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Chapter 1

Introduction

1.1 Motivation and Goals

The increasing availability of parallel architectures has prompted
research towards the formulation of new paradigms for parallel programming.
Conventional programming languages and their extensions have been found to
be deficient in addressing the inherent complexities introduced by parallelism

in architectures and algorithms.

In addition to a description of the modules that are to be executed
concurrently, the specification of a parallel computation must explicitly state
the synchronization constraints and communication between the modules.
Thereby, the programmer ensures that the program executes according to
the specification though it might follow different execution paths on each
invocation. Programmers have become adept at specifying the sequential
units in isolation. A new representation medium is required to aid the pro-
grammer in expressing parallel programs on the whole. The availability of
low-cost workstations with bit-mapped graphics capabilities has prompted

the use of graphical languages as a natural medium for parallel programming

[SOB 86,50B 88,DAV 82,PONG 86].

In such a programming framework, a directed graph is used to rep-

resent a computation. The nodes represent sequential modules and the arcs
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specify the dependency relations between these modules. Each module must
have a firing rule which must be satisfied before the execution of that par-
ticular node. The Unified Computation Graph model proposed by Browne
[BRO 85,BRO 86] decouples the sequential units of computation from the
parallel structure that dictates their execution. This separation focuses the
attention of the programmer on parallel structures and presents a more intu-
itive view of the parallel computation. Also, the representation of the parallel
structure is at a level which alleviates the need to incorporate execution en-
vironment details. Computation graphs are hierarchical. Each node can be
a subgraph, thereby providing the programmer with a powerful tool for con-

trolling complexity.

Dependency graph representations have been found to be extremely
powerful in addressing a variety of related problems. They have been used as
a basis for the efficient mapping of algorithms to real architectures [IXIM 87].
They can be viewed as a front-end for the translation of specifications into
special-purpose VLSI architectures [DES 88]. Dependency graph representa-
tions of existing sequential programs can be extracted and used for parallel
structuring [EAS 88]. The modularization of the sequential units of compu-

tation enhances the re-useability of these software components [LEE 87].

A general facility is needed for the display and manipulation of the
dependency graphs in these research domains. Such a tool must be extendable
to provide all the functionality required in a specific area while preserving gen-
erality. This thesis describes the development of the Interactive Dependency

Graph Analyzer (IDeA), a graphical tool that meets these requirements.



1.2 Approach

It was recognized that IDeA must provide an extensive set of display

operations, combined with a set of domain-specific functions.

Dependency graphs can be arbitrarily large depending on the size
of the computation and on the level of abstraction. Therefore, to avoid the
appearance of "spaghetti” graphs, an automatic layout algorithm is incorpo-
rated into the environment. IDeA provides a set of browsing and viewing
operations to enable the user to view the entire graph or portions of it in a

convenient manner.

Typically, the dependency graph representations could be stored in
files or in databases and hence no assumptions on the input are made apriori.
Each node has a generic pointer (database record, file name and line num-
ber etc) and can represent entire programs, subroutines or single statements.
IDeA had a built-in notion of subgraphs thus enabling hierarchical represen-
tations in the dependency graph. IDeA incorporates functions for collapse of

subgraphs into nodes and expansion of nodes into subgraphs.

A related project [EAS 88] is aimed at the extraction of call graph,
data flow and control flow graph representations of sequential Fortran pro-
grams. This project provides an ideal test-bed for studying the strengths
and weaknesses of IDeA in a real environment. The notion of hierarchy is
demonstrated by allowing the user to collapse call graphs in a bottom-up

manner.

IDeA is envisioned as an interface to the Computation Oriented
Display Environment(CODE) [SOB 86]. Figure 1.1 shows the proposed or-

ganization.
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Figure 1.1: The CODE - IDeA interface.



A sequential Fortran program is parsed and the results of the anal-
ysis are stored in a relational data base. The interface between IDeA and the

data base will guide the user in extracting a computation graph that can be

understood and executed by CODE.

1.3 Related Work

This section describes related work in the areas of graph-oriented
computation models and languages, visual/graphical programming, graph
layout/browsing tools and analysis of Fortran programs for parallel struc-
turing.

The formulation of a parallel computation as suggested by Browne
[BRO 85,BRO 86] is the underlying computation model assumed in this the-
sis. This model can be used to describe algorithms and languages. The
Computation Structures Language (CSL) is based on this model and was de-
veloped in the context of the Texas reconfigurable Array Computer. CSL is
a graph language for specifying the configuration and traversal of a compu-

tation graph.

An alternate computation model suggested by [ADA 68] is based
on data flow. Data flow models are based on tokens flowing from one node
to another, where these tokens are instantiations of data objects. Data flow
program graphs have also been suggested by Davis and Keller [DAV 82]. They
extend the notion of tokens by allowing data structures to be constructed on
the arcs. The notion of data flowing from one node to the other suggests the
usage of a graphical representation as a logical and intuitive specification of

the model.

CODE (Computation Oriented Display Environment), is a graphi-



cal parallel programming environment [SOB 86,SOB 88,BRO 85]. CODE is
an architecture and language independent programming environment based
on the unified model of computation described earlier. In using CODE, the
programmer draws a dependency graph representation of the parallel compu-
tation which is then translated for a specific target architecture. The layout
and hierarchical capabilities of IDeA suggest that it could provide a front-end
for CODE in handling dependency graphs that are extracted from existing

sequential programs.

GPS5SM is a graphical environment for programming simulation mod-
els [BDN 86]. Pong describes I-PIGS, a programming environment designed
to support concurrent programming [PONG 86]. I-PIGS allows the program-
mer to create and edit processes, ports, communication links and control

constructs directly on the screen.

GRAB, a general purpose graph layout and browser system is de-
scribed by Rowe [ROWE 86]. IDeA uses a hierarchical layout which is es-
sentially based on the GRAB algorithm. Implementation modifications were
made to this algorithm to produces reasonable layouts with minimum turn-

around times.

The conversion of large sequential Fortran programs to a parallel
form has been investigated widely [AlIKX 82, KKKLP 81]. Research efforts have
been directed mainly towards the study of parallelism in DO-Loops, justi-
fied by the frequency of occurrence of such loops in real Fortran programs.
PTOOL is a semi-automatic system that performs interprocedural analysis
and uses a procedure call as the basic the basic unit of parallelism in its
model [ABKP 85]. PTOOL allows the programmer to select regions for par-

allel execution and analyses dependencies to detect potential conflicts in the



programmer’s specification.

1.4 Organization

Chapter 2 discusses the model of parallel computation underlying
this thesis. Chapter 3 describes the implementation design, the layout and
the interface. The application of IDeA in Fortran call graph representations
is described in Chapter 4, and the results and conclusions are summarized.

Appendix A is a users manual.



Chapter 2

Model of Computation

This chapter describes the fundamental model of computation un-
derlying IDeA. Graphical representations of procedural parallel programs and

data flow programs are studied within the framework of IDeA.

Browne [BRO 85] defines a model of computation as :

1. Descriptions of primitive data types and operations on these data types.

2. Composition rules for creating the Schedulable Units of Computation

(SUC’s) from the primitive data types and operators.
3. Formulation for the creation of name spaces in which the SUC’s execute.

4. Specification of the relations between the schedulable units of compu-
tation. These include the granularity of synchronization, constraint
relations, the type specification of data objects that traverse the depen-

dencies, and functional relations between the dependencies.

IDeA uses the Unified Computation Graph [BRO 85,BRO 86] as its

underlying model of computation.

2.1 Unified Computation Graph

The Unified Computation Graph (UCG) is a framework for the

formulation and representation of parallel computations. The computation

3



graph is a directed graph in which the nodes are Schedulable Units of Com-
putation (SUC’s) and the edges represent dependency relations between the

modules. A computation is specified by the traversal of such a graph.

A Schedulable Unit of Computation is defined by at least one initial
state, a sequence of active states and at least one final state. The initial
state includes the persistent internal state, and the binding of values from
the input arcs to uninitialised names in the SUC. The final state specifies th‘e
assignment of values to the output arcs. The specification of a SUC makes no
assumption about the execution granularity. Therefore, SUC’s may represent

individual statements, procedures or entire programs.

Any node in the computation graph can be a subgraph, thereby al-
lowing hierarchical resolution of the nodes. Subgraphs are extremely powerful
in controlling the complexity of the representation. IDeA is hierarchical and

allows the creation of subgraphs in its representations.

IDeA supports schedulable units of computation by providing at-
tribute lists for each of the nodes in the graph. Each node has an unique
name and may be indexed to support parameterization. The attribute list
in IDeA may be extended for domain specific representations. For exam-
ple, it may be required to assign weights to each of the SUC’s if the relative

execution times of the SUC’s are needed.

The arcs in the computation graph represent dependency relations
between the SUC’s. Dependencies specify either a synchronization relation-
ship or a producer/consumer relationship. Synchronization relations may
enforce ordering constraints or mutual exclusion. IDeA generalizes the speci-
fication of dependencies by providing attribute lists for the edges in the graph.

The attributes must describe the type of the dependency. Data dependencies
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have associated data types to describe the data objects that will traverse that

edge.

The UCG model allows for functional relationships between depen-
dency relations. Thus, sets of arcs entering or leaving a node may be joined
by and or or operations. CODE defines a special node type called a filter to
implement these firing rule constraints. IDeA does not implement this special
type. Therefore, such firing rules have to be synthesised by the creation of
new SUC’s.

2.2 Procedural Programming

Procedural programming languages are well represented within the
framework of the Unified Computation Graph model. The schedulable units
of computation maybe procedures in a sequential programming language.
The input parameters to these procedures are specified as data dependencies.
Control dependencies are used to specify additional synchronization and mu-
tual exclusion constraints between the procedures that can execute in par-
allel. The Computation Structures Language (CSL)[McSHEA 86], and the
Computation Oriented Display Environment (CODE) [SOB 86] are parallel

programming languages based on the UCG model.

The parallel structuring of sequential Fortran programs has been
widely investigated [AIIK 82,ABKP 85 KKLP 81]. Most of these research
efforts have been directed at extracting parallelism at the DO-loop level. A
procedural programming model suggests that the granularity of execution
must be at the procedure (function) level. In particular, procedure calls
that occur inside DO loops offer much potential for large granularity parallel

structuring.
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A Call graph is a directed graph representation of the control flow
relationships among the procedures of a program. Fach node of the graph
corresponds to a procedure and each arc represents one or more calls (or
references) from the calling procedure to the called procedure. Call graphs
represent procedure calls only and do not explicitly represent the return from

the calls.

Each edge in the call graph can be viewed as a control dependency

that implicitly specifies the following:

e A sequencing between the calling procedure and the called procedure.

e A sequencing between the called procedure and the segment of the call-

ing procedure following the call.

Also, such a CALL control dependency has associated with it the
parameter list for the call (the list may include global variables that are mod-
ified within the called procedure). The parameter list can be decomposed
into a set of data dependencies in the computation graph. If values have to
be returned to the calling procedure, they are represented as data depen-
dencies. The return from the call is a pure control dependency if the called
procedure does not have any return values. This control dependency may
be converted to a data dependency, if required [AKPW 83]. The sequencing
between successive calls may be ensured by additional control dependencies
(and perhaps, by the use of mutual exclusion dependencies). The functional
relationship between the set of incoming arcs in this representation is the and
operator. The nodes will fire when there exist tokens (parameters) in all the

incoming arcs.
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Static variables inside the procedures represent the persistent inter-
nal state of the SUC’s. The execution of the procedure specifies the sequence
of active states of that SUC. Hierarchical representations of the call graph
are specified by collapsing a node (procedure), and all the nodes it calls, into

a subgraph. Chapter 4 describes the call graph collapse in greater detail.

IDeA has been used to display call graphs extracted from sequential
Fortran programs. The generality offered by IDeA may be exploited to aid
in the extraction of computation graphs from the call graph representations.
It is envisioned that IDeA will provide an interface to CODE, such that a
user may interactively convert a sequential program to a form that can be

mapped into the CODE programming environment.

2.3 Data Flow Program Graphs

Davis [DAV 82] defines a data flow language as an applicative lan-
guage based on the notion of data flowing from one function entity to another.
Applicative languages are extremely modular and this enables the clear de-
coupling of the execution of independent modules in the programs. Graphical
representations are extremely useful in the specification of data flow program

graphs.

Data flow graphs have firing rules associated with the nodes. A node
can fire when it receives its input tokens. A graphical representation of a data
flow graph specifies the interaction between the nodes and the interconnecting

arcs in a manner similar to the UCG.

Data flow programs can be composed into larger programs due to
the modular structure. The connectivity of such modular compositions can

be represented in a graphical manner.
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Graphs can be used to attribute a formal meaning to a program. An
operational definition specifies a permissible sequence of operations during the
execution of the program. A functional description encompasses the entire

program as one single function and is independent of the execution model.

It was mentioned earlier that the Unified Computation Graph model
defines parallel computations as declarative hierarchies. Similarly, the hierar-
chical resolution of data flow graphs is done by macroezpansion [DAV 82]. A
macrofunction is defined by specifying a name and associating it with a graph,
in a manner similar to the use of subroutines and procedures in conventional
programs. The macroexpansion in data flow programs may be viewed as a
run-time operation. A node in the data flow program graph can, in effect, be

replaced by its macro definition during the execution of the program.

Data flow program graphs can be represented by using IDeA. The
data flow model is a specific instance of the UCG model. The specification
of a data flow graph must additionally include the granularity of the SUC’s,
data/demand control, token/stream representation of data and static or dy-

namic graph structure. [BRO 85].



Chapter 3

Implementation

This chapter describes the layout algorithm, the underlying graphics

model, overall design and extensibility of the system.

3.1 Layout

The layout algorithm used by IDeA is a derivative of the hierarchical
layout algorithm developed by Sugiyama et. al. [SUG 84], and the modified
version used in the GRAB project [ROWE 86]. Figﬁres 3.1 and 3.2 show
graphs displayed by IDeA.

The first phase of the layout algorithm detects all the edges that
complete cycles and marks them as being cycle edges. This phase is compute
intensive, and can be disabled if the user has apriori knowledge that the graph
contains no cycles. The second phase assigns the nodes to levels. A node is
assigned to the current level if it has no incoming edges, or if all its parents
have already been assigned. The incoming edges that have been marked as

cycle edges are ignored in the levelling phase.

Long edges are edges that span across levels, and are broken up
by the introduction of dummy nodes in the intermediate levels. It is to be
noted that long cycle edges are also broken up in this phase. These dummy

nodes have no semantic meaning, but are treated by the layout algorithm

14
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as ordinary nodes. The introduction of the dummy nodes and edges ensures

that all edges connect nodes that are separated utmost by one level.

Figure 3.1 shows a broken long edge [sort,print/, and a broken long

cycle edge [indez,sort].

These dummy nodes and dummy edges provide an additional mea-
sure of flexibility in positioning the long edges such that the overall number
of edge crossings is reduced. The introduction of the dummy nodes (and the
creation of subgraphs as described later) necessitated the inclusion of a global

record of the true origin and the true destination of the edges.

IDeA has a built in notion of a current graph (or current subgraph).
The current graph is defined by the current root and the different levels in
the graph. This implicit assumption enforces the severe restriction that any
graph that can be displayed must have one root (thereby making the graph
at the highest level a subgraph in itself). If multiple roots are detected,
the user is prompted to choose a root. In the current implementation a
decision was made to retain the invisible portions of the layout in the data
structure if multiple root nodes are detected. While this approach provides
the user with an option to switch between ”different” graphs, the quality of
the layouts tend to deteriorate because large portions of the overall layout
are now invisible. However, the design decision is reasonable since we do not

expect to be frequently presented with multiple root graphs.

Figure 3.3 shows the layout of the graph at this stage of the algo-
rithm. A root node has been identified, all long edges have been broken up
and the nodes have been levelled. The horizontal skewing in figure 3.3 is due
to the presence of invisible multiple roots. The following phases determine

the positioning of the nodes within each of the levels.
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The horizontal positioning of the nodes in a level is based on a
measure called the barycenter [ROWE 86]. Each node is assigned an up
barycenter which is the average position of all its immediate predecessors,
and a down barycenter which is the average position of its immediate succes-

sors. Dummy nodes are included in the barycenter calculations.

The algorithm makes a downward pass over the graph, sorting the
nodes in each level by their up barycenters. This phase attempts to minimize
the edge crossings with respect to the predecessors of each of the nodes. Fig-
ure 3.4 shows the layout after the nodes have been sorted by up barycenters.
Similarly, an upward pass is made through the graph to sort the nodes with
respect to down barycenters. Figure 3.5 shows the graph after it has been
sorted by down barycenters. It is to be observed that the position of some
of the nodes may swing from one extreme to the other during these sorting
phases. Therefore, the subsequent sorting phases sort based on the average of
the up and the down barycenters. The algorithm can be made to terminate
either after a fixed number of such sorting phases, or when the edge crossings
fall below a threshold. The calculation of the number of edge crossings after
every phase is computationally expensive and has been avoided. Also, since
IDeA incorporates subgraphs, it is expected that the number of nodes will
typically be small enough to be displayed with a fixed number of passes. IDeA

makes two such sorting passes and the resultant graphs have been reasonable.

The last phase of the algorithm assigns the actual coordinates to
the nodes. Collisions at a particular coordinate in the horizontal positioning
are resolved on a FIFO basis. A minimum horizontal grid spacing is enforced
between the nodes to make the graphs more readable. The vertical spacing

between the levels is adjusted to meet a minimum slope requirement for the
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edges that connect the levels. This restriction prevents the appearance of
nearly horizontal edges in the graph. Figure 3.2 shows the final layout after

the call-graph has been processed entirely.

3.2 Graphics model

IDeA uses a graphics model based on the classical notion of a win-
dow/viewport pair [FOL 84]. A window is a rectangular portion of the coor-
dinate system in which the graph description has been stored. A wiewport is
the rectangular portion of the screen onto which the window and therefore
the window contents are to be mapped. A transformation is defined to map

coordinates from the window to the viewport.

Initially, IDeA defines the window to encompass the entire graph
structure and then calculates the scaling factors for the transformation. IDeA
always attempts to fit the entire graph in one screen-full. If the scaling factors
are extremely small (due to large windows), the scaling factors are restricted
to a pre-determined lower bound. Therefore, IDeA ensures that the graph

will always be displayed with reasonable dimensions.

As stated earlier, IDeA maintains a current root. Window calcula-
tions are done on the graph rooted at the current root. Therefore, the graph

is automatically scaled whenever the current root is changed.

IDeA does not maintain conventional display lists, but stores the
screen coordinates of the nodes to avoild unnecessary computation. IDeA
has the notion of a current display mode. The SCALE MODE mode is used
when the current window size has to be found and the scaling factors are to
be set accordingly. The FIT command uses the SCALE_MODE to "fit” the
graph on the screen. The REDISPLAY MODE is used to indicate that the
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scaling factors and the screen coordinates have already been computed and
the operation is simply to clear the screen and draw the graph again (as in

the case of the drawing window being corrupted).

The SCROLL.MODE indicates that IDeA is to perform a scrolling
operation. Scrolling is done very simply by offsetting the window according
to the user’s request without changing the size of the window itself. There-
fore, the scaling factors remain the same, though the drawing origin is now
different. Both horizontal and vertical scrolling are allowed. The CENTER,

command uses the scroll mode to center the graph on a chosen node.

The ZOOM_MODE indicates that the scaling factors have been
modified. The ZOOM IN operation increases the current scaling factors and
the ZOOM OUT operation decreases the scaling while keeping the window

size a constant.

The X Window system automatically clips the output to remain
within the boundary of the defined drawing surface [XLIB 86]. Therefore,
IDeA does not make any attempt to keep track of the current clipping rect-
angle when portions of the window are visible in the viewport. A more sophis-
ticated clipping mechanism will prevent the graphics routines from traversing

the invisible portions of the graph.

The graphics model does not accommodate multiple viewports. The

the user is always presented with a single view of the graph.

The graphics model and the graphics routines are designed to be
compatible with the hierarchical nature of the graph representation. Thus,
any of the graphics operations can be invoked at any stage of the graph

display.



3.3 Design and Extensibility
3.3.1 Object Types

IDeA defines three types of nodes:

1. Ordinary nodes (Schedulable Units of Computation).
2. Subgraph nodes.

3. Subgraph entry nodes (to enforce single entry into subgraphs).

A status bit indicates the node type and a programmer can easily define his

own node type by setting a new status bit.

Ordinary nodes usually have some associated code fragment. The
nodes store the code pointer as a file name and a line number. This can be

extended to indicate a data base record if IDeA is interfaced to a data base.

In the current implementation, IDeA allows one generic edge type.
Edges can be extended to include type information by the addition of a status
field. IDeA keeps track of the true start and the {rue end of an edge. This
information is useful to track edges that traverse subgraphs, and long edges
that are broken into a number of dummy edges. Edges may have associated

property lists.

The current graph structure stores the current root of the graph and
pointers to the different levels. Therefore, the graph can be accessed either
by a depth first traversal, or more efficiently by traversing the level lists if
hierarchy is not required. The current window extent and the scaling factors

are also stored in the current graph description.
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3.3.2 Functions

The current root is always highlighted with a double border. The
current root can be changed by using the MAKE ROOT command. This
command is extremely useful in isolating logical portions of the graph (as
opposed to zooming which isolates geometric portions of the graph). For
example, in a call-graph representation, the MAKE ROOT command can be
used to isolate a particular module and all other modules\ that it calls. Figure
3.6 shows the call-graph after the MAKE ROOT command has been invoked
on module BERROR in the original call-graph shown in Figure 3.2.

The COLLAPSE operation is used for the creation of subgraphs.
Any ordinary node and its descendants can be collapsed into a subgraph.
If there exist edges that begin at nodes not included in the subgraph, but
terminating in nodes that are to be included in the subgraph, IDeA enforces
single entry into the subgraph by the creation of a single entry node. If the
node BERROR in Figure 3.2 is to be collapsed, [BEABB,VECNRM] is an
external edge and will result in a graph as shown in Figure 3.7. If external
edges are detected in a COLLAPSE operation, the layout algorithm will be
invoked to determine the position of the new subgraph. The newly created
subgraph is highlighted each time the layout algorithm is invoked so that the
overall context is not lost. If external edges are not present, the newly created
subgraph node will simply replace the original node that was collapsed. The
issues to be addressed in resolving such external edges are discussed in the

context of call-graph collapse in the next chapter.

The DESCEND operation allows the user to descend down the hi-
erarchy into the chosen subgraph. Figure 3.8 shows the result of descending

into the subgraph BERROR in Figure 3.7. The single entry nodes have
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no associated code fragment and cannot be collapsed into subgraphs. The
OPEN EDGE commeand will display the true origin and the true destination
when invoked on an external edge in a subgraph.

I
A

¢}
>

he ASCEND operation allows the user to move up the hierarchy.
The ZXPZND operation treaks up a subgraph snd inserts all the nodes of
the subgraph in the current graph. Ixpanding the subgraph BERROR in
Figure 3.7 will yield the original graph s-own in ¥igure 3.2. The EXPAND

operation always invokes the layout algorithm.

The REPLICA'T'E operation can ce applied to ordinary leaf nodes.
This operation is useful in the parameterization of the nodes. It prompts the

user for lower and upper bounds on the indices.



Chapter 4

Results and Conclusions

Call graphs of existing Fortran programs were extracted in a related
project [EAS 88]. The display and manipulation of these call graphs by the
use of IDeA is described in this chapter. The results and conclusions are

summarized.

4.1 Call Graph Representations

A Call Graph is a directed graph specifying the control flow rela-
tionships between the various subroutines in the program. As described in
Chapter 2, one important procedural programming paradigm uses the subrou-
tine call as the basic unit of parallelism. Therefore, call graphs were identified

and used as an effective basis for interprocedural analysis.

The nodes in a call graph correspond to Fortran subroutines and
the edges specify the calling relationships. A facility is provided in IDeA to
enable the user to browse through and edit the code corresponding to each of
the nodes. Figure 4.1 shows the invocation of the OPEN_NODE command
on some of the nodes in the call graph. IDeA allows simultaneous viewing
and editing operations on more than one node at a given time. This feature,
while being extremely useful in perusing through multiple code fragments,

introduces read/write conflicts on the code fragments. If this is found to be a

30
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Figure 4.1: Multiple Edit windows in IDeA
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problem, the editing operations will have to be confined to one window only.
Also, provisions will have to be made to ensure reliable back-up of edited

code fragments for effective source control.

Subroutines have well defined linkages, and therefore, call graphs
can be used for hierarchical composition. IDeA takes a bottom-up approach
in the hierarchical specification of the call graphs. If it is possible to identify
a group of routines that can be executed independently, these routines can
be collapsed into a single subgraph that can then be scheduled for execution.
This collapse is typically done by identifying an independent subroutine and
collapsing the subgraph rooted at this node in the call graph. However, the
identification of these groups of subroutines in the call graph is complicated
by the call-by-reference semantics of Fortran. Also, it is not atypical in real
Fortran programs to have a set of "work-horse” routines that are called by
several other subroutines. The simplistic collapse approach suggested above
will not work well in this case because routines in a subgraph will have edges
coming in from nodes that do not belong in the subgraph. Figure 4.2 clarifies

the problem by an example.

In collapsing the call graph in Figure 4.2, it is assumed that the
routines SORT, MULTIPLY and VALIDATE can be executed concurrently.
The collapse of the nodes VALIDATE, INPUT and CHECK is therefore
independent of the other routines in the graph as shown in Figure 4.3. To
use the terminology of the Unified Computation Graph model, the subgraph
VALIDATE in Figure 4.3 is now a Schedulable Unit of Computation and can
be executed in parallel with other such units. However the similar collapse of
the MULTIPLY routine is complicated by the fact that the PRINT routine
is also called by the SORT routine. If it can be determined that the PRINT
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Figure 4.2: Subgraph collapse: Example 1
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routine has no persistent internal state, and if it does not affect any global
variables, a copy of it can be made (by using the REPLICATE operator) and
the collapse can proceed. The default COLLAPSE operation in IDeA does
not make this assumption and will perform the collapse as shown in Figure
4.4. Single entry into the collapsed subgraph MULTIPLY has been enforced
and the original edge [SORT,PRINT/, will have to traverse the subgraph
MULTIPLY. Figure 4.5 shows the subgraph MULTIPLY. Single entry into
the subgraph has been introduced by the addition of the SUB_IN node. The
OPEN_EDGE operator shows the true origin of the broken-up edge in the
message window. [t is to be noted that the newly introduced node, SUB_IN,
has no semantic meaning other than ensuring single entry. It cannot be op-
erated upon by the COLLAPSE operator any further, and has no associated
code fragment. The edge [SUB_IN, MULTIPLY] simply indicates that the
MULTIPLY node is the node that was originally collapsed. By default, all
subgraphs have the same name as the original node that was collapsed. If
each of the subgraphs is to be packaged as a schedulable unit of computation,
a mechanism is required to collect all the code fragments of the subgraph into
one logical unit. In the current implementation, the user will have to bring

up an edit window and perform this operation explicitly.

4.2 Conclusions

IDeA has established a framework for the display and manipulation
of graphical representations of programs. The initial target was to support
the conversion of sequential Fortran programs into parallel programs. The
initial functionality reflects this target, but the functionality of IDeA can

readily be expanded as knowledge concerning the use of graphically-oriented



|| Replicate |l New Root

% Collapse Opén EdgeliOpen Nodel Descend Ascend Expand

| Hedisplay Labels Zoom In || Zoom Qut [[Make Foot| Carter Undo || Fead File Quit

VALIDATE SORT

MULTIPLY COMPARE

36

Figure 4.4: Subgraph Collapse: Example 3
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methods for management of programs accumulates.

Hierarchical specification and resolution of computation graphs is
supported by IDeA. In a parallel programming environment, the specifica-
tion of computation graphs as declarative hierarchies is a powerful tool for

controlling complexity.

The representation basis used by IDeA enables the clean separa-
tion between the Schedulable Units of Computations and the relationships
between these modules. This representation will be invaluable, particularly
as IDeA is enhanced to support a more detailed analysis of the generated

computation graphs.

IDeA is a visual programming tool and provides the user with a more
intuitive view of a parallel computation. It is equipped with an extensive set
of operations for the display and manipulation of computation graphs. It
provides an automatic layout for any given computation graph. The layout
algorithm is fairly sophisticated and allows the display and manipulation of
arbitrary data flow and control flow graphs. It makes provisions for handling

cycles in the displayed graphs.

The effectiveness of IDeA for a real application was demonstrated
by the display of call graphs derived from sequential Fortran programs. The
bottom-up collapse of call graphs demonstrates the hierarchical capabilities
that have been built into IDeA. IDeA is envisioned as a front-end to the
Computation Oriented Display Environment. Therefore, future extensions
to IDeA must concentrate on interfacing IDeA to a data base containing
the computation graph descriptions. Such an interface will enable IDeA to

be used for extracting a computation graph that can then be mapped to

CODE.



Appendix A

User’s Manual

A.1 Overview

This section describes the user interface principles underlying IDeA.
IDeA is a menu-driven system, wherein the command selection is done by us-
ing a set of button menus. These button menus are located inside a menu
window positioned at the top of the graphical interface. Any of the commands
may be chosen by moving the cursor inside the appropriate button menu and
clicking on a mouse button. Each of the command modes has a unique cursor
to provide the user with a visual feedback of the current command mode.
The messages generated by IDeA are displayed in the message window im-
mediately below the menu window. If the message to be displayed is longer
than the message window, it is printed on the window from which the pro-
gram was invoked. The user’s attention will be drawn to such a message by
an appropriate message in the message window. All drawing operations will
be performed within the large rectangular region called the drawing window.
The vertical and horizontal windows bordering the drawing window are the
scrollbar windows. The elevators inside the scrollbars will be positioned ap-
propriately by IDeA. Text input is done by pop-up dialogue boxes. The text
input in the dialogue box can proceed only if the mouse cursor is inside the
dialogue box. IDeA automatically warps the mouse cursor into the dialogue

box, each time a dialogue box is mapped on to the screen. However, if the

39
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user moves the cursor outside the dialogue box for some reason, the cursor
must be re-positioned inside the box before the text input is resumed. The
end of text input is signalled by a click on the "Ok” button. Confirmation of
commands and user requests are done by the use of a pop-up notifier. Until
the user clicks on the notifier and confirms or cancels the request, all activity

will be frozen.

Some of the commands require the user to choose a node. The
selection of a node can be done in two ways. The cursor can be moved inside
the node to be selected and the left button of the mouse may be pressed to
signal the selection. Alternatively, if the user desires to make the choice by
using the node name (or node id) a click on the right button will bring up
a dialogue box that allows the user to type in the name (or id) to make the

required selection.

In the current implementation, resizing of the windows has been
disabled. However, IDeA will refresh and redisplay all its windows when
they are uncovered from underneath another window, or have otherwise been
damaged. The root window can be moved and positioned anywhere on the
screen. The command to move the window is dependent on the window

manger currently in use.

A.2 Commands
A.2.1 Getting Started

IDeA can be invoked by moving into the appropriate directory and
executing the command ¢dea. In the current implementation, the input graphs

to IDeA are stored in Unix files. The format of the input graphs is as follows:
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<name of file containing the source code>

/begin_nodes/

<node name> <ncde id> <line number>

/begin_edges/

<node id>,<node id>

In the current implementation, the source code for each of the nodes
in the graph must be present in one file ( a restriction imposed in the Fortran
parsing stages). The first line in the input file must contain the name of this
file. Each of the nodes in the graph must be given a unique name and a
positive integer id. The line number specifies the starting line of the code
for a particular node, so that the editor can be invoked to edit (or browse)
through this code fragment. The edges in the graph are specified as node

pairs.



A.2.2 File Commands

The READ FILE command creates a dialogue box and prompts the
user for an input file name. If the specified file cannot be opened, an error
message will be printed in the message window. If IDeA detects multiple
roots at the highest level in the input, the user will be prompted to choose
a root. A list of all the roots will be printed in the message window and the
user will be prompted to make the selection through a dialogue box. IDeA
always tries to scale the graph to fit inside one screen-full. However, if the
graph is too large, IDeA will display only a portion of the graph so that the
graph remains readable. The initial display of the graph will always contain
the root node, so that the context is maintained. Also, the root node will be
highlighted with a double edged border. After a graph has been read in, the
READ FILE command can be executed again at any stage if the user wants
to read another input file. IDeA will prompt for a confirmation of the request

before destroying the currently displayed graph.

A.2.3 Display Commands

The REDISPLAY command clears the drawing window and displays

the graph on the screen.

The LABELS command allows the user to turn on or turn off the
display of the node names and the node ids. The selection is done through a
set of button menus in a pop-up menu window. By default, the graphs will
be drawn with only the node ids turned on. A selection through the LABELS
command will be valid across different input graphs in a particular viewing

SesSio1.

The ZOOM IN command scales up the display of the current graph
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by a constant factor. The ZOOM OUT command is the inverse of the ZOOM
IN command - it scales down the display of the graph by the same constant

factor.

The CENTER command allows the user to select and position a
node at the center of the display area. This command allows the user to view

a node and its context conveniently.

The FIT command scales the entire graph to fit in one screen-full.
If the graph is too large, the FIT command enforces a minimum restriction

on the scaling factors so that the graph is always readable.

The UNDO command is used to undo the last executed command.

Most of the display commands can be undone.

Scrolling in the horizontal and vertical directions may be done by
moving the cursor into the appropriate scroll bar and clicking on the middle
button. The button click is interpreted such that if the pointer position is
N% of the way down the scrollbar, the portion of the graph N% from the top

is visible at the center of the window.

A.2.4 Graph Commands

The OPEN NODE command displays the code fragment correspond-
ing to the selected node in a terminal window. Initially, the terminal window
will be created as a bounding box and will have to be sized appropriately
by holding down the middle button. IDeA allows the creation of five such
edit/browse windows simultaneously. The name of the source file, the node
name and node id will be displayed in the title bar of the edit window. The »3
editor is invoked inside the terminal window. To close the window, the user

must exit from the editor. If any changes have been made, the code fragment
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will have to be saved from within the editor. Until all the edit windows are
closed, IDeA will not allow the user to read in a new graph or quit the current
session. If edit windows are buried beneath other windows on the screen, the

current window manager must be used to raise them to the top.

The OPEN EDGE command displays the true start and the true
destination of a selected edge. The edge is selected by moving the cursor
(small rectangular box) and clicking on the left mouse button. The edge

information will be printed in the message window.

The COLLAPSE operation allows the user to collapse the subgraph
rooted at a selected node into a subgraph node. Subgraph nodes and single
entry nodes cannot be collapsed any further. If the collapse operation has
to layout the graph again (due to external edges coming into subgraphs) the
newly created subgraph node will be made to blink a few times to maintain

context.

The EXPAND operation is the inverse of the COLLAPSE operation
and expands the chosen subgraph. The nodes in the subgraph will be added

to the currently displayed subgraph and the layout algorithm will be invoked.

The DESCEND operation allows the user to view the selected sub-
graph. The ASCEND operation displays the subgraph one level higher in the
hierarchy.

The NEW ROOT operation displays the list of multiple roots at the
highest level and prompts the user to choose a root through a dialogue box.

This command allows the user to view graphs with multiple roots.

The REPLICATE operation allows the user to make multiple copies

of a selected node. In the current implementation, only leaf nodes can be
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replicated. After a node has been selected for replication, the user will be

prompted for a lower index and upper index for the replication.
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