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A state formula can be evaluated to be true or false for each system state by adopting this conven-
tion: if a parameter occurs free in a state formula, it is assumed to be universally quantified over the
parameter domain.

We say that a system state s satisfies a state formula P if and only if (iff) P evaluates to true for
s. A state formula P represents the set of system states that satisfy P. In particular, the initial condi-
tion of the system is specified by a state formula. A system state that satisfies the initial condition is
called an initial state. In the following, the letters P, Q, R and I are used to denote state formulas.

Events are specified by event formulas. Each event (formula) defines a set of system state transi-
tions. (These sets may overlap.) The union of these sets over all events defines the binary relation T of
the transition system. Some examples of event definitions are shown below:

€y = vi>2 nvy'e {1,2,5}

g3 = VI>V2h V1+V2’=5
where *° = * denotes “‘is defined by.” In each definition, the event name is given on the left-hand side
and the event formula is given on the right-hand side. For convenience, we sometimes use the same

symbol to denote the name of an event as well as the event formula that defines it. The context where
the symbol appears will determine what it means.

Convention. Given an event formula e, for every state variable v in v, if v’ is not a free variable of e
then each occurrence of the event e does not change the value of v ; that is, the conjunct v’=v is implicit
in the event formula.

For example, consider a system with two state variables v, and v,. Let e above be an event of
the system. Note that vy’ is not a free variable of e;. By the above convention, the event formula that
defines e is in fact v {>vhv +v =51y =vi.

If a parameter occurs free in an event definition, then the system has an event defined for each
value in the domain of the parameter. For example, consider

e3(m) = v1>v2f\v1+v2’=m

where m is a parameter. A parameterized event is a convenient way to specify a group of related
events.

We next introduce the notion of the enabling condition of an event. An event (formula) defines a
set of ordered pairs (s,5”), where s € § and s € S. Let the ordered pairs shown in Figure 1 be those
defined by some event. The enabling condition of this event is defined by the three states shown inside
the shaded area of Figure 1. (A formal definition is given below.)

An event can occur only when the system state satisfies the enabling condition of the event. In
any system state, more than one event may be enabled. The choice of the next event to occur from the

set of enabled events is nondeterministic.! When an event occurs, we assume that the state yariables of
the system are updated in one atomic step.

YThe choice is not sirictly nondeterministic if the sysiem specification includes faimess assumptions for some events (see Ssction 3 below).
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Figure 1. Anillustration of an event formula and its enabling condition.

Formally, the enabling condition of an event formula e, to be denoted by enabled (¢ ), is given by
enabled(e) = Iv'[e]
which is a state formula. Consider the following event formula as an example:
eq =V 1>Varvy=10v"=0
Suppose the domain of each state variable is the set of natural numbers. We have
enabled(e4) = v vy e 4]
which is v1>v2 , because the expression 3v " 3v ) [v'=11v ' =0] is true.
For readability, we write many event formulas in the following separable form:
e = guard Maction
where guard is a state formula and action is an event formula. We must keep in mind that for guard to
be logically equivalent to enabled (e ), the two conjuncts in the separable form must satisfy the condi-
tion:
guard=>3v'[action ]
Otherwise, part of the enabling condition of ¢ is specified by action .

In summary, the relational notation has two basic constructs: state formulas and event formulas.
A state formula defines a set of system states. An event formula defines a set of system state transitions.

As an example, consider the following model of an object moving in two-dimensional space.
Imagine that the object is an airplane flying from Austin to Dallas. There are two state variables: y is
the horizontal distance from Austin along a straight line between the two cities, and z is the altitude of
the airplane. The domain of y is {0,1, - - - ,N } such that y =0 indicates that the airplane is at Austin air-
port and y=N indicates that the airplane is at Dallas airport. The domain of z is the set of natural
numbers such that z=0 indicates that the airplane is on the ground. The initial condition is y=0nrz=0,
indicating that the airplane is on the ground at Austin airport. The events are defined as follows:

TakeOff y=0rz=0ry'=1110<z'520
Landing y=N-121052220 7 y’'=N nz'=0

i
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Fly = 1SySN-2 7 1052220 ny =y +1
FlyHigher 1<y SN -1 7 1052 <20 A z'=z+1
FlyLower ISysN -1 7 10<z<20 A z "=z ~1

3. System Specification

A system can be specified in many ways, in many notations. In this paper, we consider two
related approaches. In the first approach, a system is specified by defining a state space, and giving a set
of requirements each of which is an assertion of a desired sysitem property. Two classes of system pro-
perties are of interest to us in this paper, namely, safety properties and progress properties. In particular,
we will use safety assertions of the form,

P isinvariant
and progress asserttions of the form,’
P leads—to Q
where P and Q are state formulas for the state space defined.

In the second approach, a specification consists of a state transition system given in the relational

notation.? The two approaches are related in the following sense: A specification consisting of a state
transition system implements a specification consisting of a set of requirements iff all of the require-
ments are properties of the state transition system.

We use the airplane example in Section 2 to illustrate the two classes of system properties. A
safety requirement of the airplane example may be stated as follows: The airplane is in a specified por-
tion of the air space if it is not at one of the airports. This is formalized by the assertion

y#0 ry#N = 10<z<20 is invariant

Safety properties of a state transition system are determined by its finite paths. The following
definitions apply to state transition systems specified in any notation.

Definition. A system state s is reachable iff there is a finite path from an initial state to s.

Definition. P is invariant for a state transition system iff every reachable state of the system satisfies
P.

If a parameter occurs free in the state formula P, then P is invariant for a state transition system
iff, for every allowed value of the parameter, P is invariant for the system.

A progress requirement of the airplane example may be stated as follows: The airplane, initially at
Austin, eventually arrives at Dallas. This is formalized by the assertion

y=0rz=0 leads—to y=N rz=0

¥ writing assertions containing leads-io, we adopt the convention that its binding power is weaker than any of the logical connectives in state
formulas.

3 and some faimess assumptions. The meaning of faimess is introduced below and can be ignored for now. In general, a specification may con-
sist of & state transifion system together with a set of of safety requirements and progress requirerents. Such a general approach subsumes both
approaches herein. See [Lam & Shankar 87, Shankar & Lam 87b].



Let us first define the meaning of P leads—to O for a sequence of states 6= <sq.53," -~ >. The
sequence may be finite or infinite.

Definition. P leads—to Q for ¢ iff the following holds: if some state s5; in ¢ satisfies P then there is a
state s; ino (J 2i ) that satisfies J .

Before defining ‘P leads—to Q for a specification,” we next introduce the concept of fairness and
two fairness criteria.

Note that a state transition system specified in the relational notation has the additional concept of
named events. In any system state, several events may be enabled. Strict nondeterminism in choosing
the event to occur next allows the possibility that some events never occur even though they are enabled
continuously (or infinitely often). In the airplane example, for instance, there are many infinite paths
that correspond to system executions in which the event Fly is continuously enabled but never occurs.
Such unfair behavior is undesirable and should be disallowed by the system specification.

One way to disallow certain unfair behaviors is to refine the state transition system specification to
include an event scheduler. In the airplane example, for instance, we can keep a count of the number of
times FlyHigher and FlyLower have occurred since the last occurrence of Fly or TakeOff ; also,
FlyHigher and FlyLower are disabled whenever the count exceeds some threshold value. Such a
specification requires an additional state variable and various modifications of event actions. The
specification, moreover, leaves little flexibility to system implementors who might have a different, yet
better, solution to the event scheduling problem.

Instead of specifying event scheduling explicitly, faimess assumptions can be included as part of a
system specification. Different criteria of faimess abound in the literature. The one that we use most
often is weak fairness, also called justice [Manna & Pnueli 1984]. Informally, the meaning of an event
having weak faimess is the following: if the event is continuously enabled in a system execution, it
eventually occurs. (A more precise definition is given below. The strong fairness criterion is also
defined below and used in subsequent sections.) For example, the airplane specification satisfies the pro-
gress requirement stated above, if the events TakeOff , Fly and Landing are scheduled in such a way
that each event has weak fairness; the other events in the example do not have to be fairly scheduled.

Generally, to satisfy a given set of progress requirements, only some of the events in a
specification need to be fairly scheduled. To facilitate implementation, a specification should include
faimess assumptions that are as weak as possible. Very often, faimess assumptions can be weakened by
defining a new event to be the disjunction of a set of events already defined, e.g.,

e3 = dmles(m)]

es=¢1ven
and showing that only the new event needs to be fairly scheduled, and not the individual events in the
set.

For events defined by a parameterized formula, such as e3(m), we have to be especially careful.
Suppose the domain of m is infinite. In this case, fair scheduling of e 3(m) for every allowed value of m
may or may not be a physically meaningful assumption.
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At this point, we note that the set of paths is not adequate for defining faimess criteria for events.
Specifically, each state transition in a path, say (si.5;), may be due to the occurrence of any of several
events. Therefore, the path may correspond to many possible system executions.

To define faimess criteria for events, we represent a system execution by a path in which each

transition is labeled by the name of the event whose occurrence caused the transition. We refer to such
a labeled path as a behavior.

Consider an event e and an infinite behavior B, we define two faimess criteria:

° Event e has weak fairness for infinite behavior B iff e either occurs infinitely often or is disabled

infinitely often in B. *

s Event ¢ has strong fairness for infinite behavior § iff the following holds: e occurs infinitely often

in B if it is enabled infinitely often in f.

It is easy to see that if B satisfies the strong faimess criterion for event ¢, then it also satisfies the
weak fairness criterion for event e. (The converse does not hold.) The weak and strong faimess criteria
are the only ones used in this paper. Thus, when we say that a specification includes a fairness assump-
tion for event ¢, we mean that event ¢ has either weak faimess or strong faimess.

For a given specification consisting of a state transition system and a set of faimess assumptions,

the allowed behaviors of the specification are defined as follows: 3

° A finite behavior of the state transition system is an allowed behavior of the specification iff every
event that has a faimess assumption in the specification is disabled in the last state of the behavior.

o An infinite behavior of the state transition system is an allowed behavior of the specification iff
every faimess assumption of the specification holds for the behavior.

Definition. P leads—to Q for a behavior B iff P leads—to Q for the sequence of states in B.

Definition. P leads—to Q for a specification iff P leads—to Q for every allowed behavior of the
specification.

If a parameter occurs free in P or 0, then P leads—to O for a specification iff, for every allowed
value of the parameter, P leads—to Q for the specification.

In Section 4 below, we present some inference rules for proving the two kinds of assertions intro-
duced above. Before doing that, we digress and discuss two issues in system specification that are prac-
tically significant but not really needed for the theoretical development in the balance of this paper.

The first issue has to do with the necessity of leads-io assertions. An alternative way to state that a
system is making progress or doing useful work is by assertions of real-time behavior. To do so, we
can use some state variables to represent values of clocks and timers in the system. The requirement

4 The following definition is equivalent: Event ¢ has weak faimess for infinite behavior B iff for some state 5, in § and for all {2k, if state 5
satisfies enabled(e) then there is some state s; in B (j 2k ) such that the transition from s; 10 5;,; is labeled e,

5 This definition is motivated by the specification of a program module to satisfy its interfaces; specifically, some interface evenis may be con-
trolled by the environment and not controllable by the module [Lynch & Tuule 87, Lam & Shankar 871. For this reason, an allowed behavior is
not necessarily maximal, as in [Manna & Pnueli 84].



that an event must occur within a certain duration of time is stated as an invariant assertion. In particu-
lar, clocks are not allowed to reach certain values without the event having occurred; that is, clock ticks
are events whose occurrences must preserve the real-time requirements of the system. In addition to
proving that the real-time requirements are invariant, we must also prove that clock values are
unbounded [Shankar & Lam 87a]. (This approach was also suggested by Lamport [1989].)

The second issue is the use of auxiliary variables in a specification. Some of the state variables in
v may be auxiliary variables, which are needed for specification and verification only, and do not have
to be included in an actual implementation (this notion will be made more precise in Section 7). For
example, an auxiliary variable may be needed to record the history of certain event occurrences. Infor-
mally, a subset of variables in v can be considered auxiliary if they do not affect the enabling condition
of any event nor do they affect the update of any state variable that is not auxiliary [Owicki & Gries 76].
To state the above condition precisely, let u be a proper subset of v, and u” = {v":v € u}. The state
variables in u can be considered auxiliary if, for every event e of the system, the following holds:

e =Yudule]

To see why auxiliary variables do not have to be included in an actual implementation of a
specification, suppose there is an observer and it can only see nonauxiliary variables. The above condi-
tion ensures that the set of ‘observable behaviors’ of the specification is the same whether or not auxili-
ary variables are part of the system state. We will elaborate on this explanation in Section 7 after the
theory of refinement and projection has been presented.

4, Proof Rules

Consider a specification consisting of a state transition system given in the relational notation and
a set of fairness assumptions. Let e denote an arbitrary event and Initial denote a state formula specify-
ing the initial condition.
Notation. For an arbitrary state formula O, we use Q' to denote the formula obtained by replacing
every free state variable v in Q by v".
Invariance rules: For a given specification, P is invariant if one of the following holds:
o Initial =P and, foralle, P ne =P’

« forsomeR,R isinvariant and R =P

In applying the first invariance rule, if / is invariant for the specification, we can replace
Pre =P’ inthe rule with / A]’AP ne =P’ Also, we follow this convention: For p and ¢ being
formulas with free variables, p = g is logically valid iff p = ¢ is logically valid for all values of the
free variables.

For convenience, if P is invariant for a specification, we refer to the formula P as an invariant
property of the specification or, simply, an invariant.

3 hat we call auxiliary variables here are also known as history variables. Abadi and Lampor [1988] defined another kind of auxiliary vari-
ables called prophecy variables.
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Definition: For a given specification in which event ¢; has weak fairness, P leads ~to @ viae; iff
QP re=0Q’,
(ii) foralle, P re=P’vQ’' and
(iii) P = enabled (¢;) is invariant.

Definition: For a given specification in which event ¢; has strong faimness, P leads —to O via e; iff
OP re=0’
(i) foralle, P re=>P’vQ’ and
(iii) P leads—to Q Venabled (e;).
If I is invariant for the specification, it can be used to strengthen the antecedent of every logical
implication in the above definitions; that is, replace P by [ A1 ‘AP . Also, if the event formula defining

¢; has a free parameter, then P leads—to Q viae; holds iff each part of the applicable definition holds
for every allowed value of the free parameter.

Leads-to rules: For a given specification, P leads—to Q if one of the following holds:

« P == isinvariant [Implication]
« for some event ¢; that has faimess, P leads—to O viae; [Event]

« forsomeR, P leads—to R and R leads—to O [Transitivity]
e P=3me M[P(m)] and Vm € M:P(m) leads—to O [Disjunction]

Note that there are actually two Event rules, one for events that have weak fairness and one for
events that have strong faimess, to be referred to as the weak and strong Event rules, respectively. In
the Disjunction rule, m denotes a parameter with domain M ; also, m does not occur free in . A spe-
cial case of the Disjunction rule is the following: P leads—to O if Pyleads—to Q, Pqleads—to Q,
and P=PVvP,.

What we have presented above is a fragment of linear-time temporal logic.” In the next section,
we consider message-passing networks with unreliable channels. An additional leads-to rule is
presented there. But before doing so, we give some examples to illustrate applications of the above
rules.

In the first example, let ¢; denote an event that has weak faimess in a given specification. Let
count (¢;) be an auxiliary variable that counts the number of occurrences of ¢; from the beginning of
system execution. Specifically, let the value of count (¢;) be zero initially. Add count (¢;)'=count (¢;}+1
as a conjunct to the formula that defines ¢;. Add count (e;)'=count (¢;) as a conjunct to the formulas that
define other events. The following progress assertion states a consequence of the weak faimess assump-
tion for ¢;. It can be easily proved using the weak Event rule and leads-to-via-event definition.

7 Bssentially a derivative of the work in [Manna & Paucli 84, Pnueli 86]. A proof that the invariance and leads-to ules are sound is straighifor-
ward and is omigted. The reader is also referred to [Chandy & Misra 88] for 2 comprehensive treatment of proof rules.
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enabled (e;) n count (¢;y=k leads—to count(e;}=k+1 v —enabled(e;)
As other examples, we prove two lemmas that are used in Section 6.
Lemma 1: For a given specification, P leads—to (Q VP ) if

(i) Poleads—to (Q VP y),and
(i) P leads—to (Q VP2

Proof:
(i) Q=0 VP, (by weakening Q = Q)
(iv) Q leads—to (QVP3) (by Implication rule on (iii))
W) (QVPy) leads—to (Q VP y) (by Disjunction rule on (iv) and (ii))
(vi) Poleads—to (QVP2) (by Transitivity rule on (v) and (i))
QE.D.

Lemma 2: For a given specification, if / is invariant and P 7/ leads~to Q, then P leads—to Q.

Proof:
@) I1=>FP=(FPnI)) (from I AP =P 1)
(ii) P = (P ~I)isinvariant (by second invariance rule on (i))
(iii) P leads—to P r] (by Implication rule on (ii))

The proof is complete by applying the Transitivity rule to (iii) and the leads-to property in the lemma’s
hypothesis.

QE.D.

S. Distributed Systems

The relational notation and proof method introduced above are not dependent on whether a distri-
buted or centralized system is being specified. The relevant assumption we have made is that event
actions are atomic; consequently, concurrent actions in different modules of a system are modeled by
interleaving them in any order.

We next consider distributed systems that are message-passing networks. In particular, the net-
work topology is a directed graph whose nodes are called entifies and whose arcs are called channels .
For each channel i, there is a state variable that represents the channel state, given by the sequence of
messages travelling along the channel. Errors that can occur to messages travelling along a channel are
specified by introducing events whose occurrences can update the channel state.® The events of a chan-
nel can access (read or update) only the channel state variable and auxiliary state variables of the sys-
em.

& If 5 channel is assumed 1o be error-free, then no event is introduced for the and it behaves like 2 FIFO gueve. If messages travelling
slong a channel can be icated and arbitrarily reordered, it might that ing the channel state by & bag of messages is more ap-
propriste. It is easy 1o see, however, that there is no loss of generality in representing the channel state by 2 sequence of messages.
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Each entity in a distributed system is specified by a set of state variables and events. Every
nonauxiliary state variable in the set is assumed to be local to the entity; that is, it can only be accessed
by events of the entity.9 Entity events can also access auxiliary state variables of the system, as well as
state variables representing channels that are connected to the entity.

For clarity in writing specifications, channel state variables are accessed by entities only via send
and receive primitives that are defined for the channels. For example, let z; be a state variable
representing channel i that is a channel with unbounded capacity. Let m denote a message. Define

Send;(m) = z;'=2;@m

Rec;(m) = z;=m@1z;’
where @ denotes the concatenation operator. Note that Rec;(m) is false if z; is empty. Primitives for
channels with a finite capacity can be similarly defined. Such a primitive is simply an event formula

that has m, z; and z;” as free variables; thus the names Send;(m) and Rec;(m) are introduced primarily
to improve the readability of events in a system specification.

For a given message m, an event whose occurrence sends message m along a specified channel is
called a send event of m. An event whose occurrence receives message m from the channel is called a
receive event of m. If a message symbol m occurs free in a formula that defines a send event or a
receive event for the channel, the domain of m is assumed to be known; for notational brevity, it will
not be explicitly shown.

To prove that a message-passing network has useful progress properties, we need two assump-
tions. First, we assume that the system specification includes ‘‘adequate’’ receive evenis in the follow-
ing sense:

Receive events assumption: For message m that is sent along channel i, let {e,(m)} denote the set of
receive events of m . For every message and every channel, the set of receive events in the specification
satisfies

m=Head (z;)= 3h[enabled (e, (m))] is invariant

for the specification, where z; is the channel state variable, Head is a function whose value is the first
element of z; if z; is not null; otherwise, Head retumns a null value (that is not an allowed message
value).

For distributed systems with unreliable channels that can lose or reorder messages, a second
assumption is needed, namely: the unreliable channels have some minimal progress property. (Other-
wise, the channels may be so unreliable that they do not really exist.) Such an assumption should be as
weak as possible such that it can be satisfied by most physical communication links. The following is
adapted from [Hailpen & Owicki 83]:

Channel progress assumption: If messages in a set M are sent infinitely often along a channel, then
they are received infinitely often from the channel.

Actually, 2 nonsuxiliary state variable of one entity can be read by enother sntity provided that the value read affects the update of auxiliary
variables enly.
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Informally, if messages in set M are sent repeatedly along a channel, one of them is eventually
received. The channel progress assumption can be viewed as a faimess assumption. For a system with
unreliable channels, an infinite behavior is an allowed behavior of the specification only if the channel
progress assumption holds for the behavior.

Before stating another rule for proving leads-to assertions, we define a new leads —to —via relation
between state formulas. In the following definition, m denotes a message, e, denotes a receive event of
messages in set M for a given channel, and count (M) denotes an auxiliary variable whose value indi-
cates the total number of times messages in M have been sent along the channel since the beginning of
system execution.

Definition: For a given specification, P leads—to Q viaM iff
@) foralle,, Vme M [P re,(m)=0"1,
(i) foralle, P ne=>P’'vQ’, and
(iii) P ncount(M)=k leads—to Q V count (M )2k+1

Given the channel progress assumption, we have the following leads-to rule (in addition to the ones
presented in Section 4).

Leads-to rule: For a given specification, P leads—to Q if
s forsome M, P leads —to Q viaM {Message]

We next give a few general observations about the use of our notation and proof method for speci-
fying distributed systems.

First, each nonauxiliary state variable in a distributed system, other than channel state variables, is
local to some entity and can be accessed by any event of that entity. Suppose we want 1o refine the
entity into a network of entities. To do so, we may have to make some of the nonauxiliary state vari-
ables of the entity into auxiliary variables and also introduce new state variables (more on refinement in
the next section).

Second, specific applications of our proof rules may be very simple for events that access a small
subset of state variables. In applying the first invariance rule, for instance, if none of the free state vari-
ables in P is updated by event e then P ne = P’ is trivially satisfied. While most events in a distributed
system access a small subset of state variables, the above observation is applicable to any system
specification. Note that information on the subset of state variables accessed by an event is available
from the syntax of the event definition.

Lastly, in applying leads-to rules to prove a progress property, we must be careful to avoid circular
reasoning. A good practice is to present the proof as a sequence of leads-to properties: Lo, Ly, « - -,
L,,. Suppose L is the desired property. To prove L; in the sequence by a leads-to rule, or a lemma, that
uses another progress property L;, we require that L; precedes L; in the sequence.
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6. Refinement and Projection of Relational Specifications

Throughout this section, we consider specifications A and B, each consisting of a state transition
system and a set of faimess assumptions. We introduce two relations between A and B: Aisa
refinement of B, and A is a well-formed refinement of B. Before defining what they mean, we mention
two possible applications for motivation: First, A is the specification of a multifunction communication
protocol and B is the specification of a smaller protocol that implements just one of the functions of A

[Shankar & Lam 83]. Second, A is the specification of a program module and B is the specification of

its user interface.m

The refinement relations are useful for composing system specifications, as well as for construct-
ing proofs of system properties, in a hierarchical fashion. (We will elaborate on applications in Section
9.) In general, we proceed as follows. Suppose B is given or is specified first, and some desirable pro-
perties have been proved for B. We would like to derive A from B such that some or all of the desir-
able properties proved for B are guaranteed, by satisfying certain conditions, to be properties of A.
That is, they do not have to be proved again forA.

To define the refinement relation, let V4 and Vp denote the state variable sets of A and B respec-
tively. Specifically, let V4 be the set {vi,v2, - - ,Va} and Vp the subset {(viva, """ Vm}, Where m<sn.
That is, in deriving A from B, every state variable in B is kept as a state variable in A with the same
name and the same domain of values. (This is not a restriction, as we shall see, because such a state
variable can be made into an auxiliary variable in A .) Since Vp is a subset of V, there is a projection
mapping from the states of A 10 the states of B, defined as follows: those states in A having the same
values for {v1,v2, ' " Vm] are mapped to the same state in B. We further require that every parameter
in B is a parameter in A with the same name and same domain of values. Given the above require-
ments, any state formula, say P, of B is a state formula of A and can be interpreted directly for A
without any translation. The interpretation is this one: if state ¢ of B satisfies P then any state of A
whose image is ¢ under the projection mapping satisfies P.

For clarity, we assume that A and B have finite sets of state variables and parameters. The
domain of a state variable (or parameter) may be countably infinite.

Let {a;} denote the set of events of A, and {b;) the set of events of B. We first provide condi-
tions for an event in specification A to be a refinement of events in specification B. An informal expla-
nation then follows.

Event 4; in A is a refinement of events in B if, for some invariant R4 of A, one of the following
holds:

Ry na;=> 3k[b] (event refinement condition)
Ryha;=vy=virvy=voh - 1 Vi =V (null image condition)

Very often, g; is the refinement of a single event in B. In this case, {0 check that g; satisfies the
event refinement condition, it is sufficient to show that, for some by, either a; => b, or R4 M ag;= b.

1% Acially, 8 small extension to the theory presented in this section iz needed for interfaces; see [Lam & Shankar 87].
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Informally, the meaning of event g; being a refinement of events in B is the following: For every
state transition defined by a; that is observable in the state space of B, the same observable state transi-
tion is defined in B. More precisely, if g; can take A from state 51 to 5 then there is some event by
that can take B from state ¢ 1o ¢, where ¢ and ¢, are the images of 5; and s, respectively under the
projection mapping. This condition can be relaxed by introducing an invariant property R4 of A, in
which case the condition has to hold only for each (s 1, 52) pair such that 5 ; and s, satisfy R4. Note that
the invariant R4 introduced will have to be proved separately to be a property of A.

The null image condition says the following: Event g; is a refinement of events in B if none of its
state transitions are observable in B under the projection mapping, namely, fy=t; for all s, and s,
reachable in A such that (s 1, s5) is defined by g;. This can be checked very simply by noting that the
action of g; does not update any state variable belonging to V.

Suppose specification B is given, and specification A is 1o be derived from B. The invariant pro-
perties needed to guarantee events in A to be refinements of events in B often arise naturally in the fol-
lowing manner. Suppose we want to replace a state variable x in-B by two state variables y and z in A;
also, x is to become an auxiliary variable in A. To prove a;=> by, where by may contain x as a free
variable, a state formula specifying the relation between x,y and z in A must be included as a conjunct
of R,. Note that this relation encodes the same information as the multi-valued possibilities mapping of
Lynch and Tuttle [1987]. For the special case of the relation being a function, the function is just like
the state functions used by Lamport [1983a]. We provide an example to illustrate this observation.

Example. Let x be a state variable of B. Its domain is the set of natural numbers. The following
event is defined in B :

b = even(x) rx'=x+1

where even (x) is true iff x is an even number. In deriving A from B, suppose we introduce a variable
y with domain {0,1} to replace x, and the following event is defined:

a; =y=0nry’=l nx'=x+1

Event a is a refinement of b given that y=x mod 2 is invariant for A. Note that x can be made into an
auxiliary variable of A so that it does not have to be included in an actual implementation of A

We next consider the refinement of messages. Let M be a set of messages that can be sent along a
channel in B. In deriving A from B, the message set M can be refined as follows: Each message m in
M is refined to a nonempty set N,, of messages in A. For two distinct messages [ and j in M, we
require N;\N,;=0. For message m in B and message n in A, we say that n is a refinement of m, or m
is the image of n, if and only if n € N,,. Let N denote the set of messages that can be sent along the
same channel in 4,

N= ) NutJ Naew
meM
where N,.,, is a set of new messages, if any. Such new messages are not observable in the state space

of B and are said to have a null image in B. Note that the receive events assumption must be satisfied
by specification A for all messagesinN.



Example. In B, the message set for some channel consists of the message ack only. In A, the
message set for the same channel is refined to {ack0, ack 1, nak }, such that ack is the image of ack 0
and ack 1, and the new message nak has a null image.

If N is different from M for a channel, then the channel state variables in A and B have different
domains for the same channel. The projection mapping from channel states in A to channel states in B
is defined as follows [Lam & Shankar 84]: Let y = <ny,n2, - - - > be a sequence of messages represent-
ing a channel state in A. The image of the channel state, denoted by image (y), is the sequence obtained
by replacing each message in y by its image in B and deleting null images from the resulting sequence.

Given the above definition of projection mapping for channel states, a state formula of B, say P,
can be interpreted for A as before, namely: state s of A satisfies P iff the image of s in B satisfies P.
In this case, however, a translation between the message sets N and M is needed to interpret state for-
mulas of B forA.

For a channel with message set N in A and message set M in B, let y denote the channel state
variable in A , and x the channel state variable in B. The send and receive primitives in B are

Send(m) = xX'=x@m and Rec (m) = x=m@Xx’
The primitives for the same channel in A are
Send(n) = Y=y@n and Rec(n) = y=n@y’

For send and receive events in A to be refinements of events in B, it is necessary that send and receive
primitives in A are refinements of send and receive primitives in B for the same channel. To show that
such send and receive primitives satisfy the event refinement condition, let x be an auxiliary state vari-
able of A. For every message n in N with a nonnull image m in M, add the conjunct x'=x@m to the
formula defining Send (n), and the conjunct x'=Tail (x) to the formula defining Rec (n). It is easy to see
that x=image (y) is an invariant of A, and that this invariant property ensures that the send and receive
primitives satisfy the event refinement condition. Note that the relation between x and y defined by the
invariant encodes the same information as the projection mapping defined between channel states in A
and channel states in B .

Let Initial, and Initialg be state formulas defining the initial conditions of specifications A and B
respectively.
Definition: A is a refinement of B if and only if every event in A is a refinement of events in B and
Initialy = Initialp .

We say that B is an image of A under the projection mapping if and only if A is a refinement of
B that is, the relation image is the inverse of the relation refinement by definition. In some applica-
tions, we are first given A, and B is to be derived from A. For example, let A be some multifunction
communication protocol. To prove that A has certain desirable properties, the following approach may
be taken: Derive from A, single-function protocols that are images of A. Prove that these single-
function protocols have the desirable properties, and infer that A has the same properties by the lemmas
and theorems presented below.

Recall that P is a state formula of specification B iff every free variable of P is either in Vp oris
a parameter.
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Theorem 1: Let specification A be a refinement of specification B. If P is invariant for B then P is
invariant for A , where P is an arbitrary state formulaof B.

Proof: Let Rp denote a state formula that satisfies the first invariance rule for B and Rp=>F. Let Ry
be an invariant of A that makes events of A satisfy the event refinement condition or the null image
condition. First, from Initial, = Initialz and Initialg = Rp , we have Initialy = Rpg. Second, for every
event g; of A that satisfies the event refinement condition, we have
Rp "Ry na;=> Rp Gk (b D
= 3k [Rp » by ]

s

= Rp
For every event @; of A that satisfies the null image condition, we have
Rp ARy ha;= Rp Avy/=vAva'=van - Ay, =V,
=Rp’
Thus, Rp is invariant for A by the first invariance rule. We know that R =P holds for 4, and the
proof is complete by the second invariance rule.

QE.D.

For a given specification, the following property
forallevente, P re=P' ' vQ’

is called P unless Q, which is a safety property [Chandy & Misra 1988]. If A is a refinement of B, the
following lemma says that every unless property of B is also an unless property of A.

Lemma 3: Let specification A be a refinement of specification B. If P unless @ holds for B then
P unless Q holds for A, where P and  are arbitrary state formulas of B.

A proof of Lemma 3 is immediate by applying the event refinement and null image conditions.
We next consider leads-to properties of B and provide various sufficient conditions for some, or all, of
these properties to be properties of A. We first state a useful lemma, which is the PSP theorem in
[Chandy & Misra 88].

Lemma 4: For a given specification, if P unless Q holds and 0 leads—to Q0 ,, then
P rQleads—to Q V(P ~Q 1) for the specification.

A proof of Lemma 4 is given in the Appendix. (Note that our inference rules and faimess assump-
tions are different from those of Chandy and Misra [1988].)

Suppose we have proved that P leads~to Q for B. The proof may be direct, by an application of
the Implication rule or the weak Event rule, or it may consist of a sequence of leads-to properties. We
present below various conditions under which we can infer P leads—to Q for A, where P and Q are
state formulas of B
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First, if the proof is by an application of the Implication rule, we immediately have P leads—to Q
for A by Theorem 1. Next, consider the weak Event rule. Suppose P leads—to Q viab; for B, where
b; has weak fairmess. To guarantee that P leads—to O for A, we may apply Lemma S, 6 or 7, where P
and Q are assumed to be known. Or we may apply Lemma 8, where P and O can be arbitrary state for-
mulas of B. Proofs of these lemmas are given in the Appendix. In the balance of this section, Ry
denotes some invariant of A.

Lemma 5: Let specification A be a refinement of specification B, and b; an event that has faimess in
B. If P leads—to Q viab; for B, then P leads—to Q for A if there is some event in A, denoted by a;,
that has weak faimess, is a refinement of b;, and

Ry NP = Q Venabled (a;)

The last condition in Lemma 5 can be weakened if event a; has the following noninterference
property in A: for all event a;,i#/,

R4 » enabled (a;) 1 a; = enabled (a;) .

Lemma 6: Let specification A be a refinement of specification B, and b; an event that has fairness in
B. If P leads—to Q viab; for B, then P leads—to Q for A if there is some event in A, denoted by g;,
that has weak faimess and the noninterference property, is a refinement of b;, and

Ra NP leads—to Q Venabled(aj) forA.

However, if event a; has strong faimess in A, the noninterference property is not needed. We
have the following result.

Lemma 7: Let specification A be a refinement of specification B, and b; an event that has faimess in
B. If P leads—to Q viab; for B, then P leads—to Q for A if there is some event in A, denoted by a;,
that has strong faimess, is a refinement of b;, and

Ra NP leads—to Q Venabled(aj) forA.

Now, suppose we want to guarantee that if P leads—to Q viab; for B, then P leads—to Q for A,
for arbitrary state formulas P and Q. We need conditions that do not make use of P or g.

SWF Condition: For event b; that has weak faimess in B, an event in A, denoted by a;, is a
well-formed refinement of b; if

e g; is a refinement of b;
* Ry " enabled (b;)= enabled(a;), and
* a; has weak fairness
The conditions in SWF are simple and easy to use. It has been our experience, in specifying com-

munication protocols and concurrency control protocols, that many events can be refined to satisfy
SWE. Such an event is said to be a strongly well-formed refinement. But sometimes, SWF cannot be
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satisfied, or b; has strong fairness in B. We provide a second condition:

WF Condition: For event b; that has faimess (weak or strong) in B, an event in A, denoted by
aj, is a well-formed refinement of b; if

s a; is a refinement of b;
» Ry A enabled (b;) leads —to enabled (a;) forA, and
- either a; has weak faimess and the noninterference property

or a; has strong fairmness

Lemma 8: Let specification A be a refinement of specification B, and b; an event that has weak fair-
ness in B. If P leads—to Q viab; for B, then P leads—to Q for A if there is some event in A that is a
well-formed refinement of b;.

Note that Lemmas 5-7 are proved for an event b; that has faimess (weak or strong) in B. Lemma
8 is proved for an event b; that has weak faimess in B ; the more general result for an event b; that has
strong fairmess in B is included in Theorem 2 below. For some applications, it is desirable that every
leads-to property of B is a leads-to property of A. A sufficient condition is the following:

Definition: Specification A is a well-formed refinement of specification B (or B is a well-formed image
of A) if and only if
e A is a refinement of B, and

e for every event b; that has faimess (weak or strong) in B, there is an event in A that is a well-
formed refinement of b;.

Theorem 2: Let specification A be a well-formed refinement of specification B . If P leads—to Q for B
then P leads —to Q for A, where P and Q are arbitrary state formulas of B.

A proof of Theorem 2 is given in the Appendix. As an example, let us now consider a refinement
of the airplane specification in Section 2. Let the state variables y and z be augmented by a third state
variable x, with domain over all integers, so that we will be reasoning about trajectories of the airplane
in 3-dimensional space. Initially, x=0. Five events, labeled by *, are defined in terms of events of the
2-variable specification as follows:

TakeOf f* = TakeOff »x=0nr~-10sx'<10

Landing* = Landing n-10sx<10 nx'=0
Fly* =  Fly n—105x<10
FlyHigher* = FlyHigher n—-10<x<10

FlyLower* = FlyLower n=10sx<10

It is easy to see that the above events are refinements of corresponding events in the 2-variable
specification. Add the following two evenis:
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FlyLeft 1<y <N-1 1 10<2<20 7 —10<x <10 A x"=x~1
FlyRight = 1SySN-1110Sz<20 A—10<x <10 A x"=x+1

The two new evenis are also refinements because they are null-image events whose occurrences
are not observable in the 2-variable specification. Hence, the new 3-variable specification is a
refinement of the 2-variable specification. Like the 2-variable specification, the events TakeOf />, Fly*
and Landing* have weak faimess. It is easy to show that each original event and its refinement satisfy
the SWF condition given the following invariant requirement: '

Ry = (y=0nz=0=x=0) 7 (ISysN-1=>-10<x<10)

The above is easily shown to be an invariant of the 3-variable specification. Thus invariant and progress
properties of the 2-variable specification are also properties of the 3-variable specification. Once proved
for the 2-variable specification, they do not have to be proved again for the 3-variable specification.

In summary, we have given several conditions to ensure that some or all of the properties of
specification B are properties of specification A. Of these conditions, the well-formed refinement rela-
tion between two specifications is the strongest. (Its semantics is essentially the same as the simulation
or implementation relation of other authors [Abadi & Lamport 88, Lamport 83b, Lamport 85, Lynch &
Tuttle 87].) For some applications, such a condition may be too strong to be useful. For these applica-
tions, it may be enough to ensure that only safety properties of B are preserved in A, or safety proper-
ties and some specific progress properties of B are preserved in A. In this case, only those events that
are needed in the proof of the desired progress properties of B have o satisfy the WF or SWF condition.
In fact, the weaker conditions in Lemmas 5-7 can be used instead.

In general, the SWF condition should be regarded as a ‘shortcut.” For a given event, the SWF
condition is checked first. If it is too strong and cannot be easily satisfied, then one of the weaker condi-
tions is used.

In refining the events of B to get events of A, the event refinement and null image conditions are
generally easy to satisfy. However, if some state variables in 5 are replaced by new state variables in A
(and made into auxiliary variables in A) then finding an invariant that specifies the relation between the
old and new state variables may be nontrivial. This problem is the same as finding a multi-valued possi-
bilities mapping from the states of A to the states of B, as in [Lynch & Tuttle 87].

7. Auxiliary Variables

We can now give a rigorous explanation of auxiliary variables. Consider a specification A con-
sisting of a state transition system and some fairness assumptions. Let the initial condition of A be
denoted by Initial, and its events by {a;}. Suppose the set v of state variables of A is partitioned into
two sets, u and x, such that an observer can only see the state variables in x. In this case, the observable
behaviors of A are behaviors of a specification C derived from A as follows: The state variables of C
are the ones in x. The initial condition of C is

Initialc = 3ullnitial,]



The events of C are defined by

¢; = Yudu'[ag;]
for every event a; of A that does not have a null image in the state space of C. Event ¢; has a faimess
assumption in C if and only if event g; has the same faimess assumptionin A. !

Suppose the state variables in u have been shown to be auxiliary variables of specification A. In
Section 3, we assert that auxiliary variables, introduced for specification and verification, do not have 1o
be included in an actual implementation. The meaning of the assertion is this: instead of implementing
specification A, we implement specification C which does not have the auxiliary variables in u. (Note
that x may contain other auxiliary variables that are not in u.) We next discuss how properties of C are
related to properties of A.

By the definition of auxiliary variables, every event a; of A that does not have a null image in the
state space of C satisfies g; = ¢;, which is a form of the event refinement condition. Also, we have

Initial s = Jullnitial, ]
= [nitialc

Thus specification C is an image of specification A under the projection mapping. Additionally, we
have

enabled (¢;)=3x"Vudu'la;]
= Vudx3u'[g;]
=Vudv'ig]
Since variables in u do not occur free in enabled (c;), we have
Yu(enabled (¢c;)=>3v'[a;])
which is, by our convention,
enabled (¢;)=3v'[a;]
= enabled {(a;)

Thus, if event g; has weak faimess, ¢; and g; satisfy the SWF condition. If event g; has strong faimess,
¢; and g; satisfy the WF condition. And we have the following result:

Corollary 1: Specification C is a well-formed image of specification A .

From Corollary 1 and the results in Section 6, we know that properties of C such as, P is invari-
ant, P unless Q and P leads—to Q, are also properties of A, where P and Q are arbitrary state formu-
las of C (that is, variables in u do not occur free in P or Q).

Actually, we know more about specification C than what is in Corollary 1. For specifications A
and C given above, we have the following results.

* Specifically, it is assumed that there is no event of A thas has faimess in A and 2 null image in C. (We cannot think of a reason for having
such events.} Given & finite number of such events, this nption is not ry. It is made to simplify the proof of Lemma 12 in the Ap-

pendix.
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Theorem 3: Let p denote an arbitrary state formula of A. If p is invariant for A, then Julp] is invari-
ant for C. “

Corollary 2: P is invariant for C if and only if P is invariant for A, where P is an arbitrary state for-
mulaof C.

Theorem 4: P leads—to Q for C if and only if P leads—to Q for A, where P and O are arbitrary state
formulas of C.

Proofs of the above results are given in the Appendix. Let p and g denote arbitrary formulas of
A. It can be easily shown that if p unless g holds for A then Julp Junless Jufg] holds for C. (See
Lemma 11 in Appendix.) However, if pleads—toq for A, it does not follow that
Sulp ] leads—to Julq] for C. (There are counterexamples.)

Aucxiliary variables play an important role in our methodology for refining specifications. Let us
revisit a scenario considered in Section 6. In the process of refining a specification B, suppose we want
to replace a state variable x by two new state variables y and z. In our methodology, we first derive a
specification A 10 be a refinement of B. Specification A has all three state variables x, y and z. The
events of A are then refined such that state variable x is an auxiliary variable of A. Lastly, specification
C without the auxiliary variable x is derived from A as a well-formed image. A nontrivial example can
be found in Section 8 where three specifications of the alternating-bit protocol are given.

We next consider the special case of channel state variables. In modeling communication proto-
cols, the messages that are sent along a channel can be represented by a set of message types [Shankar
& Lam 87a]. Each message type is a tuple, for example, (data ,cn). Each element of the tuple, called a
message field, has a specified domain of allowed values. In the above example, the domain of data is a
set of allowed sequences of bits; the domain of cn may be the set {0,1}. The set of messages
represented by a message type is the cartesian product of the domains of its message fields.

In specifying communication protocols, it is sometimes convenient to use auxiliary message
fields. For example, consider the message type (data .cn ,n) where n is a natural number. Think of n as
the unbounded sequence number of a message while ¢z is the corresponding cyclic sequence number
that is actually implemented. (Unbounded sequence numbers are needed for specification and proofs.)
Since unbounded sequence numbers are not practically implementable, the message field n should be
auxiliary in the same sense as an-auxiliary variable.

Adding a new field, such as n, to a message type, such as (data ,cn), changes the domain of the
channel state variable z;. To ensure that the new field is auxiliary, in the above sense, we can use the
following reasoning. Imagine that the channel state variable consists of two variables z; and u;, where
z; represents the channel state and u; represents the sequence of n message fields associated with mes-
sages of type (data ,cn) in z;. The message field n is auxiliary iff u; is an auxiliary variable of the sys-
tem specification; informally, u; does not affect the enabling condition of any event nor does it affect
the update of any nonauxiliary state variable. ‘
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8. Specification Examples

To illustrate the various concepts and results presented in this paper, we give three specifications
of the alternating-bit protocol, each consisting of a state transition system and a set of faimess assump-
tions. Specification AB ; uses state variables and message fields with unbounded domains (i.e., natural
numbers). We prove that AB ; has the desired safety and progress properties of the alternating-bit proto-
col. (Applications of the leads-to Message rule are illustrated in the proof.) Specification AB; is
derived by adding binary-valued state variables and message fields to AB ;. We prove that AB, is a
well-formed refinement of AB ;. Therefore, safety and progress properties proved for AB ; are also pro-
perties of AB,. Furthermore, we show that those state variables and message fields with unbounded
domains are auxiliary in AB,. Specification AB 3 is obtained from AB ; by deleting the auxiliary state
variables and message fields. AB j is a well-formed image of AB,. AB 3 is most suitable for implemen-
tation because it is the smallest (i.e., its sender has four states, its receiver has two states, and only
modulo-2 sequence numbers are used in its messages).

For all three specifications of the alternating-bit protocol, consider the network configuration in
Figure 2, where entity 1 is the sender and entity 2 is the receiver of data blocks. Assume that the chan-
nels are lossy; that is, if the channel state variable z; is not null, then a loss event is enabled whose
occurrence deletes an arbitrary message in z;. (Recall that the channel progress assumption has to be
satisfied.) Initially, both channels are empty.

Channel 1

Entity 1 Entity 2

Channel 2

Figure 2. Network topology.

Notation. Let guard be a state formula and action an event formula such that
guard = enabled (action). Let y be the subset of state variables such that the variables {y":y € y}
occur free in action . Define the event formula ’

guard — action = (guard haction )V (—guard y'=y)

Note that if guard is false, none of the state variables in y is updated by the above event formula.

Specification AB ;

Let DATA denote the set of data blocks that can be sent in this protocol. Let natural denote the
set of natural numbers {0, 1, --- }. Entity 1 sends only one type of messages, namely, (D, data, n)
where D is a constant denoting the name of the message type, the domain of the message field daza is
DATA , and the domain of the message field n is namral. Entity 2 sends only one type of messages,
namely, (ACK , n) where ACK is a constant denoting the name of the message type, and the domain of
the message field n is natural. Below, we use a Pascal-like notation to define state variables and their
domains. We use empty to denote a constant not in DATA .
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° Entity 1 state variables

produced : sequence of DATA , initially null.
s natural , initially 0.
sendbuff : DATA\_jempty , initially empty .

° Entity 1 events

Produce (data) = sendbuff=empty
nproduced '=produced@data
A ‘=5 +1rsendbuff '=data
SendD = sendbuff #empty

rSend (D, sendbuff, s—1)

RecACK (n)

Rec»(ACK , n)
N ((sendbuff zempty " s=n)—> sendbuff '=empty )

° Entity 2 state variables
consumed: sequence of DATA , initially null.
r: natural , initially 0.

° Entity 2 event

RecD (data ,n) = Rec (D, data, n)
rSend (ACK , r)

A(r=n — (consumed’=consumed@data nr'=r +1))

Note that the events RecACK (n) and RecD (data .n) satisfy the receive evenis assumption in Sec-
tion 5. (The enabling condition of RecACK (n) is simply Head (z2)=(ACK ,n).) The desired invariant

property of the alternating-bit protocol is /¢ below.

Notation. For a sequence seq, we use lseg | to denote the length of the sequence. For channel state
variable z;, we use <D, n> to denote a sequence of zero or more copies of the (D, produced (n), n)
message, where produced (n) is the nth element of produced for n=0,1, - - - . For channel state variable
7,, we use <ACK , n> to denote a sequence of zero or more copies of the (ACK , n) message.

Invariant properties:
Io= consumed is a prefix of produced
I, = |produced|=s n lconsumed \=r

i

i, (sendbuff =empty rr=s)
v (sendbuff =produced (s —1) M (r=s Vr=s-1))
I4= sendbuff=empty = z2;=<D, r—1>nzy=<ACK ,r>

14

M

sendbuff zempty ns=r+l=>2;=<D,r-1>@ <D, FehE=<ACK ,r>
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sendbuff zempty rs=r = z;=<D , r—=1>r2y=<ACK , r-1>@ <ACK , r >

Let I = IognIngnIandgnl s Tt is straightforward to show that / satisfies the first invariance
rule. (In applying the rule, keep in mind that the loss event of each channel is in the set of events.)

The desired progress property of the alternating-bit protocol is Lo below. To prove Ly, five addi-
tional leads-to properties are given. For brevity, we use (D,n-1) to denote the message
(D, produced (n—1), n—1).

Progress properties:

LQE

Ly

i

Ly

il

i

Ls

Proof of Lo

sendbuff zempty N s=n leads —to sendbuff=empty "s=n
sendbuff #zempty rs=n rr=n-1 leads —~to sendbuff #empty As=n Nr=n
sendbuff zempty rs=n Nr=n leads —to sendbuff=empty Ns=n rr=n

sendbuff zempty Ns=n rr=n-1A7count(D, n—1)2k
leads —to count (D , n—1)2k+1V (sendbuff #empty "s=n rr=n)

sendbuff zempty ns=n rr=n rcount (ACK , n)2l
leads —to count (ACK , n)2l+1V (sendbuff=empty hs=n "r=n)

sendbuff zempty As=n rr=n Acount (ACK , n)2l rcount (D , n—1)2k
leads ~to count (D , n=1)2k+1V count (ACK , n)21+1V (sendbuff=empty rs=n "r=n)

Assume that SendD has weak faimess in specification AB ;.

L 3 holds via event SendD .
L holds via message set {(D, n—1)}, using L3.

L s holds via event SendD .
L 4 holds via message set {(D, n—1)}, using Ls.
L, holds via message set {(ACK , n)}, using L 4.

By Implication, Transitivity and Disjunction rules on L { and L 5, we get

sendbuff zempty As=n A(r=nVr=n-1)leads—to sendbuff=empty "s=n

L follows from the above property and / ; by Lemma 2.

QE.D.

From the above proof, we see that specification AB; requires a fairess assumption for event
SendD only. The other evenis do not have to be fairly scheduled. (Of course, the channel progress
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assumption is needed and it can be viewed as a fairmess assumption.)

Specification AB 2

AB, is derived from AB ; by adding binary-valued state variables cs and cr. The state variables s
and r are made inio auxiliary variables. Also, a modulo-2 sequence number field cn is added to each
message type. The message field n is also made auxilary.

® Entity 1 state variables

produced , s , and sendbuff as in AB 1.
¢s: {0, 1}, inidally O.

» Entity 1 events
Produce* (data) = Produce (data) ~cs’=(cs+1)mod 2

SendD* = sendbuff zempty
nSend (D , sendbuff , s—1, (cs—1) mod 2)

RecACK* (n,cn) = RecyACK,n,cn)
A ((sendbuff zempty A cs=cn ) —> sendbuff '=empty )

. Entity 2 state variables

consumed and r asin AB 4.
cr: {0, 1}, initially 0.

° Entity 2 event

RecD* (data,n,cn) = Recy(D,data,n,cn)
rSend(ACK ,r,cr)
Aer=cn —>
(consumed '=consumed@data rr'=r+1ncr’=(cr+1) mod 2))

Note that the events RecACK* and RecD* satisfy the receive events assumption in Section 5. In
order for AB ; to be a well-formed refinement of AB 1, we require that SendD* has weak faimess.

Proposition: AB is a well-formed refinement of AB ;.

Proof: Event SendD* is a well-formed refinement of SendD because it satisfies the SWF condition.
Since SendD is the only event that has a fairess assumption in AB y, it is sufficient to prove that the
other events in AB, satisfy the event refinement condition. (Note that the initial condition of AB,
implies the initial condition of AB 1)

Clearly, Produce* (data) satisfies the event refinement condition because Produce (data ) is one of
its conjuncts. For RecACK* (n, cn) 1o be a refinement of RecACK (n), it is sufficient that the following
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is invariant:
Ro= Head(z~(ACK,n,cn) n sendbuff empty hcs=cn = s=n

For RecD*(data,n,cn) 1o be a refinement of RecD (data, n), it is sufficient that the following is
invariant:

Ry = Head(z))=(D.,data,n,cn)rcr=cn=r=n

Our proof that R g and R are invariant for AB ; is as follows. Define

R, = c¢s=s mod 2/cr=r mod 2
Rs= (D,data,n,cn)e zy=>cn=n mod 2
Rs= (ACK,n,cn)e zy=>cn=n mod 2

We first prove the following for AB , (proofs are given below):
(1) R2MR3MR 4is invariant
(2} IrR 2AR3NR 4=>Ro"\R 4

Next, we show that (1) and (2) imply that R ¢/R; is invariant for AB,, as follows. Let e* denote an
event in AB , and ¢ the corresponding event in AB 1.

IARoAR3MNR gnhe* = ARoNR (M e* (from (2))
=][ne (by event refinement condition)
=J’ ({ is invariant for AB 1)

Also, the initial condition of AB, implies the initial condition of AB; which satisfies /. Thus, 7 is
invariant for ABj by the first invariance rule. From (2) above, Rg/R { is invariant for AB; by the
second invariance rule.

Note that because of message refinement, the interpretation of /3, /4 and /s (conjuncts of /)
requires a translation from messages in AB ; to messages in AB ,, using the projection mapping for chan-
nel states defined in Section 6. Specifically, given the projection mapping, <D, n > denotes a sequence
of zero or more copies of the (D, produced (n), n, i) message, while <ACK, n> denotes a sequence of
zero or more copies of the (ACK , n, i) message, where i is a parameter with domain {0, 1}.

To complete a proof of the proposition, we give proofs of (1) and (2) assumed above.
Proof of (1): Each of the conjuncts in R ;AR 3AR 4 satisfies the first invariance rule for AB 3, as follows:
The initial condition of AB ; satisfies R 5.

R o7 e = R, holds for e=Produce* (data) and e=RecD* (data, n, cn).
R, is not affected by any other event.

The initial condition of AB ; satisfies R 4.
R3AR 37 SendD* =R 3.
RsnRecD*(data,n,cn)=>R4 .

R 3 is not affected by any other event.

The initial condition of AB ; satisfies K 4.
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RonR 4 SendACK* =R 4.
R4 RecACK*(n,cn)=R /4.
R 4 is not affected by any other event.

Proof of (2): Specifically, we prove that oA 471 sAR AR 3=Ry and JonI4nIsAR MR 4= R o hold
for specification AB,. We give below a detailed derivation of the latter; a derivation of the former is
similar.

Assume the antecedent of R g, namely, Head (z)~(ACK , n, cn Y~ sendbuff zempty " cs=cn. From
I5,14,15and R 4, we know that X, Y or Z holds, where

X = s=r+17Head(z;)=(ACK , r,r mod 2)

Y = s=r "Head (z)=~(ACK , r—1, (r—1) mod 2)

i

]

z

From R ;, we have s mod 2=cn, which implies —X n—Y. Hence Z holds, which implies s=r=n. And
the consequent of R g holds.

s=r NHead (22)=(ACK , r,r mod 2)

Q.ED.

Since AB » is a well-formed refinement of AB j, the invariant and progress properties proved above
for AB ; are also properties of AB ;.

Now, consider the state variables s and 7, and the message field » in each message type of
specification AB 2. They are not practically implementable because their domains are unbounded. It is
easy to see that the events of AB; satisfy the condition for auxiliary variables for s and r, i.e., their
values affect neither the enabling condition nor the updates of the other state variables for each event.
To see that the same condition is satisfied for message field n, rewrite the receive events of AB, in the
following form:

RecACKs (cn) = 3n [RecACK* (ncn)]
RecDs (data ,cn) = 3n [RecD* (data ,n cn)]

The above receive events satisfy the receive events assumption in Section 5. Note that the safety pro-
perties of AB; do not depend on how the receive events are represented. Because none of the receive
events has a faimess assumption, the progress properties of AB 2 also do not depend on how the receive
events are represented. It is now easy to see that the events of AB , satisfy the auxiliary variable condi-
ton for the message field .

Specification AB 3

AB 5 is derived from AB by deleting the auxiliary variables s and r and the auxiliary message
field #, in the manner described in Section 7. By Corollary 1, AB3 is a well-formed image of AB .

° Entity 1 state variables

sendbyff and c¢s asin AB ;.
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° Entity 1 events

Produce**(data) =  sendbuff=empty
nes'=(cs+1) mod 27 sendbuff '=data

SendD** = sendbuff zempty
rSend (D, sendbuff, (cs—1) mod 2)

RecACK** (cn) = RecACK , cn) .
n ((sendbuff zempty N cs =cn ) — sendbuff '=empty)

s Entity 2 state variables

cr asin AB .

» Entity 2 event

RecD** (data,cn) = Recy(D,data,cn)
nSend (ACK , cr)
ner=cn — cr'=(cr+1) mod 2)

Specification AB 3 includes a weak faimess assumption for event SendD** . Note that the events
RecACK** (cn) and RecD** (data .cn) satisfy the receives events assumption in Section 5. Invariant
and progress properties of AB 3 are inferred from those of AB 3 by applying Theorems 3 and 4 in Section
7.

We first apply Theorem 3. From 3s, r, produced , consumed [I "Ro"R "R 2"R 3R 4], we infer
that the following state formulas are invariant for AB 3:
sendbuff =empty = cr=cs
sendbuff=empty = 2;=<D, cr=1>"2;=<ACK , cr >
sendbuff zempty Ncs=(cr+1) mod 2=>z;=<D, cr-1>@ <D , cr > N 53=<ACK , cr >
sendbuff #zempty Ncs=cr = 2;=<D , cr=1> " 2p=<ACK , cr-1>@ <ACK , cr >
where

<D, cr—1> denotes a sequence of zero or more copies of the (D, data, (cr—1) mod 2) message
for some data in DATA,

<D ,cr> denotes a sequence of zero or more copies of the (D, sendbuff, cr ) message,

<ACK , cr—1> denotes a sequence of zero or more copies of the (ACK , (¢r—1) mod 2)
message, and

<ACK , cr > denotes a sequence of zero or more copies of the (ACK , cr) message.
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The following progress property of AB; can be derived from Lo by applying the Disjunction
theorem in [Chandy & Misra 88],

sendbuff zempty leads —to sendbuff =empty
Applying Theorem 4, the above progress property is a property of AB 3.

9. Discussions and Related Work

The basic constructs for specifying systems in the relational notation are state formulas and event
formulas. A state formula defines a set of system states. An event formula defines a set of system state
transitions. Additionally, parameters may be used for defining groups of related events, as well as
groups of related system properties. We believe that our notation is easy to lean because states and
state transitions are represented explicitly. Our objective is to retain much of the intuitive appeal of the
CESM model, but none of its limitations. Our proof method was also designed to use a minimal amount
of notation with the goal that it will be accessible to protocol engineers.

The v' notation for specifying events as formulas in vU v’ is not unique to our work. The same
notational device is used by various other authors [Lamport 832, Hehner 84, Scheid & Holtsberg 88].

Prototypes of the relational notation and the proof method presented in this paper were described
in [Shankar & Lam 84, Shankar & Lam 87a]. Our proof method is based upon a fragment of linear-time
temporal logic [Chandy & Misra 88, Lamport 83a, Owicki & Lamport 82, Manna & Pnueli 84, Pnueli
86]. Motivated by examples in communication protocols, we introduced two small extensions to the
body of work cited above. First, we defined the P leads—to Q viaM relation. The resulting leads-to
Message rule for unreliable channels is a very useful one for communication protocols.

Second, we advocate the approach of stating faimess assumptions explicitly for individual events
as part of a specification, noting that for many systems not all events need be fairly scheduled. This
contrasts with the approach of a blanket assumption that all events in a system are fairly scheduled
according to some criterion. While this approach is not new (see [Pnueli 86]), our definition of the
allowed behaviors of a specification differs from the definition of fair computations of [Pnueli 86] in
that an allowed behavior may not be ‘maximal.” Specifically, every fair computation of Pnueli [1986] is
an allowed behavior in our model but not vice versa. Our definition of allowed behaviors is motivated
by the specification of interfaces of program modules [Lynch & Tuttle 87, Lam & Shankar 87].

We refer to a state transition system given in the relational notation together with a set of faimess
assumptions as a relational specification. In Section 6, we present a theory of refinement and projection
of relational specifications. The theory has been adapted to relational specifications from our earlier
work on protocol projections. The relation A is a well-formed refinement of B, for two specifications A
and B, is by definition the inverse of the relation B is a well-formed image of A introduced in [Lam &
Shankar 84].

Other authors have defined similar relations between specifications: A implements B, A simulates
B, A satisfies B, etc. [Abadi & Lamport 88, Lamport 83b, Lamport 85, Lynch & Tuttle 87]. Informally,
the meaning of every one of these relations is the following: every externally visible behavior allowed
by A is also allowed by B. (There are some differences in how behaviors and observable behaviors are
defined.) Our definition of A is a well-formed refinement of B is essentially the same. We differ from



the others in how the above definition is applied. First, instead of using it directly, we introduced the
relational notation as a specification formalism. In our experience, the event refinement, WF and SWF
conditions, expressed in the relational notation, are very convenient to use. Second, if some state vari-
ables in B are replaced by new state variables in A , our approach is to find an invariant that specifies the
relation between the new and old state variables. The approach of the other authors is to find a mapping
from the states of A to the states of B. The relation to be found is the same one in each approach. The
approaches differ in how the relation is represented. In [Abadi & Lamport 88], the existence of such
mappings is addressed.

For many applications, we found the above relations, well-formed refinement, implements, etc., to
be too strong to be useful. In refining a specification B to A, it is seldom the case that every progress
property of B must be preserved in A. In most cases, only some specific progress properties of B are 10
be preserved. Our conditions given in Section 6 are designed for such use. .In our theory, the refinement
relation between two specifications is the weakest. (Only safety properties of B are preserved.) It is
always used. The well-formed refinement relation is the strongest. It is seldom used.

Chandy and Misra [1988] defined the relation A is a superposition of B. In their approach, A is
obtained from transforming B by repeated applications of two rules. This approach is attractive because
the rules are syntactic and are thus very easy to use. But because the rules are syntactic, the class of
specifications that can be derived by applying these rules is much smaller than the class that can be
derived as well-formed refinements. Specifically, it is easy to see that if A is a superposition of B then A
is a well-formed refinement of B. The converse does not hold.

While the relational notation and proof method in this paper are applicable to state transition sys-
tems in general, their development has been motivated primarily by protocol systems. The ideas and
methods in this paper have been applied to the specification and verification of several nontrivial proto-
cols, which are briefly described below.

The first application was the verification of a version of the High-level Data Link Control (HDLC)
protocol standard with functions of connection management and full-duplex data transfer. Instead of
verifying such a multifunction protocol in its entirety, smaller image protocols were obtained by projec-
tion and then verified [Shankar & Lam 83]. Properties of the multifunction protocol were inferred from
properties of the image protocols.

Murphy and Shankar demonstrated how a complete transpori protocol with functions of connec-
tion management and full-duplex data transfer can be composed from protocols specified for the indivi-
dual functions. Because the multifunction protocol is a refinement of instances of the single-function
protocols, safety properties of the single-function protocols are preserved in the multifunction protocol.
Proofs of progress properties of the multifunction protocol were obtained in a hierarchical manner
[Murphy & Shankar 87, Murphy & Shankar 88].

The well-formed image relation between specifications was also applied to the protocol conver-
sion problem. Suppose a converter (translator) is interposed between two entities, say E and E 5, that
implement different communication protocols, say A and A, respectively. Whenever, the converter
receives an A ; message sent by entity E 4, it translates the message 10 an A ; message which is delivered
to E 4. (The converter may delete the message instead of translating it.) Similarly, A, messages sent by
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E, are translated into A messages which are delivered to E . The well-formed image relation was
used 1o define what it means for a protocol converter 10 achieve interoperability between £y and E»
[Calvert & Lam 90, Lam 88].

The theory presented in this paper has already been extended in several ways. We mention two of
them below.

First, in deriving a specification A from specification B, we found that it is preferable to go
through a succession of intermediate specifications, By, B, - . To facilitate such a heuristic search,
we defined a weaker form of the refinement relation, called conditional refinement. A stepwise
refinement heuristic was developed based upon conditional refinement. The heuristic was applied to the
specification of sliding window protocols for the transport layer where channels can lose, duplicate, and
reorder messages, and the protocols use cyclic sequence numbers [Shankar 86, Shankar & Lam 87b]. It
was also applied to the specification of connection management protocols for the transport layer [Mur-
phy & Shankar 87, Murphy & Shankar 88].

Second, an extension to our theory herein is also needed to specify interfaces and implementations
of program modules. To get simple conditions for composing modules, we impose a hierarchical rela-
tionship between modules that interact via an interface. The theory extension was 1o define what it
means for a program module 10 offer an upper interface to a user, and to use a lower interface offered
by another program module. It was applied to prove that specifications of two database implementa-
tions, based upon a two-phase locking protocol and a multi-version timestamp protocol, satisfy a serial-
izable interface specification [Lam & Shankar 87].
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APPENDIX

Lemma 4: For a given specification, if P unless ¢ holds and Q 1 leads —to O, then
P 7O leads—to Q V(P ~(,) for the specification.

Proof of Lemma 4:

1. Leto=<sg §1, - - > be the sequence of states in an allowed behavior.
2 Lets; satisfy P 1 Q.
3. Forsome j2i :s; satisfies 07 (O 1leads —to Q)
4 X orY holds (P unless 0)
where

X = forallk2i s, satisfies P
Y = forsomen>i :s, satisfies 0, and forallk € [i.n—1] s, satisfies P

5. IfX holds or Y holds for n>j, then s; satisfies P 7. (3,4
6. If Y holds for n<j, then s, satisfies 0. @
The lemma follows from steps 1, 2, 5 and 6.

QE.D.

Lemma 5: Let specification A be a refinement of specification B, and b; an event that has fairness in
B. If P leads—to Q viab; for B, then P leads—to Q for A if there is some event in A, denoted by a;,
that has weak faimess, is a refinement of 4;, and

RynP = Q Venabled(a;)

Proof of Lemma §: It is sufficient to prove that P A—Q leads—to Q viaa; for specification A by prov-
ing parts (i)-(iii) of the leads-to-via definition for an event that has weak faimness. From the lemma’s
hypothesis, Part (iii) is clearly satisfied.

Proof of part (i):
RynP n - Na i
=P nb; : {event refinement condition)
=0’

Proof of part (ii):

Case 1. Forevent g;, i#/, that is a refinement of evenis in B,

Ry NP A= Aa;
=(Ra NP M ay)

=P r3k{BD {event refinement condition)
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=(Q'VP)=Q V(P10
Case 2. For event a;, i #j, that has a null image in B,
Ry"P N=Q My
=P r=’
=0’ V(P r—Q"
Q.ED.

Lemma 6: Let specification A be a refinement of specification B, and b; an event that has faimess in
B. If P leads—to Q viab; for B, then P leads—to Q for A if there is some event in A, denoted by a;,
that has weak faimess and the noninterference property, is a refinement of b;, and

Ru NP leads—to O Venabled(a;) forA.

Proof of Lemma 6: We first prove that P Aenabled (a;) leads—to Q viaa; by proving parts (i)-(ii) of
the leads-to-via definition for an event that has weak faimess. Part (jii) is clearly satisfied.

Proof of part (i):
R4 NP nenabled(a;) M a;
=P nb; (event refinement condition)
=0’
Proof of part (ii):
Case 1. Forevent a;, i #/, that is a refinement of events in B,
Ru ~ P nenabled(a;) ha;
=(Ry NP na;) r(Ry N enabled(a;) M a;)
=P A @k[b]) " enabled(a;)
(event refinement condition and noninterference property)
=(Q’ Vv P’) nenabled(a;)
=0’ v(P’'nr ena?led(a;)')
Case 2. Forevent a;, i #j, that has anull image in B,
Ry 1P nenabled(a;) " a;
= (P na;) N (Ry " enabled(a;) " a;)
= P’ A enabled (a;) (noninterference property)
= Q' Vv (P’ A enabled(a;))
By Lemma 3, P unless Q holds for A. Applying Lemma 4 to P leads—to @V enabled(a;) in the

lemma’s hypothesis, we have P leads—to O v (P renabled(a;)). Applying Lemma 1 to the last pro-
perty and P Aenabled (a;)leads—to Q proved above, the proof is complete.
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Lemma 7: Let specification A be a refinement of specification B, and b; an event that has faimess in
B. If P leads—to Q viab; for B, then P leads—to O for A if there is some event in A, denoted by a;,
that has strong faimess, is a refinement of b;, and

Ry NP leads—to Q Venabled(a;) for A.

Proof of Lemma 7: We prove that P leads—to Q viaa; by proving parts (i)-(iii) of the leads-to-via
definition for an event that has strong faimess. From the lemma’s hypothesis, part (iii) is clearly
satisfied. Proof of part (i) is by the event refinement condition. Proof of part (ii) is by Lemma 3.

QE.D.

Observation: Let us compare the strong faimess requirement in Lemma 7 with the noninterference
requirement in Lemma 6. Without noninterference, enabled (a;) may be falsified before O becomes
true. But by Lemma 3, P unless Q holds for A. This together with the assumption that
P leads—to Q Venabled(a;) for A guarantee that enabled (a;) eventually becomes true again if O does
not become true before then. If O never becomes true, g; is enabled infinitely often without occurring,
which contradicts the assumption of strong faimess.

Lemma 8: Let specification A be a refinement of specification B, and b; an event that has weak fair-
ness in B. If P leads—to Q viab; for B, then P leads—to Q for A if there is some event in A thatis a
well-formed refinement of b;.

Proof of Lemma 8: Let the well-formed refinement of b; be denoted by a;. By the leads-to-via
definition for an event that has weak faimess, P => enabled (b;) is invariant for B. There are two cases:

Case 1. Event a; satisfies the SWF condition. By Theorem 1, P = enabled (b;) is invariant for A. By
the SWF condition, P = enabled (a;) is invariant for A. By Lemma 5, the proof is complete.

Case 2. Event g; satisfies the WF condition. By Theorem 1, P = ¢nabled (b;) is invariant for A. By
Implication and Transitivity rules, P leads~to Q Venabled(a;) for A. By Lemma 6 or Lemma 7, the
proof is complete.

QE.D.

Theorem 2: Let specification A be a well-formed refinement of specification B. If P leads—t0 Q for B
then P leads—to Q for A, where P and ( are arbitrary state formulas of B.

Proof of Theorem 2: Following [Chandy & Misra 88], we use induction on the structure of the proof.
Base case:
s P leads ~to @ for B by Implication rule

Given: P = isinvariant for B
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By Theorem 1, P = ( is invariant for A. P leads—to Q for A by Implication rule.
. P leads —to Q for B by weak Event rule
Given: For some b; that has weak faimess, P leads—to Q via b;
By Lemma 8, P leads—to O forA.
Inductive step:
° P leads—to Q for B by strong Event rule
Given: 1. For some b; that has strong faimess, P leads—to Q viab;
2. P leads—to Q Venabled(b;) for B (from definition of 1)
3. P leads—to Q venabled(b;) for A (induction hypothesis)
To prove: P leads—to Q forA

Proof: Let a; denote the well-formed refinement of b;.

4. enabled (bj)leads—to enabled (a;) for A (WF condition)
5. P leads—to Q Venabled(a;) for A (3,4, Lemma 1)
Property 5 and the WF condition satisfy the hypothesis of Lemma 6 or 7, and the proof is com-

plete.
° P leads —to Q for B by Transitivity rule
Given: 1. Forsome R, P leads—to R and R leads—io Q for B
2. Pleads—to R for A (induction hypothesis)
3. R leads—to Q for A {(induction hypothesis)
To prove: P leads—to Q for A
The proof is immediate by applying Transitivity rule to properties 2 and 3 in Given.
° P leads—to Q for B by Disjunction rule
Given: 1. P=3m e M[P (m)]
2. VYme M:P(m)leads—to @ forB
3. VYme M:P(m)leads—to Q forA (induction hypothesis)
To prove: P leads—to Q for A '
The proof is immediate by applying Disjunction rule to properties 1 and 3 in Given.
® P leads—to Q for B by Message rule
Given: 1. Forsome M, P leads—to Q viaM for B
9. P ncount (M )2k leads—to Q vV count (M )2k +1 for B (from definition of 1)
3. P rcount (M*)2k leads —to Q v count (M* )zk+1 for A
(induction hypothesis)
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where M* = UMNm. (Each message m in B is refined to a nonempty set N, of messagesin A .)

me
To prove: P leads—to O for A

Proof: We prove that P leads—to O viaM* for A by proving parts (i)-(iii) of the leads-to-via
definition for message set M.

Part (). Let a,(n), n € M*, be a receive event in A. It is a refinement of a set of receive events
{by(m)} in B forsomem e M.

Ry NP nain)
=P nGh [by(m)]) (event refinement condition)
=0’ (from 1 in Given)
Part (ii). P unless Q holds for A by Lemma 3.
Part (iii) is satisfied by property 3 in Given.
QE.D.

Before proving Theorems 3 and 4, we state and prove two lemmas. In these lemmas, we use p

and ¢ to denote state formulas of A. P = Jufp] and ¢ = Ju[g] are state formulas of C. We use x
to denote a state of C, and (x, u) a state of A, where u represents the value of the auxiliary variables in
A thatarenotin C.

Lemma 9: If p =g holds for A, then P = Q holds for C.

Proof of Lemima 9:

1.
2.
3.
4.

Let x be a state of C that satisfies P.

Ju: (x, u)satisfies p (1, definition of P)
Ju: (x, u) satisfies ¢ (2, hypothesis of lemma)
x satisfies 0 (3, definition of @)

By 1 and 4, the proof is complete.

Q.E.D.

Lemma 10: If p Ag;= g holds for A, then P A¢;= 0’ holds for C.

Proof of Lemma 10;

1.

2
3.
4

Let x be a state of C that satisfies P.
letx’bea stafe of C such that (x, x") satisfies ¢;.
Ju: (x, u) satisfies p (1, definition of P)
JuJu’: (x, u) satisfies p and ((x, w), (x’, u")) satisfies a;
{2, definition of ¢;)
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5. Ju':(x’, u)satisfies ¢ (4, hypothesis of lemma)
6. x satisfies Ju[¢’] = 0 (8, definition of Q)
By 1,2 and 6, the proof is complete. ‘

Q.E.D.

Theorem 3: Let p denote an arbitrary state formula of A. If p is invariant for A, then Ju[p] is invari-
antfor C.

Proof of Theorem 3: Let 7 be a state formula of A such that 7 = p and r satisfies 1 and 2 below.

1 Initialy =
2. Foralleventa;, rhg;=r’
3 R =3ul[r] and P = Julp]
4 Initialc = R (1,Lemma 9)
5. Foralleventc¢;, Rnr¢c;=R’ (2, Lemma 10)
6 R is invariant for C “,5
7. R=P (Lemma 9)
8 P isinvariant for C 6,7)
QE.D.

Corollary 2: P is invariant for C if and only if P is invariant for A, where P is an arbitrary state for-
mula of C.

The if part of Corollary 2 is a consequence of Theorem 3. The only if part of Corollary 2 is a
consequence of Corollary 1 and Theorem 1.

Lemma 11; If p unless ¢ holds for A then 3u[p]unless Julg] holds for C, where p and g denote
arbitrary state formulas of A. ’

Proof of Lemma 11:

1. Foralleventa;, pra;=p’'vq’ (hypothesis of lemma)

2. Forallevent ¢;, Julplrc;= Culpvgl) (Lemma 10)

3. Forallevent ¢;, Julplrc;= Culplviulgl) (predicate calculas)
Q.E.D.

Coroliary 3: P unless Q holds for C if and only if P unless Q holds for A, where P and Q are arbi-
trary state formulas of C.

The if part of Corollary 3 is a consequence of Lemma 11. The only if part of Corollary 3 is a
consequence of Corollary 1 and Lemma 3.
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To give a proof of Theorem 4, we first make this observation:
enabled (a;) = enabled (c;) holds for specification A

which is proved as follows.

1. g;= Vudu'[a;] (definition of auxiliary variables)
2. ¢ = Yudu'la] (definition of C')

3. Let (x, u) satisfy enabled (a;)

4, I3’ : ((x, u), (¥, u)) satisfies a; 3)

5 Vu3u,: (%, uy), &', uy")) satisfies g; )

6 (x, x°) satisfies ¢; 5,2)

7. x satisfies enabled (c;) 6)

The observation follows from steps 3 and 7 above. This observation is used in the following lemma.

Lemma 12: Let behc=<xq, ¢, X1, Ci,, * - > represent an allowed behavior of C where, forall j, x;
denotes a state and ci, denotes an event of C. There exist ug, u;, - - such that
behA=<(X(), ug), L (x1, uy), Qi, ">

is an allowed behavior of A.

Proof: We first prove that there exist ug, uj, --- such that behy is a behaviorof A. The proof is by
induction over the state transitions in behc.

Base case: By the definition of Initialc, there exists ug such that (Xo, ug) satisfies Initial,.

Inductive step: Assume that there exist up, - -, u; such that <(xo, up), @iy, c s Gin (Xj,u5)> is a
behavior of A. By the definition of events in C, if (x;,x;4) satisfies ¢; , then
Vu; 3w (X5, 85) (X1, Ujan)) satisfies i, where Jj20. Hence,
<(xo, Ug), Gi,, s Giyy (Xj Wiy Giy (Xj+1, Uj4+1)> is a behavior of A.

We next prove that behy is an allowed behavior of A. Suppose behy is not an allowed behavior
because it violates the faimess assumption of some event @;. By steps 3 and 7 in the above observation,
we can infer that behe violates the faimess assumption of ¢;. This contradicts the lemma’s hypothesis
that behc is an allowed behavior. By the definition of specification C, A has a faimess assumption for
an event if and only if C has the same assumption for the image event. Therefore, all faimess assump-
tions of individual events are satisfied by beh,.

Suppose beh, is not an allowed behavior because it violates the channel progress assumption for
some message set N. That is, count (N) increases without bound on beh, and no state transition in
beh, is labeled by a receive event a,(n) for any ne N. Let M denote the set of messages in
specification C that are images of messages in set N. By the definition of auxiliary message fields in
Section 7, each message in N is a refinement of some message in M. Therefore, each message in & has
a nonnull image in M and count (M ) increases without bound on beh. Since each message in M isthe
image of some message in N, no state transition in behc is labeled by a receive event ¢, {m )} for any
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m e M. Thus behc violates the channel progress assumption for message set M. But such violation
contradicts the lemma’s hypothesis that behc is an allowed behavior. Therefore, behy satisfies the
channel progress assumption for any message setin A. The proof of the lemma is complete.

QE.D.

Observation: For a specification A that includes strong faimess assumptions for events and channel
progress assumptions for message sets, the auxiliary variables for counting event occurrences
(count (N), count (¢;), etc.) must be in x and not u.

Theorem 4: P leads—to Q for C if and only if P leads—to Q for A, where P and Q are arbitrary state
formulasof C.

Proof of Theorem 4: The only if part of the theorem is immediate from Corollary 1 and Theorem 2.

To prove the if part, let segc=<xo, X;, - - - > be the sequence of states in an allowed behaviorof C. By
Lemma 12, there exist ug, uy, - - such that seqa=<(xo, Up), (X1, uy), - > is the sequence of states
in an allowed behaviorof A.

1.  Letx; satisfy P

2. (x;,u;) satisfies P (1, variables in u not free in P )

3.  Forsome j2i :(x;, u;) satisfies 0 (hypothesis of if part)

4, X; satisfies O (3, variables inunot free in 0)

Steps 1 and 4 imply that P leads—to Q for C.
QE.D.
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