

conflict, Rule 3 must be applied to resolve it.

The deletion of an edge from node A to node B may cause node B to
become isolated, in the case that class A is the only superclass of class B.
The following rule is necessary to preserve the class hierarchy invariant, which

requires the DAG to be connected.

Rule 8 (Edge Removal Rule): If class A is the only superclass of
class B, and A is removed from the superclass list of B, then B is made an
immediate subclass of each of A’s superclasses. The ordering of these new

superclasses of B is the same as the ordering of superclasses of A.

A corollary to Rule 8 is that, if the root class OBJECT is the only
superclass of a class B, any attempt to remove the edge from OBJECT to B is
rejected. If the edge is removed, node B would become isolated, since OBJECT

has no superclass to which B may be linked as a new superclass.

The addition of a new node should not violate the class hierarchy invari-
ant. If the new node has no superclasses, it becomes an isolated node, violating

the class hierarchy invariant. Hence, we have the following rule.

Rule 9 (Node Addition Rule): If no superclasses are specified for a
newly added class, the root class OBJECT is the default superclass of the new

class.

Phe deletion of a node A is a three-step operation: First the deletion of

all edges from A to its subclasses; then the deletion of all edges directed into

24

A from its superclasses; and finally the deletion of node 4 itself. We need the

following rule to ensure the preservation of the class hierarchy invariant.

Rule 10 (Node Removal Rule): For the deletion of edges from class
A to its subclasses, Rule 8 is applied if any of the edges is the only edge to a

subclass of A. Further, any attempt to delete a system-defined class, such as
the class OBJECT, is rejected.

Composite Object Rules

A composite instance variable may be changed to a non-composite instance
variable, that is, it may lose the composite link property. However, we do
ot allow a non-composite instance variable to later acquire the composite link
property. The reason is that an object may be referenced by any number of
instances of a class through a non-composite instance variable, but a dependent
object of a composite object may be referenced by only one instance of a class
through a composite instance variable. To change a non-composite instance
variable to a composite instance variable, it is necessary to verify that existing
instances are not referenced by more than one instance through the instance
variable. This in turn makes it necessary to maintain a list of reference counts
with each object, one reference count for each instance variable through which
the object may be referenced. We avoid this complexity in ORION by not
permitting a non-composite instance variable to be changed to a composite

instance variable.

Rule 11 (Composite Link Rule): The composite link property may
be dropped from a composite instance variable; however, it may not be added

{0 a non-composite instance variable.

The integrity of a composite object lies in the fact that all dependent
objects owe their existence to their parents. In particular, if a parent object
is deleted, all its dependent objects are deleted; and if a parent object loses a
composite instance variable, the dependent object referenced is deleted. How-

ever, we allow objects to disown their dependents, if their composite instance

26

variables are changed to non-composite. Disowned objects are not deleted when
their previous parents are deleted, since they are no longer dependent on the

existence of their previous parents. Hence we have the following rule:

Rule 12: If a composite instance variable of an object X is changed to
a non-composite, X disowns object Y which it references through the instance
variable. The object X continues to reference the object Y; however, deletion
of X will not cause Y also to be deleted.

2.1.8 Tazonomy of Schema Change Operation

In this subsection, we classify all schema change operation in our framework,
and define the semantics of schema changes, using our schema evolution invari-
ants and rules. Changes to the class hierarchy can be broadly categorized as
{1) changes to the contents of a node, (2) changes to an edge, and {3) changes

to a node. Our schema change taxonomy is as follows:
(1) Changes to the contents of a node (a class)
(1.1} Changes to an instance variable
{(1.1.1) Add a new instance variable to a class
(1.1.2) Drop an existing instance variable from a class
{1.1.3) Change the name of an instance variable of a class
{1.1.4) Change the domain of an instance variable of a class
{1.1.5) Change the inheritance (parent) of an instance variable
(inherit another instance variable with the same name)
(1.1.6) Change the default value of an instance variable
(1.1.7) Manipulate the shared value of an instance variable

(1.1.7.1) Add a shared value

(1.1.7.2) Change the shared value

27

{1.1.7.3) Drop the shared value
(1.1.8) Drop the composite link property of an instance variable
{1.2) Changes to a method
(1.2.1) Add a new method to a class
(1.2.2) Drop an existing method from a class
(1.2.3) Change the name of a method of a class
(1.2.4) Change the code of a method in a class
{1.2.5) Change the inheritance (parent} of a method
(inherit another method with the same name)
(2) Changes to an edge
{2.1) Make a class S a superclass of a class C
(2.2) Remove a class 5 from the superclass list of a class C
(2.3) Change the order of superclasses of a class C
{3) Changes to a node
(3.1) Add a new class
(3.2) Drop an existing class
(3.3) Change the name of a class

We below provide the semantics of the schema change operations in-
formally. Then, in the next section, we precisely define the semantics of each
schema change operation by showing how the schema transformation rules are

applied to maintain the schema evolution invariants.
(1) Changes to the contents of a node

(1.1) Changes to an instance variable

{1.1.1) Add a new instance variable to a class C: The new instance
variable, in case of a conflict with an already inherited instance variable,
will override the inherited instance variable. In that case, the inherited
variable must be dropped from C, and replaced with the new instance
variable; existing instances of C will take on the value nil or the user-

specified default value for the new instance variable.

If ¢ has subclasses, they will inherit the new instance variable of C. If
there is a conflict with an inherited variable they have already defined or
inherited, the new instance variable is ignored. If there is no conflict, the
subclasses will inherit the new variable, together with a default value, if
any.

{1.1.2) Drop an instance variable V from a class C: The instance
variable V is dropped from the definition (and from the instances) of
the elass C. C may inherit V from another superclass, if there had been
a name conflict involving V. All subclasses of C will also be affected if
they had inherited V from C. In case V must be dropped from C or
any of its subclasses without a replacement, existing instances of these

classes lose their values for V.

{1.1.3) Change the name of an instance variable V to V' of a
class C; We take the view that name changes are made primarily to
resolve conflicts, and as such they should not introduce new conflicts.
Therefore, if a name change causes any conflict within the class C, the
change is rejected. If the name change is accepted, it is propagated to
subclasses of C that have inherited from V of C. The name change is
required to be propagated only if V' does not give rise to new conflicts
in the subclasses. Further, name change propagation is inhibited in
the subclasses that have explicitly changed the name of their inherited

instance variable V.

(1.1.4) Change the domain of an instance variable V of a class

C: The domain of an instance variable is itself a class. The domain,

28

(say, class D) of an instance variable V of a class C, may be changed
only to a superclass of D. The values of existing instances of the class
C are not affected in any way. If the domain of an instance variable
V must be changed in any other way, V must be dropped, and a new

instance variable must be added in its place.

(1.1.5) Change the inheritance (parent) of an instance variable:
(Inherit a different instance variable with the same name) As discussed
earlier, if two or more superclasses of a class C have an identically named
variable (either through inheritance or local definition), the system se-
lects only one of them for inheritance by C, based on the order in which
the superclasses have become associated with C. The user can explicitly

override this default.

If class C has instances, the present values of the conflicting instance
variable V must be dropped, and replaced by any default value under
the new definition. If C has subclasses which had inherited V, they will
now inherit the new definition. Consequently, their instances will be

subjected to the same changes as those for the instances of C.

(1.1.8) Change the default value of an instance variable V of a
class C: All instances of C that have no value supplied for the variable
V already have a default value or nil. They will now get the new default
value. If there exists any subclass of C which had inherited V' from
¢, it must also inherit this new default value, unless that subclass has

redefined the default value of V.
(1.1.7) Manipulate the shared value of an instance variable

(1.1.7.1) Add the shared value of an instance variable V of a
class C: This operation converts a non-shared-value instance variable V
to a shared-value instance variable. If V already had a shared value, then
all instances of the class C receive the new value. If V was not previously

a shared-value variable, it now becomes one, and all instances of C will

29

take on this new value, dropping any existing values for V in existing

instances of C.

1f ¢ has subclasses which had inherited V, they will now inherit the new

shared value of V, unless they have redefined the value.

{1.1.7.2) Change the shared value of an instance variable V of
a class C: This operation replaces the shared value of V with a new
one. If C has subclasses which had inherited V, they will now inherit

the new shared value of V, unless they have redefined the value.

(1.1.7.3) Drop the shared value of an instance variable V of
a clags C: This operation changes a shared-value instance variable V
to » non-shared one. V will now have a default value of nil. If C has
subclasses which had inherited V, they will now drop the shared value

of V, unless they have redefined the shared value.

{1.1.8) Drop the composite link property of an instance vari-
able: This operation changes the composite link property of an instance
variable V of a class C to non-composite. the change is propagated to
the subclasses of C.

(1.2) Changes to a method

(1.2.1) Add a new method to a class: The semantics for this oper-
ation is easily inferred from the operation (1.1.1) ‘Add a new instance

variable to a class’.

(1.2.2) Drop an existing method from a class: The semantics
for this operation is easily inferred from the operation (1.1.2) ‘Drop an

existing method from a class’.

(1.2.3) Change the name of a method of a class: The semantics
for this operation is easily inferred from the operation {1.1.3) ‘Change

the name of an instance variable of a class’.

30

(1.2.4) Change the code of a method in a class: The semantics
for this operation is easily inferred from the operation {1.1.4) ‘Change

the domain of an instance variable of a class’.

(1.2.5) Change the inheritance (parent) of a method: The se-
mantics for this operation is easily inferred from the operation (1.1.5)

‘Change the inheritance of an instance variable’.

(2) Changes to an edge

(2.1) Make a class S a superclass of a class C: Class § is made
the last superclass in the list of superclasses of ¢. C will now inherit
the variables and methods from S. If this causes any name conflict, the
system will ignore the instance variable (or method) of 5 in conflict, be-
cause C must already have inherited the conflicting variable (or method)
from some of its current superclasses. The user may explicitly specify

alternate conflict resolution.

If C has subclasses, immediate or indirect, they also inherit instance
variables and methods from S. Such inheritance may cause new name
conflicts, but they will also be ignored. (Once again, the user may

explicitly specify conflict resqlutions that will override the default.)

Class C and its subclasses may have existing instances. Since the in-
stance variables they inherit from § are new to these instances, they

appear in the instances with the value nil or any default value specified.

(2.2) Remove a class S as a superclass of the class C: The
variables (or methods) inherited from § are dropped from the definition
of C. C may newly inherit the dropped instance variables (or methods)
from other superclasses, if there had been name conflicts involving them.
The instances of C are also modified as discussed earlier for the dropping
of a class. All subclasses of C will also be affected similarly if they had

inherited variables (or methods) from § via C.

31

(2.8) Change the order of the superclasses of a class C: This
alters the default conflict resolution with respect to the class C. Con-
flicting variables and methods will now be inherited according to the
new permutation of superclasses. If the definition of a variable changes
because of this new permutation, existing instances of class C will be
affected as well. The value that each of the affected variable takes on is
the default value under the new definition. Subclasses of C are affected

similarly.

(8) Changes to a node

(8.1) Define a new class C: The new class C may be created as a
specialization of an existing class or classes. These latter classes can be
specified as the superclasses of the new class. The variables (or meth-
ods) specified for C will override any conflicting instance variables (or
methods) inherited from the superclasses. If there is a name conflict in-
volving the variables {or methods) that C inherits from its superclasses,

default conflict resolution is used, unless the user explicitly overrides it.

The class C may also be defined without any superclasses. In this case,
C is made a subclass of OBJECT which is a system defined class. Con-
ceptually the OBJECT class is a root node of every class hierarchy. The
user may, at a later time, add superclasses for C, in which case OBJECT

will no longer be an immediate superclass of C.

{8.2) Drop a class C: Whenever a class definition is dropped, all its
instances are deleted automatically, since instances cannot exist outside
of a class. However, subclasses of O, if any, are not dropped. Subclasses
of C will lose C as their superclass; however, they will gain C’s super-
classes as their immediate superclasses directly. Further, when a class
C is dropped, its subclasses will lose the instance variables and meth-
ods they had previously inherited directly from C. I, in the process, a
subclass of C loses a variable V (or a method) which was selected over

a conflicting variable in another superclass of that subclass, it will now

32

inherit the alternative definition of V. Consequently, the instances of
any such subclass will lose their present values for V, and inherit the

default value {or nil) under the new definition of V.

When an instance of the class C is deleted, all objects that reference
it will now be referencing a non-existent object. The user will need
to modify those references when they are encountered. References to
non-existent objects will not be automatically identified because of the

performance overhead.

If the class C being dropped is presently the domain of an instance
variable V1 of some other class, V 1’s domain becomes the first superclass
of the class C. Of course, the user has the choice of specifying a new

domain for V1.

(3.3) Change the name of a class: If the new name is unique among
all class names in the class hierarchy, the name change is allowed. This

name change is not propagated.

2.1.4 Semantics of Schema Change Operation

We now define the semantics of each of schema change operation, while show-
ing how the schema transformation rules are applied to maintain the schema
evolution invariants. In the next section, we analyze the effect of each schema

change operation on existing instances.
(1) Changes to the contents of a node
(1.1) Changes to an instance variable

(1.1.1) Add a new instance variable V to a class C: Suppose first
that the new instance variable V causes no new conflicts in the class C
or any of its subclasses. The full inheritance invariant requires V to be
inherited by all subclasses of C. Since the instance variable is new, there

can be no new identity conflicts, unless there are two or more paths from

33

¢ to any of its subclasses, in which case Rule 3 is used to preserve the

distinct identity invariant.

If the new instance variable causes a name conflict with an inherited
instance variable, by Rule 1 the new instance variable will override the
inherited instance variable. If the old instance variable was also locally
defined in C, it is replaced by the new definition. In any case, the
new instance variable is propagated to all subclasses of C. If there is a
name conflict in a subclass, the new instance variable is not inherited
{Rule 5). This does not violate the full inheritance invariant, since the
subclass already contains an instance variable of the same name. Once
the new instance variable ¥V is added to C or any of its subclasses,
existing instances of the class receive the user-specified default value, if
there is one, or the nil value. (The existing instances are not updated at
the time of schema change. We will describe our actual implementation
in Section 4.1.2.)

(1.1.2) Drop an lnstance variable V from a class C: V must
have been defined in the class C; it is not possible to drop an inherited
instance variable. If V is dropped from C, it must also be dropped
recursively from the subclasses that inherited it (Rule 4). If C or any
of its subclasses has other superclasses that have instance variables of
the same name as that of V, it inherits one of those instance variables.
This is a consequence of the full inheritance invariant. The default
conflict resolution rules (Rules 1, 2, and 3) are used to determine which
new instance variable to inherit. The necessary change in inheritance
is handled as in operation 1.1.5 (to be described shortly}. In case V
must be dropped from C or any of its subclasses without a replacement,
existing instances of these classes lose their values for V. (Again, the
existing instances are not updated at the time of schema change, as we

will show in Section 4.1.2.)

(1.1.3) Change the name of an instance variable V of a class

34

C: We take the view that name changes are made primarily to resolve
conflicts, and as such they should not introduce new conflicts. Therefore,
if a name change causes any conflict within the class C, the change is
rejected. If the name change is accepted, it is propagated to subclasses
of C that have inherited V from C. Rule 5 requires the name change
to be propagated only if it does not give rise to new conflicts in the
subclasses. Further, by Rule 4, name change propagation is inhibited in
the subclasses that have explicitly changed the name of their inherited

instance variable V.

(1.1.4) Change the domain of an instance variable V of a class
C: By Rule 6, the domain of an existing instance variable can only
be generalized; further, the domain compatibility invariant must not be
violated. The propagation of the domain change in C to the subclasses of
C is governed by Rule 4. Thus, domain change propagation is inhibited
in those subclasses that have explicitly changed the domain of their

inherited instance variable V.

(1.1.5) Change the inheritance of an instance variable V of a
class O: This change requires that an instance variable V', presently
inherited from a superclass §1, be inherited from another superclass
S$9. Let us refer to the instance variable in S1 as V1, and that in §2 as
V2. Of course, V1 and V2 have the same name or the same origin {or
both). If V1 and V2 have distinct origins, the change of inheritance in
C results in the dropping of the present instance variable inherited from
S$1, and the addition of the instance variable from §2. These operations

are also propagated to the subclasses of C.

If V1 and V2 have the same origin, we need to consider two cases. It
the domain of V2 is the same as that of V1, or V2 is a superclass of
the domain of V1, the properties {(domain, parent, default, shared) of

V1 are changed and the changes are propagated according to Rule 4.

35

Otherwise, V1 and V2 are treated as if they have distinct origins; that
is, V'1 is dropped from C, and V2 is added to C.

(1.1.8) Change the default value of an jnstance variable V of a
class O: The default value of every instance variable is either explicitly
specified in the schema, or is the nil value. Adding a new default value
to an instance variable V is equivalent to changing its value from the nil
value to a non-nil value. Dropping the default value of V' is equivalent to
changing the value to nil. The domain compatibility invariant requires
that the changed default value of V should be an instance of the domain
of V. Propagation of the changed default value to the subclasses of C is

governed by Rule 4.
(1.1.7) Manipulate the shared value of an instance variable

(1.1.7.1) Add a new shared value for an instance variable V of a
class C: This operation converts a non-shared-value instance variable V
to a shared-value instance variable. The domain compatibility invariant
requires that the shared value of V should be an instance of the domain
of V. Propagation of the new shared value to the subclasses of C is

governed by Rule 4.

{1.1.7.2) Change a shared value for an instance variable V of
a class C: The new shared value should be within the domain of V
so that the domain compatibility invariant is preserved. Propagation of

this new shared value to the subclasses of C is governed by Rule 4.

{1.1.7.3) Drop a shared value for an instance variable V of a
clags C: This operation changes a shared-value instance variable V to
a non-shared one. V will now have a default value of nil. Propagation

of this change to the subclasses of C is governed by Rule 4.

(1.1.8) Drop the composite link property of an instance vari-
able: A composite instance variable may be changed to non-composite,
but not vice versa (Rule 11). When the composite link property of an

instance variable V of a class C is changed to non-composite, the change
is propagated to the subclasses of C. Further, by Rule 12, instances of
C and its subclasses disown the objects they reference through V.

(1.2) Changes to a method

(1.2.1) Add a new method to a class: Therulesto apply for deriving
the semantics of this operation are easily inferred from the operation

(1.1.1) ‘Add a new instance variable to a class’.

(1.2.2) Drop an existing method from a class: The rules to apply
for deriving the semantics of this operation are easily inferred from the

operation (1.1.2) ‘Drop an existing method from a class’.

(1.2.3) Change the name of a method of a class: The rules to
apply for deriving the semantics of this operation are easily inferred
from the operation (1.1.3) ‘Change the name of an instance variable of

a class’.

(1.2.4) Change the code of a method in a class: The rules to apply
for deriving the semantics of this operation are easily inferred from the

operation (1.1.4) ‘Change the domain of an instance variable of a class’.

(1.2.5) Change the inheritance (parent) of a method: The rules
to apply for deriving the semantics of this operation are easily inferred

from the operation (1.1.5) ‘Change the inheritance of an instance vari-
able’.

(2) Changes to an edge

(2.1) Make a class § a superclass of a class C: To preserve the
class hierarchy invariant, the addition of a new edge from S to C must
not introduce a cycle in the class hierarchy. C and its subclasses inherit
instance variables and methods from § in accordance with Rule 7. In

case of identity conflicts during the propagation of instance variables to

the subclasses of €, Rule 3 is applied. Operations 1.1.1 and 1.2.1 are

applied, respectively, to add instance variables and methods of S to C.

{2.2) Remove a class S from the superclass list of a class C: To
preserve the class hierarchy invariant, the deletion of an edge from §
to € must not cause the class hierarchy DAG to become disconnected.
In case S is the only superclass of C, Rule 8 is applied; the immediate
superclasses of S now become the immediate superclasses of C as well,
while the ordering of these superclasses with respect to S remains the
same for C. Thus, C does not lose any instance variables or methods that
were inherited from the superclasses of . C only loses those instance
variables and methods that were defined in 5. If the deletion of the edge
from § to € does not leave the DAG disconnected, C is left with one
fewer superclasses, and it must drop the instances variables and meth-
ods it had inherited from $. The operations for dropping an instance
variable (operation 1.1.2) and a method (operation 1.2.2) are applied,
respectively, for each instance variable and method to be dropped from
C.

(2.8) Change the order of superclasses of a class C: This op-
eration causes a complete re-evaluation of the inheritance of instance
variables and methods in C, in accordance with Rules 1, 2, and 3. In
particular, instance variables and methods that partake in name con-
ficts may have to be replaced by others in accordance with the default
conflict resolution rules. Any change in inheritance is then handled as

in operations 1.1.5 and 1.2.5.

(3) Changes to a node

(3.1) Add a new class C: If no superclasses of C are specified, by
Rule 9 the class OBJECT becomes the superclass of C. If multiple
superclasses are specified, the full inheritance invariant requires all in-

stance variables and methods from all superclasses of C to be inherited,

38

unless there are name or identity conflicts. If there are any such con-
flicts, the default conflict resolution rules (Rules 1, 2, and 3) are used to
preserve the distinct name and distinct identity invariants.

(8.2) Drop an existing class C: All edges from C to its subclasses
are dropped, using operation 2.2. Next, all edges from the superclasses
of C into C are removed. Finally, the definition of C is dropped, and C
is removed from the DAG. The subclasses of C continue to exist. If the
class C was the domain of an instance variable V'1 of another class C1,
V1 is assigned a new domain, namely the first superclass of the dropped
class C. This assignment is done when the domain of V1 is actually
needed, such as when adding a new instance of C1, changing the value
of V1 in some instance of C1, etc.

(8.3) Change the name of a class C: To maintain the class hierarchy
invariant, it is ensured that the new name is unique among all class

names in the class hierarchy.

2.1.5 Effects of Schema Changes on Ezisting Instances

We now analyze the effect of each schema change on existing instances, that
is, whether it makes it logically necessary to update any instances. For those
schema changes which effect the instances, we will describe how ORION avoids

actually updating the instances.
(1) Changes to the contents of a node
{1.1) Change an instance variable

(1.1.1) Add a new instance variable V to a class C: For each
existing instance in C and subclasses of C that inherit V', there is no
explicitly specified value for V. When an instance is fetched into memory
(on a user request), the system fills in the appropriate default value or nil
for the new instance variable. Since every instance variable is assigned

a unique identifier, there is no possibility that the disk-resident value of

39

a deleted instance variable will be incorrectly presented as the value of

the new instance variable.

(1.1.2) Drop an instance variable V from a class C: In each
existing instance of C and subclasses of C that have to drop V outright,
as we have already seen, there is a value for V in the disk format of
that instance (unless the value is a default). These instances are left
untouched. When such an instance is fetched into memory, the value for

V is projected out.

In case the dropped instance variable ¥V has the composite link property,
the objects referenced (owned) by instances of C' or any subclass of C
through V are deleted. If other objects are recursively dependent on
these objects, they too are deleted.

(1.1.3) Change the name of an instance variable V of a class C:

There is no effect on the instances of C.

(1.1.4) Change the domain of an instance variable V of a class
C': We have seen earlier that the domain of an instance variable can only
be generalized. Existing values of an instance variable V will, therefore,
continue to belong to V’s domain even after a change is made to the

domain. As a consequence, instances of C are not affected at all.

(1.1.5) Change the inheritance of an instance variable V of a
class C: Unless the origin of V is the same as that of the new instance
variable, and unless the domain of the new instance variable is the same
that of V or it is a superclass of the domain of V', this operation causes
the dropping of one inherited instance variable in favor of another. In-
stances need not be modified. When an instance is actually accessed (on
a user request), the system screens out the deleted instance variable, and

supplies the default value of the new instance variable.

{1.1.8) Change the default value of an instance variable V of
a class C: There is no effect on the existing instances of C. A default

40

value is always stored in the definition of an instance variable, never in

the instances.
(1.1.7) Manipulate the shared value of an instance variable

(1.1.7.1) Add a new shared value for an instance variable V
of a class C: This operation changes V from non-shared to shared.
Existing instances are left untouched. When existing instances are later
fetched into memory, the values of V are ignored, and replaced with the

shared value.

(1.1.7.2) Change a shared value for an instance variable V of a

class C: There is no effect on the existing instances of C.

(1.1.7.3) Drop a shared value for an instance variable V of a
class C: This operation changes V from shared to non-shared. The
default value assigned is nil, and all existing instances must have a nil
value for V. The existing instances of V' do not have to be changed.
However, if V was non-shared at time t1, then was changed to shared
at time t2, and now is changed back to non-shared at time t3, existing
instances may have some explicit values for V specified at time t1, and
they must be ignored. Unfortunately, they will not be ignored, since
V is no longer shared-valued. Our solution is to assign a new instance
variable identifier to V. Then, the existing instances of C will have the
old (deleted) identifier of V', and will therefore be ignored.

(1.1.8) Drop the Composite link property of an instance vari-
able V of a class C: By Rule 12, instances of C and its subclasses
disown the objects they reference through V. Instances do not carry
the identifier of their parents or the composite objects they belong to;

hence, there is no effect.

(1.2) Changes to a method of the class C: There is no effect on the

existing instances of C. Methods appear only in the definition of the class.

41

(2) Changes to an edge

{2.1) Make a class S a superclass of a class C: This operation

requires adding instance variables (operation 1.1.1).

(2.2) Remove a class S from the superclass list of a class C:
This operation requires dropping existing instance variables (operation
1.1.2).

{2.3) Change the order of superclasses of a class C: If this oper-
ation causes some instance variables to be replaced by others, operation
1.1.1 is used to add instance variables, and operation 1.1.2 is used to

drop instance variables.
{3) Changes to a node

(8.1) Add a new class C: Since C is a new class and has no existing

instances, there is no effect.

(3.2) Drop an existing class C: All instances of C must be dropped.
If these instances are referenced by existing instances of other classes,
the user will have to modify such references upon failing to retrieve the
deleted instances of C. When a class C is dropped, it may also require
some instance variables from subclasses of C to be dropped (operation
1.1.2).

If the dropped class C is a part of a composite object schema, not only
should the instances of C be deleted, but also those that depend on those
instances. Objects that are (recursively} dependent on the instances of

C are also deleted.

(3.3) Change the name of a class C: There is no effect on the

existing instances of C.

42

2.2 PIG: The Formal Model

2.2.1 Motivation behind PIG

The taxonomy of schema evolution appears intuitively to capture all ‘inter-
esting’ types of schema change. One interesting and important question to
consider is whether the ORION schema evolution taxonomy indeed captures
every possible of schema change (i.e., completeness). Another interesting ques-
tion is whether every ORION schema change operation generates only valid

schemas preserving the invariants {i.e., soundness).

However, showing the soundness and completeness of 20 ORION oper-
ations directly is not a good idea for the two reasons. First, since the ORION
model is an implementation (and informal) model rather than a formal model,
a soundness and completeness proof is not possible. We note that notions like
default value or shared value are all artifacts of implementation. Second, the
operations for changes to the contents of a node can be changed anytime de-
pending upon implementation decisions: the set of schema change operations
we allow on the contents of a node of a class hierarchy (i.e., the properties of a
class) has been determined from the intuition about application requirements
and as such, this set may grow or shrink. For example, by adding the notion
of class variables and class methods, we create a need to define another set
of operations for manipulating the contents of class variables and class meth-
ods. Also if we decide to augment the ORION model with iniegrity constraints
(e.g., salary > $ 0) we need additional operations for changing the integrity
constraints of nodes. Therefore, showing the completeness and soundness of all

ORION schema change operations appears to be neither feasible or meaningful.

Our approach to showing completeness and soundness is based on a
simple formal model [KK86], called a property inheritance graph (PIG), which
has only the essential characteristics of the ORION schema evolution model.
The part of the framework we focus on is the manipulation of the class hierarchy

with a multiple inheritance mechanism. The abstract model is based on a

43

single-rooted directed acyclic graph {DAG) corresponding to a class hierarchy.
Associated with each vertex in this graph are a set of named properties. These
properties correspond to instance variables and methods. We define a name
confliet resolution operator, ®, over property values which corresponds to name
conflict resolution for multiple inheritance in ORION. Using the ® operator,
we define a PIG to be a pair (V, E), where V is a set of labeled nodes and
F is a set of labeled edges. The labels on the nodes are the set of properties
associated with that node. The labels on edges correspond directly to the edge
labels in ORION.

A PIG must satisfy a pair of syntactic constraints expressed in terms of
the DAG and the ® operator. These constraints enforce relationships among
the property seis associated with nodes in the PIG. The relationships corre-
spond to inheritance in ORION. If there is an edge (a,b) in the DAG, then all
properties associated with node a must be associated also with node b. Cases
corresponding to multiple inheritance are resolved using the ® operator. We
represent an operation in our model as a mapping from the set of all PIGs to
itself.

In the formal model, we define 9 operations for manipulating PIGs. They
are defined functionally on the data structure of PIGs. The three operations
deal with properties of nodes of PIGs and are similar to ORION operations
for adding an instance variable {or method), dropping an instance variable (or
method), changing the contents of an instance variable (or method). The rest
six PIG operations, each of which is a counterpart of ORION DAG operations
(2.1, 2.2, 2.3, 3.1, 3.2, and 3.3), operate on DAG structure of PIG.

From the PIG data structures and operations, we can extract important
properties which are essential in justifying the semantics of ORION schema

change operations.

We below show how we use this model to characterize the power of
the ORION schema change framework. We can prove that every legal PIG is

achievable using a set of 9 operations (i.e., completeness). We can also prove

44

that there is only one complete minimal subset of the PIG operation set (i.e.,
minimality}. The complete minimal subset has 4 operations. We also show how
to implement operations corresponding to the remaining ORION operations in
terms of these 4 basic operations. Furthermore, we show that the basic set
of operations cannot generate a DAG that violates the syntactic rules which

characterize a PIG (i.e., soundness).

2.2.2 Basic Concepts of PIG

Definition 2.1: (tentative definition) A PIG G is an edge labeled, node-
labeled, single-rooted, directed acyclic graph which is a pair (V, E) where V is

a set of labeled nodes and E is a set of labeled edges.
The definition of PIG will be elaborated at the end of this section.

Definition 2.2: We associate a set of properties, PSET(a) = {p1,p2, ..., Pn}
with each node a in V. Each p in PSET(a) is a pair {n,v) where n and v

represent property name and property value.

Notation: We shall use p{n] and pv] to represent the property name and the
property value of the property p respectively.

Definition 2.3: The root node r of a PIG G is called OBJECT. The root node
cannot be deleted or renamed, PSET(OBJECT) = 0.

Example 2.1: Suppose we have four classes: VEHICLE, MOTOR-VEHICLE,
WATER-VEHICLE, and SUBMARINE. Let VEHICLE have locally defined in-
stance variables: Id (domain: number), Weight (domain: number), and Owner
{domain: string). Let VEHICLE be a superclass of MOTOR-VEHICLE and
WATER-VEHICLE, and in turn, MOTOR-VEHICLE and WATER-VEHICLE
be the first and second superclasses of SUBMARINE. Finally, let MOTOR-~
VEHICLE have a locally defined instance variable Size (domain: cubic-inches)
and WATER-VEHICLE have a locally defined instance variable Size {domain:

number-of-people).

45

PSET(VEHICLE) = { (Id, number), (Weight, number), {Owner,
string) }. PSET(MOTOR-VEHICLE) = { (Id, number), (Weight, num-
ber), (Owner, string), (Size, cubic-inches) }. PSET{WATER-VEHICLE) =
{ (14, number), (Weight, number), (Owner, string), {Size, number-of-people }.
PSET(SUBMARINE) = { (Id, number), (Weight, number), (Owner, string),
(Size, cubic-inches) }. o

Definition 2.4: An edge ¢ in E of G is a 3-tuple { parentnode, node, edge-
number) where the edge-number n is a number indicating that the parentnode
is the nth parent of the node.

Intuitively, a PIG is an ORION class hierarchy of which the nodes are
filled with properties (i.e., we interpret instance variable and methods as prop-
erties). Since we shall not consider the operations for changing the contents
{such as instance variables, methods, default value) of nodes in a class hierar-
chy, a PIG is a sufficient data structure for examining the properties of ORION
DAG operations.

Definition 2.5: Given aand bin V of a PIG G, b is an immediate descendant
of a (denoted a = b) if {a,b,n) is in E of G.

Definition 2.6: The function edge-label(a,b) returns the edge label connecting
node a to node b.

Definition 2.7: The function nth-parent(a,n) returns the node label of the

nth parent of a where a has at least n immediate anscestors.

Definition 2.8: Given a and b in V of a PIG G, b is a descendant of a (de-
noted a => b) if there exists a sequence of edges in E, (e1, ¢z, edge-label{e;, ¢z)),
{c2, ¢, edge-label(cy, e5))s..., {€n1,Cn, edge-label(c,_y,¢,)), n > 2, where ¢; = a

and ¢, = b.

Observe that if @ = b then a = b. This is the case when n = 2 in
Definition 2.8. Clearly, = is transitive. The definitions of immediate ancestor

and ancestor are obvious from the previous four definitions.

46

Notation: We shall use children(a} and descendants(a) to represent a set of
immediate descendants and a set of descendants of a node a respectively. Sim-
ilarly, we shall also use parents(a) and ancestors(a) for indicating a set of

immediate ancestors and a set of ancestors of a.

Definition 2.0: The function num-parents(a) returns the number of parent

nodes (immediate ancestors) of the node a.

We introduce an operator which is useful describing the notions of name
conflict resolution in ORION schema changes. We assume the definition of
the ® operator to be open for simplying the PIG model. Owing to the ®
operator, the definitions of PIG operations become more brief. By giving proper
semantics to the ® operator, the notion of name conflict resolution in ORION
schema changes can be understood within the PIG model. The ® operator
satisfies the following three characteristics.

Definition 2.10: The ® operation is a function from VSET x VSET to VSET
where VSET is a set of property values (i.e., ® VSET x VSET — VSET).
The ® operation satisfies the following characteristics. Let v, v2, and v3 be

property values.
1. (idempotency} vl ® vl =vl
2. (commutativity) vl ® v2 = v2 ® vl

3. (associativity) vl ® (v2 ® v3) = (vl ® v2) ® v3

Example 2.2: In the previous example, the property value of Size property of
SUBMARINE is determined by the operation cubic-inches ® number-of-people.
If we honor the superclass ordering as in ORION, the property value of Size
property of SUBMARINE is cubic-inches.]
Definition 2.11: Given two property values vl and vZ, we say vl =~ v2 if there
exists u such that vl = u ® v2.

Definition 2.12: Two properties p and q are said to be equal if pln| = g[n]
and p{v] = gv]. Two properties p and q are said to be ssmilar if p[n] = q[n]
and plv] = qlv].

47

Theorem 2.1: =~ is transitive.

Proof: Let v1,v2, and v3 be property values such that v1 >~ v2 and v2 ~
v3. There exists u such that vl = u ® v2 and exists u' such that v2 = v’ ® v3.
Now we have vl = u @ (v’ ® v3). By the associativity, vl = (u ® u') ® v3.
Let w = u ® «'. Then vl = w ® v3. Hence vl =~ v3. fom |

Theorem 2.2: Given two values vl and v2, if vl = v2 then vl =~ v2.

Proof: Since vl = v2, v1 = v2 ® v2 by idempotency. Therefore vl =~ v2.
3

Example 2.3: In the previous example, the Size property of SUBMARINE
is equal to the Size property of MOTOR-VEHICLE, whereas the Size prop-
erty of SUBMARINE is similar to the Size property of WATER-VEHICLE, by
definition. o}

Definition 2.13: Given two nodes ¢ and b in a PIG P, we say PSET(a) <
PSET(d) if for each property p in PSET(a), there exist a property q in PSET(b)
where p and g are similar.

Now we introduce two rules for property inheritance. Rule 1 is associ-
ated with inheritance mechanism and Rule 2 is associated with name conflict
resolution. The two rules associate with the full inheritance invariant in the

previous section.
Rule 1: If @ = b then PSET(a) < PSET(b)

Rule 2: ¥ a = ¢, and b = ¢, and 3 p € PSET(a), and 3 q € PSET(b) such
that p[n] = g|n], then 3 a property r € PSET(c) where r is similar to p and r

is similar to q.

From Rule 1 and 2, and the fact that if a = b then a = b, the following

two rules follow trivially.

Rule 1’: If a = b then PSET(a) < PSET(b).

48

Rule 2: fa => ¢, b= ¢, and 3 p € PSET(a), 3 q € PSET(b) such that p|n]
= g[n], then 3 a property r € PSET(c) where r is similar to p and r is similar

to q.

Now we strengthen the tentative definition of PIG as follows.

Definition 2.14: A PIG G is an edge labeled, node labeled, single rooted,
directed acyclic graph which is a pair (V, E) where V is a set of labeled nodes
and E is a set of labeled edges. A PIG G satisfies the two inheritance Rules.

2.2.8 Operations of PIG

Now we define 9 operations for manipulating PIG graphs. The first three oper-
ations deal with properties of nodes of PIG graphs and are similar to ORION
operations for adding an instance variable {method), dropping an instance vari-
able or a method and changing the contents of an instance variable (method).
The remaining six PIG operations, each of which is a counterpart of ORION
DAG operations, operate on the PIG DAG. We again stress that we shall ig-
nore most operations for changing the contents of the nodes in ORION class
hierarchy, except operations 1.1.1, 1.2.1, 1.1.2, 1.2.2, 1.1.4 and 1.24.

o PIG (Op1): Add a new property: This corresponds to ORION schema
change operation 1.1.1 or 1.2.1 “Add a new instance variable or a new

method.”

e PIG (Op2): Drop an existing property: This corresponds to ORION
schema change operation 1.1.2 or 1.2.2 “Drop an existing instance vari-

able or an existing method.”

e PIG (Op3): Change the contents of a property: This corresponds to
ORION schema change operation 1.1.4 or 1.2.4 “Change the domain of

an existing instance variable or the code of an existing method.”

e PIG {(Op4): Add an edge: This corresponds to ORION schema change

operation 2.1 “Make a class § a superclass of a class C.”

49

s PIG (Op5): Drop an edge: This corresponds to ORION schema change
operation 2.2 “Remove a class § from the superciass list of a class C.”

L

PIG (Op6): Change the order of two incoming edges of a node: This
corresponds to ORION schema change operation 2.3 “Change the order

of superclasses of a class [

s PIG (Op7): Add a new node: This corresponds to ORION schema

change operation 3.1 “pAdd a new class.”

o PIG (Op8): Drop an existing node: This corresponds to ORION schema

change operation 3.2 “Pelete an existing class.”

PIG (Op9): Rename the label of & node: This corresponds to ORION

schema change operation 3.3 “Change the name of a class.”

@

We present below the semantics and the functional definition of PIG

operations.

(Opl) Add a new property p: The node a and its descendants will inherit
the new property p (line 2). If there is a name conflict with an existing property
{say q) they have, the property value of g, glv] is determined by the ® operator
(line 8). By defining ® to be the ORION name conflict resolution mechanism
4o the ® operator, Opl can function as ORION (1.1.1) or ORION (1.2.1). We

note that this operation obeys inheritance rules 1 and 2.
funetion Opl(G, a, P)
/* G is a PIG graph (V,E) */
/* aisamnodeinV */
/* p is a property to add */
begin
a-has-p = no;

foreach g € PSET(a): do

50

51

then begin

qlv] = alv] ® p[vl;
a-has-p = yes;
end;
if (a-has-p = no)
then PSET(a) « PSET(a) U {p};
foreach &' € children(a): do Op1(G, ', ph
return G;

end

(Op2) Delete a property p from a node ¢ of a PIG P: The property
p is dropped from the node a and those descendents of a that inherited p. If
however any ancestor of a has the property p or a property similar to p, p
cannot be dropped from a since that would violate the inheritance rules 1 and

2. Instead, p{v] is determined by the ® operator.

function Op2(G, a, p)
/* G is a PIG graph (V,E) */
/*aisanodeinV?*/
/* p is a property */
begin
ancestor-has-p = no;
foreach o' € imm-ans(a): do

foreach q € PSET(a): do

52

if (aln] = pln])
plv] « plv] ® alv;
ancestor-has-p = yes;
end;
if (ancestor-has-p = no)
then PSET(a) « PSET(a) — {p};
foreach o" € children(a): de Op2(G, a", p);
return G;
end

{Op3) Change the value of a property p of a node a of a PIG P: The
property value of p is changed in the node a. The change is propagated to those
descendents of a that inherited p, unless the property value has been locally
changed into a value which is different from the original value of p within the

descendents.
function Op3(G, a, p, old-value, new-value)
/* G is a PIG graph (V,E) */
/* aisanodeinV ¥/
/* p is a property of a ¥/
/* old-value is the old value of p */

/* new-value is the new value forp */

begin

if 3 q € PSET(a): (p[n] = qln]) A (afv]= old-value) then

53

begin
q|v] « new-value;
Joreach d € children(a): do
Op3(G, o', p, old-value, new-value);
end

return G;

end

(Op4) Create a new edge: Since G is an acyclic connected graph, if the
graph that results from adding a new edge between nodes a and b is cyclic or
the edge is already in G, the addition request is rejected. Otherwise a becomes
the n+1 th parent node of b if b has currently n parent nodes where n > 0. The
properties of e are inherited to b by the operation Opl.

Function Op4(G,a,b)

/* Gisa PIG (V,E) */

/* a and b are nodes in V */

begin

if { B asequence of edges {c1,C2,edge-label(c; c5)),

{cg.cs,edge-label(cz,cs)) s [Cno1,cn,edge-label(cay,en)):
(¢; = B} A (cn = a)) A ((a,bedge-label(ad)) ¢ E) then
begin
E « E U {(a,b,(count-of-parents(b) + 1))};
foreach p € PSET(a): do Opl(G.b,p);

end;

return G;
end
{Ops) Delete an existing edge: Suppose the edge to be deleted is the edge
between the nodes a and b. The edge is deleted from the edge set and the
inherited properties from the node b are removed from a with Op2. The rest
of incoming edges of b except the deleted edge should be re-labeled such that
if the edge label is greater than n, the edge label is decreased by 1, otherwise
no relabeling is necessary. Since G is an acyclic connected graph, if the graph
resulting from deleting an edge (a,b,edge-label(a,b)) is disconnected, b is made
an immediate child node of the immediate parent nodes of a. This is governed
by Op4.
funetion Op5(G,a,b)
/* G is a PIG (V,E) */
/* a and b are nodes in V */
begin
E « E ~ {(a,bedge-label(a b)) };
foreach p € PSET{a): do 0p2(G,b,p);
foreach e € parents(b): do

if (edge-label(e,b) > n) then

begin
B « B — {{e,b,edge-label(e,b)) };
E « E U {(e,b,(edge-label(e,b) — 1)}};
end;

if (Be (¢, bedge-label(c,b)) € E)

then if a = OBJECT then V « V - {b}

54

else foreach d € parents(a): do Opd(G,d,b);
return G;

end

(Op8) Exchange the order of two incoming edges of a node: This oper-
ation causes re-evaluation of the inheritance of properties in the node receiving
the edges. The two incoming edges should exist in the edge set before exchang-

ing the labels. Finally, this operation exchanges the labels of two incoming
edges of a PIG.

function Op6{G,a,b,c)
/* Gisa PIG (V,E) */
/* a,b,c are nodes in V ¥/
begin

if {(a,bedge-label(a,b)) € E) A ((a,c,edge-label(a,¢)} € E) then

begin

templ « edge-label{a,b};

temp2 « edge-label(a,c);

foreach i from templ o temp2: do

Joreach p € PSET(nth-parent(e,i)): do

Op2(G,nth-parent{c,i),p);

foreach p € PSET(nth-parent{c,temp2)): do
Op1(G nth-parent(c¢,iemp2),p);

foreach i from templ + 1 to temp2 — 1: do

foreach p € PSET (nth-parent(c,i)}: de

55

56

Op1(G,nth-parent(c,i},p);
foreach p € PSET(nth-parent(c,temp1)): do
Opl(G,nth-parent(c,temp2),p});
Ee &~ {(a,b,edge«label(a,h)),(a,c,edge—]abel(a,c))};
E « E U {(a,b,temp2),{a,c,templ}};

end;

(Op7) Create a new node: A new node b is created as a descendant of an
existing node a. The node a must exist and the node b must not exist before
performing this operation. A new edge (a,b,1) is created. The properties of a

are inherited by b. This is governed by Opl.
Function OpT(G,a,b)
/* Gisa PIG (V.B} */
/* ais a node in V ¥/
/* bis a node to be created */
begin
iffae V) A(bgV) then
begin
Ve VU {a};
E «— BU {{a,b,1}};
foreach p € PSET(a): do Op1(G,a,p);

end;

57

return G;

end

{Op8) Delete an existing node: A node a is dropped from the node set and
the incoming and outgoing edges of the node are all dropped from the edge set.
All properties of a are removed from a’s subclasses by the operation Op2. Every
immediate descendant of the node now becomes an immediate descendant of

immediate ancestors of the node. This is governed by Op4.
function Op8(G,a)
/* Gis a PIG (V,E) */
/* aisanodeinV*/
begin

if {a € V) then

begin
V +— V — {a};
temp-setl « parents(a);
temp-set2 « children(a);
Joreach b € parents(a): do
E « E — {{(b,a,edge-label(b,a)}};
foreach ¢ € children(a): do
begin
E « E — {(a,c,edge-label(a,c})};
Joreach p € PSET(a): do Op2(G,a,p});

end;

58

foreach e € temp-setl: do
foreach f € temp-set2: do Op4(Ge,f);
end

return G;

end

{Op®) Rename a node: The label of a node is updated in the node set. All
edges involving the node should be updated in the edge set. There are no effect

on properties of nodes or the DAG structure.

function Op9(G,a,b)

/* G is a PIG (V,E) */

/* ais a node in V */

/* bis a new label for a */

begin

i (eeV) A (bEV) then
begin
Joreach ¢ € children(a): do

begin
templ + node-label{a,¢);
B « E — {{a,c,;node-label(a,c))};
E « B U {{bec,templ)};
end;

foreach d € parents{a): do

begin

temp?2 « node-label(d,a);
E « E — {(d,a,node-label(d,a})};

E « E U {{d,b,temp2)};

end;
VeV —{a}
V « Vu {b};
end;
return G;

end

2.2.4 Soundness and Completeness of PIG

The following theorem states that if G is a PIG, G’ which is constructed from
G by applying an operation in the PIG operation sets {Opl,..., Op9}, is also a
PIG.

Theorem 2.3: [Soundness] The class of PIG graphs is closed under the PIG
operations Opl-Op9.

Proof: The proof for each operator is presented below. Let G be a PIG.

o (Opl) Add a new property: Since Opl does not restructure the
graph structure of G, the G resulting from applying Opl is a single-
rooted, node-labeled, edge-labeled and connected DAG. By the defi-
nition of Opl, every descendant of a node, to which a new property
p is added, has a property which is either equal or similar to p. This
preserves the inheritance rule 1 and 2. Therefore the resulting G is a
PIG.

o (Op2) Delete a property: Similar to the above.

o (Op3) Change the value of a property: Similar to the above.

59

e

[]

{Op4) Create a new edge: Suppose the new edge is an edge between
nodes a and b. By the definition of Op4, this operation eliminates cases
of eyclic graphs or duplicated edges. Thus, the resulting DAG structure
is a single—rooted, node-labeled, edge-labeled and connected DAG. For
each property in the node a, the same property is added to the node b.
This is governed by Opl. As we already showed the closure property
of Opl, the inheritance rule 1 and 2 are preserved in the resulting G.

Therefore, the resulting graph G is a PIG.

(Op5) Delete an existing edge: Suppose the edge to be deleted is
an edge between the nodes a and b. As shown in the definition of Op5,
special care is exercised in case of articulation edge deletion. The struc-
tural property of PIG is guaranteed by adding necessary edges where
appropriate. This is governed by Op4. The labels of incoming edges of
the node receiving the deleted edge are updated where appropriate. Al
properties which are inherited from a are removed from b by Op2. The
closure property of Op4 and Op2 have been already shown. Therefore,
the resulting graph is a PIG.

(Op8) Exchange the order of two incoming edges of a node:
This operation simply exchanges the labels of two incoming edges of a
node. No change is made to the DAG structure of G. As shown in the
definition of Op6, updates to properties are governed by Opl and Op2.
We have proved the closure property of Opl and Op2. Therefore, the
resulting graph is a PIG.

{Op7) Create a new node: This operation is allowed only if there are
no name conflicts about the node to be created. A new node is created
and an incoming edge is created. The new node inherits all properties
of the parent node by applying Opl repeatedly. Clearly adding a node
to a PIG results in another PIG.

(Op8) Delete an existing node: As shown in the definition of Op6,
special care is exercised in case of articulation node deletion. The struc-

60

tural property of PIG is guaranteed by adding necessary edges where
appropriate. Property addition and deletion are governed by Opl and
Op2. Therefore, the resulting graph is a PIG.

» (Op9) Rename a node: Node renaming does not affect to the DAG
structure of G. Name conflicts are eliminated by rejecting the renaming
request. Also node renaming does not make any effect to the contents
of nodes in G. The resulting graph is a PIG. o

Lemma 2.4: For any PIG graph, there is a finite sequence of Op8 that reduces
the PIG graph to a PIG with one root node.

Proof: Consider the reduction process. Let G be a PIG having a finite

number of nodes.
1 For each leaf node of a PIG G, apply Op8.
2 Let the resulting PIG be G’.

3 If G’ has other nodes besides the root node, set G to G’ and go to step
1.

Clearly we can get a PIG with only root node by applying Op8 repeatedly. 1

Lemma 2.5: For any PIG graph, there is a finite sequence of {Op1, Op4,
Op7} that generates it from a PIG with only a root node.

Proof: Suppose we have two PIG graphs G and G’. Let G be an arbitrary
PIG with a finite number of nodes and edges and G’ be a PIG with only root
node. The following construction process can generate a PIG from G’ which is

equivalent to G.

1 For each node of a PIG G, in breadth-first order, apply Op7 to G”. Set
G’ to the resulting graph.

2 For each node of a PIG G, in breadth-first order, if the node has more
than one incoming edge, apply Op4 to G’ for each of the extra incoming

edges. Set G’ to the resulting graph.

81

3 For each node of a PIG G, in breadth—first order, apply Opl to G’ for
each property of the node.

G is equivalent to G’ because G has all the nodes with the same contents and

all the edges in G, and no more nodes and edges. 1

Theorem 2.8: Given two arbitrary PIG graphs G1 and G2, there is a finite
sequence F of {Op1, Op4, OpT, Op8}, such that F(G1) = G2.

Proof: We can get G2 by (1) reducing Gl to a PIG with only root node by
the reduction process in lemma 2.4 using Op 8 only and (2) building G2 from
the root node by the construction process in lemma 2.5 using Opl, Op4, and
Op7 only. o

Completeness is obvious from theorem 2.6 because {Opl, Op4, Op7,
Op8} ¢ {Op1, Op2, Op3, Op4, OpS, Op6, Op7, Op8, Op9}.
Theorem 2.7: [Completenessl Given two arbitrary PIG graphs G1 and G2,

there is a finite sequence of P1G operations Op1-0p9, ¥ such that F(G1) =
G2.

Now we shall show that there is only one minimal complete subset of
0Op1-Op9, the set {Opl, Op4, Op7, Op8}. To prove this, it suffices to show
that each operation in the set cannot be achievable using the others in Opl-
0p9, and that Op2, Op5, Op6 and Op9 can be achievable using the operations
in the set.

Leruma 2.8: Opl is not achievable using Op2-0p9.

Proof: From the definitions of operations Op1-0pY, it is easy to see that
only Opl can add a property to a node in PIG. [
Lemma 2.9: Op2 is achievable using Opl, Op4, Op7, and Op8.

Proof: Given an arbitrary PIG G, consider another PIG G’ after apply-
ing Op2 to G. The transformation from G to G’ can be simulated from the
operations in {Opl, Op4, Op7, Op8} by theorem 2.6. O

Lemma 2.10: Op3 is achievable using Opl, Op4, Op7, and Op8.

Proof: Similar to the proof of lemma 2.9.]

Lemma 2.11: Op4 is not achievable using Op1-Op3, Ops-0p9.

Proof: Since only Op4 (add an edge) can create a graph structure, it is
sufficient to show that any finite combination of Op1-Op3, Op5-0p9 always
generates a tree structure. First, it is clear that only trees are generated by
applying Op5 (add a new node) repeatedly because Op5 creates a node with
only one incoming edge by its definition. Second, from the definitions, clearly
Op1, Op2 and Op3 do not have any effect on changing tree structures. Third,
consider Op6 (change the order of two incoming edges of a node) and Op9
(rename the label of a node). Op6 is of no use in tree structures because
each node has only one incoming edge (i.e., unique parent). Op9 is irrelevant
because renaming a node cannot change the tree structure. In tree structure,
every edge is an articulation edge, every node {except the root node) has a
unique parent and every non-leaf node is an articulation node. Therefore,
the structure resulting from applying Op6 or Op9 to a tree structure is tree.
Fourth, consider Op5 (drop an edge) and Op8 (drop an existing edge). Let a,
b, ¢ be nodes such that a is a parent node of b and b is a parent node ¢. A new
edge is created from a to ¢ after deleting the edge between b and ¢ according
to the definition of Op5. Similarly a new edge is created from a to ¢ after
deleting b according to the definition of Op8. Therefore, the structure resulting
from applying Opb or Op8 to a tree structure is tree. In any cases, nodes with
more than one incoming edge (i.e., DAG) cannot be made without Op4. We
can conclude it because tree structures are closed under Op1-Op3, Op5-0p9.

Therefore Op4 cannot be simulated by Op1-Op3, Op5-0p9. (]
Lemma 2.12: Op5 is achievable using Opi, Op4, Op7, and Op8.
Proof: Similar to the proof of lemma 2.9. i
Lemma 2.13: Op6 is achievable using Opl, Op4, Op7, and Op8.

Proof: Similar to the proof of lemma 2.9. o

Lemma 2.14: Op7 is not achievable using Opi-Op86, Op8, and Op9.

Proof: Given an arbitrary PIG G, consider another PIG G’ after applying
Op7. Since a new node is added, the node set of G’ is bigger than that of
G. Among Opl1-0p9, as shown in the definitions of each operation, only Op7
can add a new node to the node set. Therefore Op7 cannot be simulated by
Opl1-Op6, Op8, and Op9.]

Lemma 2.15: Op8 is not achievable using Op1-Op7, and Op9.

Proof: Given an arbitrary PIG G, consider another PIG G’ after applying
Op8. Since an existing node is deleted, the node set of G’ is smaller than that
of G. Among Opl-Op9, as shown in the definitions of each operation, only
Op8 can delete an existing node from the node set. Therefore Op8 cannot be
sirnulated by Opl1-Op7 and Op9.)

Lemma 2.18: Op9 is achievable using Opl, Op4, Op7, and Op8.

Proof: Similar to the proof of lerama 2.9. L3
As a conclusion, we have established the following.

Theorems 2.17: [Minimality] The only minimal complete subset of the PIG

operations Op1-0p9 is {Opl, Op4, Op7, Op8}.

2.3 Related Works

This section is a summary of others’ works which are related to schema evolu-

tion.

2.8.1 Data Base Restructuring

Schema evolution is more or less related to the area called Data Base Re-
structuring which was one of popular issues during 1970’s. Several research
groups have addressed the problem of database restructuring in conventional
data models, such as hierarchical and network data models. The major issue

of database restructuring is to reorganize hierarchical or network data in order

64

to get good performance in query processing. Most approaches of database
restructuring assume off-line database reorganization. Furthermore, dynamic

schema changes in the run-rime are not required.

Schema evolution in object-oriented databases and database restructur-
ing in conventional databases might be considered as a similar problem in the
sense that the database and its schema are reorganized. However, as we will
show, the motivation and complexity are significantly different because appli-
cations of conventional databases (business type data processing) do not evolve
as dynamically as applications (CAD, Al, OIS) of object-oriented databases.

Here is some previous work on database restructuring.

The IBM Research Laboratory developed an experimental prototype
database restructuring system EXPRESS for hierarchical databases [Shu?7).
Two nonprocedural languages are provided in EXPRESS: DEFINE [Hou75) for
data description and CONVERT [SHL75| for data restructuring. CONVERT
provides three operators for Form restructuring (Form is a table form of hier-
archical databases, that is, a relation-valued relation): SLICE is to transform
hierarchical data into a flat file, SELECT is to select the part of a Form which
meets the selection criteria, and GRAFT is for joining two hierarchical data
records to form a larger hierarchical data record. Besides the three operators,
CONVERT supports several useful operations for form restructuring, such as
SORT and built-in aggregate functions. The University of Michigan [SDF77,
DF75, FS76] and The University of Maryland [ST82] both implemented sys-
tems for restructuring network databases. Relational database systems allow
only a few types of schema changes: SQL/DS allows only creation of relations,

deletion of relations, and addition of new columns [IBM81].

After restructuring a database, the next important issue is to convert
existing application programs which were running on the previous database
in order to comply with the new database. This is area is called database
program conversion. Su, et al., at The University of Florida [Su76, SL77),
Shneiderman, et al., at The University of Michigan [Shn78, $T82], and Ramirez,

65

et al., at The University of Pennsylvania [RRPT4, Smit71] have considered
the problem of database program conversion methodology on hierarchical and

network databases.

2.8.2 Penny and Stein

Penny and Stein [PS87] studied class modification in the GEMSTONE system.
GEMSTONE is an object-oriented database system that was designed and im-
plemented at Servio Logic Development Corporation. GEMSTONE provides
the user with an object model identical to that of SmallTalk-80 [GR83]. As
such, the usual features of object-oriented data models are available in the
GEMSTONE data model: objects, messages, and classes are supported, and
classes are organized into a hierarchy that provides single inheritance of prop-

erties.

The origin of schema evolution in GEMSTONE [P887] is the schema
evolution framework of ORION [BKKK86, BKKK87]. Since GEMSTONE
assumes class structures to be trees (single inheritance) while ORION sup-
ports directed acyclic graphs (DAGs) of class hierarchies, there are fewer class
modifying operations in GEMSTONE than in ORION. The class modification
operations of GEMSTONE are: (1) renaming a named instance variable, (2)
making a class indexable, (3) adding a named instance variable, (4) making
an indexable class non-indexable, (5) removing a named instance variable, (6)
modifying the constraint on a variable, (7) removing a class, and (8) adding a
class. The semantics of these operations can be easily inferred from the ORION

schema evolution operations in section 2.2.

2.8.8 Fishman, et al.

IRIS [Fish87] allows limited changes to a class hierarchy. IRIS is a research
prototype of object-oriented database system at Hewlett-Packard Laboratories.
IRIS has mixed flavors of relational, functional, and object-oriented database

systems.

66

IRIS is composed of two layers: object manager and storage manager.
The IRIS object manager serves as the query processor of the DBMS. It trans-
lates IRIS queries and operations into an internal relational algebra format,
which is then interpreted. In order to process IRIS queries properly, the IRIS
object manager must maintain metadata such as class definitions, class hier-
archies, rules, and authorization. The IRIS storage manager is a conventional
relational storage system which is very similar to the Relational Storage Sub-
system (RSS) in System/R [Astr76). It is responsible for dynamic creation and
deletion of relations, transactions, concurrency control, logging and recovery,

archiving, indexing and buffer management.

As we mentioned, IRIS supports only a few primitive schema changes in
a class hierarchy. New classes may be created, existing classes may be deleted,
and objects may be dynamically included or excluded as instances of classes. In
the current implementation, a class may be deleted only if it has no subclasses
or instances. New subclass/superclass relationships between existing classes
may not be created and existing subclass/superclass relationships may not be
deleted.

67

Chapter 3
Schema Manager and Graphics Schema Editor

2.1 Schema Manager of the ORION System

The schema evolution framework in the previous chapter has been fully imple-
mented within the ORION project at MCC. In this section we briefly indicate
the key points of the ORION schema manager implementation. The schema
manager of the ORION system was implemented by the MCC ODBS team, not
by the author. Portions of this section are due to [LEES6, BKKK87]. However
the graphics schema editor running on top of the ORION system was designed

and implemented by the author.

9.1.1 System-Defined Classes for the Schemas

The schema manager maintain several system-defined classes as major data
structures for schema definition. Three major system-defined classes are
CLASS, INSTANCEVARIABLE, and METHOD class. Figure 6 shows system-
defined classes in ORION.

The definition of a class is stored as an instance of CLASS class, the
definition of an instance variable is stored as an instance of INSTANCEVARI-
ABLE class, and the definition of a method is stored as an instance of METHOD
class. These are analogous to system catalogs in conventional database systems.
Therefore, the schema manager is more or less similar to catalog managers in
conventional database systems. When a schema change occurs, the instances
of the system-defined classes are updated. For example, if a class is deleted,
an instance of CLASS for the deleted class should be deleted and instances of
INSTANCEVARIABLE (METHOD) for the instance variables (methods) of
the deleted class should be deleted too.

68

INTEGER

ORJECT

CLASS
STRING COLLECTON

SET

Figure 6: System-Defined Classes in ORION (from [Ban87])

8.1.2 Schema Evolution without Database Reorganization

It is obvious that such schema change operations as adding or
dropping an instance variable logically require existing instances
to be updated. For example, if an instance variable V of a class
C is dropped, the values of V must be removed from all existing
instances of C. Since a class can have many instances, this is
potentially a very expensive undertaking. Further, when it takes
a long time to update all instances of a class, the class and its
instances become unavailable for a long time. Hence, it makes
sense to avoid updating the instances when the class definition is
changed, and instead to merely reflect the changes in the instances
presented to the user. For example, when the instance variable V
of a class C is dropped, existing instances of C are not updated.
However, when instances of C are later fetched, the values of V
are screened from the instances that existed before the schema
change. [BKKK87; 319}

Storage Format

To support schema evolution without database reorganization,
the ORION team designed the storage format for disk-resident

INSTANCEVARIABLE METHOD

69

objects as shown in Figure 7. The uid is the globally unique iden-
tifier of an object. It consists of two parts: the unique identifier
of the class to which the object belongs, and the unique identi-
fier of the object within the class. The vector-size is the number
of pairs in the offset-vector. The offset vector consists of {v;,0;)
pairs, one for each instance variable for which the object has an
explicitly specified value. In each {v;,0;) pair, v, is the identifier of
an instance variable, and o; is the offset of its value in the values
part of the object storage format. An instance variable is itself
an instance of an ORION system class INSTANCEVARIABLE,
and, as such, has a unique identifier. A value can be a primitive
value (such as an integer, string, etc.), or a reference to another
instance, namely, the uid of the referenced object. If an object
has a default value for an instance variable, or if the instance
variable is shared valued, that instance variable does not appear
in the storage format. The shared value and the default value of
ghared-value and default-valued instance variables are stored in
the system class INSTANCEVARIABLE as we mentioned in the

previous section.

A composite object consists of many instances. Unlike
the complex object implementation described in |[LP83], ORION
does not include in instances the uid of their parent object or that
of the root of the composite object. This not only saves storage
space, but also simplifies the operation of dropping the composite
link property from an instance variable (i.e., disowning dependent
objects). Since dependent objects do not carry the uid of the root
of the composite object, there is no need to update them when
they are disowned. [BKKK87; 319

3.2 Graphics Schema Editor PSYCHO

PSYCHO is a graphical schema manipulation language which is being used in

70

71

. vector offset
uid values
_size -vector
101 V2 02 Vi On

Figure T: Storage Format of the ORION system ({from [BKKK87])

ORION. In this section, we describe the use of PSYCHO and its implementa-

tion.
8.2.1 System Structure of PSYCHO/ORION Environment

PSYCHO and ORION have been implemented within the ODBS project at
MCC. ORION is written in CommonLisp on a Symbolics 3640. PSYCHO is
implemented with Flavors and ZetaLisp on a Symbolics 3640. Figure 8 shows a
diagram of the PSYCHO/ORION environment. The user can use the ORION
system directly or indirectly through the PSYCHO system. PSYCHO commu-
nicates with the schema manager and the transaction manager of ORION.

In the PSYCHO/ORION environment, class hierarchies are represented
as DAGs (directed acyclic graphs) on the screen, and the user can manipulate
DAGs directly using a mouse and pop-up menus. A schema manipulation
session of PSYCHO/ORION environment goes roughly as follows. First, the
user chooses “schema-load” option in the command menu, and the system draws
a DAG representing the database schema. The user enters schema change
commands by using the mouse and pop-up menus to manipulate the DAG.
Transaction Mode is used to group several schema change operations into a

single atomic action. A session is terminated by clicking “Quit” in the command

menu.

USER-1 USER-2 USER-3

PSYCHO

"

ORION

Manage
T
C Rt
TOCEsso Manager -
Version
-

J ! \

Image
Database

Vehicle Storage

Database Database

Figure 8: System diagram of PSYCHO/ORION environment

72

PSYCHO lisp window Command meny window Class indexr window

Scheme-{oad Tutorials Notification=Tn Kotificstion-{HT %." Thdox 5
¥oo

Psveno Lisp Pare }

Dyrecied Acyc) it Groph Pena 1 [l
Duers 00 Transaction-Mode Composite-Obect-Kode Scrateh-Mode
Hove-Screen-Up Hove-Screen-0own Hove-Screen-Left Hove-Screen-Right [ASSI-PROF
Resel-Top Screen-Dumg Quit ASSO-PROF
Connand : CLASS

Mouse documentation line window e Lo

GRADER
JORADUATE ~-STUDENT

Figure 9: PSYCHO window

We show several examples of PSYCHO sessions in following sections.
These examples sessions of PSYCHO demonstrate the power of graphics to
provide a simple method stating schema changes that would be complicated to

express in the text-oriented command language of the ORION schema manager.

8.2.2 Overall Structure of PSYCHO

PSYCHO provides various facilities to help users in posing schema change
commands. In this section, we briefly introduce the structure of PSYCHO
system. Figure 9 shows a PSYCHO window which consists of § subwindows:
a directed acyclic graph window, a PSYCHO LISP window, a command menu
window, a class index window and a mouse documentation line window. Besides
those subwindows, a method code editor window is provided for editing or

modifying code of a method during the schema change session.
Directed Acyclic Graph Window

The directed acyclic graph window is for the graphical manipulation of

vt Piprint-apog ler 1w it thes) raguest =5, ¢

the DAG representation of a database schema. The schema of the “Uni-
versity Person” database is shown in Figure 9: the class UNIVERSITY
PERSON has two subclasses, UNIV-EMPLOVYED and STUDENT, and in
turn UNIV-EMPLOYED has two superclasses GRADUATE-STUDENT and
UNDERGRADUATE-STUDENT, and so on. We shall use the “University
Person” database for illustrating facilities of PSYCHO through sample sessions

in section 3.2.3.
PSYCHO Lisp Window

During a schema change session, the user may have to issue ORION commands
or queries directly on the LISP top level. The PSYCHO LISP window is a
Symbolics LISP window whose size is altered to fit inside PSYCHO system.
The user can enter any LISP expressions or any ORION commands in this

window.
Command Menu Window

The command menu consists of 15 commands, which govern schema navigation
and mode changes. The 15 commands are solely for PSYCHO, and are not
transmitted to ORION.

o Schema-Load: PSYCHO reads the database schema definition from
ORION into internal data structures, and PSYCHO draws & DAG in

accordance with the schema definition.

o Tutorials: PSYCHO providés the user with a brief introduction to PSY-
CHO, some example sessions of schema change, and explains the func-

tions of the mouse buttons, pop-up menus and commands.

o Notification-On: Various types of system error and warning messages
are provided from ORION or PSYCHO. By choosing this command,

the user can receive error and warning messages with a beeping sound.

» Notification-Off: Error and warning messages are suppressed.

74

Including the schema change mode (default mode), PSYCHO supports
5 different modes. Three of them are implemented and the remaining two will
be implemented in the future. A number of pop-up menus are provided in
accordance with the modes. The following 4 commands are for changing the
modes of PSYCHO.

o Query-Mode: This mode is not implemented currently. We are planning
to support a graphical query language facility within PSYCHO.

®

Transaction-Mode: In this mode, the user can pose a series of schema
change operations as an atomic action (i.e., schema change transaction).
PSYCHO requests transaction service to PSYCHO by sending a mes-
sage “Begin Transaction” to ORION. In the middle of a transaction, the
user can abort. Then ORION undoes the operations performed between
abort point and begin-transaction point. If the user commits a trans-
action, PSYCHO sends a message “End Transaction.” We shall discuss

this mode in section 3.2.3.

Composite-Object-Mode: This mode is not implemented.

o Sketch-Mode: In this mode, PSYCHO does not communicate with
ORION. The user can manipulate the database schema experimentally.
We shall discuss this mode in section 3.2.3.

o Move-Screen-Up (-Down, -Left, -Right): The DAG window is scrolled
up, down, left, or right, respectively. These commands are used for a
DAG that is too large to fit on the screen.

e Reset-Top: The window is adjusted to show the top of the DAG (i.e.,
the root appears at the top of the window).

o Screen-Dump: Prints a hard copy of the screen on a laser printer.
o Quit: Terminates a session.

Class Index Window

75

The small window located in the left bottom of the screen is the class index
window., The class index window shows a list of class names in alphabetical
order. The user can scroll the class index window up and down by clicking
the top and botiom labels in the screen respectively. If the user clicks on a
particular class name, the system draws the sub-DAG whose root is the chosen

class. We shall discuss this window in section 3.2.3.
Mouse Documentation Line Window

The mouse documentation line window contains information about what dif-
ferent mouse clicks mean. As the user moves the mouse across different mouse-
sensitive items or areas of the screen, the mouse documentation line shows the

corresponding documentation to reflect the changing commands available.
Method Code Editor

In ORION, a method is a CommonLisp form. As such, the method definition
process is similar to a LISP programming session. Therefore the user needs
an Zmacs’-like editor window. In the method code editor, the user can test
a new method, modify the method and save the definition of the method into
ORION.

$.2.8 PSYCHO Facilities

In this section we will illustrate PSYCHO facilities by showing example schema
change sessions on the “University Person” database. Before we proceed, we
have to clarify the mouse function in PSYCHO. The Symbolics mouse has
three buttons. We use only the left and right button, not the middle button.
The left button is used for clicking mouse-sensitive items such as nodes in a
DAG, commands in the command menu, and class names in the class index
window. A mouse sensitive item has its associated action which is supposed to
be performed after being clicked by the left button. The right button is used
for invoking an pop-up mode which is designed for a particular mode.

! Zmacs is Symbolics’ version of emacs

76

X Docwment Exerniner

Herdcooy
file System
Dicwcted Pepclic Braph Pone 1
ma-Load Yotorials Rotificsiion-On RotiFication-OFF B (lggg index ®m
Duery-Hode Tronsaction-Hode Composite-Dbject -Mode Scrptch-Mode tls ¥op
Hove-Screen-Up Hove-Screen-Down Hove-Screen~LefL tove-Screen-Right |aS81-PROF
Resel-Top Screen-tump Quit ASS0-PROF
Conmand : ICLASS
FURL-PROF
GRADER
ORADUATE ~STUDENT
Poyeho Lisy Pame 1 Bors Babn

£/1d766 11830 RiM ubkk, yi - i iR Iprint-epooier b it insadreauests Ybuds

Figure 10: Symbolics system menu

The Symbolics supports a system command menu. We retain the sys-
tem command menu because the user may want to do various things, such as
inspecting directories and files, during a schema change session. The system

menu can be invoked by clicking the right button twice as shown in Figure 10.

We also intentionally provide some redundancy in the contents of pop-
menus and the command menu, (i.e., some commands are supported in different
menus). That is purely for the user’s convenience. The pop-up menu in Figure
11 is invoked when the user clicks the right button on an area that is not a
mouse-sensitive item. The contents of the pop-up menu is exactly same as the

contents of the command menu window.
Schema Manipulation

All schema change operations in the taxonomy in section 2.3 are embedded in
the pop-up menu in Figure 12. The pop-up menu (from now on, we call this

menu the “basic operation menu”) is invoked by clicking the right button upon

78

nodes of DAG which are mouse sensitive items. The first seven items in the
basic operation pop-up menu corresponds to (3.1), (3.2), (3.3), (1), (2.1), (2.2},

and (2.3) in the taxonomy of ORION schema change operations, respectively.
In this section we will explain the behavior of these seven items by showing ’.:g'ﬁagwg&
tificgtion
examples. The other three items are for schema browsing and user navigation, . 0\!:%::4_'&‘
and are covered in the next section. Comoggie-orect-Hode
HooeserenDou
Suppose the user clicks the following items on a node of a DAG. %&;&&l
eset-10D
o Create a New Subclass: The system will highlight the selected node and x
display a small box in which the user types a class name as shown in
Figure 13. After the user types a class name, the system redraws a DAG W“‘ L Parie TG Totrcation-OTF 5 Ciasy Index oF
o] Lomposite -3 Leh--Mode '
including the newly created node as shown in Figure 14. Wt il e o T it MoveScreen-Right |assi-eaor
Reset-Top Sereen-lump Quit ElWASS
s Delete This Class: The system will drop this class definition and redraw : CaADEn .
LGRADUAYTE ~STUDEN
the resulting DAG. Figure 15 shows the resulting DAG after deleting Hors buiew

T Int-8p00 167 1duicinesreauentbe

“TENURED-PROF” class. We note that “ASSO-PROF” and “FULL-
PROF” now become subclasses of “PROFESSOR” in accordance with
the semantics of the ORION schema change operation (3.2).

Figure 11: Pop-up menu for non mouse-sensitive items in the DAG window

Rename a class: The system will highlight the selected node and display

L

a small box in which the user types a new name for the selected node.
After the user types a class name, the system redraws a DAG including

the renamed node.

s Change the contents of this class: The system will highlight the se-
lected node and display another pop-up menu showing operation choices
for changing the definition of the selected node as shown in Figure 16.

*

Within this pop-up menu, the user can add, delete, or modify instance
Rename Thuis (loss

variables, instance methods, class variables, and class methods.

Addition: When the user clicks the item “add a new instance

variable”, the template in Figure 17 is displayed. The user fills

{honge
Moke Another (less 99 & Mew
i Delete SwwerSub (lass Relstionshio

Lontents of This [less
Superciess of This (less

Change Supercisss Ordering
Meke This Closs Top
take The Tirst Parent Top
Heke Thus (less Botlom

the slots in the template menu and creates a new instance variable
by clicking “Yes” option in the “** Create It! **” item. Class

Dirgeted Meyc)it Seaph Pere §
Behema-Losd Tutorisls Hotification-On Nouification-Utf oo (|pgs Inden 8%
Query-Hade Tromssction-Mode Composite-Object-Hode Scrateh-ode Vo
Hove-Screen-Up Hove-Screen-Down Move-Screen-Left Hove-Screen-fight |ASSI-PROF
Reset-Top Screen-Dump Quit éﬁgg"m
' FULL-PROF
IGRADER
\GRADUATE -8 TUDENT
Paycho Lisp Pona 1 Raore dshesn
7idske 1B 1A 4B KIN Ubbk: v o LUNLbIHK O print-spoo er tgulc e regueBls £¥41

Figure 12: Pop-up menu for mouse-sensitive items in the DAG window

Alar 6 nany for & WSw SlEes:

LY -PAT D

8

Poveho Livn Pame 1

Z7Vavbn o118 A RIA

Figure 13: Pop-up window for providing the name of a new class

Uitk

1

birgctod Reyelie Sroph Pane |
Teherna-108d Tutorials Hotification-On Toufication-0TT so Clags index ¢
Duery -Mode Trenssction-tode Lomposite~Object-Mode Scrawch-Hode Yop
Hove-Screen-lp tlove~Screen-Down Move-Screen-LefL Hove-Screen-Right ASSI-PROF
Resel-Top Screen-Dump Quit ASS0-PROF
Comand: B CLASS
' F ULL-PROF

GRADER
LGAADUATE -STUDENT
Brers hslow

ArYas8e 15018015 bR

Tirvawn TA ﬂ‘aec k;nrarr"ﬂl fﬂg“]t;nﬂ fl"nm (‘N’Bting a new ClaSS “HIGHLY'PAID”

vt

INIVERSIT v-PERSO!
[1
pinic EmrLovEd) ETyDENT)
[P 1 1
BTaFA AADUATE -STUDEN
1 1 z 1
3 1 7
B (TenoAED-PACH EARIDER ROCTO
1
trgeeed Bepelie Graph Pore 1
Schema-Losd Totortals Rotification-Un Touitication- Ot se (legs Indgx e
Query~Mode Fransaction-Mode Composite-Ubjeci-Hode Scrateh-Mode £ vy
Hove-Sereen-Up Hove - Sergen-lown Mpve-Screen-Left Hove-Screen-Right [ASSI-PROF
Reser-Top Screen-Dump Quit ASSO-PROF
Lommarnd: | CLASS
FULL-PROF
GRADER
CRADUATYE ~-STUDENT
Popeive Lisp Pony 1 Blors balow

variables are dealt with the same manner. If the user clicks “add a
new instance method”, a method code editor window is created as
shown in Figure 18. The user can create & new instance method,
test the new instance method, or modify the new instance method
in the method code editor. Class methods are dealt with the same

manner.

Modification: When the user clicks the item “add a new instance
variable”, the pop-up menu having the instance variables of the
selected class is displayed as shown in Figure 19. The user may
choose a particular instance variable in the pop-up menu, say
“TACOURSE”. Then a template describing the current status
of “TACOURSE” pops up as shown in Figure 20. The user can
modify the contents of an instance variable by changing the values
in slots of the template of Figure 20. Class variables, instance
methods, and class methods are dealt with the same way.

Deletion: As shown Figure 20, the template having the contents
of an instance variable has the “Drop It!” item. By choosing
“Yes” option in the template, the user can delete the instance
variable from the selected node. However, if the variable is an
inherited one, the request is rejected and an warning message
will be displayed. Class variables, instance methods, and class
methods are dealt with the same way.

o Make Another Class a New Superclass of the Class: The system high-
lights the selected node and waits for the user to click on another node
as shown in Figure 21. The system provides graphical feedback helping
the user to choose a valid node. The second selected node will become a
new superclass of the first selected node. After the user chooses the sec-
ond node, the system redraws the DAG to include the new edge. Figure
22 shows the class hierarchy having the new edge between “HIGHLY-
PAID” and “RA-SHIP”.

81

BEF AL T~ (¢ RIL

BASNE DV UE ¢ 1 Ti3L LY
HERTTED-FRORL: MIL
COHOSITE-L1RK: 2 Yor G0
Fut BODBERTATION: ¢ Voo e
8 Croate L) 0813 Voo dmy

3T £
Directyd Meyelic Geoph Pane |

Birscted Boyelip Graph Pone i Schema-Losd Tutorials Rottication-Dn Hotification-UTF 88 Clggs Indew 89

Teherno-Losd Tutorials Hotiticetion-Un Rotificetion-DIT o8 Clags lndax o8 Mz—we Trensaclion-Mode Composite-Jbrect-Hode Scratenh-Mode Va5

Query-Hode Transection-Mode (omposite-Object-Mode teh-Mode Yep Move-Screen-Up Hove-Screen-Down Hove-Screen-Lefl Move-Screen-Right {ASS1-PHOF

Move~Screen-Up Hove-Screen-Down Hove-Screen-ieft Hove-Screen-Right assi-enos Reset-Top Screen-Dumg Quit ASSO-FROF

Reset-Top Screen-Dump Duiy ASS0-PAOF Comsnd; B CLASS
o B CLASS L FULL -PROF
NIt F UL ~PROF Commona: IGAADER
Conngnd: GRADER JGRADUA TE - S TUDENT

WW‘“‘"‘“’:"“:_ Paveho (150 Pane § Blors batow
ors
e B LR BT 1pr 1L~ 8000 107) 1C INES) FEaUT oL 1 -
Viesbn 41:15:15 IR Ubti: vt

Figure 15: Class hierarchy resulting from deleting the class “TENURED-PROF” Figure 17: Template for a new instance variable

Tou Con treate & mew wethot of the PROCION €1656.
The Bynton of def-mathod: {eef-aathod (method-npne’
{¢object-ver> (closs) Bostional <clsesp))
{ brest cargusanto)) Gbody thody)})
zunc o "lavttor-guit) ' 4f you era 7intehed with Cresting a msu mRthod.
omnand :

at it
wpciste or deiete an exisling Class varrable
@tk 8 haw Civss variable
spiste of gelete an axlsting class muthod
ad! 8 rew Ci986 MRthoD

TR Jupciete o kte 8N exiating instence nﬂ;blf
e Tt et ™ peves com e :
irgetad Repelie Bruph Pone |
eheme-Losd Tutorials Hotification-{in HotTication-0FY vs Clags Indax Be
Query~Hode Trensaction-ode Composite-Object-Mode Scratch-Hode Yop
Mavc-%nen-tlv Hove - Screen-Down Hove-Screen-Left Hove-Screen-Right [agsi-pror
Reset-Top Sereen-Dump Ouit ASSO-PROF n
Comspont CLASS
18 FULL -PROF
Cavmonaraad ¢ GRADER
GRADUATE -BTUDR MY oveha Lisn Pace 1
Payeho Lisp Peny | Bore baivwr 3
/147b6 21115059 kiR : + LU LIRR prtnt-ppooier ddulctnes request 1>
/1a/Be 21:16:81 KM USER: w + LOMSTHCOIprint-apocier 2duic inea)reaues: 139708

Figure 18: Method code editor

Figure 16: Pop-up menu displaying operations for changing a class definition

Dirgeewa Beyelte Graph Pone 1

Payrhw Lisp Peny |

£/basub c8:46:3] AR Usks

ma-Load Tatorials Woiification-Un Roticavion- 01T
Duery-Hode Teunsaction-Mode Lornposite-Object-HMode Scnuh:mde 2 € ."ru’"d.x =2
Hove-Screen-Up Move-Screen-lown HMove-Sereen-Left Hove-Screen-Right JASSI-FROF
Reset-Top Scrgen-Dump it ASSO-PROF
oo Bowy, CLASS
F UL L ~PROF
o 1 GRADER
GRADUATE -BTUDENY

Btoss baivw

Ty

& LINA DI 2 pr intT Ak ter v ic tnep reguEst Lt Su

Figure 19: Pop-up menu displaying instance variables of the class, “PROCTOR”

iryeted T Broph Pore

VART ABL E-HRAE ;1 ACOURSE
DorRIN: : §IRING

GHAE B-UALUE 1 1L
ERTTED-FROM: : TR-BHIP &
COMOSTIE~LTNC: 1 vau o

Modatn BOCURERTRTION: : Yoi b

20 Drop_ Ihia Instence Werteble! 88:: voitee

FlRs]

aycho Liep Pane |

meL 050 Tutorials Hotification-On HotiTication- Y ')
Duery-Hode Transsction-Mode Lomposite-Object-Mode Seratch-Mode “.",”,nd.x 2
Move-Screen-Up Pove~Screen-Down Move-Screen-left Hove-Screen-Right JASEI-PROF
Reset-Top Sereen- it ASSO-PROF
Conmpnd: CLASS
Comnond. § FULL~PROF

IGRADE R
BRADUATE ~STUDENT
Blore datow

Piprint-spooier Joulcinesdrequest -l

Figure 20: Template describing the selected instance variable, “TACOURSE”

o Delete SuperSub Class Relationship: The system highlights the selected
node and waits for the user to click on another node as shown in Figure
23, The edge between the first selected node and the second selected
node is dropped from the DAG. After the user chooses the second node,
the system redraws the DAG to exclude the deleted edge. Figure 24
shows the class hierarchy after dropping the edge between “HIGHLY-
PAID” and “RA-SHIP”.

e Change Superclass Ordering: The system highlights the selected node
and waits for the user to click on two more nodes as shown in Figure
25. The edge between the first selected node and the second selected
node and the edge between the first selected node and the third node
will be exchanged in the DAG. After the user chooses the third node,
the system redraws the DAG resulting from exchanging the two edges.

Figure 26 shows the class hierarchy resulting from edge replacement.
Schema Browsing and User Navigation

Consider the basic operation menu in Figure 11 again. The bottom three items

in the menu are for navigation.

o Make This Class Top: The system places the selected node in the top
center of the screen and draws all the subclasses of the selected node.
The display that results when the user selects “Make This Class Top”
on the node “STAFF”, is shown in Figure 27. The purpose of this
command is to allow the user to concentrate on the selected node and

its subclasses.

s Make The First Parent Top: The system locates the first superclass P
of the selected node in the top center of the screen and draws all the
subclasses of P. The display that results when the user selecis “Make
The First Parent Top” on the node “STAFF”, is shown in Figure 28.
“UNIV-EMPLOYED” is the first superclass of “STAFF”.

85

Dirgcted Acye)ie Groph Pane 1
trected V¢ Graph Pong 1 Cherma-
Schema-Load Totoriats Hotiication-Un oUiTication-0OrT %5 L1088 Index »e w;‘_,";‘;‘:’ 1,,..12'3’? ;:‘_5““‘ waxai&::gmae ibsgggxmbfl Be (] LIT] indgx w»e
Guery-Hode Transection-Hode Composite-Pbjeci-Mode Scratch-Hode Yop Hove-Screen-Up Hove-Screen-Down Hove-Screen-Left Hove-Screen-Right [ASSI-PROF ”
Hove - Sereen-Up Hove-Screen-Down Move-Screen-Left Hove-Sereen-Right {ASS1-PROF Reset-Too Screen-Dump Buit A\sso-ﬂ\OF
Reset-Yop Screen-Dump Duit ASSO-PROF rpemp— CLASS
Command: ICLASS Cosnand : PROF
Command FULL -PROF ‘ v
OAADUATE -STUDENT TE-STUDENT
Boore bakew fPaveho Livo Pane 1 Blore badenw

¥

Wi Pr ANt ~8p00 LT JBu lEInES I rEGUEaL- 1"

INIVERSITY-PERSON

HGHLY P4l
trecied Bopelic Groph Peng | trectod 1ig B Porg 1
gL o Tutorials RotificationoUn Rotiication-0fT 5 Clogs Indax B4 Behems-Lo8d Tutorials Rotification-Un Rotification-DIT e Clgsg index ow
Query-tode Transaction-tode Corposite~Dbject-Mode Scrateh-Mode ¥ Query-Mode Trenssction-Mode Lomposite-Object-Hode Scratch-Node ¥ob
Pove-Scrgen-Up Hove-Screen-Down Move-Screen-left Move-Screen-Right [ASSI-PROF Hove-Screen-Up Hove-Screen-Down Hove-Screen-lefi Move-Screen-fight {ASSI-PROF
Reset-Top Screen-Oump Dt ASSO-PROF Reset-Top Screen-Dump [ASS0-PROF
o : CLASS [Connand: B CLASS
Gosupred i FULL -PROF F UL -PROF
IGRADER GRADER
(OAADUATE - STUDERY IGRADUA TE - B TUDENT
oysho iivo Pore More daton Poycho L1so Pone 1 Blors bios

713700 13

Fionre 24: Class hierarchy resulting from dropping an edge

vi ° LU ST Jprint-apooter Taulcineadrequest -1 977

Fionrs 99« (lace hierarchv resnlting from addine a new edee

traviey Sepciis Graph Pere |
Sehema-Lond Tutorials Wotification-Dn Hoiificetion UFT S5 Clags index ve
Query-Mode Teansaction-Hode Covaposite~Obiect-Node Scra! e Yop
Hove- en-Up Move-Sereen-Down Move-Screen-Left Hove-Sereen-Right [AgSI-PROF
Reset-Top Sereen-Dump Duit ASSMSS OF
Cawaupon ; CLA:
8 FARL-PROF
GRADER

ADE
ORADUATE~STUDENT

Bfore satos

gyeho Lisp Pone 1

Ut

BBy -FAi
Vig B Parw 1
"“(53:“ :\ca-Lo:d = Tutovisly Kotification-(n WotiTication-0FT #s (lesg Index 83

Query-Node Tronssction-tode Composite-Obct-Mode Scratoh-Hode Vob
Nm»éruﬂ-l)o dove-Screen-Down Move-Screen-Left Hove-Screen-Right 1ASSI-PROF
Reser-Top Seeeen-Pump Oun. éﬁggmor
8 F ULL-PROF

IGRADER
GRADUATE -8 TUDENT
Btore dabow

vt

S 1print-spoo lar ddulc 1nea reauest - L

', Ar . Ve Rinwnecho vaenlting fram EY(’,h&nQinQ two Edges

e Make This Class Bottom: The system locates the selected node in the
bottom center of the screen and draws all the superclasses of the selected
node. The display that results when the user selects “Make This Class
Bottom” on the node “TA-SHIP”, is shown in Figure 29. The purpose
of this command is to allow the user to concentrate on the selected node
and its superclasses.

We note that PSYCHO supports three types of user navigation facility:
(1) The above three commands in the basic operation menu, (2} The 5 naviga-
tion commands in the command menu window, and (3) The class index window.
In general the commands in category (1) are used when the user wants to reor-
ganize & DAG which is already partially visible on the screen. The commands
in the categories (2) and (3) are useful when the user wants to jump to a class
which is located far from the current screen position. If the user knows the ex-
act location of a particular class, he can access the class using the 5 navigation
commands in the command menu window. Even if the user does not know the
exact location of a class on the screen, he can access the class by searching for
the class and clicking it in the class index window. Figure 30 illustraies the
display that results when the user clicks the class “GRADUATE-STUDENT”
from the class index window. Figures 31-35 demonstrate the scrolling capability
of PSYCHO.

Graphical Feedback

If the system uses lengthy dialogues to interact with the user, an experienced
user may feel frustrated. Rather than tedious dialogues, PSYCHO provides
several types of graphical feedback.

In Figure 21, the blinking nodes (i.e., nodes surrounded by dotted lines)
are candidates of new superclasses for the highlighted (selected) node. In Fig-
ure 23, the blinking nodes indicate that incoming edges from the highlighted
(selected) node can be dropped. Also in Figure 15, the blinking nodes indicate
that incoming edges from the highlighted (selected) node can be exchanged.
Besides those, if the user tries to create an edge {i.e., IS-A relationship} and

89

Diructed Acyelic Graph Pone 1

Pavcho Liso Pere 1

Scheme-Load Tutorisls Hotification-on Wotification-O11 L)
~bode Transaction-Mode Composite -Object-tode Scratch-Mode L4l ."r.,lna.x ==
Rove-Screen-Up Hove~Screen-Down Hove-Sereen-Left Hove-Screen-Right (ASS1-0ROF
Reger-Top Screen-Dump it ASS0-PROF
Corsan - CLASS
FULL ~PROF

GRADER
IGRADUATE-STUDENT
Rbors bsbosy

irgpted Royelie Groph Peme 1

19GHL Y-PAll

Sehema-Losd Tutorisls Houfication-Un Hotcation-DiT o8 (lagg Inden 8@
Duery-Mode Transaction-Mode Composite-Ubject-Mode Scratch-Hode Vo
Move-Sereen-Up Move-Screen Hove-Screen-Left Move-Screen-Right 1A551-PROF
Resel~Top Sereen— it ASS0-PROF
(el CLASS

FULL -PROF

GRADER
OAADUATE~BYUDENT
Biore balew

opr 1ntopoo ter 10 it 1Reairequest - /3

Figure 28: Making the first superclass of the node “STAFF” top

the resulting DAG happens to have & cycle, PSYCHO rejects his request with
graphical feedback showing the cycle.

Integrity Checking

The ORION system does not allow schema changes which violate the invariants
of the framework [BKKKB87]. In case of unacceptable operations, rather than
veceiving error messages from ORION directly, PSYCHO explains why such
requesis are not acceptable. PSYCHO eliminates erroneous schema change

requests by checking the validity of requests before submitting them to ORION.

The result of validity checking is represented in the form of graphical
feedback or pop-up messages. For example, as we mentioned earlier, if the user
tries to create an edge and the resulting DAG happens to have a cycle, PSYCHO
draws a bold cycle to show the cyclicity resulting from the request. Again
in Figure 21, if the user clicks on the node “PROCTOR” as a second node,
PSYCHO explains that the second node “PROCTOR” is already a superclass
of the first selected node “HIGHLY-PAID”.

Name conflicts are also checked by PSYCHO. In Figure 12, suppose the
user is trying to rename the node “PROCTOR” into “UNIV-EMPLOYED”
which already exists, PSYCHO explains the situation of name conflicts. The
same is applied to rename operations such as (1.1.3) (1.2.3) (1.3.3) (1.4.3).

Sketch Mode and Transaction Mode

Besides schema change mode, PSYCHO supports two other useful modes:
sketch mode and transaction mode. In the schema change mode, every graphical
action is immediately submitted to ORION and ORION performs the corre-
sponding command. However, in the sketch mode, PSYCHO does not commu-
nicate with ORION in the middle of a session. The purpose of this mode is
improved performance. Since some of schema change operations are expensive,
undoing the previous schema change causes high system overhead. The prob-
lem is even greater when the user undoes several previous changes to a schema.

In the sketch mode, the user can freely manipulate a schema through trial and

91

‘m&“ﬁ:\a ;;:dce atene.d Taioripls Toufication-0n Wtih) Y i n"““s‘z‘;:"’mm ppi e P) OF
N ification- tification- s8 Ciggs Index »s ma-[oad Tutorials Notification-Un Botification-UFr (Y] L1
Mez.rsvl;:odcw Trensaction-Hode Lowposite-Object-Hode Seratch-Hode Vop Query-Hode Trensection-Hode Lomposite-Obyect-Mode Scratch-Mode c‘."r.,!m"“
R‘ “ 'en- Hove-Screen-Down Move-Screen-Left Hove-Screen-Right {ag81-#ROF Hove-Screen-Up Have - Screen-Oown Move-Screen-Left Hove-Screen-Right agsi-PROF
eset-Top Sereen-Dump Quit ASSO-PROF Reset-Top Screen-Dump Quit ASSO-PROF
Coronend: CLASS Commond - CLASS
iF ULL -PROF ¥ ULL -PROF
IGRADER GAADE
JGRADUATE -8 TUDENT GRADUATE -5 TUDENT
Mo botews Poycto Liup Pene § pracs ol

8

Ll s spr it -apooieriouicinea i raouRel - dr

Figure 29: Making the node “TA-SHIP” bottom

Tz
G ML Y -PAI
Dirgeted Yig G Porg 3 0 1rectad Acyclic e Para)
%LM = Yutorials Wottfication-Un Wotification-OrT se Cless Index °° _myfload 20 Tutorials Rotification-On Fotification- Ut e8 {iags index s»
Dutry-tode Tronsaction-Mode Composite~Object-Hode Scratch-Hode Yo Dotry-Hode Trasaction-ode Composite Dbrget-Hode PR -
Move-Screen-lp Move-Screen-lown Hove-Sereen-left Hove-Sereen-Right [assi-enor Hove-Screen-Up Move-Screen-Down Hove-Screen-teft Hove-Screen-Right [ASSI-PROF
Reser-Top Sereen-Dump Quit ABSO-PROF Reset-Top Sereen-Dump Gt ASS
Fomens: B Ky [Eaanand: CLASS
FULL-PROF cuas
GRADER maosmn
GRADUATE - BYUDENY
Poycho Liso Pore 1 Bors budew

Drprant~Bpo0 ler ddu 1c inestrRguEBL s SBU AT e P e T

; - Clicki “ -STUDENT”]
Figure 30: Clicking t}}:) Cll w0 . (;RAD.U:TE o Figure 32: Moving the screen to the right
from the class index winaow

{rweted Revelie Broph Fone)

Poppho Lisp Pene §

LU DI hR:Tpr int-spoolerdulcineaireautsi-14r

rng-Load Tuterials Hottication-Un FootiFication-UtT 89 an
Duery-Fodt Transsction-Hode Composite-Cbiet-tode Scrateh-Mode £l .“1.,1 ndex
Wove-Sereen-tp Hove~Sereen-bown Hove-Sereen-lefy Move-Screen-Right 1agsi-PROF
Resei-Top Screen-Durep Quit ASS0-PROF
Lo § C1LASS

¥ ULL-PROF
HGRADER
[GRADUATE ~BTUDENT

Mot botew

GRacER, [PROCTOA
G HL Y- PAI
Birectad Reyelic Broph Pons)
Bechema-Load Tutorials Totification-tn Totication-OrT 96 (1685 Ingex 88
-Hode ¢ Lion-Hod Lomposite-Object-Mode Scrateh-Mode Yop
Hove-Sereen-lp Move-Scrgen-Tiawn Move-Screen-Left Move-Screen-Right jass)-pRov
Reser-Top reen-Uuro Quit SS0-PROF
omnandt CLASS

BikkIprint-spooteriduicingarreauest -4 3¢

GRADER
CRADUATE ~BTUDENT
Btere batowr

Figure 34: Moving the screen downward

error because schema changes are virtual. The user can give a command “go-
shead-and-do-it” at the end of the session. This sketch mode is also useful in
the stage of initial database design when the user does not have a complete

understanding of applications.

The motivation of transaction mode is similar to that of sketch mode. In
transaction mode, one schema change transaction consists of one more schema
change operations. Each graphical action is submitted to the ORION schema
manager and to the ORION transaction manager and ORION updates the
schema definition with corresponding operations. In case of system failures,
the system guarantees recovery. Also the user can abort the schema change
transaction any time in the middle of a transaction.

8.2.4 Object-Oriented Implementation

In this section, we describe how PSYCHO is implemented. PSYCHO
is implemented in an object-oriented fashion using Flavors, which is an object-
oriented programming feature of ZetaLisp.

Flavors and Zetalisp

The flavor system is the Symbolics machine’s mechanism for defining objects.
An object can receive messages and act on them. A flavor is a class of active
objects, one of which is called an instance of that flavor. A set of instance
variables and a set of messages are associated with a flavor. As such, Flavors
are similar to ORION classes in several senses. The following example illus-
trates a sample flavor “automobile”, a sample method “old-model-years” which
computes the number of years during which a car is used, and instantiation of

automobile flavor.

(defflavor automobile
(year-model

price

95

96

manufacturer

mass)

{vehicle)
:gettable-instance-variables

settable-instance-variables)

{defmethod (automobile :old-model-years) (currentyear)

(-~ currentyear year-model)}

{setq mycar {make-instance 'automobile
syear-model 83
:price 3000
:manufacturer *hyundai

:mass 2500))

The Symbolics Flavors system supports hundreds of built-in flavors
which are useful in building graphical interfaces. Static menus, dynamic menus,
windows, LISP windows, and command menus are all built in flavors.

In PSYCHO, we define a flavor for nodes of DAGs, which is an internal
data structure for drawing figures:

(deflavor node
{children
parents
name
x-coord

y-coord))

0

:gettable-instance-variable

:settable-instance-variable

)

The instance variables children and parents have a list of immediate
subclasses and superclasses respectively. The instance variable name has the
name of a class. (x-coord, y-coord) will represent a position where a node is
located on the screen. A number of methods are defined on the flavor node,
such as add-child, add-parent, and so on.

Besides the node flavors, PSYCHO has over 10 flavors and associated
methods, which are used for managing PSYCHO data structures. Methods
are written in ZetaLisp. Since PSYCHO is implemented in an object-oriented
fashion, it is fairly easy to modify or extend PSYCHO.

Interfacing with ORION Schema Manager

The ORION schema manger is written in CommonLisp because of portability
issues. PSYCHO is written in ZetaLisp because graphic functions are only
available through Flavors of ZetaLisp in Symbolics. Fortunately, functions in
CommonLisp and functions in ZetaLisp can call each other within Symbolics.
By attaching “zl:” to ZetaLisp functions and “cl:” to CommonLisp functions,
the LISP interpreter can tell whether a function is borrowed from Common-
Lisp or ZetaLisp. The concept is called package concept. When the user repre-
sent schema changes graphically on PSYCHO, corresponding ORION functions
should be invoked. When PSYCHO calls an ORION function, say delete-class,

»

the corresponding syntax is “orion::delete-class ...”. “orion” is the package

name.

8.8.5 Discussion

In this section, we discuss several issues related to PSYCHO. First, we introduce

systems similar to that of PSYCHO. Second, we criticize PSYCHO and finally
we make some observations on graph representation theory and its relation to

graphical schema manipulation.
Related Works

In recent years, many Al tools have based on object oriented programming
[LMIB5, Symbss]. They also provide visual aids for browsing class hierarchies.
PSYCHO is different from the class browsers of Al tools because PSYCHO is
designed from a database perspective: {ransaction mode, sketch mode, query
mode, etc. In the visual aids of Al tools, the user can modify the structure of
¢lass hierarchy, but only a few operations are allowed. User navigation within
the DAG in the visual tools is not as dynamic as PSYCHO. In general the

existing Al tools disallow run-time class modification.

Another motivation behind this type of visual tool is that much time is
spent learning the large library that is an integral part of most object-oriented
language systems. Thousands of built-in classes and methods cannot be easily

mastered without a powerful visual tool.

KEE knowledge base browser: KEE is an Al tool for knowledge
engineering, from Intellicorp [INTE84]. KEE consists of a set of software tools
to assist users in building their own knowledge-based systems. KEE supports
various programming paradigms including rule-based programming and object-
oriented programming. The object-oriented nature of KEE is based on the
Frame data structure which can have a number of slots and rules and associated
procedures. Slots, rules, and procedures all can be inherited or defined locally.
Figures 35 and 36 show the KEE knowledge base browser and sample frame

structures respectively.

LOOPS class browser: LOOPS is a knowledge programming language
from Xerox PARC [Stef83]. LOOPS class browser is conceptually similar to
KEE knowledge base browser. Figure 37 shows an example of a class hierarchy
in the LOOPS class browser.

98

CHEMICAL. CO&‘T"’U!NTS
CONSTITUENTS
CONBUMABLE RESOURCES « ,. ;

ENERGY SOUBCES 08§

R -wmou PRESSURE RITROGEN
i -.www PREESURL.AIR
" NETUTBAL SOLVENTY

PROCESS DEVICES

. .- STORING
ocksss- 1.0 CBYSTALLIING
e Vi mpavive
" MIEING
. WELDS ACID
. NEEDS.ALKALL
Lo VEED.}
€ YEED.3
* BULE BIOH
URULELOW
. T PEED.2
UL METHODS - . .. o» BULEMOVE.ALL CONSTITUENY

Figure 35: KEE knowledge browser (from [INTE84]

Ouns oy cows‘n'runr feoa BIND
Pnherrtance OVERRIDE
Yelue(lase ICH(MK‘AL CONSTITUENTS)
AVURITS (STRIPPED-SWITCHEES))
CarDimaL Ity {3 1}
value ALKALL

Denglot CDNtUMA’L[IDOUIC A OCESS
Tamer SONSUMAD £S5 froe PR DEVICES
¥olueltony (mmuuuu
CaRdinA 1TY j{e «)1nfin jluOUICU/
LOPRENT value gt x\qnm by user
Yalue Unbnown

OwnSlot FLUID.LEVEL fros QIN.)
lanes \lance OVERRIDE
Yoluellasy (NUMBER)
CAPCINALIYY {[3 1)

COBBENT value 233%gned by wia
ALafe LiglTS (0 28 38 60 78 l")
uNils B

&ANGE (B 189)

Yalue 188

OunSlot INPUT fros PFROCESS.DEVICES
inneritance AFPEND

¥sluelless (PROCEIS DEVICES
Canplueidiy iy <INFinity)
COMBNY . value ass1gned by user
vslue Unanoun

OunSiot INPUT.PIPE fros PROCESS DEVICES
Inner vtance. APPEND

veluellass . (PIPES)

Ceravnaisty |1 olufinivy}

Yalue Unthoen

Owrflot OUTPUY frow BIN.

inherstance APPEND

¥sluelless (PROCESS DEVICES)

CARDINALITY {3 odufinivy)

CORBINY value asu1gned oy rules o Closs £
value (REACTOR.Y)

QuaS ot OU‘T'V‘I.”P! irou BIN.3
inngeitonce APPEN

veluellass (nru

CarCInNaLITy |{1 «iufifity)
COonMENY value sysigned by wser
vslue (PIFE.D)

Figure 36: Sample frame definitions in KEE (from [INTES84))

VMUY VINRET T HNCE LRTTICE

Comsmodity Transportabliity
e anlingy
FraglsCommedity
Porishablel dity
Appliances
Groceries
© ity
Hardware
Gasoling
s Art:upplbs
Ot ticeSupplios <-Book
Xerox 1100
Sportingloods BaseBail
¢ d::::Ncycle
Clothing -«-::::q?ants
Shirt

Figure 37: LOOPS class browser (from [Stef83])

MBTTURUre AN SO iRAce = pmas 1 el

- WP

1124
CONYRALYS « (Agvanced &. 1. Arghit- ...}
- §L18P

goiL Poth

LEabER - B8N

nant Ourucn §. Novek Jr.

NIYA

P -3 V!SRYOR Stored Data
PROJECT -
SaLaRY SBOOQ 1]
S50 455527977
BIRTHDATE - y 23, 1847
PHONE - (aas; 867.4532
OPFIEE - @M 284
HORE~ADDRE~ ~ Pato Alto, G4

#ONE - PHONE (418) 493-5887
EonYRACTS - gcn:sv) Computed Dots
NONTHLY-B6- 2360.90

[£Y POP [0 SROOKAM

SROP Ak Ba 8280

HPP ~ HPP

TITLE o~ Heuristic Programming Proj~-
ABBREVIATI- HPP

ADMINISTRA- ~ TCR
CONTRACTS ~ (Advenced A.1. aArchit- ...)
EXECUTIVES ~ (EAF WRG BSN TCR)

BUDBET
TOTAL LABOR

643487.2
268001.4

'&l
Ea ONTHA G

SECUTIVES

TOTAL BUDGEY LABOR OF HPP CONTRACTS ¢ 260001.4

Figure 38: GEV (from [NOV82])

™ Vi
T EwEET s 2 DO

Vi
TVUSIENTIAL WINDOW fon
;m mm-uxﬁm&- feey
v 40
B wmn UL
o118
puson
Ve
TVIESBEMTIAL WO o
&1 handiars (123}
SCTIAL o e dosman 10.GBRINY S0 40000 Loch
BBART-BIRTER-MMNY g7 imasy daaman 1V:6REE S

Mu tu HLLETENaI008 o fasry —tor st
v sawnon 1

-
01
wn«m«m risfig
AR 10N o vnay daren TOSBREEt
Bper tabon
or

TVIHSSENTIAL -WINDOV fon
104a! ethess (3}
TRLY Melure dagwor T2 ESEENT AL -MTNDOM Leck
SIS or ey Gaeesn 19 E5800 1000t s
RORE-BELECT 9o thery Sounon TVIERRERT 1L -INDOU

‘et
A AFLEC) Bofure asenon TVIESEERT IR -UISDON
BRI e nery taanen $UCEBRERT LAL-UIRO0M

STRR AT TR

bz st o ciu e

Figure 39: Flavor examiner

GEV: GEV [NOV82| is a tool which allows the user to display, inspect,
and edit structured data written in GLISP [NOV83] which is used for knowl-
edge description. GLISP is a LISP dialect that includes abstract data types.
DAG
representation is not supported in GEV. GEV is initiated by giving it & pointer

GEV allows changes to actual data as well as changes to data types.

to an object and its type. GEV interprets the data and displays the contents

of data on the screen as shown in Figure 38.

Flavor Examiner: This Symbolics utility helps users examine the
structure of flavors {Symb84]. The flavor examiner consists of six panes as
shown in Figure 39. The top left pane is the flavor history. The top right

i

101

pane is the method history. The user enters a flavor name or method name
into the bottom pane. The three middle panes are examiner panes that list the
answer to a query (i.e., interesting flavors or methods). When the user selects
“mdit” in the right end of a pane, the system puts the contents of the pane
into a zmacs-like buffer. When the user selects “Lock” in the right end of a
pane, the contents in the pane cannot be updated. In Figure 39, the user is
browsing the system built-in flavor, “tviessential-window”. The definition of
syy:essential-window” is displayed. This tool is rather text-oriented because
the user has to type what he wants. DAG representation is not supported in

the flavor examiner,
Belf-Criticism

We recognize that PSYCHO has several defects. First PSYCHO is not
machine independent, but runs only on top of Symbolics because PSYCHO uses
many built-in flavors. Second the DAG representation algorithm of PSYCHO is
so primitive that sometimes PSYCHO does not use empty space of the screen
properly. However, intelligent DAG representation is computationally hard
and may benefit from some heuristic techniques. Most existing graph browsing
systems have trivial layout algorithms [Rowes6b]. Third, the user cannot see
a total map of the DAG. A zooming facility would allow the user to view the
overall DAG structure, but we have not yet incorporated such a feature into

PEYCHO,
Graph Representation Theory

Our experience from PSYCHO and our previous experience from PI-
CASSO [Kim85a, Kim86, KKS86), which is a graphical query interface, em-
phasize the need for further work in graph representation theory. In particular

planarity and colorability problems are important in graph representation.

Planar graphs are easier to deal with than non-planar ones. Planar
DIACs generally represent a clearer picture of the database than an equivalent

non-planar DAGs. Of course, not all DAGs are planar, so we must concern

102

ourselves with minimizing an appropriate measure of non-planarity, such as

the number of crossing edges.

Another useful measure is colorability. We note that it is practical to
think in terms of color since color displays are becoming increasingly popu-
lar. For black-and-while displays, the number of colors would be restricted to
the number of gray tones that are conveniently distinguishable. For example,
classes (nodes) and relationships among classes (edges) can be represented in
a particular color. A graph representation is k-colorable if using k colors, no
intersecting edges have the same color and no crossing edges have the same
color. We note that the colorability problem is NP-complete. Thus, heuristic

solutions need to be investigated.

103

Chapter 4
Schema Versions

We provided a framework of schema evolution in chapter 2. In the framework,
whenever & schema definition is updated, the previous schema is changed to a
new one and existing instances of the previous schema are modified in order
to comply with the new schema (i.e., overriding the previous schema and its

instances).

In this chapter, we extend our schema evolution framework by allowing
schema versions in object-oriented databases. Although there has been sub-
stantial research on object versions [DL85, CK86, KL84, KCB86|, the issue of
schema versions has not been investigated in the database literature. We shall
present a technique that enables users to explicitly manipulate schema versions
and maintain schema evolution histories in object-oriented databases. Our so-
lution for schema versions is consistent with our schema evolution framework
and is designed to minimize storage redundancy and update anomaly. For com-
pleteness, we integrate our schema version model with the object version model
formulated by H.T. Chou and W. Kim [CK86].

4.1 Motivation

Benefit

In conventional object version models [KL84, DL85], only one schema is shared
by multiple object versions of an object. Suppose D denotes an object and
Dy, D,,..., D, denote object versions of D respectively. The schema for D,
Dy, Dy,..., and D, should be the same one. This, however, is rather a strong
restriction on object version derivation because an object version can be derived
only by changing some values of instance variables of a parent object version,
not by deleting or adding instance variables, nor by changing their domains.
The following example illustrates the restriction of object version derivation in

conventional object version models.

104

Example 4.1: Suppose a schema AUTO is (Id,Engine-size,Color) and do-
mains of instance variables are 1d: String, Engine-size: 100..500, Color:
{red,blue,white}. Let the AUTO schema be called 8. Let an object D be
(TKW624, 320, blue). Consider the following versions: Dy {TKW624, 250,
blue), D; (TKW624, 320, blue, ford), Dy {TKW624, blue), Dy (TKW624,
550, blue). In conventional object version models [KL84, KCB86, CK86|,
D,, Dy and Dy cannot be versions of D because the AUTO schema can-
not be shared by them: D, has a value (ford) of a new instance variable
Manufacturer, D3 does not have a value for the instance variable Engine-
size, and D, has an out-of-range value for the instance variable Engine-size.
However, suppose we allow object versions Dy, Dy and Dy to have their own
schema versions of the original AUTO schema §: 8; (Id: String, Engine-
size: 100..500, Color: {red,blue,white}, Manufacturer: String), S;
(1d: String, Color: {red,blue,white}), S; {Id: String, Engine-size:
100..600, Color: {red,blue,white}). Then, D;, Ds and Dy can be consid-

ered as versions of D. o

The next example also illustrates the necessity of a schema versioning

facility in a non-traditional database system.

Example 4.2: The system architecture for CAD systems often consists of a
public database system connected to a collection of private database systems
[CK86]. Users can check out an object version from the public database system
and manipulate it in their design workstation (private database). They can
create a new object version from the checked-out object version and check the

new object version into the public database.

Now suppose that there are several object versions vy, vs, ..., v, of an
object schema V in the public database. After user A has checked out the
object version v, another user B or a database administrator may change the
structure of V (i.e., schema change). If the system does not keep track of the

previous version of schema V', the user A cannot check a new object version,

105

say Vg, derived from v, into the public database because the new object version

vy cannot be accommodated in the new schema V.]

The restrictions shown in the above two examples can be relaxed by
maintaining schema versions. In summary, there are two major benefits of
keeping track of schema versions: (1) They provide for more flexible derivation
of object versions; that is, object version derivation can cross multiple schema
versions and (2} They allow the independence between object evolution and

schema evoluiion to be maintained.
Problems

There are two difficulties (called storage redundancy and update anomaly) in
supporting schema versions, which must be resolved for schema versions to
be practical. At first glance, there are two approaches to managing schema
versions: the snapshot approach and the view approach. In the snapshot ap-
proach, whenever a new version of a schema (say B) is derived from a schema
(say A), all instances of 4 are copied, modified in order to comply with B, and
stored physically under B. The view approach is that in the same situation
above, the instances of A are not copied under B. Instead, whenever necessary,
instances of 4 are viewed under B. Consider the following example to illustrate
the difficulties.

Example 4.3: Let us consider a class AUTO-MANUFACTURER with 4 in-
stance variables: Id (Integer), Name (String), Location (String), and
Wagon? (Boolean). Id is a unique identifier for a company. Name is the
name of a company. Location is a location of each company and Wagon?
indicates whether the auto-manufacturer produces a wagon or not. Suppose
a schema version AUTO-MANUFACTURER.1 is created by dropping the in-
stance variable Wagon? from the original schema AUTO-MANUFACTURER.
Also suppose another schema version AUTO-MANUFACTURER.2 is created
by selecting the instances of AUTO-MANUFACTURER producing wagons,
(i.e., all auto-manufacturers in AUTO-MANUFACTURER.2 produce wagons).

In this schema version, in all instances the value of Wagon? is “Yes”.

106

AUTO-MANUFACTURER

AUTO-MANUFACTURER.1

1d | Name Location | Wagon 1d | Name |Location
01! Hyundae| KOREA] YES 01 |Hyundae | KORFA
02! Honda JAPAN | YES 02 |Honda |JAPAN
03] Ford USA NO 03 {Ford USA
04 | Mazda JAPAN INO 04 [Mazda |JAPAN
05 [Daewoo KOREA[NO 05 |Daewoo | KOREA
06 Acura JAPAN YES 06 lAcura JAPAN

AUTO-MANUFACTURER.2

1d | Name |Location Wagon?

01 |Hyundae KOREA! YES

02| Honda JAPAN | YES

06 Acura JAPAN | YES

(2) Snapshot Approach

AUTO-MANUFACTURER.2

........ J Cem oo YIEW
//I "‘ 5:
\‘\\ 14 ,' '
AUTO-MANUFACTURER ' |
[d | Name Location| Wagon? v o
i
01 | Hyundae | KOREA YES :
02 | Honda | JAPAN YES /
03 | Ford USA NO /
04 | Mazda JAPANI _NO
05 | Daewoo KOREA NO
06 | Acura JAPAN| YES

(b) View Approach

Figure 40: Approaches for Schema Versioning

107

Vigures 40.a and 40.b show the snapshot and view approach respec-
tively. In the snapshot approach, as Figure 40.a illustrates, many instances
are stored in duplicate under the three schemas. If we want to delete
auto-manufacturer #02 from the original schema AUTO-MANUFACTURER,
we have to delete the same instance from AUTO-MANUFACTURER.1 and
AUTO-MANUFACTURER.2. In the view approach, update requests in the
views must be translated into updates in the database. If there is more than
one translation of a view update request, the view update request is called
ambiguous. Suppose a user requests the deletion of auto-manufacturer #06
from the AUTO-MANUFACTURER.2 view in the Figure 40.b. There are two
possible translations of the view update request: one is to delete #06 from
AUTO-MANUFACTURER, while another is to replace the Wagon? instance
variable of #06 with a “No”. However, either of two translations may cause an

unintended update anomaly.

The view approach has another drawback: suppose another schema ver-
sion AUTO-MANUFACTURER.3 is created by adding a new instance vari-
able President (String) to AUTO-MANUMACTURER. In the view ap-
proach, it is quite clumsy to model AUTO-MANUFACTURER.3: one way
is to create an auxiliary class AUX having Id and President and then
form AUTO-MANUFACTURER.3 from a join view of AUX and AUTO-
MANUFACTURER. However, the view update ambiguity in a join view is
even greater [Kel85].

Our approach is to keep all schema versions in a single class hierarchy.
As shown in Figure 40.c, AUTO-MANUFACTURER.1 can be modeled as a
superclass of AUTO-MANUFACTURER because the class definition AUTO-
MANUFACTURER.1 is more general than that of AUTO-MANUFACTURER.
By similar reasoning, AUTO-MANUFACTURER.2 can be modeled as a sub-
class of AUTO-MANUFACTURER. As we will show, problems in the snapshot

and view approaches are nicely resolved in our approach. [

Yor simplicity, the above example shows the case of one class, i.e., as

108

AUTO-MANUFACTURER.1
[Id ! Name !Location !

Legend:

is-a
e

AUTO-MANUFACTURER
Id | Name |Location {Wagon?

03 | Ford |ysa NO
04 |Mazda | JAPAN NO

05 [Daewoo| KOREA | NO

AUTO-MANUFACTURER.2

Id | Name |Location|Wagon?

01 |Hyundae | KOREA| YES

o2 | Honda [JAPAN | YES
06 | Acura JAPAN | yE8

{c) Our Approach

Figure 40 (Cont’d): Approaches for Schema Versioning

108

simple as a single relation. If we adopt either the snapshot or view approach
directly in real object-oriented database schemas, the storage redundancy and
update anomaly problems are even more serious because the class hierarchy of
a real-world object-oriented database schema could be a DAG structure with

hundreds of classes.

In summary, we reject the snapshot approach for two reasons. First,
storage waste will be enormous if we store instances per each schema version,
and second, database updates will be expensive because every snapshot will
be checked. Also, we do not accept the view approach because view updates
may cause semantic problems (update anomaly). Hence, we have been seeking
a technigue that enables users to explicitly deal with schema versions, while
guaranteeing minimum storage redundancy and allowing us to get around the

problem of update anomaly. The approach in Figure 40.c is our solution.

4.2 Introduction to Our Approach

Our approach takes advantage of (1) our schema evolution framework and (2)
inherent properties of class hierarchies. By (1) we mean that deriving a new
version of a class can be viewed as creating a new class in a class hierarchy
{details will be discussed shortly). By (2) we mean two implicit assumptions in
object-oriented data models: an assumption that an object instance can belong
to one and only one class and an assumption about update semantics (discussed

below).

As shown in section 1.2.2, an object instance cannot belong directly to
more than one class. However, an object instance I of a class A is also an
instance of all superclasses of A. As such, logically I is an instance of A and
A’s superclasses, but physically I belongs only to A. Storage is saved because
the instance I is only stored once under the class A. Therefore, minimum

storage redundancy is guaranteed with a class hierarchy.

There is one important assumption in the update semantics of object-
oriented data models. In the relational model, if V is a view of a relational

110

schema R, a request for deleting a tuple from the view V causes some update
ambiguities because the view tuple deletion may or may not be translated
into the database tuple deletion. In object-oriented data models, such update
ambiguities are ignored. Suppose a class 4 is a superclass of B and B is a
superclass of C. Let ¢; be an instance of C'. Note that ¢y is also an instance of
classes A and B, but I is stored only under C. If we follow the convention that
is adopted in the relational model, a request for deleting ¢; can be interpreted
three ways: (1) dropping from C, but staying in the database as an instance of
A and B, (2) dropping from B and C, but staying in the database as an instance
of A, (3) dropping from A, B, and C (i.e., dropping from the database). We
assume that (3) is the only deletion semantics in object-oriented data models.
We shall take advantage of this implicit assumption. Therefore, the issue of

update anomaly is ignored within a class hierarchy.

We intend to maintain a history of classes, rather than a history of
the class hierarchy. Therefore, in our approach, schema versioning is achieved
through the versioning of classes, (i.e., the granule of schema versioning is a
class, not @ class hierarchy). A new class version is derived by changing the
definition of the original class. A class definition consists of a set of superclasses,
a set of instance variables, and a set of methods. The relationship between §'

(a new class version) and S (the original class) is one of the following:
o S'is more generalized than S (i.e., §' is a superclass of §).
e S'is more specialized than § (i.e., S' is a subelass of S).

s §'is neither more generalized, nor more specialized than S, rather, S

is somehow related with 5. We call ' a neighboring class.

Therefore we view a class version derivation as creating a new class
either as a subclass, a superclass, or a neighboring class of the original class.

We shall keep class versions in a single class hierarchy.

111

4.3 Schema Version Semantics

In this section we explore our idea in greater detail by discussing operations in

our schema version model.

CREATING A NEW CLASS VERSION

When a new class version (" is derived from an existing class version C, we
must frst determine the taxonomic location of C' in the class hierarchy. It is
possible for the system to find the taxonomic location automatically. However,
gince in the worst the system must compare the new class version to all existing
classes in the class hierarchy in order to determine the taxonomic location, the
algorithm is rather expensive. Furthermore, the algorithm involves potentially
costly computation to test type subsumption. Thus we may wish to require

the user to provide the taxonomic location of C'.

The algorithm for determining taxonomic location follows. 1t
SUBSUME(C, (') is true, then C is more general than C', i.e., C is a superclass
of C'.

TAXONOMIC-LOCATION-DECIDE(C?)

/* € is the new class version */

begin

superclass-set «+ {OBJECT}

Joreach class C in the class hierarchy: do mark C;

113

M immediate marked subclass C, of C: do
begin
if SUBSUME(C,, C)
then new « new U {C,}

end;

if new # 0 then
superclass-set « (superclass-set — {C}) U new
end
subclass-set «— §;
Joreach class C in superclass-set:
do subclass-set « subelass-set U { immediate subclasses of C };
foreach class C in subclass-set:

do if not SUBSUME(C’,C)

then subclass-set + subclass-set — {C};

create a new class C’ having the classes in superclass-set as immediate
superclasses and the classes in subclass-set as immediate subclasses;

end

The computational complexity of deciding subsumption between classes

while there is a marked class C in superclass-set do
begin
unmark C;

new + @

depends on the expressive power of the class description language. For example,
if the class description language has the expressive power of the first order logic,
the type subsumption problem is undecidable [LB86]. But our class description
language is simple in that a class definition consists of a set of superclasses, a
set of instance variables, and a set of methods. The set of superclasses in a

class definition is compiled into a set of inherited instance variables and a set

114

of inherited methods. Therefore, eventually, a class definition is composed of
a set of instance variables and a set of methods. Here is the algorithm for
SUBSUME:

SUBSUME(C,C?)
/* C,C": class descriptions®/
begin
foreach instance variable I of C: do
if €’ does not have an instance variable subsumed by I

then return(false);

foreach method M of C: do
¢f C’ does not have a method subsumed by M
then return(false);

return(true); /* C is a superclass of C* */

end

Now we introduce some criteria for deciding subsumption on instance

variables and methods.

e Subsumption can be determined between instance variables by sim-
ply comparing domains of instance variables: (AGE: 10..100) subsumes
(AGE: 10..50) because 10..100 subsumes 10..50, (MANUFACTURER:
AUTO-COMPANY) is subsumed by (MANUFACTURER: VEHICLE-
COMPANY) because VEHICLE-COMPANY is a superclass of AUTO-
COMPANY.

o Suppose a method has a functional specification such as f:(domain of

input-parameter-1) x (domain of input-parameter-2) — {domain of

output-parameter-1) X (domain of output-parameter-2). Subsumption
can be determined between methods by simply comparing domains of
parameters in the following way: given methods M: I — O and M":
I' — O if I' is subsumed by I and O is subsumed by O’ then M is
subsumed by M’ [Car83].

After finding the taxonomic location of a new class version, the new
class version is created in the class hierarchy. Then, some object instances
of the superclasses of the new class version must be repositioned to the new
class version. Consider the two class versions AUTO.1 and AUTO.2 in Figure
41.a. When AUTO.2 is derived and created as a subclass of AUTO.1, instances
satisfying the AUTO.2 description must be moved from AUTO.1 to AUTO.2
(that is, automobiles whose weight is between 1000 and 4000). That is because

of the assumption that an instance can belong to one and only one class.

Next we look in detail at the example in Figure 41. There are 5 class
versions of AUTO class as shown in Figure 41.a. Since AUTO.3 subsumes
AUTO.1, AUTO.3 is placed in the class hierarchy as a superclass of AUTO.1,
whereas AUTO.2, AUTO.4 and AUTO.5 are placed as subclasses of AUTO.1.
We introduce three types of classes: generic class, dummy class, and equivalent

class.

o GENERIC CLASS: Retrieval of all object versions of all class versions
of a class is a difficult task if there are many class versions created
and some of them are already deleted. A generic class is an immediate
superclass of all class versions of a particular class and is an immediate
subclass of class OBJECT (note that OBJECT is the root class of a
class hierarchy}. A generic class does not have any instance variables or
methods. A generic class can be used for dropping all class versions of
a class at once. Another important application of generic class is that it
allows all class versions to be the domain of an instance variable. In the
example of Figure 41b, the instance variable Vehicle can have all class
versions of AUTO as a domain by specifying AUTO.GENERIC as its

115

AUTO.1

AUTO.2

1d: Integer
Weight: 1000..6000

Doors: {2,4,5}
Manufacturer: String

1d: Integer
Weight: 1000..4000
Doors: {2,4,5}

Manufacturer: String

AUTO.3

AUTO 4

1d: Integer
Weight: 1000..6000
Doors: {2,4,5}

Auto-1d: Integer
Weight: 1000..4000
Doors: {2,4,5}
Manufacturer: String

AUTO.5

1d: Integer

Weight: 1000..5000
Doors: {2,4}
Manufacturer: String

AUTO.DUMMY.6

AUTO4
A
AUTO.S

Figure 41.a: Schema Versions of AUTO class

116

@

domain. When a class is created, its associated generic class is created
automatically. If all class versions of a class are deleted, the generic class
of the class is deleted automatically. In summary, a generic class is a
means to access or delete all versions of a particular class as well as a
means to bind all versions of a particular class to an instance variable

as a domain. Figure 41.b shows the generic class of AUTO.

DUMMY CLASS: We require an instance to belong to one and only
one class. If a new class version is a neighboring class of the original
class version, the new class version cannot be embedded into the class
hierarchy as a superclass or subclass of the original class version. In that
case, it appears that some instances of existing class versions should
be duplicated and stored under the new class version. However, this
is not consistent with the assumption that an instance belongs to one
and only one class. We get around this problem by creating a dummy
class which can accommodate common instances of the new class version
and existing class versions. As shown in Figure 41.b, AUTO.DUMMY.6
must be created in order to accommodate common instances of AUTO.5
and AUTO.4. The class definition of AUTO.DUMMY .6 is just AUTO.5
A AUTOA4.

EQUIVALENT CLASS: Suppose a new class version S of class C is de-
rived by renaming one of instance variables in C. It does not make sense
to store S as a neighboring class of C and create a dummy class having
instances of § and C, because S and C are essentially same schema
versions. This gives rise to the notion of equivalent ¢lasses. S and C
can be stored in the same node of a class hierarchy because membership
conditions of § and C are the same. Schema change operations in (1.1.3)
and (1.2) may create semantically equivalent class versions having the
same membership condition. We call this trivial schema evolution. As
shown in Figure 41.b, AUTO.2 and AUTO.4 are in the same node of
the class hierarchy because the definitions of AUTO.2 and AUTQ .4 are

117

OBJECT

AUTO.3

\

AUTO.GENERIC

AUTO.1

AUTO.2, AUTO.4

Vs

AUTO.DUMMY .6

Figure 41.b: Generic, Dummy, and Equivalent Classes

118

essentially same except the different names of Id and Auto-1d. Equiva-
lent classes are also useful when a new class version is the same as one of
its ancestor class versions. We call this circular schema evolution. For
instance, if a schema version V, has three instance variables (X,Y,2), V,
has (X,Y) and Vs has (X,Y,2), then V; and V; are stored in the same
node of the class hierarchy.

DELETING A CLASS VERSION

The semantics of deleting a class version are similar to that of deleting a normal
class: all instances and object versions of the class version are deleted and all
subclasses of the class version lose inherited instance variables and methods

from the class version.

In addition, when a class version is deleted, some corresponding dummy
classes may have to be dropped too. In Figure 41.b, if AUTO.5 is deleted,
AUTO.DUMMY .6 is no longer necessary, and thus it is deleted automatically.
The relationship between class versions and their parent class version is main-
tained in a derivation hierarchy data structure. When a class version is deleted,
the new derivation hierarchy data structure must be modified in order to cap-
ture the relationship between the child class versions of the deleted class version

and the parent of the deleted class version.

If the user deletes a generic class, all class versions of the generic class

are deleted as well as instances of them.

UPDATING A CLASS VERSION

The operations in the taxonomy of schema changes {section 2.1.3} can be used

for changing the contents of a class version.

CREATING A NEW INSTANCE VERSION

An object version can be created under any existing class version of a particular

class. In conventional object versioning, object version derivation is allowed

119

only under the same class. In schema versioning, object version derivation can
cross two different versions of a class. For example, suppose an object version
¥, of an object is created under class version C;. Another object version V;
can be derived from the object version ¥, under class version ;. As shown
in example 4.1, object version derivation in schema versioning is more flexible

than that in conventional object versioning.

However, this flexibility leads to a difficult problem: Since the class
version used for an object version V; may be different from the class version
that is used for an object version V; which is derived from V;, the class version
for V; should be identified by either the user or the system. There are three
possible cases: (1) only one existing class version can accommodate V;, (2)
more than one existing class version can accommodate V;, and (3) no existing

class version can accommodate Vj.

In case (1), since only one class version is identified, there is no major
problem. The new instance version V; is created as an instance of that class
version. In case (2}, since V; cannot belong to more than one class, a new class
version, having those class versions which can accommodate V; as superclasses,
needs to be provided by the user?. Then V; is created as an instance of the
new class version. In case (3), since there is no appropriate class version for
V; in the class hierarchy, a new class version which can accommodate V; must
be provided by the user and the new schema version needs to be placed in the
appropriate place of the class hierarchy. Then V; is created as an instance of

the new class version.

DELETING AN INSTANCE VERSION

Fach object version has pointers to its parent object version and child object
versions. The user can retrieve parent or child object versions of a particular
object version. In order to maintain the derivation hierarchy of object versions,

the child object versions of a deleted object version become the child object

2 The system also can do this. But as we mentioned earlier, it is a potentially expensive

task

120

versions of the parent of the deleted object version. Suppose an object version
V; is the parent of V; and V; is the parent of V;.. Hf Vj is dropped, V; becomes

the new parent of V.

UPDATING AN INSTANCE VERSION

Updating an object version V may require it to belong to a different class ver-
sion. If the updates violate the membership conditions of the class to which the
object version belongs, the object version should be relocated into an appropri-
ate class version in the class hierarchy. The class version for the updated object
version V should be identified. The three possible cases are similar to those
of ‘creating a new instance version”: (1) only one existing class version can
accommodate the updated object version V, (2) more than one existing class
version can accommodate the updated object version V, and (3) no existing

class version can accommodate the updated object version V.

In case (1), since only one class version is identified, there is no major
problem. The updated object version V is created as an instance of the class
version. In case (2), since the updated instance version V' cannot belong to more
than one class version, a new class version, having those class versions which can
accommodate the updated instance version V as superclasses, must be provided
by the user. Then V is created as an instance of the new class version. In case
(3), since there is no appropriate class version for the updated instance version
V, a new class version which can accommodate V must be provided by the user
and the new class version needs to be placed in the appropriate place of the

class hierarchy. Then V is created as an instance of the new class version.

4.4 Integration with Chou and Kim’s Object Version
Model

H.T. Chou and W. Kim {CK86] suggested an object version model for dis-
tributed CAD databases. Their proposal broadly covers both semantics issues

and operational issues in object version control and takes into account the

121

characteristics of CAD environments, such as the two-level database architec-
ture and the design paradigm. To make our schema version model complete
and practical, we integrate our schema version model and their object version

model.

PUBLIC DATABASE vs. PRIVATE DATABASE

A CAD environment will consist of intelligent design workstations
and central server machines on local-area networks. The central
server (mainframe computer) will manage the public database of
stable design objects and design control data. Each design work-
station will have a private database. Users or application pro-
grams in a workstation check object versions out of the public
database, manipulate them in the workspace of the workstation,
and check new object versions into the public database. {CK86;
3)

TRANSIENT SCHEMA VERSION vs. WORKING SCHEMA
VERSION

There are two types of object versions: transient object versions
and working object versions. Working object versions are con-
sidered stable and are actively shared by multiple users whereas
transient object versions are only manipulated by the users who
create them. Transient object versions can be promoted to work-
ing object versions if they are considered useful and stable. Only
working object versions can reside in the public database while
both working and transient object versions can reside in a private

database.

A transient object version can be updated or deleted by the
user who created it. A new transient object version may be de-

rived from an existing transient object version; when this occurs,

the existing transient object version is promoted to a working ob-
ject version. On the other hand there are update restrictions on
working object versions. Since a transient object version can be
derived from a working object version, updates to working ob-
ject version are unnecessary.” However deletion of working object
versions is allowed. [CK86; 6-7]

We extend the above scenario in our schema version model. We want to
treat class versions and object versions in the same manner in order to provide

a consistent user interface.

As in object versions, a transient class version can be updated or deleted
by the user who created it. A new transient class version can be derived from
an existing transient class version and the existing transient class version is
promoted to a working class version. Working class versions cannot be updated.
The semantics of deleting working class versions are different from the semantics
of deleting working object versions in that, in the class hierarchy, deleting a
class version may cause subclasses of the class version to lose inherited instance
variables and methods from the class version. Therefore if any one of the
subclasses of the class version is a working class version, deletion of

the class version must not be allowed.

Class versions are also different from object versions in that if a tran-
sient class version has one object version which is promoted to a
working object version, the transient class version must also be pro-
moted to a working class version in order to prevent schema changes

to the class version which may affect the working object version.

Only working class versions and working object versions can reside in

the public database. Therefore no updates to working class versions or

3 Some object version models [BK85b] allow updates to a working object version. If
updates to a working object version are allowed, a set of update propagation algorithms are
needed for deriving new object versions (transient or working), from the working object version.
This is necessary to enforce consistency between the new object versions and the updated
working object version [CK86; 7}.

123

working object versions are allowed. Deletion of a working class
version is allowed if the schema version does not have any subclasses

in the class hierarchy.

In the private database, working class versions and transient class ver-
sions are resident in the class hierarchy as are working and transient object
versions. Update or deletion of a class version is allowed if the class

version does not have any working subclasses in the class hierarchy.

CHECK-IN/CHECK-OUT

When the user checks a working object version V out from the public database
into his private database, a copy of V is installed into the private database. The
status of the copy is “transient”. In this situation, the schema version $ for
V must be installed first [CK86). ¥ § does not already reside in the private
database, the user or the system must check § out from the public database
to the private database. The user can check out more than one class version
at once (a subset of the class hierarchy). After manipulating V and its schema
S in the private database, suppose V' and 8’ are derived respectively. If the
user wants to check V' into the public database, first he must check §' into
the public database. After checking S’ into the public database, the location
of §' in the class hierarchy of the private database might be different from the
location of 8’ in the class hierarchy of the public database. That is because
the class hierarchy of the private database is different from that of the public

database. The same argument is applied to V',

Consider the example in Figure 42. As shown in Figure 42.a, two class
versions C, D and four instances ¢l,¢2,dl, and d2 are checked out from the
public database to the private database. SBuppose two new class versions F', G
and three new instances f1,g1, and ¢3 are created in the private database as
shown in Figure 42.b. After G and ¢3 are checked into the public database,
their respective locations are different in the public and the private database

as shown in Figure 42.c if E subsumes G.

124

Public DB
Public DB OBJECT
A C
{c1.c2}
B D E
{b1} {d1,d2} {el,e2,e3}
Private DB
C
{el.c2}
D
{d1,d2}

Figure 42.a: Check-Out Process

125

126 127

Public DB VERSION NAMING

Public DB OBJECT In the H.T. Chou and W. Kim's object version model the full name for each
“ object version is a triple { object name, database name, version number) where

(c1.c2) ‘ohject name’ is the identifier of an object, and ‘database name’ is the name
of a private database, or the public database. However the naming convention
is not sufficient for our schema version model because versions of a particular
object may cross multiple schema versions. For example a version of an AUTO
B D B object may not have the AUTO class as its schema. Now the full name for
{p1} {d1,d2} {el,e2,e3} each object version is a four tuple { object name, class version, database name,
version number). For example (1181, TRUCK.2, KIM’s DB, 6) means that
object version 6 of the object 1181 is in KIM’s private database under the

TRUCK.2 class version.

NAME BINDING

s
Private DB As in H.T. Chou and W. Kim’s object version model, we also consider static

Private DB binding and dynamic binding. In static binding, the full name of an object

C version is specified. In dynamic binding, some portions of the full name are left

{c1.¢2,¢c3} unspecified. However an ‘object name’ should be provided explicitly in dynamic

binding. For the unspecified parts, the system selects default values. For the

{III; criteria used in selecting default database and default version, refer to [CK86].
CHANGE NOTIFICATION

D The scenario of change notification in H.T. Chou and W. Kim’s object version
{d1,d2}

——— model follows:

{91} o A transient or working object version in a private database may ref-

erence other transient or working object versions in the same private

database, or working object versions in the public database. A working
object version in the public database may reference other working object

i versions in the public database.
Figure 42.b: Creating New Class Versions and Instances

Public DB

Public DB OBJECT

A C
/ /Jfl‘cz}
? gy
{p1} 1
D"//j E
{d1,d2} {e1,e2,€3,¢3}

-~

G
{al}

Privaie DB

Private DB

C
{c1.c2,c3}

F Af//
{71}
/

D
{d1,d2} e

{91}

Figure 42.c: Check-In Process

128

e Change notification is required when a referenced transient object ver-
sion is updated, deleted, or a new transient object version of it is created.
Change notification is also required when a referenced working object

version is deleted or a new transient version of it is derived.

Two types of notification techniques are provided: message-based notifi-
cation and flag-based notification. The details of these techniques are described
in {CK88). Below we tailor their change notification framework to our schema

version model.

® We envision that a class definition is itself an object. The domain of an
instance variable is a class. Similarly a method of a class refers to other
class names and instance variables of other classes. As such, we view
definitions of instance variables and classes as objects to which other

classes or methods can refer.

o As domains of instance variables, a transient or working class version in a
private database may reference other transient or working class versions
in the same private database, or working class versions in the public
database. By similar reasoning, as domains of instance variables, a
working class version in the public database may reference other working
class versions in the public database. Change notification is required
when a referenced transient class version is updated, deleted, or a new
transient class version of it is created. Similarly, change notification is
required when a referenced working class version is deleted or a new
transient version of it is derived. The creators of the class versions that

refer to a class version C are notified of changes of C.

s Additionally we have to consider the impact of each schema change
on existing methods. Methods of a transient or working class version
in a private database may reference definitions of transient or working
class versions in the same private database, or working class versions in
the public database. By similar reasoning, methods of a working class

version in the public database may reference definitions of other working

129

class versions in the public database. Change notification is required
when a referenced transient class version is updated, deleted, or a new
¢ransient class version of it is created. Similarly, change notification is
required when a referenced working class version is deleted or a new
transient version of it is derived. The creators of the methods that refer

to a class version C are notified of changes of C.

4.5 Operational Interface

We present a first-cut operational interface (user commands) for supporting

our model of schema versions in object-oriented databases. Our proposal is a

superset of the operational interface in [CK86).

L]

&

DERIVE-OV FROM < O > BY < I,V >*: This command is used
to derive a new transient object version from another object version O
by replacing the value of the instance variable I with a new value V.

< 1,V >% means one or more of < I,V >.

DERIVE-SV PROM < § > BY < OP >*: This command is used
to derive a new transient class version from another class version by
performing one or more schema change operations OP in the taxonomy

of section 2.1.3. < OP >V means one or more of <OP >.

DELETE-OV < O > | <FROM O.z TO O.y>: A series of object ver-

sions of O between O.z and O.y are deleted by this command.

DELETE-SV < § > | <FROM 8.z TO S.y> | <S.generic>: A series of
class versions of § between S.z and S.y are deleted by this command.
If the generic class of a class is deleted, all of its class versions are also

deleted.

PROMOTE-OV < 0 >: A transient object version O is promoted to a

working object version by this command.

PROMOTE-SV < & >: A transient class version § is promoted to a

working class version by this command.

130

o CHECKIN-OV < O > TO < DB >: The object version O is checked
into the target database DB by this command.

e

CHECKIN-8V < § > TO < DB >: The class version 5 is checked into
the target database DB by this command.

CHECKOUT-OV < O > TO < DB >: This command is used to check
out an object version O to the target database DB.

o CHECKOUT-SV < § > TO < DB >: This command is used to check

out a class version § to the target database DB.

If we allow schema versions and object versions, query languages for
object-oriented databases need to be extended for querying and manipulating
schema versions as well as object versions. The following situations may require

extension of query languages.

1. Queries on schema derivation hierarchy: What are the child class ver-
sions of a class version $7, What is the parent class versions of a class
version §7, What is the next class version number of a class version 57,

etc. The same argument is applied to object versions.

2. Temporal queries over schema versions: Retrieve all instances which are
created under a class version S, Retrieve all instances which are created

between a class version S.z and a class version S.y, etc.

However, the issue of query language extension is beyond the scope of this

chapter.

4.6 Related Work

Skarra and Zdonik [SZ86, Zdo86] addressed the problem of maintaining con-
sistency between a set of persistent objects and a set of type versions that can
change. Their objective was to maintain the transparency of a type’s change

with respect to application programs that use the type.

131

eolor 1 Csreolors,

Property Definitlons

Lype Pefinisions
Deflne Type Car, Define Type Cory Define Type Cary
Bupertypes Bupertypes Bupertypes
Vebicle, Vebicle, Vehicle,

Property Definitions
golor : Carcolors,
epa.mpg : {10 .. 40}
fuel : {leaded, polead}

Property Definitions
solor : Carcolors,
epa.ampg : {20 .. 50}

Figure 43.2: Three Type Versions of Car (from [SZ86])

Supertypes
Vehiclel

Property Definitions

color: Carcolorsl
epa.mpg: {10..50}
fuel: {leaded, nolead}

Figure 43.b; The Version Set Interface (from [SZ86])

Property DeBaltions
eclor . Carcolors,

Prabandicrs
Undsfined Write
for {cor fuel) :
i valse {fuel) » feaded
return,
it vatue {fuel) » olend
enior iuvalid,
Usdefined Rend
for (ear, foel)
voturs lesued,

Luns Refinisions
Define Type Car, Define Type Cary Define Type Carg
Buperiypes Bupertypes Superiypes
Velele, Vehicle, Vehicle,

Property Definitions
colot - Carcolors,
epa.tnpg {10 . 40}
fuel * {leaded, nolead)

Frehpadicrs
Unknown Write
for {car, epa.mpg):
i value {eps.mpg) < 50
and value {epatmpg) > U
car epa.mpg ‘o &0,

Posthasslers
Unkoown Read
Sor (car, epatopg) -
value {eps.mpg) < 50
and value {epasmpg} > 40
return 40,

Property Definltions
color -~ Careolors,
apb..mpg - {20 . 50}

Prehandlcrs
Undefined Write
for {sar, fucl)
value {fuel} = volead
return,
1€ vatue {fuel) = Jeaded
vaise Invalid,
Undefined Resd
for (car, fucl)
returs polead,
Unknows Write
for {car, epa.mpg) :
I value {epampg) 2 10
and valus {epa.mpg) < 20
car.epompg = 20,

Posthandlirs
Unkoown Rasd
for (cbr, epanmpg)
8 value {epanpg) 2 10
and value {epa.topg) < 20
roturs 20,

Figure 43.c; Type Versions with Added Error Handlers (from [S286})

132

They define the version set interface to be the most general interface
to a type by constructing the disjunction of the definitions of all type versions
of the type. A type version T; is a triple (op(T}), pr(T}), con(T;)) where op(T;)
is a set of operations, pr(T;) is a set of properties, and and con{T}) is a set of
constraints. Suppose we have n versions of T: 73,73, ..., Th. Then the version

set interface Vy is defined as follows:
Ve = (op(Vr), pr(Vr), con(Vy)) =
(op(T3) U 0p(T3) U ... U 0p(T,),
(pr(T) Upr(T} U ... Upr(T,),
{eon{(Ty) U con(T2) U ... U con{T,))

The version set interface Vy contains all the operations, properties, and
constraints ever defined by some version of a type T". An instance is physically
stored under the type version in which the instance is created, but conceptually

all instances are governed by the version set interface.

The basic idea of their approach is to add error handlers to each type
version in order to allow instances of different type versions to be used uni-
formly. Error handlers are added to the definition of a type version to provide
for behavior defined in the version set interface that is not defined in the type
version. Error handlers are to be provided by the users; the users can derive the
necessary error handlers by computing the difference between a type version

and the version set interface.

The following example in Figure 43 [SK86] illustrates their approach:
Figure 43.a and 43.b show the three car type versions and the version set inter-
face of the car type respectively, and Figure 43.c shows the car type versions
with the added error handlers. As shown in the Carl definition of Figure 43.c,
error handlers are added to the type versions so that instances of Carl can be
used by application programs expecting an instance of Car2: even if a program

P is written for reading and writing instances of Car2, the program P also can

133

be used for reading and writing instances of Carl with help of error handlers.
There are two kinds of error handlers: prehandlers and posthandlers. A pre-
handler is defined on a type version and is used for processing instances of the
type.version, while a posthandler is used for processing instances of another
type versions. They have described the details of error handlers (5786, Zdo86).

There are several drawbacks to Skarra and Zdonik’s approach. First,
they consider their approach as a view mechanism, but never take view update
semantics into account. Second, since error handlers must be provided by the
users, it may cause serious programming overhead in a complicated application.
Third, they do not address the problem from a database perspective. For
example, in their approach, when a new type version of a type T is created,
new type versions of all subtypes of T are also created. That is not practical
in a real world database.

134

Chapter 5
DAG Rearrangement Views

5.1 Motivation of DAG Rearrangement Views

Schema versioning is & means of maintaining a history of schema changes by
keeping versions of schema. Another way to represent variants and alternatives
of a schema is to allow views of schema. Views in object-oriented databases
are more versatile than those in relational databases. Two distinct notions in
object-oriented data models are composite objects and class hierarchies. The
semantics of the two notions are captured in directed acyclic graphs (DAGs).
Conventional views in relational databases are constructed via combinations of
relational operators such as select, project, and join. Views in object-oriented
databases include rearrangement of DAG structures (both composite objects

and class hierarchies) as well as conventional views in relational databases.

In this chapter, we present sets of useful operators for defining DAG re-
arrangement views of composite objects and class hierarchies respectively. We
identify sets of composite object views with the property that queries on the
views are processable on instances of the original composite object schema. We
also discuss how instances would be viewed and reorganized in DAG rearrange-

ment views of class hierarchies.

Most applications in object-oriented databases assume a group of coop-
erative workers (i.e., a team) are sharing the same objects. However, users may
not need to see the whole database and objects in it. They need to see only
those parts of composite objects and those classes that are relevant to their
applications. A DAG rearrangement view facility is useful for this purpose.

We envision the following applications of a DAG rearrangement view facility:

o Check-out granularity control: In order to work with an object version
or create a new object version, users need to check object versions and

their classes out of a public database to a private database. In the case of

135

huge design objects with thousands of parts, a DAG rearrangement view

facility would allow the user to specify paris of objects to be checked out.

Authorization: In many situations, the database administrator wishes

to control the rights of users to access parts of objects. He may wish
to reserve the privilege of modifying a particular part of an object or to
make some parts invisible to the user. A DAG rearrangement view facil-
ity will provides the database administrator with the means to control

access rights.

s Versions of class hierarchies: In the previous chapter, the granularity
of schema versions was a single class, not a class hierarchy. With a
DAG rearrangement view facility, we can keep several versions of a class

hierarchy in an inexpensive way.

5.2 DAG Rearrangement Views on Composite Objects

In this section, we elaborate on DAG rearrangement views of composite ob-
jects. As we have seen, the notion of composite objects explicitly captures
the IS-PART-OF relationship. A composite object is a collection of related
instances that form a hierarchical structure, and schema of a composite object
is a DAG structure. One important premise behind DAG rearrangement views
of composite objects is that designers (database users) would like to see only

those parts of composite objects which are necessary to their applications.

Figure 44.a shows a part hierarchy for vehicle composite objects. Figure
44.a is a simplified form of Figure 4 without description of the instance variables.
(In the remainder of this chapter, Figure 3 and 4 are frequently referenced.
Therefore, we repeat those figures again here.) Figure 44.b, 44.c, and 44.d

show three possible views of the vehicle composite objects of Figure 44.a.

In relational databases, every possible view (constructed from relational
algebra operators) against relational schemas has the property that queries to

the view can be processed using the tuples of the underlying relational schemas.

136

137

138

OBIECT GENERAL Legend:
b is-part-of
Vo e e -~
[}
L)
Pt
i
3 4BODY L e-eeT + CHASSIS
v fl Chassis Ylea,r: Stfmg
VEHICLE b] Interior: String Size: Strmg.
i ;! Color: String Model: String
11 i
LR} &
ENEVY VEHICLE __-7 DRIVETRAIN
v Body ' e Engine 7777 Tmmommee- y
WATER-VEHICLE SPECIFIC Drivetrain Transmission ;
MOTOR-VEHICLE v Color: String . ;
Vi 1d: Integer e > /
N Manufacturer: String P - L
' e PP
i e -
[e e
Vi 4,BOLT
v / e /1d: Integer
s) “ / !Size: String
' J ENGINE S
NUCLEAR-VEHICLE i /,’ Size: String S
AUTO v K Weight: Integer N :
‘o < Model: String !
Ve . Bolt ~~ 77777 !
: : .\\ N\lt ““““““““““““““““ -;:— NUT
0 AR . [;\Id: Integer
i N ; :Size: String
L3R} 4 :
ARV TRANSMISSION b
) K Weight: Integer b
v !
Model: String o
2DOOR 4DOOR SUBMARINE MORE SPECIFIC Size: String_____ .. j E
Bolt :
Nut ~~ 77770 .

Figure 3: VEHICLE Class Hierarchy

Figure 4: VEHICLE composite object

1t turns out that not all possible DAG rearrangement views of composite objects
are acceptable because queries to certain DAG rearrangement views are not
processable on instances disciplined by the original composite object schema.
We shall identify DAG rearrangement views for which queries can be processed

on instances disciplined by the original composite object schema.

There are often restrictions on posing queries against tree or DAG type
objects (hierarchical structures). In IMS which is a hierarchical database sys-
tem from IBM, query gualification predicates may involve only parent record
types of a target record type or the target record type itself (see, e.g., [KS86]).
In System 2000, a hierarchical database system from MRI, query qualification
predicates may involve only parent record types or child record types of a tar-
get record type or the target record type itself [MRI78]. Therefore, the target
record type and the record types which are involved in the query qualifica-
tion predicates must be located in only one leaf-to-root path. The reasons for
those restrictions are query processing overhead and query processing ambsguity.
Without those restrictions, there may be ambiguity in evaluating queries be-
cause of possible multiple paths between the target record types and the record
types of query predicates. Ambiguity can be resolved by the user or the sys-
tem, but this may lead to processing overhead. One approach is to let the user
select the desired path through dialogs. Though not a hierarchical database
system, System/U [Kor84] (a universal relational database system) resolves the
multiple path problem by returning the union of query results from all possible

paths,

The similar restrictions are assumed in querying composite objects in
object-oriented data bases because the structure of a composite object is DAG.
There are 3 types of access patterns in hierarchica! data structures. In the
remainder of this section, we elaborate on the relationship between an access
pattern and the set of DAG rearrangement views for which the given access
pattern can be used to process queries on instances disciplined by the original
composite object schema. We shall use the following syntax for queries on

composite objects and their DAG rearrangement views.

139

Legend:
is-part-of,
VEHRICLE
P . RS .
BODY DRI\//E:I‘RAIN
¥ 7 e -
i J pEN
v ¥ Tt
CHASSIS ENGINE TRA/NSMISSION
. - =7 :/ |
N N
BOLT NUT
(2) VEHICLE part hierarchy
VEHICLE VEHICLE VEHICLE
N ' ;
’ AN] i
2 N] i
// \\ 0 \|/
/ N
BODY ENGINE o BODY
/II ; ,/’/”17%\‘%
v v P T
CHASSIS BODY

CHASSIS ENGINETRANSMISSION

(b) (c) (d)

Figure 44: DAG Rearrangement Views of VEHICLE Composite Object

140

141

GET attributes of target record type
WHERE predicate

We shall use the following queries against the schema of the vehicle

composite object in Figure 4 for comparing access patterns:
Q1: GET CHASSIS. Year
WHERE (VEHICLE.Manufacturer = “HYUNDAE”)
and (BODY.Chassis = 1284)
Q2: GET VEHICLE.Color
WHERE BODY.Chassis = 1234
Q3: GET BODY.Intersor
WHERE ENGINE.Model = “320CI”

We shall use terms parentpart and childpart in what follows: in Figure
4, VEHICLE class has two childparts, BODY and DRIVETRAIN classes, and
in turn, VEHICLE class is a parentpart of BODY and DRIVETRAIN classes.

CHILDPART-ONLY TRAVERSAL

In childpart-only traversal, if the target attributes of a query belong to
a part P of a composite object, query predicates may contain only attributes
of parentparts of P. Query Q1 is allowed in the childpart-only traversal scheme
because its target attributes belong to CHASSIS and the query predicates of
Q1 involves only attributes of parentparts of CHASSIS. Queries Q2 and Q3 are
not allowed in childpart-only traversal because BODY is not a parentpart of
VEHICLE and ENGINE is not a parentpart of BODY. IMS uses the childpart-

only traversal scheme as its primary access pattern.

Consider the DAG rearrangement views of the VEHICLE composite
object in Figure 44. As Figure 44.b illustrates, for each part P in the view,
the set of the parentparts of P of the view is a subset of the parentparts of

P of the original schema. As such, childpart-only traversal can be used on
the view in Figure 44.b because all possible queries on the view are process-
able on instances disciplined by the vehicle composite object schema. However,
childpart-only traversal cannot be used on the view in Figure 44.c because some
queries on the view are not processable on instances disciplined by the original
vehicle composite object schema. For instance, the query “GET BODY .Interior
WHERE CHASSIS. Year = 1986” is allowable in the composite object view be-
cause the query predicate involves attributes of parentparts of BODY. However,
the query is not processable in the original composite object schema in Figure
44.5 because CHASSIS is not a parentpart of BODY. By similar reasoning, the

view in Figure 44.d is not allowed in the childpart-only traversal scheme.

DEFINITION: If every query, which is expressed in a composite ob-
ject view in accordance with a traversal scheme, is processable on the
original composite object schema, the composite object view is called a

processable composite object view {PCOV) in the traversal scheme.

We characterize PCOVs for childpart-only traversal as follows.

CLAIM: Let S and S’ denote the original schema of a composite object
and a DAG rearrangement view on S respectively. 8’ is a PCOV iff for
each part P in ', the set of the parentparts of P in 8’ is a subset of the
parentparts of P in 8.

CLAIM: Let S and TR{S) denote the original schema of a composite
object and the transitive closure of S. Let ' be a view on 8. §" is a
PCOV iff S is a sub-DAG of TR(S).

Now we consider two useful operations for constructing PCOVs.
e (V1) Hide a part P: The part P is not visible and the immediate par-

entparts of P become immediate parentparts of immediate childparts of
P.

142

e (V2) Make a part P an immediate childpart of one of P’s parentparts

CLATM: Given a schema S, the resulting schema 8’ that is constructed
from applying any combination of V1 and V2 is a subset of the transitive
closure of 8. As such, §" is a PCOV.

CHILDPART-PARENTPART TRAVERSAL

In childpart-parentpart traversal, if the target attributes of a query be-
long to a part P, query predicates may contain only attributes of parentparts
or childparts of P, or P itself. Queries Q1 and Q2 are allowed in the childpart-
parentpart traversal scheme because CHASSIS is a childpart of VEHICLE and
BODY, and VEHICLE is a parentpart of BODY. Query Q3 is not allowed be-
canse BODY is neither a parentpart nor a childpart of ENGINE. Note that Q1
and Q2 follow the access pattern rule and Q3 do not. System 2000 uses this

childpart-parentpart traversal as its primary access pattern rule.

The childpart-parentpart traversal scheme can be used with the DAG
rearrangement views in Figure 44.b and 44.¢, but not with the DAG rearrange-
ment view in Figure 44.d. The childpart-parentpart traversal scheme cannot be
used with the view of Figure 44.d because some queries on this view cannot be
processed in the instances of the original VEHICLE composite object schema.
Note that the childpart-only traversal cannot be used on the DAG rearrange-
ment view in Figure 44.c, but childpart-parentpart traversal can. We denote
the union of a part P and its child and parent parts of P as CP-SET(P).
In Figure 44.b, CP-SET(VEHICLE), CP-SET(BODY), CP-SET(CHASSIS)
and CP-SET(ENGINE) are respectively subsets of CP-SET(VEHICLE), CP-
SET(BODY), CP-SET(CHASSIS) and CP-SET(ENGINE) in the original VE-
HICLE schema of Figure 44.a.

We characterize PCOVs for childpart-parentpart traversal as follows.

CLAIM;: Let § and §° denote the original schema of a composite object
and a DAG rearrangement view on S respectively. 5’ is a PCOV iff for

143

each part P in §', CP-SET(P in 8) 2 CP-SET(P in 8)

In childpart-parentpart traversal, there is one more useful view definition

operation in addition to V1 and V2 of the previous access pattern.
e (V1) Hide a part P: same as V1 above

o {V2) Make a part P an immediate childpart of one of P’s parentparts:

same as V2 above

€

(V3) Exchange parts: As shown in the view of Figure 44.c, exchanging
parts is allowed. However the exchange of arbitrary two parts can violate
the premise of the childpart-parentpart traversal. Thus, exchanging is
allowed only when for each part P, CP-SET(P) in the resulting view is
a subset of CP-SET(P) in the original schema.

FREE TRAVERSAL

In free traversal, if target attributes of a query are those of a part P,
query predicates may contain any parts of the composite object schema. To
our knowledge, no existing hierarchical database system allows free traversal
because of query processing ambiguity and overhead due to multiple leaf-to-root
paths between target attributes and query qualification attributes. However, by
supporting disambiguating dialogue or user access path specification, processing
of this access pattern is possible. In free traversal, queries Q1, Q2, and Q3
are all allowed. Arbitrary DAG rearrangements views including the views in
Figure 44.b, 44.c, and 44.d are allowed. For instance, consider the query GET
CHASSIS.Model WHERE ENGINE.Model = “320CI" in the view in Figure
44.d. The query processor tries to find a path from ENGINE to CHASSIS
in the original VEHICLE schema. If there is more than one path between
ENGINE and CHASSIS, the user is responsible for selecting one access path or

the system may return the union of results from each path as System/U does.

144

CLAIM: Let COT(S) denote the PCOV set of childpart-only traversal
of & composite object schema S. Let CPT(8) denote the PCOV set of
childpart-parentpart traversalof a composite object schema S. Let FT(S)
denote the PCOV set of free traversal of a composite object schema S.
The following inclusion relationship is obvious: COT(8) C CPT(8) C
FT(8).

5.8 DAG Rearrangement Views on Class Hierarchies

In this section we elaborate on DAG rearrangement views of class hierarchies.
As mentioned earlier, the notion of class hierarchy explicitly captures ISA re-
lationships and a class hierarchy has a DAG structure. One important premise
behind DAG rearrangement views of class hierarchies is that users would like

o see only those classes which are relevant to their applications.

Figure 3 shows the class hierarchy of VEHICLE. Figures 45.a-d show
possible DAG rearrangement views of the VEHICLE class hierarchy. Each
view in Figure 45 involves several DAG rearrangement operations. There are 5
operations which are useful in defining the DAG rearrangement views of a class

hierarchy. For each operation, we introduce the semantics of the operation:

1. Hide a class C: The class C is not visible in the view. The instances
under C and subclasses of C lose their membership in C. Instance vari-
ables or methods which are locally defined in C are not visible through
the view from the subclasses of C. However, instances of C are still vis-
ible from superclasses of this class. This operation is often followed by
the operation “Make an ISA relationship explicit” defined below. The
semantics of this operation are similar to those of the schema change

operation “(3.2) Drop a class C” in section 2.1.3.

5. Hide an ISA relationship: Suppose 8 is an immediate superclass of C.
By hiding the ISA relationship between S and C, instance variables and
methods inherited from § are not visible in the view of C and subclasses

of C. Therefore, values of an instance variable of instances of C and

145

146

VEHICLE VEHICLE
MOTOR-VEHICLE 2DOOR 4DOOR
AUTO
2DOOR 4DOOR
(a) (b)
VEHICLE VEHICLE
MOTOR-VEHICLE

MOTOR-VEHICLE WATER-VEHICLE

WATER-VEHICLE
/ NUCLEAR»VQI*CL

NUCLEAR-VEHICLE SUBMARINE
USSR-SUB USA-8UB
(c) (d)

Figure 45: DAG Rearrangement Views of VEHICLE Class Hierarchy

subclasses of C are hidden if the instance variable is inherited from S.
Further, instances of C and subclasses of C lose membership {role) in 8.
The semantics of this operation are more or less similar to those of the
schema change operation “{2.2) Remove a class § as a superclass of the

class C” in section 2.1.3.

3. Make an ISA relationship explicit: Suppose S is the only superclass of
C, and C, in turn, has one subclass C1. After performing “Hide the
class C”, § and C1 become disconnected in the view. In that case, this
operation can connect 5 and C1 by making S an immediate superclass
of C1. Since S was already a superclass of C1, there is no impact on

instances of S or C.

4. Create a new ISA relationship: Suppose S1 and 52 do not have any ISA
relationship between them and S1 and 82 have a subclass C in common.
After performing “Hide the class C”, we can make S2 an immediate
superclass of S1 by using this operation. Since 52 was not a superclass
of 81 in the original schema, instances of 81 are not qualified as instances
of §2 in the view. However instances of C can be viewed as instances of
§1 because instances of C were common instances of 51 and S2. This
operation is a counterpart of the schema change operation “(2.1) Make a
class 8 a superclass of a class C” in section 2.1.3, but has totally different

semantics.

5. Create s new subclass: Suppose a new class § is created as a subclass
of & class C in a view. Some instances of C may need to be moved in
the view from C to § if the instance is qualified as an instance of the
new class S. The semantics of this operation are similar to the schema

change operation “(3.1) Define a new class C” in section 2.1.3.

The semantics of the above operations will be clearer after we go through
gome examples. Now we show how instances are viewed and reorganized in the

views which are constructed by using the operations. Suppose classes in the

147

148

OBIJECT

VEHICLE
{viv2}

MOTOR-VEHICLE
{(v3v4,v5} WATER-VEHICLE

{vi2}

AUTO

NUCLEAR-VEHICLE
(v6) EHICL

{vi1}

2DOOR 4DOOR SUBMARINE
{v7,v8} {v9,v10} {v13,v14}

Figure 46: A Sample Database of VEHICLE Class Hierarchy

YEHICLE
{vi,v2,v12*}

MOTOR-VEHICLE
{v3,v4,v5,v11% v13* vid*}

AUTO
{v6}
2DOOR 4DOOR
{v79v8} {VQ,VIO}

()

VEHICLE
{v1,v2,v3* va* v5* v6*,
vi1* v12*,v13* vi4*}

2DOOR 4DOOR
{v7,v8} {vo,v10}

(b)

Figure 47: Viewing Instances in the DAG Rearrangement Views
of VEHICLE Class Hierarchy

149

VEHICLE class hierarchy in Figure 3 have the following instances (I¢ denotes

a set of instances of C) as shown in Figure 46:

o Iygurcre = { v1,v2}

o Iyoror-venicLe = { v3,v4, v8 }
o Tapro = {v6 }

o Iipoor = { v1,v8}

o Lipoor = { v9, v10 }

o Invorear-vemicre = { vil }

o Iwarpr-vemcre = { v12'}

o Isysmarive = { V13, v14 }

o The DAG rearrangement view in Figure 45.a is constructed by the

following sequence of operations:

(1) Hide SUBMARINE
(2) Hide NUCLEAR-VEHICLE

(3) Hide WATER-VEHICLE

As shown in Figure 47.a, the following instances are visible from each

class in this view:

o lygnicLe = { v1, v2, vi2* } where vi2* is a projected form of
v12 under the VEHICLE class definition.

o Iyoror-vericLs = { v3, vd, v5, v11*, vi3*, v14* } where v11¥,
v13*, and v14* are a projected form of v11, v13, and v14 respec-
tively under the MOTOR-VEHICLE class definition.

o Iyyro = {v6}

o] IZDOOH - { V7, v8 }

151

VEHICLE

MOTOR-VEHICLE WATER-VEHICLE

v3,v4,v5 v6* {v12}
{ v’;*,\;B*’VQ*:le*}

NUCLEAR-VEHICLE
{v13*,v14*}
(c)

VEHICLE

e \

MOTOR-VEHICLE
{v3,v4,v5 v6*,
viT* v8* vo* vio*}

WATER-VEHICLE
{vi2}

NUCLEAR-VEHICLE

{vi1}
\

SUBMARINE
{
USSR-SUB USA-SUB
{v13} {vi4}

(d)

Figure 47 (Cont’d): Viewing Instances in the DAG Rearrangement Views

of VEHICLE Class Hierarchy

o Lpoor = { v9, v10 }

e The DAG rearrangement view in Figure 45.b is constructed by the

following sequence of operations:
(1) Hide SUBMARINE
(2) Hide NUCLEAR-VEHICLE
(3) Hide WATER-VEHICLE
(4) Hide MOTOR-VEHICLE
(5) Hide AUTO
(6) Make VEHICLE an immediate superclass of ZDOOR
(7) Make VEHICLE an immediate superclass of 4{DOOR

As shown in Figure 47.b, the following instances are visible from each

class in this view:

o Iyprrcre = { v1, v2, v3*, v4*, v5*, v6* vil* v12*, v13*, vig*
} where v3%, v4*, v5*, v6*, vi1¥*, v12*, v13*, and v14* are a pro-
jected form of v3, v4, v5, v6, v11, v12, v13, and v14 respectively
under the VEHICLE class definition.

o Lipoor = { v7, v8 }
o LADOOR = { Vg, v10 }

o The DAG rearrangement view in Figure 45.c is constructed by the

following sequence of operations:
(1) Hide 2DOOR
{2) Hide 4DOOR
(3) Hide AUTO

(4) Hide SUBMARINE

152

154
153

As shown in Figure 47.d, the following instances are visible from each

(5) Make NUCLEAR-VEHICLE an immediate superclass of

WATER-VEHICLE.

class in this view:

As shown in Pigure 47.c, the following instances are visible from each © Wanoss = { v1,v2}
class in this view: o Imoror-vERICLE = { V3, v4, v5, v6*, vT* v8* vo* v10* }
where v6*, v7*, v8*%, v9* and v10* are a projected form of v6,
v7, v8, v9 and v10 respectively under the MOTOR-VEHICLE
class definition.

o Iygmrors = { v1,v2 }

o Inoror-vemrcie = { v3, v4, v5, v6*, v7*, v8*% vo* vi0* }
where v6*, v7*, v8* v9*, and v10* are a projected form of v6,
v, v8, v9, and v10 respectively under the MOTOR-VEHICLE

class definition.

o Invcrean-venicLe = { vil }

o Iwargr-venrcre = { v12 }

INUCLEAR——VEHICLE @ { V13*, Vl‘i* } where V13* and Vl‘l* are a
projected form of v13 and v14 respectively under the NUCLEAR-
VEHICLE class definition. (Note that v11 is dropped from the

Isuppanive = { }

Iyssr-svp = { v13 } (assume that v13 is a submarine made in
USSR)

instance set of NUCLEAR-VEHICLE. In the original class hier-
archy, v11 does not have the role of WATER-VEHICLE. As such,
v11 should not be visible from the NUCLEAR-VEHICLE class
in this view because only instances with the roles of WATER-
VEHICLE and NUCLEAR-VEHICLE are qualified as instances
of NUCLEAR-VEHICLE)

o Iysa-syp = { v14 } (assume that v14 is a submarine made in
USA)

5.4 Operational Interface

We present a preliminary operational interface (user commands) for supporting
our model DAG rearrangement views in object-oriented databases.

o Iwargr-vemicLe = { v12 }
¢ DEFINE-COV <COV> FROM <8> AS <OP>"*: This command cre-

o The DAG rearrangement view in Figure 45.d is constructed by the ates an composite object view COV by applying composite object view

construction operations <OP>% to a root class § and childpart classes

of 8.

following sequence of operations:
(1) Hide 2DOOR

e DEFINE-CHV <CHV> FROM <8> AS <OP>": This command cre-

(2) Hide 4DOOR ates a class hierarchy view CHV by applying class hierarchy view con-

(3) Hide AUTO struction operations <OP>" to a root class § and subclasses of 5.

(4) Create USSR-SUB as a subclass of SUBMARINE o DROP-COV <COV>: The composite object view definition of COV is

dropped.
(5) Create USA-SUB as a subclass of SUBMARINE

155

» DROP-CHV <CHV>: The class hierarchy view definition of CHYV is
dropped.

In posing queries to DAG rearrangement views of composite objects and

class hierarchies, view names may be indicated with a new query language

construct like FROM <view name>,

Chapter 6
Logical Design of
Object-Oriented Database Schema

In this chapter we establish a unified framework for object-oriented database
schema design by synthesizing research results in the areas of Al knowledge
representation, database dependency theory, Al theorem proving, and graph

algorithms.

6.1 The Unified Framework

The notion of generalization (class hierarchy) is borrowed from the knowl-
edge representation area of Al In object-oriented databases, objects are clas-
sified within class hierarchies. Class hierarchies in knowledge representation
schemes may not necessarily have to be accurate due to the heuristic nature
of A, whereas class hierarchies in object-oriented databases must be accurate.
Object-oriented database schemas should be consistent and non-redundant (to
be addressed shortly). Object-oriented database schemas tend to be modi-
fied frequently during the lifetime of a database and users tend to arrive at
a preliminary design through trial and error using the schema change opera-
tions [BKKK87|. After the user modifies the class hierarchy, the resulting class

hierarchy must also be in a consistent and non-redundant state.

DObject-Oriented Database Design Steps

We view object-oriented database schema design as an iterative process. Steps

4, 5, and 6 will be repeated iteratively during the lifetime of a database.

(Step 1) Initial Design: The user specifies a collection of classes and
a set of constraints among them. Each class definition consists of a set

. of superclasses, a set of instance variables, and a set of methods. Con-
straints we will consider are ISA, Disjointness, and Covering constraints
(to be defined shortly).

156

(Step 2) Class Compilation: Each class definition is compiled so that
each class inherits instance variables and methods from its superclasses.
During compilation, conflicts among inherited instance variables {and
methods) and locally defined ones are resolved by a given set of conflict
resolution rules. The compiled version of a class consists of only a set of

instance variables and a set of methods, without a superclass declaration.

(Step 3) Schema Verification: The initial design is checked for con-
sistency and non-redundancy. For each declared constraint, an appropri-
ate verification should be performed. Typical verification tasks in Step
3 are: “Is the set of constraints consistent?”, “When a user declares A
23 B, can A really become a subelass of B?”, “Are there any equivalent

classes or redundant ISA relationships in the set of constraints?”, etc.

(Step 4) Schema Querying: During the lifetime of a database, the
user can query against a schema and the constraints on the schema. This
step is necessary for the user to understand the current class hierarchy
and prepare the next schema change operation. Typical queries raised
by the user in Step 4 are: “Is A a subclass of B?”, “What are subclasses
of A?”, “Is A disjoint with B?”, etc.

(Step 5) Schema Modification: Typical schema change operations
are: “create a new class”, “create a new ISA relationship among classes”,
“drop an existing class”, etc. Schema change operations in the taxonomy
in section 2.1.3 can be all applied against the schema. Constraints on

the schema also can be changed.

(Step 8) Schema Verification: The resulting schema from schema
change operations and constraint modifications must be checked for con-
sistency and non-redundancy. Typical verification tasks in step 6 are

same as those in step 3.

Constraints in Object-Oriented Databases

187

In object-oriented databases, the following four types of constraints arise.

The user declares constraints initially and modifies them later. The system

verifies whether the constraints are correctly declared and modified. The user

can ask the system if a particular constraint can be derived from a given set of

constraints. Let ISET(X) denote a set of instances of a class X.

(1)

(3)

(4)

Single Inheritance Constraint (SIC): Given two classes A and B, A 22
B means that A is a subclass of B and every instance in A is an instance
of B. Consequently, ISET(A) C ISET(B).

Multiple Inheritance Constraint (MIC): Given three classes A,B, and C
A =5 B C means that A is a subclass of B and also a subclass of C
and every object common in B and C is an object of A. A 25 8BnC
implies {A =25 B) A (A 28 (). Consequently ISET(A) C ISET(B) n
ISET(C).

Disjointness Constraint (DC): Given two classes A and B, A dgot
means that there is no common object in A and B. Therefore, ISET(A)
N ISET(B) = 6.

Covering Constraint (CC): Given three classes, A,B, and C and two
S81Cs, B A A and ¢ 25 A, A 2% B U C means that every instance
of A must be either an instance of B or an instance of C. Therefore,
ISET(A) C ISET(B) U ISET(C). From the given SICs, ISET(A) 2
ISET(B) and ISET(A) 2 ISET(C). Therefore, ISET(A) 2 ISET(B) U
ISET(C). Hence, ISET(A) = ISET(B) U ISET(C).

Disjointness constraints and covering constraints are first suggested by Israel

and Brachman [IB84] and formal properties of them are investigated by Lenz-
erini [Len87| and Atzeni and Parker |AP86].

Example 6.1: The VEHICLE class hierarchy in Figure 48 illustrates the above

4 notions. A dotted arrow means a disjointness constraint and a normal ar-

row means an ISA constraint. An arc means a covering constraint. AUTO,
WATER-VEHICLE, and NUCLEAR-VEHICLE are subclasses of VEHICLE

158

VEHICLE

NUCLEAR-VEHICLE

2DOOR 4DOOR WAGON SUBMARINE

Figure 48: A sample class hierarchy with various constraints

159

(SI1Cs). SUBMARINE is a subclass of NUCLEAR-VEHICLE and WATER-
YVEHICLE (MIC). AUTO is disjoint with WATER-VEHICLE and NUCLEAR-
VEHICLE (DCs) (i.e., any instance of AUTO must not be an instance of
WATER-VEHICLE nor an instance of NUCLEAR-VEHICLE). AUTO cov-
ers 2DOOR, 4DOOR, and WAGON (CC) (i-e., every instance of AUTO must
be an instance of 2DOOR, 4DOOR, or WAGON). !

Three Fundamental Problems

The following three fundamental problems reside in the core of object-

oriented database design.

» Computation among Type Descriptions: If the user declares a con-
straint among classes, the system should make sure that the constraint
is really true. We consider three types of computation among type de-
scriptions. We shall use T(C) for denoting type description of a class C.
First, given two class definitions T(A) and T(B}), if the user declares A
25 B, then T(A) should be subsumed by T(B): that is, suppose AA)
and A\(B) are both formulas of a type representation language, a new
formula A(A) — A(B) should hold where — means ‘implication’. We
call this, the “type subsumption problem”. Second, given two class def-
initions T(A) and T(B), if the user declares A S8 g then T(A) and
T(B) must be disjoint: that is, suppose A(A) and A(B) are both formu-
las of & type representation language, a new formula A(A) — - A(B)
{or A(B) — = A(A)) should hold. We call this, the “type disjointness
problem”. Third, given three class definitions T{A), T(B) and T(C), if
the user declares A 2% B U C, then T(A) must be equivalent to T(B)
U T(C): that is, suppose A(A), A(B), and A(C) are all formulas of a type
representation language, a new formula (A(A) — A(B) V AC)) A {A(B)
v A(C) = A(A)) should hold. We call this, the “type covering problem”.

The common core in the three type computation problems (type sub-

sumption, type disjointness, and type covering) i8 essentially to prove a

160

M: I Ie}
ISA ISA
ISA
M) I, ()3

Figure 49: Subsumption between methods

(=) (b)

Figure 50: Disjointness constraint derivations (from [AP86])

161

&

well formed formula in a type-description language. Further, the type
disjointness problem and the type covering problem can be viewed as
special cases of the type subsumption problem. Therefore it suffices to
consider only the type subsumption problem. As such, we shall give an
in-depth review only on the Type Subsumption Problem in section
6.2.1.

Coustraint Membership Problem: Given a set of constraints pro-
vided by the user, new constraints can be derived using the associated
inference rules. As mentioned in step 4 of the database design, queries
against a class hierarchy and the constraints on the class hierarchy can
be posed by the user. The queries are essentially to check if a particular
constraint is a member of the closure of a given set of constraints (i.e.,
to check if the particular constraint can be derived from the given set
of constraints). For example, suppose the user asks the system whether
SUBMARINE is a subclass of VEHICLE in the VEHICLE class hier-
archy of Figure 48. In order to process the query, the system needs to
check whether SUBMARINE — VEHICLE is a member of the closure
of ISA relationships in the VEHICLE class hierarchy of Figure 48.

Undesirable Property Detection Problem: There are three unde-
sirable properties in class hierarchy design. First, consider the situation
such that given three classes A, B, and C, the user declares A is a sub-
class of B, A is also a subclass of G, and B is disjoint with C. Then
clearly, the class A is invariably empty. We call such a schema inconsis-
tent. Thus a class hierarchy with a class that cannot have an instance is
inconsistent. Second, consider the situation such that given three classes
A, B, and C, the user declares A is a subclass of B, B is a subclass of
C, and C is a subclass of A. This situation is undesirable in that A, B,
and C are actually the same class. Since a class hierarchy must be a
DAG (directed acyclic graph), cyclic structures must be avoided. We
call such classes redundant classes. Third, consider the situation such

that given three classes A, B, and C, the user declares A is a subclass of

162

B, B is a subclass of C, and finally A is a subclass of C. Since ISA rela-
tionship is transitive, the fact “A is a subclass of C” is redundant in the
sense that it can be derived from other ISA relationships. We call this
a redundant ISA. In summary, inconsistent schema, redundant classes,
and redundant ISAs should be all detected and avoided for designing a

desirable object-oriented database schema.

We note that Constraint Membership Problem is associated with Step
4 whereas Type Subsumption Problem and Undesirable Property Detection
Problem are associated with Step 3 and Step 6. We examine below each of the
3 problems in greater depth. We believe that the above 3 problems should be
solved automatically by the system, not by the database designer. Fortunately,
the solutions for the 3 problems have been scattered in several areas such as
Al knowledge representation, database dependency theory, Al theorem proving
and graph algorithms.

6.1.1 Type Subsumption Problem

As we mentioned earlier, the type subsumption problem is to prove an im-
plication formula (o — B, where « and f are formulas of a type-description
language) written in a type-description language. An important issue here is
that there is a fundamental tradeoff between the expressive power of the type
representation language and the computational complexity of type subsumption

decision of the implication formula.

If a type representation language has a full power of first order logic,
the decigsion problem of type subsumption is undecidable because deciding the
truth value of arbitrary first order logic formula is undecidable. In the knowl-
edge representation area, several approaches have been made to find a type
representation language which has both a reasonable expressive power and a

reasonable computational overhead.

We introduce a recent result by Levesque and Brachman [LB886].

Levesque and Brachman designed 2 type-description languages that are almost

163

164 165

FEMALE, LAWYER, and DOCTOR. Let Child be an attribute of the type
PERSON. Then, TR-1 representation of “person with at least one child, and
each of whose sons is a lawyer and each of whose daughters is a doctor” is:

same at a first glance. However, the computational complexity of type sub-
suraption in one language is O(n?) whereas the other language has intractable
(exponential) time complexity. Here are the BNF forms of the two type repre-

sentation languages.

&

{(TR-1)

< type > u= < alom >
| (AND < iypel > ... < type2 >)
| (ALL < attribute > < type >)
| (SOME < attribute >)

< attribute > 1= < atom >
| (RESTRICT < atiribute > < type >)

{TR-2)

< lype > u= < alom >
| (AND < typel > ... < type2 >)
| (ALL < attribute > < type >)
| (SOME < attribute >)

< attribute > = < atom >

Note: Atoms are primitive types. The semantics of AND is that z is an
{(AND t3#5 ... &) ifzisat,and at; and ... and a ¢,. ALL and SOME
restricts values of an attribute, e.g., (z is an (ALL a t) iff each a of =
is a ¢, that is, the domain of attribute a of the type z is a type), (z is
a (SOME q) iff z has at least one a). RESTRICT constrains attributes
by the types of their values, e.g., (v is a (RESTRICT a t) of z iff y is

(AND PERSON
(SOME Child)
(ALL (RESTR Child MALE) LAWYER)
(ALL (RESTR Child FEMALE) DOCTOR))

1

Example 6.8: [BL84] Assume that we have two more basic types RICH and
SURGERY and Specialty is an attribute of the type DOCTOR. Let D1 corre-
spond to “person each of whose children is a doctor”. Let D2 correspond to
“person each of whose children is rich, and a male each of whose rich children
is a doctor who has a surgery specialty”. D1 subsumes D2 (i.e,, D1 is more
general than D2 and D2 is a subclass of D1). TR-1 representations of D1 and

D2 are:
D1 = (AND PERSON
(ALL Child DOCTOR))
D2 = (AND
(AND PERSON
(ALL Child RICH))
(AND MALE
(ALL (RESTR Child RICH)
(AND DOCTOR

anaof zand yis a t). (SOME (RESTR Specialty SURGERY)))))

Example 6.2: [BL84] Suppose we have five given types: PERSON, MALE, =

Theorem 8.1: |{LB86] Type subsumption in TR-1 is NP-complete.
(Proof) Levesque and Brachman defined a mapping from propositional for-
mulas in conjunctive normal form to languages in TR-1.]

Theorem 6.2: [LB86] Type subsumption in TR-2 is O(n?) where n is the

element number of the longest type.

{Proof) The following is from [LB86]:

Subsumption Algorithm for TR-2: SUBSUME?(exp;,ezps)

1. Flatten both ezp, and ezp, by removing all nested AND operators. So,
for example, (AND z (AND y 2} w) becomes (AND z y z w).

2. Collect all arguments to an ALL for a given role. For example, (AND
(ALL r (AND a be¢)) (ALL r (AND ¢ f))) becomes (AND (ALL » (AND
abee f))).

3. Assuming exp; is now {AND a, ... a,,) and exp; is {AND by ... by}, then

return true iff for each ay,
a. if a; is an atom, then one of the b; is subsumed by a;.
b. if a; is a SOME, then one of the b; is subsumed by a;.

¢ if a; is (ALL ¢ z), then one of b; is (ALL r y), where
SUBSUME?{(z,).

Clearly, step 1 is linear time. Step 2 requires traversals on exp; and ezp;.
Step 3.2 and 3.b are a step of comparing atomic types which are represented
in a table or a type graph {class hierarchy for atomic types). This step can
be solved in two ways: {1) using inference rules and (2) using DAG traversal.

Both solutions are linear time.

¢ Inference Rules: (1.} Given a type A, A 25 A, (2.) Given three types
A,B, and C,if A 2% B and B 225 C, then A 25 C (i.e,, transitivity).

166

Subsumption problem between two atoms is just a membership checking

problem.

o Graph Traversal: If atoms are nodes of a DAG, subsumption problem

between two atoms is just a reachability problem.

Step 3.c requires a traversal of exp, for each element of expy. Step 2 and
3.c can be done in O(n?) time where n is the element number of the longest

expression.]

Normally, a class definition is composed of a set of superclasses, a set
of instance variables, and a set of methods {operations). TR-1 and TR-2 can
represent only superclasses and instance variables. Therefore, a mechanism
for deciding subsumption between methods is needed. Deciding subsumption
between methods can be understood as follows. We follow the definition of

method subsumption in [Car83].

Definition 6.1: A method M has a set of input parameters I,, I;,..., I, and
a set of output parameters Oy, Oy,..., On. ie., M: domain{l;} x domain(l,)
x domain(0,). Let M”

domain(l’y) x domain(I’y) ... x domain(I’,) = domain(0";) x domain(0;)

% domain(l,) = domain(0;} x domain(O;) ...

x domain(0’,). Then M subsumes M’ iff for all i, domain(l’;) subsumes

domain(l;) and domain{0O;) subsumes domain(O%) respectively.

Figure 49 shows the subsumption between methods. Obviously the com-
putational overhead for method subsumption depends on the representation
language for input and output parameters. Hence we can make use of TR-1 or

TR-2 for representing methods.

Example 6.4: [Car83] Let M: VEHICLE — VEHICLE and M’: CAR — OB-
JECT. Since VEHICLE subsumes CAR {i.e.,, CAR ISA VEHICLE) and OB-
JECT subsumes VEHICLE (i.e., VEHICLE ISA OBJECT), M subsumes M’
(i.e., M’ ISA M). o

167

168

8.1.8 Constraint Membership Problem

We can characterize the constraints membership problem in three different
formal systems: inference rule system, first order logic system, and graph theory

system.

o Inference Rule System

The 4 types of constraints have their own inference rules. The most important
issues in an inference rule system is are whether every valid constraint can
be generated by the inference rules (completeness), and whether the inference
rules generate only valid constraints {soundness). Fortunately, the soundness
and completeness of the inference rules for the four constraints (SIC, MIC,
CC and DC) were proved in the literature [AM86, AP86, Len87]. Another
irnportant issue is how fast a new constraint can be derived from a given set
of constraints. The computational complexities of the membership checking

algorithms were also investigated [AM86].

Definition 6.2: We call a set of constraints given by the user CSET. The
definitions of inference rules for each constraint are as follow [AMS8B, APBS6,

Len87}:
{1) Inference Rules for SIC:
SIC-R1: Given a class A, A =5 A

§1C-R2: Given three classes A, B, and C, if A 2 B and B =%
C, then A N {i.e., transitivity)

SIC-R3: Given classes A,B1,Bg,....B,, if A 25 B, N By N..0 By,
then A =28 B, for every i =1,...,n
(2) Inference Rules for MIC:

MIC-R1: Given classes A,B;,B;,...,B,, if A M8 B, for every i =
1,..,n. then A =25 B, N B, N...N B,

(3) Inference Rules for CC:
CC-R1: Let G be a set of classes, If A ¢ G, A ¥ @

CC-R2: Let G1 and G2 be sets of classes, if A % G1 and B &%
G2 and B € G1, then A 2% (G1 - B) U G2

(4) Inference Rules for DC:

DC-R1: Given two classes, A and B, if A Aoy A, then A igloipe
B

DC-R2: Gi\fgn three classes, A,B, and C, if A dgoit and C =25
A, then C €'

DC-R3: Given two classes, A and B, if A "B A then A <2 B

Theorem 6.3: [AM86] SIC-R1 and SIC-R2 are sound and complete with re-
spect to SICs.

Theorem 6.4: [AMS86] SIC-R1,SIC-R2,8IC-R3, and MIC-R1 are sound and
complete with respect to SICs and MICs.

Theorem 8.5: [AP86] DC-R1, DC-R2, and DC-R3 are sound and complete
with respect to DCs.

Theorem 6.6: [{AP86]SIC-R1, SIC-R2, DC-R1, DC-R2, and DC-R3 are sound
and complete with respect to SICs and DCs.

Theorem 8.7: [Len87] CC-R1 and CC-R2 are sound and complete with re-
spect to CCs.

Lemma 6.8: SIC-R1, SIC-R2, CC-R1, CC-R2, DC-R1, DC-R2, and DC-R3
are sound and complete with respect to SICs, CCs and DCs.

Proof: CCs and SICs are independent in that CC rules do not depend on
any SICs and also SIC rules do not depend on CCs. The same argument is
applied to CCs and DCs. By the theorem 2.7, the soundness and completeness
of CC rules are guaranteed. DC rules depend on SICs. By the theorem 2.6,

169

170

the soundness and completeness of SIC rules and DCs with respect to SICs and
DCs are guaranteed.)
Theorem 6.9: SIC-R1, SIC-R2, SIC-R3, MIC-R1, CC-R1, CC-R2, DC-R1,
DC-R2, and DC-R3 are sound and complete with respect to SICs, MICs, CCs
and DCs.

Proof; Every MIC can be transformed into a set of SICs by the rule SIC-R3.
By the lemma 6.8, this theorem holds.]

As we mentioned earlier, an important issue of the constraint mem-
bership problem is to determine how fast a member (new constraint) can be

derived from the given set of constraint.

Theorem 6.10: [AM86] Testing the membership of SIC’s is O(k) where k is
the number of SICs in the given set CSET.

Theorem 6.11: [AM86] Testing the membership of SIC’s and MIC’s is O(k)
where k is the number of SICs and MICs in the given set CSET.

Theorem 6.12: [Len87] Testing the membership of CC’s is O(k) where k is
the number of CCs in the given set CSET.

Theorem 6.13: Testing the membership of DC’s is O(nk) where k is the
number of 8ICs and MICs and n is the number of DCs in the given set CSET.

Proof:

digjoint

The following algorithm is for testing the membership of a DC A <
B in CSET. Owing to Theorem 6.6 and Theorem 6.10, the algorithm becomes
simple. The algorithm is correct in accordance with Theorem 6.6 (Completeness
and Soundness of SIC and DC inference rules) because the inference rules of
SIC and DC are implemented in the algorithm. More precisely, the algorithm
implements only SIC-R2 (line 5), SIC-R3 (line 1) and DC-R2 (line 3 and 5)
because SIC-R1, DC-R1 and DC-R3 are trivial inference rules.

DISJOINT?(A,B)

171

/* AB: Classes */

begin

1 transform all MICs in CSET into SICs and assign them to EXTRA,;

2 CSET «— CSET U EXTRA;

3 foreach DC X “E2' Y in CSET: do

4 begin

5 if ((A 5 X can be derived from CSET) A
(B #5 Y can be derived from CSET)) v
((B 25 X can be derived from CSET) A
(A 25 Y can be derived from CSET))

6 then return(“YES”);

7 end

8 return(“NO™};

end

Since steps in line 1 and 5 takes O(k) where k is the number of SICs

and MICs and the foreach loop halts in O(n) where n is the number of DCs in
the given set CSET, in total, this algorithm takes time of O{nk).]

e First Order Logic System

The above 4 types of constraints can be expressed with formulas of the first
order theory [Len87|. The formulas are universally quantified and include only
unary predicates and no function symbols.

A B is transformed into vV x (A{x) — B(x))

A= BnC is transformed into Vx (A(x) — B(x) A C(x))

AR B is transformed into v x (A(x) — - B{x))
AESBUC is transformed into ¥ x (A{x) — B(x) U C(x))

We denote a set of first order theory formulas which are provided by
the user as ASET (the axiom set). Constraints Membership problems can be

reconstructed as follows.

1. Testing the membership of a SIC A 23, B is equivalent to proving ASET
FVox (Alx) — B(x)).

2. Testing the membership of a DC A digloipt 1y

ASET+ V x (A(x) — = B(x)).

is equivalent to proving

3. Testing the membership of a SIC A £¥ B U C is equivalent to proving
ASET ¥ x (A(x) — B(x) U C(x)).

o Graph Theory System

Constraints membership problems can be reconstructed in the graph theory.
We call a class hierarchy with SICs, DCs and CCs G.

1. Testing the membership of a 8IC A 5 3 is equivalent to finding a
direct path (reachability problem) between the node A and the node B
in G.

digjoint

2. Testing the membership of a DC A < B is equivalent to check whether
G includes those graphs in Figure 50 as subgraphs (subgraph matching
problem) [APBS].

3. Testing the membership of a CC is involving a closure computing on
the graph of given CCs. Consider the graphs in Figure 51: Figure 51.a
hasthreeCCsAggBUCUD,C°°”EUFUG,andE°°”HU
1, Figure 51.b has two CCs A e R URUFUGUD,and E=2H
U 1, Figure 51.c has two CCs A LR yCuUD,and C=EEHUTU
F U G, and finally Figure 51.d has one CC, A SELCBUHUIUFRU

172

Figure 51: Graphs associating CCs

173

174 175

G U D. One-level trees of Figures 51.a-51.b are the closure of CCs in
Figure 51.a, Therefore, testing the membership of a CC is viewed as

graph matching problem.

Existing graph algorithms may be used directly or need to be slightly
modified for the above problems.

8.1.8 Undesirable Property Detection Problem

As we can solve the constraint membership problem in three ways, inference

rules, first order logic, and graph algorithms, we also can solve the undersirable
property detection problem in three different formal systems. As we mentioned
earlier, we consider three cases of undesirable properties: inconsistent schema, (2)
schema with equivalent classes (cyclic structures), and schema with redundant

ISA relationships.

o Inference Rule System

1. The inconsistency checking problem is equivalent to checking whether

for a certain class z, z ‘22" g is derived from CSET [AP86). \
" . . . N \
2. The redundant class problem is equivalent to running the following al-
gorithm:
begin / Y
o 3
foreach class z in CSET: do .
if {z}" includes z /
then z is a redundant class {b)
end

/* where {z}* means the transitive closure of SICs whose left-hand-side Figure 52: Graphs associating undesirable properties (from [AP86))

are z, but excluding the starting = */

3. The redundant ISA problem is equivalent to running the following algo-

rithm:
begin
Joreach SIC i in CSET: do
if i can be derived from CSET — {i}

then ¢ is a redundant ISA relationship

o
=

o First Order Logic System

1. The inconsistency checking problem is equivalent to checking whether

formulas in ASET are satisfiable.

Lenzerini [Len87] showed that a set of universally quantified formulas
of first order theories with unary predicates and no functions symbols can be

mapped (1 to 1} into a propositional formulas in conjunctive normal forms.

It turned out that first order logic formulas of SICs, MICs, and DCs have
exactly two unary predicates. Formulas of CCs can have more than two unary
predicates. This minor difference causes enormous difference in computational

complexity of constraint membership problem.

Theorem 6.14: Satisfiability problem with respect to SICs, MICs, and DCs

has polynomial time complexity.

Proof; 8ICs and DCs are transformed into first order logic formulas having
exactly two unary predicates. Every MIC can be transformed into a set of
S1Cs and the SICs in the set, in turn, are transformed into formulas having
two unary predicates. Now every transformed formulas has only two unary
predicates and the satisfiability problem of such formulas is called the 2-SAT
problem. Since 2-SAT is in P [AHU76], the theorem holds.)

Theorem 8.15: Satisfiability problem with respect to 8ICs, MICs, DCs and
CCs is NP-complete.

Proof: CCs are transformed into formulas having more than two unary
predicates and all unary predicates are connected with U. For example, A
£ B U C is transformed into V x {(~ A(x)) U B(x} U C(x)). Obviously, such
formulas cannot be transformed into formulas having only two unary predicates.
Now some of transformed formulas have more than two unary predicates and
the satisfiability problem of such formulas is called the 3-SAT problem. Since
3-SAT is in NP-complete [AHUT6}, the theorem holds.)

2. The redundant class problem is equivalent to running the following al-
gorithm:
begin
Joreach i of the form (V z A(z) = B(z)) in ASET: do
if ASET - (¥ z (A(z) = B(z) A (B(z) = A()))

then A and B are equivalent classes

end

3. The redundant ISA problem is equivalent to running the following algo-

rithm:
begin
Joreach i of the form (¥ z A(z) = B(sz)) in ASET: do
if (ASET ~ i)k
then ¢ is a redundant ISA relationship

end

o Graph Theory System

177

178

1. The inconsistency checking problem is equivalent to checking whether

one of the graphs in Figure 52.a is a subgraph of G.

2. The redundant class problem is equivalent to finding a cycle in G. Cyclic-
ity checking algorithm is in O(k) where k is the number of edges in G.
The cyclicity checking algorithm is based on depth-first search. However,
finding out all cycles and printing out all classes involving the cycles is

computationally hard (exponential time).

3. The redundant ISA problem is equivalent to checking whether one of
the graphs in Figure 52.b is a subgraph of G. The following is the graph
algorithm for the redundant ISA problem.

begin
foreach edge (x,y) in G: do
begin
delete the edge (x,y) from G;
add a new edge (y,x) to G;
run cycle detection algorithm starting from y;

¢f a cycle is found then the ISA from x to y is redundant;

end

end

This algorithm has O{k*) where k is the number of edges in G. However,
finding out all classes involving redundant edges is computationally hard

as is finding out all cycles.

Potential Implementation

For inference rules system based solutions, a PROLOG interpreter seems the

best vehicle for implementation. For first order logic system based solutions,

general theorem provers for first order logic (say, resolution theorem prover)
can be used. However, we suspect that database environment cannot allow the
use of theorem provers because of performance reasons. For graph theory based

solutions, any general programming language can be used.

6.2 The Framework and the ORION Data Model

In this section we revisit the ORION data model from the viewpoint of the

unified framework we established in the previous Chapter.
Type subsumption in The ORION data model

ORION class definition is simple enough to be represented in TR-2. A ORION
class is composed of a set of superclasses, a set of pairs (variable, domain), and
a set of methods. Since methods in ORION are defined in CommonLisp, input
and output parameters are not strongly typed (i.e., only input parameters are
declared without parameter types and output parameters are not declared).
Therefore we ignore subsumption among ORION methods. For superclasses
and instance variables of ORION class, it is very straightforward to transform to
TR-2 expressions. Here is an example of ORION class definition in a LISP-like
syntax: SUBMARINE class has two superclasses NUCLEAR-VEHICLE and
WATER-VEHICLE and two instance variables Speed and Manufacturer. The
domain of Speed is INTEGER and the domain of Manufacturer is COMPANY.

(SUBMARINE :superclasses NUCLEAR-VEHICLE WATER-VEHICLE
:variables (Speed INTEGER) (Manufacturer COMPANY))
The TR-2 representation of SUBMARINE is:
SUBMARINE = (AND NUCLEAR-VEHICLE WATER-VEHICLE
(ALL Speed INTEGER)
(ALL Manufacturer COMPANY))

We note that even SOME clauses in TR-2 are never used in ORION

179

classes. Obviously the type subsumption problem in the ORION data model
has O(n®) complexity according to Theorem 2.2.

Constraints in The ORION data model

Only 51Cs and MICs are expressed implicitly in the ORION model. As we
mentioned earlier, the constraint membership problem with respect to 8IC and
MIC has a linear time algorithm.

Undesirable Properties in The ORION data model
o Inconsistent Schema

Since only SICs and MICs are allowed in the ORION model, we find an

interesting theorem about consistency.

Theorem 6.16: Any object-oriented database schema with only SIC and MIC

constraints is consistent.

Proof: [Len87] The formula, Vz (afz) — B(z}) for any arbitrary a and
B, is always satisfiable. Consider a set of such formulas T. Since there is
no disjointness constraint, each formula in T can be satisfied by the same
set of objects. Any object-oriented database schema with only SIC and MIC

constraints is consistent. [

However, even though the user did not declare disjointness constraints
explicitly, the system can check the type disjointness between every pair of
classes. If there are not disjoint classes, any schema design with only SICs and
MICs is consistent. If there are some disjoint classes, we have to check the

consistency of the schema by using 2-SAT algorithm as we mentioned earlier.
® Redundani classes and redundant ISAs

Finding cycles (equivalent classes) and redundant IS-A relationships are
same as in the previous section. We may use any of solutions in the previous

section.

180

6.3 The Framework and the ORION Schema Evolution
Model

In this section we revisit the ORION schema evolution framework from the
view point of the object-oriented database design framework that we estab-
lish. We present below necessary verification tasks which are entailed after
each schema change operation from the viewpoint of the unified framework for
object-oriented database schema. The reader may refer to the semantics of

schema change operations in section 2.1.4.

o (1.1.1) Add a new instance variable to a class C: If V already
exists in C an inherited instance variable, it should be verified that the
domain of new V is a subclass of the domain of old V before committing

this operation.

e (1.1.2) Drop an instance variable V from a class C: It should be
verified that V is not an inherited instance variable before committing

this operation.

{1.1.3) Change the name of an instance variable V of a class
C: It should be verified that V is not in C or subclasses of C before

executing this operation.

e (1.1.4) Change the domain of an instance variable V of a class
C: As we discussed earlier in chapter 2, the domain, class D, of an
instance variable V of a class C may be changed only to a superclass of
D. Suppose C inherited V from C'. It should be verified that the new

domain of V of C is a subclass of the domain of V of C’.

o {1.1.5) Change the inheritance (parent) of an instance variable:

(Inherit another instance variable with the same name) Nothing to verify.

o (1.1.8) Change the default value of an instance variable V of a
class C: It should be verified that the new default value is an instance

of the domain of V.

181

&

@&

&

&

(1.1.7.1) Add the shared value of a variable V of a class C: It
should be verified that the shared value is an instance of the domain of
V.

{1.1.7.2) Change the shared value of a variable V of a class C:
It should be verified that the shared value is an instance of the domain
of V.

{(1.1.7.8) Drop the shared value of a variable V of a class C:
Nothing to verify.

{1.2) Change an instance method The verification tasks for oper-
ations 1.2.1, 1.2.2, 1.2.3, 1.2.4, and 1.2.5 are easily inferred from 1.1.1,
1.1.2, 1.1.3, 1.1.4, and 1.1.5 respectively.

(2.1) Make a class S a superclass of a clags C: It should be checked
that the class definition of C is subsumed by the class definition of S
before committing this operation. The consistency and redundancy of

the resulting schema should be checked.

(2.2) Remove a class § as a superclass of the class C: It should
be checked that C and S do not have any common instances any more
before committing this operation. The consistency and redundancy of
the resulting schema need not be checked because the resulting schema
can be inconsistent or redundant if the previous schema was consistent

and nonredundant.

(2.8) Change the order of the superclasses of a class C: Nothing

to verify.

(8.1) Define a new class C: It should be checked that C is subsumed
by every superclass before committing this operation. The consistency

and redundancy of the resulting schema should be checked.

(3.2) Drop a class C: If C had more than one superclasses, it should be

checked that no common instances exist in any pair of C’s superclasses

182

before committing this operation. The consistency and redundancy of
the resulting schema need not be checked because the resulting schema
can be inconsistent or redundant if the previous schema was consistent
and nonredundant.

(8.8) Change the name of a class: It should be verified that the
new name is unique among all class names in the class hierarchy before

executing this operation.

We note that the above verification tasks are either trivially easy or one

of the 2 problems (type subsumption and undesirable property detection) that
were addressed in the section 6.2.

183

Chapter 7
More on Subclassing

Subclassing (creating a new subclass from a class) is the most frequently used
schema change operation. A new class needs to be created from a class when
a new concept that cannot be accommodated in the existing classes has to be
introduced. Most subclassings involve the imposition of restrictions on instance
variables of a parent class. The constraints that accompany these subclassings
are called subclassing conditions, which are predicate expressions on instance

variables.

In this chapter, we shall present the results of our research into vari-
ous issues of subclassing. First, we present a taxonomy of subclassing and the
semantics of each case. Second, we address the issue of subclassing condition
management because most subclassings are accompanied by subclassing condi-
tions. As a database and schema grow in size and complexity, it is very difficult
to maintain consistent class hierarchies without taking advantage of subclassing
conditions. We also consider the inverse operation of subclassing, desubclassing
{dropping an existing class). Third, subclassing conditions are useful in many
applications of object-oriented databases. We identify those applications and

introduce the techniques of applying subclassing conditions to the applications.

7.1 Taxonomy of Subclassings

In order to achieve a consistent and optimal class hierarchy, we first have to
understand semantics of schema change operations in the previous section com-
pletely. Among the operations in the taxonomy, we believe that (3.1) “Add a
new class” (subclassing) is the most frequently used operation in object-oriented
applications. In the remainder of this chapter we examine subclassing in great
detail.

A new class needs to be created when a new concept has to be intro-

duced. The new class may be a specialization of an existing class or classes.

184

These latter classes, then, can be specified as the superclasses of the new class.
All instance variables and methods of the superclasses are inherited by the new
subclass. Either some changes to the inherited instance variables or methods
may be needed, or new instance variables or new methods may need to be

added to the new subclass.
We identify three cases in which subclassing is needed.

o Case (1): The user (database designer) needs to create a new subclass
from a class C when he wants to partition existing instances of the class C for
conceptual convenience. In this case C is the unique superclass of the new sub-
class. For example, the user wants to classify expensive and cheap automobiles
from AUTOMOBILE class. Two refined class definitions of AUTOMOBILE
class are needed for expensive and cheap automobiles respectively: if the price
of an automobile is more than $10000, then the automobile is an expensive
automobile, otherwise a cheap automobile. Instances of AUTOMOBILE class
must be moved down to two new subclasses because an instance cannot belong
to more than one class. In general, partitioning of instances of a class can be
achieved by applying some predicates (we shall call them subclassing conditions)
to existing instances of the class. If partitioning is determined by predicates on
an instance variable, we call such variable partition-control instance variable.

The price instance variable is a partition-control instance variable.

o Case {2): When the designer wanis to insert an instance in a database,
if more than one class can accommodate the instance and the classes do not
have ISA relationships, a new class must be created due to the restriction that
an instance cannot belong to more than one class. For example, if the user
wants to insert an instance I to a database, and I can belong to two existing
classes C; and G, in which there is no ISA relationships, then a new subclass
having C; and C, as superclasses needs to be created for storing . In this
case, a test must be performed by either the user or the system as to whether

I belongs to more than one class.

185

o Case (3): When the designer wants to insert an instance in a database,
if no existing class can accommodate the instance, a new class must be created
for storing the new instance. Again, it can be checked by either the user or the

system whether an instance cannot belong to any existing class.

We shall present subclassing algorithms for the above three situations
in section 7.2. As we briefly mentioned earlier in this section, a new class def-
inition accompany restrictions, such as declaration of new instance variables
and modifications on inherited instance variables. The new class definition also
accompany declaration of new methods and modifications of inherited meth-
ods. However, in this chapter, we concentrate on instance variable oriented
restrictions, We discuss below the types of restriction and the semantics of

each.
Subclassing Taxonomy

(1) Predicate-based
(1.1) Interval Reduction
(1.2) Value Isolation
(1.3) Value Negation
{1.4) Instance Variable Comparison

(2} Domain Reduction

(3) Instance Variable Overriding

{4) Instance Variable Addition

Subclassing involves one or more combination of the above cases. The
cases of (1) are the application of predicates to domains of instance variables
of a parent class. Interval reduction (1.1) is to reduce the interval domain of a
partition-control instance variable of a superclass, whereas value isolation {1.2)

and value negation (1.3) is to specify and to exclude a particular value in the

186

187

OBJECT

VEHICLE

Vehicleld; Integer Name: String
Manufacturer: COMPANY Location: Btring

Weight: Real \

COMPANY

AUTOMOBILE SHIPBUILDER
Num-Doors: Intege i ; i
Size: Integer
GasMileage: Intege WATER-VED

MinWaterlevel: Real

anufacturer: SHIPBUILDER)

BIG-ENGINE-AUT
(Size > 300)

TWO-DOOR-AUTO
(Num-Doors = 2) BUS

(Change the meaning
of Size)

NON-TWO-DOOR-AUTO
(Num-Doors # 2)

Legend:
A box has a set of locally defined instance variables

A brace has a subclassing criteria.

Figure 53: VEHICLE and COMPANY class hierarchies

domain of a partition-control instance variable respectively. Instance variable
comparison (1.4) is to compare values of two different variables to select out
instances. For examples of (1), consider the Figure 53. A new class BIG-
ENGINE-AUTO may be created from the class AUTOMOBILE by specifying
a predicate {Size > 300). A new class TWO-DOOR-AUTO may be created
from the AUTOMOBILE class by specifying a predicate (Num-Doors = 2)
whereas NON-TWO-DOOR-AUTO by a predicate (Num-Doors # 2). These
examples represent (1.1),(1.2) and (1.3) respectively. As an example of (1.4),
consider PEOPLE class with three instance variables (name, income, outgo).
A new class DEBTER is defined as people who spent more money than what

he earned (i.e., income < outgo).

Domain reduction (2) is to change the domain D of an inherited instance
variable to a subclass of D. Again in Figure 53, VEHICLE class inherits three
instance variables of VEHICLE class, but changes the domain of Manufacturer
instance variable from COMPANY to SHIPBUILDER which is a subclass of
COMPANY class.

Instance variable overriding (3) is to override the domain of an inher-
ited variable with a different domain (i.e., change the meaning of the instance
variable). For example, suppose BUS class is created from AUTOMOBILE
class. The meaning of Size in AUTOMOBILE is engine size. The designer
can change the meaning of Size to “number of people that can be accommo-
dated in a bus” as shown in Pigure 53. Instance variable addition (4) is to
add new instance variables when subclassing happens. As shown in Figure 53,
AUTOMOBILE class has three new instance variable as well as three inherited

instance variables from VEHICLE class.

7.2 Subclassings and Subclassing Conditions

We believe that a large number of subclassings involve the predicate-based
restrictions in (1). In this section we shall elaborate on predicate-based restric-

tions.

188

189

AUTOMOBILE

BIG-ENGINE-AUTO SMALL-ENGINE-AUTO

(2)

AUTOMOBILE

BIG-ENGINE-AUTO

SMALL-ENGINE-AUTO

EXPENSIVE-AUTO

CHEAP-AUTO

(b)

Figure 54: Illustrating subclassing mechanism

Conceptual Subclassing Condition vs. Actual Subclassing Condition

Suppose AUTOMOBILE class has two subclasses, BIG-ENGINE-AUTO
and SMALL-ENGINE-AUTO, as shown in Figure 54.a. AUTOMOBILE class
has four imstance variables: Id (Positive Integer), Manufacturer (String),

Engine-size (Positive Integer), and Price {Real).

Assume that the subclassing condition of AUTOMOBILE class is (150 <
Engine-Sise < 450) A (5000.00 < Price < 40000.00) and let this predicate be denoted
as p. Suppose BIG-ENGINE-AUTO class and SMALL-ENGINE-AUTO are for
automobiles whose engine size is bigger than 300 cubic inches and smaller than
or equal to 300 cubic inches respectively. Then the subclassing condition of
BIG-ENGINE and SMALL-ENGINE are P A (Engine-Size > 800) and P A (Engine-
sise < 300) respectively. Note than p is inherited by BIG-ENGINE and SMALL-
ENGINE. As all properties of a class such as instance variables or methods
are inherited into subclasses, subclassing conditions should also be inherited.

Subclassing conditions are inherited in a conjunctive form.

Clearly both P A (Engine-Sise > 300) and P A (Engine-Sise < 300) imply p.
IS-A relationships between AUTOMOBILE and BIG-ENGINE and between
AUTOMOBILE and SMALL-ENGINE-AUTO make sense, i.e., every auto-
mobile with engine size bigger than 300 and smaller than or equal to 300
is an automobile. We call », P A (Engine-Stse > 300), and P A (Englne-Stze <
s00) conceptual subclassing condition predicates (denoted CSCP) of AUTOMO-
BILE, BIG-ENGINE-AUTO, and SMALL-ENGINE-AUTO respectively. In
sumrmary, conceptual subclassing conditions define membership in a class and
its subclasses. Whereas actual subclassing conditions (to be addressed next)

define membership in a class but in no subclasses.

As we mentioned in section 1.2.2, an instance must belong to (be phys-
ically stored in) one and only one class. Again in Figure 54.a, none of the
automobile instances are physically stored in the AUTOMOBILE class. That
is because an automobile, which is an instance of both AUTOMOBILE and

190 191

AUTOMOBILE

BIG- P)NGINE—AUTO

SMALL-ENGINE-AUT

/CHE/AP-AUTO

BIG-EXP-AUT

BIG-CHEAP-AUTO
SMALL-EXP-AUTO

SMALL-CHEAP-AUTO

(c)
45
Engine

Size A B C
30

D E F
15

5000.00 10000.00 20000.00 40000.00
Price
(d)

Figure 54 (Cont’d): Illustrating subclassing mechanism

BIG-ENGINE-AUTO, is stored in BIG-ENGINE-AUTO while an automobile,
which is an instance of both AUTOMOBILE and SMALL-ENGINE-AUTO, is
stored to SMALL-ENGINE-AUTO. This gives rise to define another concept
actuol subelassing condition predicates (denoted ASCP) which define member-

ship in a class but in no subclasses.

The actual subclassing condition predicates of AUTOMOBILE,
SMALL-ENGINE-AUTO and BIG-ENGINE-AUTO are P A — (Engine-Size >
808) A = (Engine-Stse < 300), P A (Engloe-Size < 800), and P A (Engine-Stse > 300) Te-
spectively. The actual subclassing condition of AUTOMOBILE is unsatisfiable
{false) and no instance can belong to AUTOMOBILE. Only instances, which
are satisfying ASCP of a class C, can belong to the class C. We note that AS-
CPs of AUTOMOBILE, SMALL-ENGINE-AUTO, and BIG-ENGINE-AUTO

are mutually disjoint. In summary, in Figure 54.a,:

o CSCP(BIG-ENGINE-AUTO) implies CSCP(AUTOMOBILE)

@

CSCP(SMALL-ENGINE-AUTO) implies CSCP(AUTOMOBILE)
o ASCP(BIG-ENGINE-AUTO) A ASCP(AUTOMOBILE) is unsatisfiable

e ASCP{SMALL-ENGINE-AUTO) A ASCP(AUTOMOBILE) is unsatis-
fiable

s ASCP(BIG-ENGINE-AUTO) A ASCP(SMALL-ENGINE-AUTO) is

unsatisfiable

CSCPs and ASCPs are important in that they are used to keep class
hierarchy consistent and nonredundant. Below we present three different sub-

classing algorithms and show how CSCPs and ASCPs should be managed.

Case (1): Subclassing for Partitioning Instances

Now we consider the case of subclassing which stems from a need to

partition existing instances. As mentioned earlier, in this case the designer

192

193

AUTOMOBILE
|5000,40000]

BIG-ENGINE-AUTO
[5000,40000]
SMALL-ENGINE-AUTO

5000,40000
{ ' ExpENSIVE-AUTO
20000,40000]

CHEAP-AUTO
BIG-EXP-AUTO [5000,10000]

[20000,40000]

BIG-CHEAP-AUTO
[5000,10000]
SMALL-EXP-AUTO

[20000,40000] v
SMALL-CHEAP-AUTO
(5000,10000]
Figure 85.a: Conceptual subclassing condition predicates {CSCPs) on Price

AUTOMOBILE

J—

BIG-ENGINE-AUTO
[10000,20000]

SMALL-ENGINE-AUTO
[10000,20000]
EXPENSIVE-AUTO

e

BIG-EXP-AUTO
[20000,40000]

CHEAP-AUTO

BIG-CHEAP-AUTO
[5000,10000]

SMALL-EXP-AUT
[20000,40000}

SMALL-CHEAP-AUTO
{5000,10000]

Figure 55.b: Actual subclassing condition pedicates (ASCPs) on Price

specifies a superclass of a new subclass and some restrictions on the superclass,

and the superclass is the unigue superclass of the new subclass.

Consider the class hierarchy in Figure 54.a. Instances of AUTOMOBILE
class are presently partitioned into two classes by the partition-control instance
variable Engine-Size, i.e., the instances in the regions A,B, and C of Figure 54.d
are positioned in BIG-ENGINE-AUTO whereas the instance of D,E, and ¥ are
positioned in SMALL-ENGINE-AUTO. Suppose the designer is trying to create
EXPENSIVE-AUTO class and CHEAP-AUTO class for distinguishing automo-
biles of which price is between $5000.00 and $10000.00 and between $20000.00
and $40000.00 respectively. Then the resulting class hierarchy would be the one
in Figure 54.b. Now the designer has to partition instances of AUTOMOBILE
class using the partition-control instance variable, Price. An automobile whose
engine size is 350 cubic inches and price is $ 34000.00 should appear in two
classes, EXPENSIVE-AUTO and BIG-ENGINE—AUTO. Therefore, the class
hierarchy in Figure 54.b is not allowed. In this case, either a new subclass is
created for accommodating instances belonging to both EXPENSIVE-AUTO
and BIG-ENGINE-AUTO, or the request must be rejected. The class hierarchy

in Figure 54.c is allowed in that every instances belongs to one and only class.

Whenever a new class § is created as a subclass of C, CSCP(S) should
imply CSCP(C) for a meaningful IS-A relationship. Whereas ASCP(S) should
be disjoint with ASCPs of existing classes of the database. Otherwise either
the creation request of S is rejected or an additional class needs to be created
for preserving the property “an instance belongs to one and only one class”.

We present below the algorithm for Case (1).

SUBCLASSING-CASE-1 (C,S,P)
/* C : parent class of § */
/* 8 : new subclass */

/* P : concepiual subclassing condition predicate of § %/

194 195

begin

1 if IMPLY(P,CSCP(C)) then

begin
2 create C such that CSCP(C) is P and ASCP(C) is P;
3 foreach 1 € existing instances of C: do
4 if ASCP(S) is satisfied by 1 then
5 move the instance I from C to S;
6 update ASCPs of C’s superclasses;
7 Joreach 8’ € U - {C and superclasses of C}: do

/* U is the set of all classes in the database */
8 ¢/ (there is an instance satisfying

both ASCP(S) and ASCP(S")) then

begin
9 create another new class §* having 8 and 8’
as immediate superclasses and CSCP(S*) and

ASCP(S") are both (ASCP(S) A ASCP(S");

11 foreach 1 € instances of 8 do
12 if ASCP(S") is satisfied by I then
13 move the instance I from 8’ to 8”;
14 npdate ASCPs of superclasses of 8* properly;
end;
en

end;

@

In line 1, we used IMPLY(p,q) as a built-in procedure to test if the
predicate p implies the predicate q, i.e., to see if ~p V q is true. If 2
class S is a subclass of a class G, IMPLY(CSCP(C),CSCP(S)) should be
true. We shall elaborate on IMPLY in section 7.3.

o Line 6 is to test whether there is an instance belonging to more than

one class.

o Lines 3-5 and 11-1% shows repositioning instances from a class to a new
subclass. The system may automatically perform the “MOVE” opera-
tion according to subclassing conditions. Unless subclassing condition
predicates are provided, the system cannot partition instances automati-
cally. In that case we assume that the user is responsible for partitioning

instances.

o After creating subclasses, ASCPs of existing classes should be updated.
The details of Lines 6 and 14 (updating ASCPs) will be discussed in

section 7.3.

Case (2): Subclassing for a New Instance Having More Than One
Corresponding Class

Now we consider Case (2): create a new subclass for a new instance
which can be accommodated by more than one existing classes. When a new
class is created and added to database, the appropriate taxonomic location
{superclasses of the new class) should be identified by the system unless the user
specifies the superclasses for the new class. As such, we present two algorithms:
Case (2A) the one is for the case when the designer specifies superclasses of the
class which will accommodate the new instance, Case {2B) the other is for the
case when the designer consults with the system to find out the superclasses of

the new subclass.

196

First, consider the case when the user provides the list of superclasses.
Here is the algorithm for Case 2A. If CSCPs of any two of superclasses are
unsatisfiable, the user’s request should be rejected because there will not be
any instance belonging to the new class. Also if there is any ISA relationship
between any two of classes that are provided by the user as superclasses of the
new class, the request should be rejected because the resulting class hierarchy
is meaningless. For example, suppose the user declares both BIG-ENGINE-
AUTO and AUTOMOBILE in Figure 54.a as immediate superclasses of a new
class C. The ISA relationship between C and AUTOMOBILE is redundant in
that AUTOMOBILE is already a superclass of C because AUTOMOBILE is
a superclass of BIG-ENGINE-AUTO and, in turn, BIG-ENGINE-AUTO is a
superclass of C.

SUBCLASSING-CASE-2A (I,C,P)
/* 1: a given instance */

/* C:a given class */

/* P : user-specified superclasses of C*/
begin

1 foreach C;,C; € P: do

2 if IMPLY(TRUE, ~(CSCP(C;) A CSCP(C,))) then
begin

3 reject the request;

4 return{();
end

5 foreach C;,C; € P: do

6 if (Cy is a superclass of C,) Vv (C, is a superclass of C;) then

197

198

begin
K reject the request;
8 return();

end
9 create the new class C;

10 insert I as an instance of C;
11 update ASCPs of superclasses of C properly;

end;

Line 2-4 tests the satisfiability of CSCPs of any two superclasses which

@

are provided by the user. If any two CSCPs are unsatisfiable, the sub-

classing request must be rejected.

Lines 5-8 detect redundant ISA relationships.

@

o Refer to section 7.3 for the details of line 11.

Second, consider the case when the user does not specify superclasses
of the class for the new instance I. The system should find classes which can
accommodate T and collect them in the superclass-set set variable. If there is
only one class, the instance I should be inserted into the class. Otherwise a new
class C having classes in the superclass-set as immediate superclasses should

be created and the instance [is inserted into C.

SUBCLASSING-CASE-2B (I)
J* 1: a given instance */
begin

1 superclass-set « 0;

2 foreach leaf to root path in the class hierarchy: do

3 foreach class C in the path: do
4 if (C can accommodate 1)
5 then begin
6 superclass-set « superclass-set U { C ¥
7 break the foreach loop in line 3;
end;
8 if (there is only one class in the superclass-set)
9 then insert I as an instance of the class;
10 else begin

/* more than one class can accommodate I ¥/

11 create a new class C’ having the classes as superclasses;
12 insert I as an instance of C’;
13 update ASCPs of superclasses of C’ properly;
end;
end;

o In lines 1-7, the system returns a set of classes which can accommodate
L Redundant ISA relationships cannot be made because, once a class C
is turned out be a class which can accommodate I, then the superclasses

of C are skipped.

o Refer to section 7.3 for the detail of line 12.

Case (3): Subclassing for a New (Exceptional) Instance Having No
Corresponding Class

199

200

In this case, the procedure, for consulting with the system to find out the
corresponding classes for the new instance, is difficult to be automated because
the new instance may have instance variables which do not exist in existing
classes. We assume that it is the user’s responsibility to provide corresponding
superclasses in case 3. Then the algorithm becomes to be the same as the
previous SUBCLASSING-CASE-2A.

7.3 Subclassing Condition Management

8o far, we used two built-in procedures on predicates implicitly. In this section,
we discuss the two built-in procedures: *update ASCPs’ and IMPLY’, in detail.

Update Actual Subclassing Condition Predicates

After a new subclass S of a class C is created, the actual subclassing
conditions of (s superclasses should be updated recursively. In the previous
section, three subclassing algorithms include a line 'update ASCPs of super-

classes of a class C’. The following procedure will do the job.

UPDATE-PROPAGATION(S,P)

/* 8 : a new subclass */

J¥ P ASCP of 8 */

begin;

Joreach §? € immediate superclasses of S: do

begin;
ASCP(S’) « (ASCP(8) A ~ASCP(8’))
UPDATE-PROPAGATION(S’,ASCP(8"));

end;

More on IMPLY

IMPLY is a built-in procedure to test if the predicate p implies the
predicate q. The implication problem can be rephrased as the unsatisfiability
problem: to check if p => ¢ holds is equivalent to check the unsatisfiability of
- (p => ¢g). In particular we are interested in testing if a conjunciion of two
predicates P1 and P2 is satisfiable, that is IMPLY (true,P1 A P2). Similarly,
{0 see if a conjunction of two predicates P1 and P2 is unsatisfiable is to prove
IMPLY (true, — (P1 A P2)).

As mentioned earlier in the type subsumption problem section of the pre-
vious chapter, testing satisfiability or proving arbitrary predicates in first-order
predicate calculus is undecidable. As such, adopting the first-order predicate
calculus for managing subclassing conditions is not desirable. Therefore, the
issue is to characterize a subset of first order predicate logic expressions which
is powerful enough for expressing subclassing conditions and in which the sat-

isfiability problem can be processed efficiently.

Subclassing conditions can be represented with the “simple predicates”
of Eswaran et al. [EGLT76). The BNF of simple predicates (S-P) is as follows:
(S-PYu=(SPYA(SP)|(8P)V(SP)|~{5P)]{predicate)

{ predicate) ::= (variable) { comparion-op } { right-hand-side)
(comparison-op) == | # | < | S| > | 2>
{ right-hand-side) = { constant) | { variable) | { variable) + (constant)

Rosencrantz and Hunt [RH80} showed that the satisfiability problem of
the set of simple predicates is NP-hard. However, they showed that conjunciive
unequalsfree predicates (simple predicates that do not contain 3 and V) can
be processed efficiently (polynomial time). It is interesting to note that a large
class of subclassing conditions can be represented with conjunctive unequalsfree

predicates.

201

202 203

We below introduce Rosencrantz and Hunt’s algorithm, Satisfiability- o V1> V2 + C1 is transformed into V2 < V1 + (-C1-1)

Unequalsfree-Conjunctive-Predicates {denoted SUCP) testing in polynomial

time the satisfiability of a conjunctive containing no # operations. o V12 V2 + Clis transformed into V2 £ Vi+ (=01

9. Transform P’ into a weighted directed graph. The graph has a node
SUCP(P) for each variable, plus a node for a constant zero. Transformation is as

/* P is a conjunctive unequalsfree predicate */ follows:

begin ¢ Eachvar-1 < var-2 + const-1 corresponds to an edge whose weight
) . is const-1 from a node var-1 to a node var-2.
1. Transform P into an equivalent predicate P’ containing only < operator

in the following manner. V1 and V2 stands for variables while C1 stands o Each var-1 < 0 + const-1 corresponds to an edge whose weight
for a constant. is const-1 from a zero node to a node var-1.

o V1 = V2 is transformed into (V1 < V2 + 0) A (V2 < VI + 0) o Bach 0 < var-1 + const-1 corresponds to an edge whose weight
. is - const-1 from a zero node to a node var-1.
o V1 < V2 §s transformed into V1 < V2 + (1)
V1< V2i y 3. If there is more than one edge from one node to another, retain the
® < ig transformed into V1 <V
d e sV2+0 minimum weight edge, and discard the others.

o V1> V2 4s trans d into V2 < -
ansformed into V2 < V1 + (~1) 4. Apply Floyd’s all shortest path algorithm to the constructed graph to

o V1 > V2 5 transformed into V2 < V1 + 0 see if the graph has a negative weight circuit.

o V1= Cl is transformed into (V1 <0 + C1) A (0 < V1 4+ (~C1)) end

e VI <Clist 1 - .
is transformed into V1 < 0 + (C1 1) Rosencrantz and Hunt [RH80] showed that P is satisfiable if and only if

o V1 < C1 is transformed into V1 < 0 + C1 its transformed weighted directed graph has no negative weight cycles. In the

above algorithm, the step 1, 2, and 3 are processed in a linear time. The step 4

s V1 > C1 35 transformed 0 < V1 + (—-Cl1-1
() (Floyd’s all shortest paths algorithm [AHUY76]) takes O(k%) for a k node graph.

o V1> Cl is transformed 0 < V1 + (~C1) As such the above algorithm is in O(k®) where k is a number of variables in the
o V1= V1 -+ Cl is transformed snto (V1 < V2 + C1) A (V2 < V1 predicate P.
+ (=C1)) There are two restrictions in the above algorithm. The one is that each

o V1 < V2 + Cl is transformed into V1 < V2 + (C1 —1) variable should be integer valued. The other is that predicates cannot have #
operators. Fortunately, many of subclassing conditions involve integer-valued

Vi < s trans '
o V1 < V2 + C1 is transformed into V1 < V2 + C1 domains such as engine size, price, and number of doors.

For + operators, Bbticher, et al. [BJ586) suggested a simple mechanism
to include s comparisons into the SUCP algorithm. Their algorithm is first to
sort the comparisons of each conjunction such that # comparisons are located
last and to process conjunctions without # and then do additional tests for

conjunctions with . Here is the algorithm.

Satisflability-Conjunction-Predicate(P)
/* P : conjunctive predicates including # */
begin

1. Sort P into P1 A P2 where P1 is conjunctive predicates without # and

P2 is conjunctive predicates with # ,
2. Perform SUCP(P1)
3.
if (the graph for P1 contains no negative cycles) then
begin ;
foreach var-1 # var-2 € P2: do
i] (the graph contains zero weight cycle between nodes
var-1 and var-2)
then return(“P is unsatisfiable”);
foreach var-1 5t const-1 € P2:
if (the graph contains zero weight cycle between
var-1 node and zero node)

then return{“P is unsatisfiable”};

return{“P is satisfiable”);

end

This algorithm has a time complexity of O(k*), but only semi-correct
in that if P is satisfiable, the algorithm always says P is satisfiable, but if P is
unsatisfiable the algorithm may say P is satisfiable. This is acceptable because
of the following justifications.

1. Whenever the algorithm says “P is satisfiable”, search the database
to see if there is really an instance satisfying P. If there is no instance satisfying
P, then conclude P is unsatisfiable. In this way, the algorithm can be correct.

2. In fact, subclassing conditions involving # are very rare.

7.4 Properties of Subclassing Conditions

Now we summarize the properties of subclassing conditions formally.

Criteria for Consistent Schema Design

The following properties should hold in consistent object-oriented data-
base schemas.

o ASCP(C) = CSCP(C) if C is a leaf class

© CSCP(C) = (Vseimmediate subclasses of ¢ CSCP(S)) V ASCP(C)
+ GSCP(C) = ASCP(C) V (Vsempactones 5 6 ASCP(C))

e A instance satisfying ASCP(C;) A ASCP(C;)) for C; # C;

o IMPLY(ASCP(C),CSCP(C)) is true for any C

Useful Rules for IMPLY processing

The following rules are useful for optimizing algorithms which are intro-
duced so far.

o IMPLY(Pi,Pi) is true for any Pi

o (IMPLY(Pi,Pj) A IMPLY(P},Pk)) = IMPLY(Pi,Pk)
e Pi A Pi is satisfiable for any Pi
o {Pi A Pj is satisfiable) if and only if {Pj A Piis satisfiable)

o {Pi A Pj is satisfiable) A IMPLY(Pj,Pk)) = (Pi A Pkis satisfiable)

7.5 Applications of Subclassing Conditions

The major motivation behind keeping track of subclassing conditions was to
maintain consistent class hierarchies and partition instances properly. Fortu-
nately, there are many other important applications which can benefit sub-
stantially from utilizing subclassing conditions. In this section we enumerate
feasible applications of subclassing conditions. We adopt a few observations
from Muntz, Shneider, and Steyer [MSS79].

Query Optimization

As we discussed earlier, the query processor needs to visit a target class
and its subclasses for processing SELECT-ALL type queries in object-oriented
databases, For efficiency reasons it does not make sense to let the query be
processed with instances of the target class and all of its subclasses. A central
problem in query optimization of object-oriented databases is to find the mini-
mal set of classes sufficient to process a query. Another problem is to simplify a

query predicate when it contradict with or is implied by subclassing conditions.

Suppose a SELECT-ALL type query (based on a predicate P) were posed

206

against a class C. Here is an algorithm for finding a minimal set of classes for

the query.

QUERY-PROCESS(C,P)
J* C: Target Class */

/* P: Query Qualification ¥/

begin
if {C is not markedj A (CSCP(C) A P)) then
begin
mark C;

if (ASCP(C) A P) then

begin
P « (ASCP(C) A P);
select instances of C satisfying the query qualification P;
end
Joreach S € {immediate subclasses of C}: do

QUERY-PROCESS(S,P);

&

£n

|

else foreach §° € {subclasses of C}:

if (8® is not marked) then mark S*;
end

Reuse of Access Plan

I a result of a query QI is a subset of a previous query QO (i.e., query
qualification of Q1 implies query qualification of QO0) the access plan of Q0 can
be used directly as an access plan of Q1. Or, if we have a priori knowledge
such as partial ordering of query qualification of a batch of queries, we can
take advantage of the priori knowledge for global query optimization, that is,
to reorder the sequence of queries for better performance.

Predicate Locking

207

Multiple users may compete for instances for a certain class. Suppose
predicate locking is a candidate locking mechanism for object-oriented data-
bases. Given a class C, WLPL(C) and RLPL(C) are predicates that describes
write-locked instances of C and read-locked instances of C respectively. Sup-
pose a write lock request WR(U,C) to the class C is posed by the user U. If
IMPLY{ASCP(C) A =WLPL(C), WR(U,C)) is true, the use U can get write-
lock access to the instances by WR{U,C). Otherwise the request of the user
U should walt for until IMPLY(ASCP(C) A ~WLPL(C), WR(U,C)) becomes

true,

If the user U gets the write-lock access, WLPL{C) should be updated in

the following way.
WLPL(C) «— WLPL(C) v WR(U,C)

If th user U releases the write-lock access, RLPL(C) should be updated

in the following way.
WLPL(C) «~— WLPL(C) A ~WR(U,C)

A similar {not exactly same) argument is applied to RLPL and read-lock
request. The interested reader may refer to Rosencrantz and Hunt [RHB80] and
Eswaran, et al. [EGLT76] for details of predicate managements in the predicate

locking scheme.

Access Control

To control the access of a user to the database is called “Authorization”
or “Access Control.” Suppose the user U has the access right AR(U,C) against
a class C and the user U poses a query with predicates Q(C) to the class.
The query is allowed to be processed only if (Q(C) A AR{U,C) A ASCP(C)) is
satisfiable. Otherwise the query is rejected. If (Q{C) A AR(U,C) A ASCP(C))
is satisfiable, the next problem is to determine if possible a simpler predicate
which is equivalent to {Q{C) A AR(U,C) A ASCP(C)) for efficient processing.

208

7.6 Desubclassing

In this section, we discuss the inverse operation of subclassing, desubclassing
{i.e., dropping an existing class). As shown in section 7.2, the designer cannot
create an arbitrary class because of the assumption “an instance belongs to
one and only one class”. By similar reasoning, arbitrary desubclassing is not
allowed. For example, in Figure 54.c BIG-EXP-AUTO is not allowed to be
dropped as long as instances of BIG-ENGINE-AUTO exist because BIG-EXP-
AUTO was created to accommodate common instances belonging to both BIG-
ENGINE-AUTO and EXPENSIVE-AUTO. As such, a class with more than one

superclass cannot be dropped as long as instances remain in the class.

When a class C is dropped, instances of C are moved up to its super-
class and ASCP of superclasses of C should be updated properly. Here is an

algorithm for desubclassing.
DESUBCLASSING(C,P)
/* C: A Class to be dropped*/
/* P: ASCP of C */
begin
1f (C has more than one superclass)

then if (instances remain in C)

then reject the request
drop C;
UPDATE-ASCP-AFTER-DESUBCLASSING(C,P);
end

else begin

209

drop C;

move instances of C to its superclass;
UPDATE-ASCP-AFTER-DESUBCLASSING(C,P);
end

end

UPDATE-ASCP-AFTER-DESUBCLASSING(C,P)
/* C: A Class */
/¥ P ASCPof C ¥/
begin
Sforeach 8’ € immediate superclasses of 5: do
begin
ASCP(5") — ASCP(S) v ASCP(S’);
UPDATE-ASCP-AFTER-DESUBCLASSING(S’,ASCP(S’);

end

210

Chapter 8
Future Directions

In this chapter we provide directions for future work based on this dissertation.

8.1 Schema Evolution

We feel there are four primary issues where future work is desirable for schema
evolution: method conversion, grouping schema change operations, concurrency

control and authorization. We briefly describe the problems below.

8.1.1 Method Conversion

As schema definitions are modified, existing methods for previous schemas may
not be valid. Tt is important to be able to achieve compatibility of methods in
the face of changing schemas. Thus, an obvious question is “Can the affected
methods be converted automatically?” The automatic method conversion is a
very hard problem because the system should understand the semantics of both
methods and schema changes for automatically modifying existing methods in
order to comply with schema changes. Therefore, our view is that the system
should monitor schema changes and notify the changes to the designer of af-
fected methods when necessary and the method designer should convert the
affected methods in accordance with the schema changes. We plan to investi-

gate the notification techniques for method conversion.

Interestingly, the work by Skarra and Zdonik {5786, Zdo86] can be
viewed from the viewpoint of achieving compatibility of methods in the face of
multiple schema versions. They do not try to change existing code, but rather
to make its behavior different through the use of error {exception) handlers. In
their framework, the users do not have to modify pre-existing programs (i-e.,
methods) in any way. Existing programs will simply do the right thing because

an appropriate exception handler will get control at the right time.

211

8.1.2 Grouping Schema Change Operations

We have discussed 20 basic schema change operations in our schema evolu-
tion framework. The user can accomplish any desired schema change through
a combination of these basic operations. We can consider a few useful high
level operations that can be implemented by execuiing a sequence of several
basic schema change operations. Furthermore, it is desirable to group schema
change operations in order to avoid redundant instance accesses [PS87]. We
can view those high level operations as a transaction so that a database may
not be corrupted in the middle of executing a set of schema change operations.
We plan to identify those high level operations and investigate the efficient

implementation of those operations.

8.1.8 Concurrency Control

Schema changes in a shared environment may cause inconsistency of instances:
consider two users, one user is modifying a class and another user is updating an
instance of the class. A concurrency control scheme, which can handle schema
evolution and understand the inherent properties of class hierarchy, is needed.
Since schema modification is interactive, transactions will be of long duration.
It may be useful to apply long duration transaction protocols such as those of
Korth and Speegle [KS88].

8.1.4 Authorization

Authorization is important for effective sharing of data. Schema changes may
cause unauthorized reads, writes, and deletes of instances. Schema change
operations may have associated rights. For example, some users (with the
authorized right of creating classes) can create classes, while others can only
look into the instances of classes. The relationship between schema evolution

and authorization must be examined.

212

213

8.2 PIG: The Formal Model

The PIG model was used in showing the completeness of the schema evolution
framework. There is ample opportunity for investigating algebraic properties
of the PIG model in developing the theory of object-oriented databases. The

followings are interesting problems to pursue:

o Given a PIG P, is there any PIG Q which is equivalent to P in the sense

of information (property) carrying?

e Are any two operations of 9 PIG operations commutative?

8.3 Towards an Integrated Graphical Environment

We plan to extend PSYCHO to produce an integrated graphical environment
for object-oriented databases. In this section we describe briefly some of the

extensions we are considering.
Graphical Query Interface

ORION queries are predicate-based lisp expressions and support relational
algebra-like operations [BKK88]. Since the ORION model has the notions of
composite objects and multiple inheritance, ORION queries should be able o
express complex predicates to navigate the DAG structures of class hierarchies
and the tree structures of composite objects. Hence the ORION query language
subsumes the power of existing query languages such as SQL or CODASYL
DML. Since however ORION queries navigate underlying complex structures
such as class hierarchies and composite objects, the user may find it difficult
to pose complicated queries. Consider a query asking instances of hundreds of
classes or a query to a composite object having thousands of subcomponents.
We believe that a graphical query interface and graphical representation of

objects will enhance the friendliness of object—orientgd query languages.

Graphical Version Controller

There is a general consensus that version control is one of the most important
functions in application domains, such as integrated CAD/CAM systems and
office information systems with multimedia documents. Users in such envi-
ronments often need to generate and experiment with multiple versions of an
object, before selecting one that satisfies their requirements. So far we have
considered two types of graph structures: class hierarchies and composite ob-
ject hierarchies. The another graph structure to be considered is a “version
derivation hierarchy.” A node of the version derivation hierarchy may be a
CAD object, a software module, or a multimedia document. All of these are
considered as composite objects in the ORION model. It is difficult to support
version management in a user-friendly manner. We believe that a graphical
representation of versions and the relationships among them can assist users

with version management.
Composite Object Browser

This tool will be embedded in the previous two tools. Restructuring or querying

composite objects will be performed graphically in this environment.
8.4 Schema Versions

In this dissertation, we have investigated the semantics of schema versioning.
We hope our methodology for schema versioning will be implemented in the
near future. Many issues regarding implementation need to be investigated,

including data structures and the overhead during query processing.

8.5 DAG Rearrangement Views

Implementation aspects of DAG rearrangement views have not been addressed
in the dissertation. The main issue is to design a data structure to be used for
definitions of DAG rearrangement views. It is also worthwhile to investigate

the relationship between DAG rearrangement views and authorization.

214

8.6 Predicate Manager

As shown in chapters 6 and 7, many stages of object-oriented database design
and subclassing related tasks need the capability of proving the truth value or
the satisfiability of a formula in first order logic. We feel that a proof facil-
ity (say, a predicate manager) is required that can support the three problems
(the type subsumption problem, the constraint membership problem, the unde-
sirable property detection problem) and handle subclassing management. We
believe we can benefit significantly from a predicate manager in several aspects
of object-oriented database processing. To the best of our knowledge, however,
none of the existing object-oriented systems have such a predicate manager.
We believe that a predicate manager is needed for next generation of object-
oriented database systems. However, conventional Al theorem provers cannot
be used as a predicate manager in database environments because of perfor-
mance reasons. Devising a predicate manager having a reasonable performance

is an interesting research topic.

215

Chapter 9
Summary and Discussion

9.1 Thesis Summary

In this section we summarize the results presented in this dissertation.

In chapter 2, we presented the results of our research on various issues of
schema evolution: dynamic changes to a database schema in an object-oriented
database environment. These results are presently being incorporated into
a prototype object-oriented database system, ORION, at MCC. The schema
evolution framework is based on a graph-theoretic model of the class hierarchy.
1t consists of a set of invariants, those properties of a class hierarchy that must
be preserved before and after any schema change operations. Since a number of
options are possible for preserving any of the invariants, we also defined a set of
rules that will guide the selection of the most meaningful option for any type of
schema change operation. Qur framework made it possible for us to enumerate
possible types of changes to the database schema, and to define the semantics
for each of them by applying the sets of invariants and rules. We addressed the
issue of completeness of our framework by defining a simple formal model PIG

{Property Inheritance Graph) and exploiting the properties of the PIG model.

In Chapter 3, we presented a graphical language PSYCHO which is
designed to be a friendly interface for schema design in the ORION object-
oriented database system. It is providing us with the opportunity to evaluate
the ORION schema evolution framework. We provided a detailed description
of PSYCHO using numerous sample sessions. Finally we discussed the imple-
mentation of PSYCHO and several other related issues. The technical merits
of PSYCHO are:

o Full support of over 34 schema modification operations.

» Fasy browsing and navigation on class lattices.

216

217

o Representation of complex schemas: Since PSYCHO provides the ability
to reorganize class lattices on the screen and to scroll the screen, schemas

which are too big to be displayed on the screen can be manipulated.

Graphical feedback: PSYCHO provides various types of useful visual

response during operations.

o Integrity Checking: PSYCHO checks the validity of requested operations
by doing associated computations, such as cycle detection and name

conflict detection.

Object-Oriented Implementation: Since PSYCHO was implemented us-
ing an object-oriented language, the architecture of PSYCHO is exten-
sible.

@

In chapter 4 and 5, we addressed two issues of object-oriented database
schemas which were not addressed in the database literature. We presented
2 model of schema versions and DAG rearrangement views in object-oriented

databases. We believe there are four contributions in chapters 4 and 5:

o The development of a model which extends schema evolution, by allow-
ing schema versions in object—oriented databases: By allowing schema
versions as well as object versions, evolution of applications is com-
pletely supported by the database system. We defined the semantics
of schema versions. We presented a technique that enables users to
manipulate schema versions explicitly and maintain schema evolution
histories in an object-oriented database environment. QOur solution for
schema versions is consistent with our previous work on schema evo-
lution [BKKKSﬁ,BKKKSﬂ, it guarantees minimum storage redundancy
and allows us to get around the problem of update anomaly.

The integration of our schema version model with Chou and Kim’s object
version model [CK86]: Chou and Kim’s object version model is designed
for distributed CAD databases. Their proposal includes the broad spec-

trum of semantics and operational issues in object version control and

takes into account the characteristics of CAD environments, such as the
system architecture and the way in which vsers and applications share
data and interact among themselves. We examined various issues of
Chou and Kim’s object version model in our context, including working
and transient schema versions, schema version check-in and check-out,

version naming and binding, and change notification.

The definition of DAG rearrangement views in object-oriented databases:
We presented sets of useful operators for defining DAG rearrangement
views of composite objects and class hierarchies respectively. We iden-
tified sets of composite object views with the property that queries on
the views are processable on instances of the original composite object
schema. We also discuss how instances would be viewed and reorganized
in DAG rearrangement views of class hierarchies. The fourth contribu-
tion is an operational interface for manipulating schema versions and

constructing DAG rearrangement views.

In chapter 6, we established a unified framework for the logical design of
object-oriented database schema by synthesizing research results of the areas
such as Al knowledge representation, database dependency theory, Al theorem
proving, and graph algorithms. We identified three problems which are essential
in the design steps of object-oriented database design: the type subsumption
problem, the constraint membership problem, and the undesirable property
detection problem. We borrowed a recent result by Levesque and Brachman
[LB86] for the type subsumption problem in object-oriented databases. Further,
we characterized the constraint membership problem and the undesirable prop-
erty detection problem in the three different formal frameworks: an inference
rule system, the first order logic system, and the graph theory system. Also
in chapter 6, we re-examined the ORION data model and the ORION schema
evolution model from the view point of the unified framework of object-oriented

database design that we established.

218

Finally in chapter 7, we presented the results of our result on subclass-
ing in object-oriented databases. We defined the semantics of various types
of subclassing. Most subclassings are accompanied by associated constraints,
called subclassing conditions. We investigated how to use and how to maintain

subclassing conditions.

The major application of subclassing conditions is to maintain a class
hierarchy in semantically correct states. Managing a huge class hierarchy hav-
ing hundreds of thousands classes in a consistent way is almost impossible
without the aid of subclassing conditions. A similar problem, called knowledge-
base classification problem, is an important research issue in Al [FS84]. Be-
sides maintaining class hierarchies consistently, subclassing conditions can be
used for various applications such as query optimization, reuse of access plans,
predicate locking, access control, and so on. However, most of the existing

object-oriented systems ignore subclassing conditions.

9.2 Discussion: What Is Really An Object-Oriented Data-
base?

In this section, before closing this thesis out, we would like to discuss some

fundamentals of object-oriented databases.

The object-oriented database area is currently a very active research
field, but is still quite young in the sense that it does not have any formal com-
mon data model yet [Ban88]. There are a number of typical questions which
are frequently asked by the people in databases and programming languages:
(1) Is there anything we can do with object-oriented databases, but cannot do
with relational databases? (2) What are pros and cons of object-oriented data-
bases over relational databases? (3) What are the major differences between
object-oriented programming languages and object-oriented database systems?

In this section we will briefly discuss those questions.

For the first question, we can think of two aspects: a computation model

for data language and system functionality. Clearly, there is a discrepancy of

219

computational power between object-oriented databases and relational data-
bases in that the data languages for object-oriented databases are computa-
tionally complete (Turing equivalent), whereas the data languages for relational
databases are relationally complete. Note that SmallTalk-80 and CommonLisp
are the data language for the GEMSTONE and ORION systems respectively.
The data languages in relational databases are based on either relational algebra
or relational calculus. The notion of relationally completeness is weaker than
the notion of computationally completeness in the expressive power of compu-
tation. For example, the transitive closure-like operation cannot be expressed
in the relational data language. However, one nice thing about the relational
data language is that we can get a very efficient optimization scheme for query
processing while using simple and declarative queries. Unfortunately, exist-
ing object-oriented databases do not provide an ad-hoc and declarative query
language. Furthermore, in general, the query optimization issue in object-
oriented databases is undecidable because queries in object-oriented database
are written in general purpose programming languages such as SmallTalk-80 or

CommonLisp.

With respect to system functionality, we can enumerate a number of
advanced functions of recent object-oriented database systems which were not
available in the conventional relational database systems: schema evolution
support, corplex object support, version support, unstructured data support,

elc,

For the second question, we believe Bancithon |Ban88] presented a good
answer in PODS 88 conference. He characterizes the following features of
object-oriented database systems as pros over relational database systems: (1)
the ability of dealing with complex objects, (2) the notion of object identity,
(3) the notion of extensibility by allowing new data types, (4) the ability of en-
capsulation by storing programs and data at the same time, and (5) the notion
of inheritance. He also characterizes the following features of object-oriented
database systems as cons over relational database systems: (1) the lack of

simplicity, (2) the lack of ad-hoc query languages, (3) the lack of declarative

220

queries, (4) the lack of relational interface, and (5) the lack of speed. As a
matter of fact, the answers for the first and second question overlap since the

natures of the first and second question are similar.

For the third question, we can think of two major differences: sharability
and persistence. The notion of sharability means ‘multiple user support’. Ex-
isting object-oriented programming languages are lacking in sharability because
they do not support queries, transactions, and concurrency control mechanism.
The notion of persistence means ‘data outlives programs’ which, in general,
is not true in programming languages. The another fundamental difference
between programming languages and databases is that the amount of data in
databases is too big to it in a main memory whereas, in programming lan-

guages, everything is assumed to be in a main memory.

221

|ABHBS]

[ACO8S5)

[AHUT76|

Bibliography

Ahlsen, M., A. Bjornerstedt and C. Hulten, “OPAL: An Object-
Based System for Application Development,” IEEE Database En-
gineering Bulletin, Vol. 8, No. 4, 1985.

Albano. A., L. Cardelli and R. Orisini, “Galileo: A Strongly-
Typed Interactive Conceptual Language,” ACM Transactions on
Database Systems, Vol. 10, No. 2, 1985.

Aho, A., J. Hoftcrafi and J. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley Publishing Company,
1976.

[AKMPSG]Afsarmanesh, H., D. Knapp, D. McLeod, and A. Parker, “An

[AM86]

{AP86]

|Ahls84]

|Astr76)

Object-Oriented Approach to VLSI/CAD,” in Proceedings of In-

ternational Conference on Very Large Databases, August, 1985.

Arisawa, H. and T. Miura, “On the Properties of Extended Inclu-
sion Dependencies,” IEEE Transactions on Software Engineering,
Vol SE-12, No. 11, November, 1986.

Atzeni, P. and D.8. Parker, “Formal Properties of Net-Based
Knowledge Representation Schemes,” Proceedings of Interna-

tional Conference on Data Engineering, 1986.

Ahlsen, M., A. Bjornerstedt, S. Britts, C. Hulten and L. Soder-
lund, “An Architecture for Object Management in OIS, ACM
Transactions on Office Information Systems, Vol. 2, No. 3, July,
1984,

Astrahan, M. M., et al., “System R: a Relational Approach to
Data Management,” ACM Transactions on Database Systems,
Vol. 1, No. 2, 1976.

222

[Atwo85]

[BJS86]

|BK85a}

[BKS8S5b

[BKK88]

223

Atwood, T.M., “An Object-Oriented DBMS for Design Support
Applications,” Proceedings of IEEE COMPINT, Canada, 1985.

Béticher, S., M. Jarke, and W. Schmidt, “Adaptive Predicate
Management in Database Systems,” Proceedings on International

Conference on Very Large Databases, August, 1986.

Batory, D. and W. Kim, “Modeling Concepts for VLSI CAD Ob-
jects,” ACM Transactions on Database Systems, Vol. 10, No. 3,
September, 1985.

Batory, D. and W. Kim, “Support for Versions for VLSI CAD Ob-
jects,” to appear in IEEE Transactions on Software Engineering,
Technical Memo, The University of Texas at Austin, 1985.

Banerjee, J., W. Kim, and K.C. Kim, “Queries in Object-Oriented
Databases,” Proceedings of International Conference on Data En-

gineering, 1988.

{BKKKSG]Banerjee, J., H.J. Kim, W. Kim, and H.F. Korth, “Schema Evo-

lution in Object-Oriented Persistent Databases,” Proceedings 6th
Advanced Database Symposium, Tokyo, Japan, 1987.

[BKKK87|Banerjee, J., W. Kim, H.J. Kim, and H.F. Korth, “Semantics and

[BL84]

(BS83]

[Ban87]

Implementation of Schema Evolution in Object-Oriented Data-
bases,” Proceedings of ACM-SIGMOD Conference on Manage-
ment of Data, San Francisco, CA, May, 1987.

Brachman, R. and H. Levesque, “The Tractability of Subsump-
tion in Frame-Based Description Languages,” Proceedings of
AAAI Conference, 1984.

Bobrow, D.G. and M. Stefik, The LOOPS Manual, Xerox PARC,
Palo Alto, CA., 1983.

Banerjee, J., H. Chou, H. Garza, W. Kim, D. Woelk, N. Ballou
and H.J. Kim, “Data Model Issues in Object-Oriented Applica-

{Ban88]

|Bob85]

[CAB4]

[CKs6)

[Car83]

[DF75]

[DL85]

[EGLT76)

[Fs76]

tions,” ACM Transactions on Office Information Systems, March,
1987.

Bancilhon, F., “Object-Oriented Database Systerns,” Principles
of Database Systems, March, 1988.

Bobrow, D.G. et al., “CommonLoops: Merging Common Lisp and
Object-Oriented Programming,” Intelligent Systems Laboratory
Series ISL-85-8, Xerox PARC, Palo Alto, CA., 1985.

Curry, G.A. and R.M. Ayers, “Experience with Traits in the Xe-
rox Star Workstation,” IEEE Transactions on Software Engineer-
ing, Vol. 8E-10, No. 5, September, 1984.

Chou, H-T. and W. Kim, “A Unifying Framework for Version
Control in a CAD Environment,” Proceedings of International

Jonference on Very Large Databases, 1986.

Cardelli, L., “A Semantics of Multiple Inheritance,” in Semantics
of Data Type, Springer-Verlag, Computer Science Lecture Note,
1983.

Delong, 8. and J.P. Fry, “An Approach to the Migration of DBMS
Applications,” DSRG Working Paper 900, University of Michi-
gan, June, 1975.

Dittrich, K. and R. Lorie, “Version Support for Engineering Data-
base Systems,” IBM Research Report: RJ4769, IBM San Jose,
July, 1985.

Eswaran, K.P., J.N. Gray, R. A. Lorie and LL. Traiger, “The No-
tions of Consistency and Predicate Locks in a Database System,”
Communications of the ACM, Vol. 19, No. 11, November, 1976.

Fry, J.P. and 8. Shindler, “Towards the Migration of Database
Applications,” DSRG Technical Report 76-STI, University of
Michigan, April, 1976.

224

[Fs84]

[Fish87]

|GR83]

[Goldsi]

[Hou7s]

(1B84)

(IBMS81]

[IEEESS]

[INTE84]

[IRA83]

Finin, T. and D. Silverman, “Interactive Classification,” Proceed-
ings of IEEE Workshop on Principles of Knowledge-based Sys-
tems, 1984,

Fishman, D.H. et al., “IRIS: An Object-Oriented Database Man-
agement System,” ACM Transactions on Office Information Sys-
tems, Vol. 5, No. 1, January, 1987.

Goldberg, A. and D. Robson, Smalltalk-80: The Language and its
Implementation, Addison-Wesley, Reading, MA., 1983,

Goldberg, A., “Introducing the Smalltalk-80 System,” Byte, Vol.
6, No. 8, August, 1981.

Housel, B.C., D.P. Smith, N.C. Shu, and V.Y. Lum, “DEFINE: A
Nonprocedural Data Description Language for Defining Informa-
tion Easily,” Proceedings of ACM Pacific Conference, San Fran-
cisco, CA., April, 1975.

Israel, D. and R. Brachman, “Some Remarks on the Semantics
of Representation Languages,” in Brodie, M., J. Mylopoulos and
J.W. Schmidt (eds.), On Conceptual Modeling, Springer-Verlag,
New York Inc., 1984.

SQL/Data System: Concepts and Facilities, GH24-5013-0, File
No. 8370-50, IBM Corporation, January, 1981.

Database Engineering, IEEE Computer Society, “Special issue on
Object-Oriented Systems (edited by F. Lochovsky)”, Vol. 8, No.
4, December, 1985.

The Knowledge Engineering Environment, KEE manuals, Intel-
liCorp, 1984.

EDBMS: Concepts and Facilities, Information Research Asso-
ciate, 1983.

225

[KCB8S5)

[KKs6]

[KK87a]

[KK88a)

[KK88b

[KX88c}

|KXS85)

[KL84]

Katz, R.H., E. Chang and R. Bhateja, “Version Modeling
Concepts for Computer-Aided Design Databases,” UCB/CSD
86/270, University of California, Berkeley, 1985.

Kim, H.J. and H.F. Korth, “Property Inheritance Graph: A
Formal Model of Multiple Inheritance in Object-Oriented Data-
bases,” unpublished memo, University of Texas at Austin, De-
cember, 1986,

Kim, H.J. and H.F. Korth, “DOD: Non-First-Normal-Fosl
Relation-based Object-Oriented Data Model,” working paper (in
preparation), The University of Texas at Austin, 1987.

Kim, H.J. and H.F. Korth, “Logical Design of Object-Oriented
Database Schema (A Unified Framework),” unpublished memo,

The University of Texas at Austin, January, 1988,

Kim, H.J. and H.F. Korth, “PSYCHO: A Graphical Language
for Supporting Schema Evolution in Object-Oriented Databases
{Extended Abstract),” Proceedings of Third User System Inter-
face Conference (USICONS88), Austin, February, 1988 (also The
University of Texas at Austin, TR-87-43, December, 1987).

Kim, H.J. and H.F, Korth, “Schema Versions and DAG Rear-
rangement Views in Object-Oriented Databases”, The University
of Texas at Austin, TR-88-12, February, 1988,

Kim, H.J., H.F. Korth and A. Silberschatz, “PICASS80: A Graph-
ical Query Language”, TR-85-30, University of Texas at Austin,
(also to appear in Software Practice and Experience, 1988}, 1985.

Katz, R. and T. Lehman, “Database Support for Versions and Al-
ternatives of Large Design Files,” IEEE Transactions on Software
Engineering, Vol. 8E-10, No. 2, March, 1984.

226

[KLW87]

[KS86]

[Ks88]

Kemper, A., P. Lockemann and M. Wallrath, “An Object-
Oriented Database System for Engineering Applications,” Pro-
ceedings of ACM-SIGMOD Conference on Management of Data,
1987.

Korth, H. and A. Silberschatz, Database System Concepts,
McGraw-Hill Book Company, 1986.

Korth, H. and G. Speegle, “Formal Model of Correctness with-

out Serializability,” Proceedings of ACM-SIGMOD Conference
on Management of Data, 1988.

[KTKB88} Kim, H.J., B. Twichell, H.F. Korth and D.S. Batory, “Contem-

[Kel85)

[Kim85a]

[Kim85b]

{Kim86]

[Kim87]

[Kor84}

porary Non-traditional Database Systems,” unpublished memo,
The University of Texas at Austin, March, 1988.

Keller, A., “Updating Relational Databases Through Views,”
Stanford University, PhD Thesis, STAN-CS-85-1040, February,
19885.

Kim, H.J., “Graphical Environments for Database Systems,” MSc
thesis, The University of Texas at Austin, August, 1985.

Kim, W., “CAD Database Requirements,” MCC Technical Re-
port, July, 1985,

Kim, H.J., “Graphical Interfaces for Database Systems: A Sur-
vey,” Proceedings of The 1986 Mountain Regional ACM Confer-
ence, Santa Fe, New Mexico, April, 1986.

Kim, W. et al., “Composite Object Support in an Object-
Oriented Database System,” Proceedings of Conference on
Object-Oriented Programming: Systems, Languages, and Appli-
cations, 1987.

Korth, H., et al.,, “System/U: A Database System Based on the
Universal Relation Assumption,” ACM Transactions on Database

227

{LB8s]

[LMI8S]

(LP83]

[Lee86)

[Len87)

{Lor84]

[MBWS0]

[MOPS8S5)

[MRI78]

228

Systems, Vol. 9, No. 3, 1984.

Levesque, H., and R. Brachman, “A Fundamental Tradeoff in
Knowledge Representation and Reasoning,” {submitted to) Com-

putational Intelligence, 1986.
ObjectLISP Uses Manual, LMI, Cambridge, MA, 1985.

Lorie, R. and W. Plouffe, “Complex Objects and Their Use in De-
sign Transactions,” Proceedings of ACM-IEEE Database Week,
1983.

Lee, W., “private communication”, 1986.

Lenzerini, M., “Covering and Disjointness Constraints in Type
Networks,” Proceedings of International Conference on Data En-

gineering, 1987.

Lorie, R. et al., “User Interface and Access Techniques for En-
gineering Databases,” IBM Research Report: RJ4155, IBM San
Jose, 1984.

Mylopoulos, J., P.A. Bernstein and HK.T. Wong, “A Language
Facility for Designing Database-Intensive Applications,” ACM
Transactions on Database Systems, Vol. 5, No. 2, 1980.

Maier, D., A. Otis, and A. Purdy, “Object-Oriented Database
Development at Servio Logic,” Proceedings of International Con-

ference on Data Engineering, Vol. 8, No. 4, 1985.

System 2000 Reference Manual, MRI Systems Corporation,
Austin, Texas, 1978,

[MSOP86| Maier, D., J. Stein, A. Otis, and A. Purdy, “Development of an

Object-Oriented DBMS,” Proceedings of Conference on Object-
Oriented Programming: Systems, Languages, and Applications,
1986.

(Mss79]

[Nov82]

[Nov83]

|PS87]

[PSM87]

[RHS0]

[RRP74]

Munz, R., H.-J. Schneider and F. Steyer, “Application of Sub-
Predicate Tests in Database Systems,” Proceedings of Interna-

tional Conference on Very Large Databases, 1979.

Novak, G. “The GEV Display Inspector/Editor,” Heuristic Pro-
gramming Project, HPP-82-32, Computer Science Department,
Stanford University, 1982.

Novak, G. “GLISP: A Lisp-based Programming System with
Data Abstraction,” The AI Magazine, Fall, 1983.

Penny, D.J. and J. Stein, “Class Modification in the GemStone
Object-Oriented DBMS,” Proceedings of Conference on Object-

Oriented Programming: Systems, Languages, and Applications,
1087,

Purdy, A., B. Schuchardt and D. Maier, “Integrating an Object-
Server with Other Worlds,” ACM Transactions on Office Infor-
mation Systems, Vol. 5, No. 1, 1987.

Rosenkrantz, D. and Harry B. Hunt, III, “Processing Conjunctive
Predicates and Queries,” Proceedings of International Conference

on Very Large Databases, 1980.

Ramirez, J.A., N.A. Rin and N.S. Prywes, “Automatic Gener-
ation of Data Conversion Programs using a Data Description
Language,” Proceedings of ACM SIGMOD Workshop on Data
Description, Access and Control, May, 1974.

|Rowe86a] Rowe, L., “A Shared Object Hierarchy,” Proceedings of Interna-

tional Workshop on Object-Oriented Database Systems, 1986,

[Rowe86b] Rowe, L. et al., “A Browser for Directed Graphs,” UCB/CSD

(B8]

86/292, University of California, Berkeley, April, 1986.

Stefik, M. and D.G. Bobrow, “Object-Oriented Programming:
Themes and Variations,” The Al Magazine, Winter, 1986.

229

[SDF77)

[SFL83]

[SHL7S]

[SL77]

[sT82]

[s786]

[Serv86)

[$hn78]

[Shu77]

Swartwout, D.E., M.E. Deppe, and J.P. Fry, “Operational Soft-
ware for Restructuring Network Databases,” Proceedings of Na-

tional Computer Conference, 1977.

Smith, J.M., S.A. Fox, and T. Landers, “ADAPLEX Rationale
and Reference Manual,” Technical Report CCA-83-08, Computer
Corporation of America, Cambridge, MA, May, 1983.

Shu, N.C., B.C. Housel and V.Y. Lum, “CONVERT: a High Level
Translation Definition Language For Data Conversion,” Commu-
nications of the ACM, Vol. 18, No. 10, October, 1975.

Su, S.Y.W. and B.J. Liu, “A Methodology of Application Pro-
gram Analysis and Conversion Based on Database Semantics,”
Proceedings of International Conference on Very Large Data-
bases, ACM, N.Y., 1977.

Shneiderman, B. and G. Thomas, “Automatic database system
conversion: Schema Revision, Data Translation, and Source-to-
source Program Translation,” Proceedings of National Computer
Conference, 1982.

Skarra, A.H. and $.B. Zdonik, “The Management of Changing
Types in an Object-Oriented Database,” Proceedings of Confer-
ence on Object-Oriented Programming: Systems, Languages, and
Applications, Portland, OR., September, 1986.

“Programming in OPAL,” Servio Logic Development Corpora-
tion, Oregon, 1986.

Shneiderman, B., “A Framework for Avutomatic Conversion of
Network Database Programs under Schema Transformations,”
Third Jerusalem Conference on Information Technology, J. Mon-
eta, ed., North-Holland, Amsterdam, 1978.

Shu, N.C. et al,, “EXPRESS: a Data Extraction, Processing and

230

[Smit71]

[Stef83]

[Su76}

[Symb84]

[Symb85)

[Wied86]

[WK8T7a]

[WK8T7b)

(WKL86]

[ZH85]

Restructuring System,” ACM Transactions on Database Systems,
Vol. 2, No. 2, 1977.

Smith, D.C.P., “An Approach to Data Description and Conver-
sion,” PhD Dissertation, Moore School of Electrical Engineering,
University of Pennsylvania, Philadelphia, PA., 1971.

Stefik, M. et al., “Knowledge Programming in LOOPS,” The Al
Magazine, Fall, 1983.

Su, 85.Y.W., “Application Program Conversion Due to Database
Changes,” Proceedings of International Conference on Very Large

Databases, Brusels, Belgium, September, 1976.

“FLAV Objects, Message Passing, and Flavors,” Symbolics Inc.,
Cambridge, MA., 1984.

“Symbolics Manuals,” Symbolics Inc., Cambridge, MA., 1984,

Wiederhold, G., “Views, Objects, and Databases,” IEEE Com-
puter, December, 1986.

Woelk, D. and W. Kim, “An Extensible Framework for Multi-
media Information Management,” IEEE Database Engineering
Bulletin, Vol. 10, No. 2, 1987.

Woelk, D. and W. Kim, “Multimedia Information Management
in an Object-Oriented Database System,” Proceedings of Inter-

national Conference on Very Large Databases, 1987.

Woelk, D., W. Kim and W. Luther, “An Object-Oriented
Approach to Multimedia Databases,” Proceedings of ACM-
SIGMOD Conference on Management of Data, Washington D.C.,
May, 1986.

Zara, R.V. and D.R. Henke, “Building a Layered Database for
Design Automation,” 22nd Design Automation Conference, 1985.

231

{Zd085]

[Zdo86]

232

Zdonik, 8., “Object Managemeni Systems for Design Environ-
ments,” IEEE Database Engineering Bulletin, Vol. 8, No. 4, 1985,

Zdonik, ., “Maintaining Consistency in a Data with Changing
Types,” ACM SIGPLAN Notices, September, 1986.

	tr88-20a
	tr88-20b
	tr88-20c
	tr88-20d

