TOKEN SYSTEMS THAT
SELF-STABILIZE

Geoffrey M. Brown, Mohamed G. Gouda,
and Chuan-lin Wu

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-24 June 1988

Token Systems that Self-Stabilize

Geoffrey M. Brown, member, IEEE , Mohamed G. Gouda,
and Chuan-lin Wu, senior member, IEEE

ABSTRACT

We present a new class of mutual exclusion systems, in which processes circulate one token, and
each process enters its critical section when it receives the token. Each system in the class is
self-stabilizing; i.e. if it starts at any state, possibly one where many tokens exist in the system, it is
guaranteed to converge to a good state where exactly one token exists in the system. The systems
are better than previous systems in that their state transitions are non-interfering, i.e. if any state
transition is enabled at any instant, then it will continue to be enabled until it is executed; this makes
the systems easier to implement as delay-insensitive circuits.

INDEX TERMS: Delay-insensitive circuits, non-interference, self-stabilization, token systems.

This work was supported in part by the MCD fund of the University of Texas at Austin, in part by
IBM, in part by Dupont, and in part by MCC.

G. Brown was with the Department of Electrical and Computer Engineering, the University of
Texas at Austin, Austin, TX 78712. He is now with the School of Electrical Engineering, Cornell
University, Ithaca, NY 14853

M. Gouda is with the Department of Computer Sciences, the University of Texas at Austin.

C-1 Wu is with the Department of Electrical and Computer Engineering, the University of Texas at
Austin.

I. Introduction

In 1973, Dijkstra coined the term "self-stabilizing" to distinguish any system that has the
following property: if the system starts at any, possibly illegitimate state, it is guaranteed to
converge to a legitimate state in a finite time [2]. Self-stabilizing systems are attractive for two
reasons. First, they are highly robust in the face of transient errors. Second and most important,
the existence of self-stabilizing systems demonstrates that the usual reliance on the initial state of a
system to establish correctness is in principle unnecessary.

In this paper, we present a class of self-stabilizing mutual exclusion systems in which
processes are expected to circulate exactly one token. Each system is self-stabilizing in the sense
that, regardless of the number of tokens that exist initially, the system is guaranteed to reach a state
in which only one token exists. Our interest in token systems that are self-stabilizing is two-fold.
First, token systems have many applications in distributed systems, and they are widely used in the
protocols of local area networks. Thus, it is always desirable to make them as fault-tolerant as
possible. Second, the traditional method of insuring fault-tolerance of a system, by adding fault
detection and recovery procedures to it, seems to result in a complicated system. Designing such a
system with the view that all its states are possible, but not necessarily desirable, initial states can
lead to a system that is inherently simple, yet fault-tolerant.

The problem of constructing self-stabilizing token systems has been considered by Dijkstra
in his original papers on self-stabilization, and he discussed the construction of three such systems.
However, in establishing the correctness of each system, Dijkstra assumed the existence of a
central demon that repeatedly selects one process at random, then allows it to execute one state
transition while freezing the other processes [3],[4]. The need for this central demon results from
the fact that the state transitions of neighboring processes are interfering, i.e., an enabled transition
in one process can be disabled by the execution of an enabled transition in a neighboring process.
The central demon, then, insures that enabled interfering transitions are executed in sequence and
not in parallel. Problems arise if one tries to implement Dijkstra's systems in asynchronous
hardware. First, implementing a central demon as a separate sequential machine violates the
philosophy of system distribution. Second, although the central demon can be implemented by
introducing local mutual exclusion mechanisms that permit a process to execute only when its
neighbor processes are disabled from execution, this implementation would require the use of
arbiters, which are better avoided. Thus, it is desirable to design self-stabilizing token systems
whose correctness is not based upon central demons, i.e., systems whose state transitions are

non-interfering in the following sense: if a state transition is enabled, it continues to be enabled
regardless of the execution of other transitions, until it is executed.

We present, in this paper, a sequence of three self-stabilizing token systems whose state
transitions are non-interfering. The first system is the most succinct. Each subsequent system is a
refinement of its predecessor. The last system in the sequence is a self-stabilizing,
delay-insensitive circuit [11]. Two other interesting variations of the original system are discussed
at the end.

In a related work, Lamport championed the cause of self-stabilization [7], and later presented
a class of self-stabilizing mutual exclusion systems [8]. In his systems, each process can
communicate directly with every other process; thus the system topology is a fully-connected graph
rather than a simple cycle or a linear chain as in the case of our token system. This makes his
problem easier than ours. Kruijer has presented a self-stabilizing token system in which the system
topology is a tree [6]; the state transitions of his system are interfering.

The paper is organized as follows. In Sections II and I1I, we present our first system and its
correctness proof, respectively. Then, the second system and its relationship with the first system
are discussed in Sections IV and V, respectively. In Section VI, we present a delay-insensitive
asynchronous circuit that implements the second system. Finally, in Section VII, we discuss our
work and present two interesting variations of the first system.

I1. First System

We consider an array of n, n=2, communicating processes: the left-most process is called
bottom, the right-most process is called top, and the processes in between are identical and each of
them is called middle. Bottom communicates with its right neighbor; top communicates with its left
neighbor; and each middle communicates with both its left and right neighbors. The processes
communicate using synchronous, CSP-like primitives [5], i.e., for the communication to take place
between two adjacent processes, each process should be ready to communicate with the other.

The processes execute the following programs.

bottom 3 * G R W]
middle : *[L; G, R; W]
top % L, C 1

The operators and commands in these programs can be defined informally as follows.

* signifies indefinite looping.
; signifies sequential composition.

C is the command to execute the process's critical section. (Executing C is equivalent to
having possession of a token.)

R isa command to communicate with the right neighbor; it causes the executing process to
wait until its right neighbor reaches L; then both the executing process and the right
neighbor move simultaneously to their next commands.

W is a waiting command; it causes the executing process to wait until its right neighbor
reaches L; then the executing process moves to the next command leaving the right
neighbor at L. (Martin [9] was the first to notice the importance of such waiting
commands in the CSP framework; he calls them probes.)

L is a command to communicate with the left neighbor; it is similar to R except that it is
concerned with the left neighbor instead of the right.

As we show later, this system has a number of interesting properties, including
self-stabilization, but before we list and verify these properties, we need to define the system in
more formal terms.

The system is defined formally by a finite number of system states and state transitions. A
system state is any string of symbols that satisfies the regular expression:

(Ch+Rp+Wp)Ly C Ry # W)W 2. (Lt C)
where n is an integer greater than 1 (recall that n signifies the number of processes in the system),
and the subscripts b, m, and t indicate bottom, middle, and top, respectively. Since each system
state is a string of n symbols taken from a finite domain, and since n is fixed, the number of
distinct states is finite. The special state C(L)n”1 is called the home state of the system. (We adopt

the convention of omitting symbol subscripts whenever they can be deduced from the context; thus

we write the home state C(L)™"1, instead of the more specific Cb(Lm)n‘ZLt.)

The state transitions of the system are defined as follows. (Leti e {bm} andje {m,t}.)

g G - Ry (Bottom or middle executes critical section)
t1: G - L (Top executes critical section)
ty: RiLj - WiCj (Two adjacent processes communicate)

ta: WbLj - CbLj (Bottom stops waiting on right neighbor)
ty: Wij - Lij (Middle stops waiting on right neighbor)
A state transition x->y is enabled at the kth symbol, 1 < k< n, of a system state s if and only

if there exist substrings u and v such that u has (k - 1) symbols and s = u.x.v. Notice that if ux.v
is a system state and x—Yy is a state transition, then u.y.v is a system state; in this case, the state

u.y.v is said to follow the state u.x.v over the transition x—»y. (At this point, the reader is
encouraged to check that these five state transitions faithfully represent the three programs: bottom,
middle, and top.)

A system state s' is reachable from a system state s if and only if there is a sequence of
system States S(, $1, ..., Sy_1, such that sy =, 8, 1 = s', and sy, 1 follows sy for each k. Starting

from a state s, the system will reach a state s' within k, k>0, transitions if and only if s'=s, or k>1
and starting from each state that follows s, the system will reach s' within (k-1) transitions.
Starting from s, the system will reach s' if and only if there exists a nonnegative k such that starting

from s, the system will reach s' within k transitions.

IIL. Correctness of First System

In this section we prove that our system satisfies the properties of: non-interference, liveness,
mutual exclusion, progress, and self-stabilization.

Theorem 1 (Non-interference): For every transition t, if t is enabled at the kth symbol of a
system state s, and if a system state s’ follows s over a transition t' enabled at the k'th symbol of s
where t 2 t' or k2 k', then t is enabled at the kth symbol of s'.

Proof: The proof is by considering the five cases: t = tpt=t,t=ty, t=t3, andt=14. If tgor
t1 is enabled at the kth symbol of s, then this symbol is C and no other transition can modify it. If

t5 is enabled at the kth symbol of s, then the kth and (k+1)th symbols are R and L respectively;

thus, both these symbols can be modified by t5 only. If t3 or t4 is enabled at the kth symbol of s,

then the kth and (k+1)th symbols are W and L respectively, and no other transition can modify
these symbols. []

Theorem 2 (Liveness): Atevery system state, at least one state transition is enabled.

Proof: Lets be any system state. If s has one or more C symbols, then tg or tq is enabled ats.

If s has no C symbols, then its left-most symbol is either R or W and its right-most symbol is L.

Thus, s must have two adjacent symbols of the form RL in which case t, is enabled at s, or of the

form WL in which case either t3 or t4 is enabled at s. [1

Theorem 3 (Mutual Exclusion): Every system state that is reachable from the home state has at
most one C symbol.
Proof: The regular expression (W)k.(L +C+R+ W).(L)n'k‘l, forsome k, O<k=<n-1,isan
invariant that is satisfied by all states that are reachable from the home state. This is because

i. the home state, C(L)n'l, satisfies this regular expression when k =0, and

ii. for each system state s that satisfies this regular expression and each system transition t, if

system state s' follows s over t, then s’ satisfies this regular expression.

Since every state that satisfies this regular expression has at most one C symbol, Theorem 3
follows. i1

Theorem 4 (Progress): Foreachk, 1< k< n, starting from the home state the system will reach

a state in which the kth symbol is C.
Proof: The theorem follows from the next assertion which can be proved by inspection. For
each k, 1 £ k= n-1, starting from the state (‘\W)k“lC(L)n’k , the system will reach state

(W)kC(L)n'k'1 over two transitions, tp followed by ty.
0 2 []

Theorem 5 (Self-Stabilization): Starting from any state, the system will reach the home state.
Proof: We carry out the proof in three steps.

i. First, we show that starting from any state, the system will reach a state of the form C.x,
where x is any substring.

ii. Then, we show that starting from any state of the form C.x, the system will reach the state
wyr-Ic,
iii. Finally, we show that starting from the state (W)H‘IC the system will reach the home state.

Proof of i: We define a non-negative rank on the system state s as follows:

rankof s = the integer resulting from replacing the symbols of s by integer digits:
each Cis replaced by 3,
each R is replaced by 2,
each W is replaced by 1, and
each L is replaced by 0.

Consider how the transitions tg, t1, ty, and t4 modify the value of the rank. to replaces one
3 by one 2, and tq replaces one 3 by one 0 in the rank; ty replaces 20 by 13, and t, replaces 10 by

00 in the rank. Because all transitions, except t3, reduce the value of the rank, and the value of the

rank can never become negative, and some transition is always enabled (from Theorem 2), then
transition t3 must eventually be executed. The system state that follows the execution of t3 must be

of the form C.x, where x is a substring.

Proof of ii: A state of the form C.x satisfies the regular expression (W)j.C.y, 0=j=<n-2;thusitis
sufficient to show that starting from any state s that satisfies (W).C.y, 0 < j < n-2, the system will

reach a state that satisfies (W }i""l.C.z, 0 = j< n-2. First, transition t3 cannot be executed at s, If
any of the transitions tq, ty, and t4 is executed at s, then the resulting state also satisfies this same
regular expression but has a smaller rank value than that of s. Therefore, eventually ty is executed
leading the system to a state that satisfies the regular expression (W)j.R.y, 0<j<n-2. Now consider
a state s' that satisfies this last regular expression. Transition t3 cannot be executed at s'. If any of
the transitions tp), t1, and ty is executed at s', then the resulting state also satisfies this same regular
expression but has a smaller rank value than that of s'. Therefore, eventually t5 is executed leading

the system to a state that satisfies the regular expression (W)J+1.C.z, 0<j=n-2.

Proofiii: Starting from the state (W)2-1C, the system will reach the home state c@)™ L, over the
sequence of transitions ty, followed by (n-2) of ty, followed by t3.

[]
IV. Second System

As mentioned earlier, the advantage of the preceding system over Dijkstra's systems [3] lies
in the fact that its transitions are non-interfering, which makes it easier to implement in hardware.
But, despite its freedom from interference, this system still cannot be easily implemented in

hardware. This is because one of its state transitions, namely ty, requires that two adjacent

processes change their local states simultaneously, a requirement that cannot be accomplished using
delay-insensitive circuits. Thus our next step is to modify the system such that each of the
transitions of the modified system can only change the local state of one process.

The modification consists of replacing the CSP communication commands, which are
responsible for the simultaneous activities of adjacent processes, by appropriate waiting commands
in the process programs. The processes of the modified system, henceforth called the Second
System, execute the following programs.

bottom :: *[D;S;T; X]
middle :: MM N, D S, T X
top e *IM;N; D 1

The commands in these programs can be defined informally as follows:

D is the command to execute the process's critical section.

S(orT,or X) isa waiting command that causes the executing process to wait until its right
neighbor reaches the command N (or any command other than N, or the
command N, respectively).

M (or N) is a waiting command that causes the executing process to wait until its left
neighbor reaches any command other than T (or the command T,
respectively).

Formally, a state of the Second System is a string of symbols that satisfies the regular
expression:

Dy + Sp + Ty + Xp). M, + N + Dy + S+ Tyt I>{m)ﬂ‘2,(Mt + N+ Dy

The state transitions of the system are defined as follows. (Let i € {b,m} andj e {m,t}.)

u0: Dy > 55 (Bottom or middle executes critical section)

ul: D, - M (Top executes critical section)

u2: S iNj - TiNj {(Bottom or middle at S stops waiting when right neighbor is N)

ud: T;(=N) = X (Bottom or middle at T stops waiting when right neighbor is not N)
ud: Xij -> Dij (Bottom at X stops waiting when right neighbor is N)

us: XmNj -» MmNj (Middle at X stops waiting when right neighbor is N)

ub: (—1T)Mj - Nj (Middle or top at M stops waiting when left neighbor is not T)

u7: TiNj - TiDj (Middle or top at N stops waiting when left neighbor is T)

We now define the concept of a transition being enabled at the kth symbol of a state s. Since

transitions ug, uy, Uy, Uy, ug, and uy are similar to the transitions of the First System, our

previous definition still applies to them. Transition uz, T;(=N) - X, is said to be enabled at the
kth symbol of a state s if the kth symbol of s is T and the (k + 1)th symbol of s is any symbol other

than N. Similarly, transition ug, (= T)Mj -5 Nj, is said to be enabled at the kth symbol of a state s

if the kth symbol of s is M and the (k - 1)th symbol of s is any symbol other than T.

If a transition u of the form x-y, x(. . .)=y, or (..)x-y is enabled at a state a.x.b, then the
state a.y.b is said to follow the state a.x.b over transition u. This concept of "a system state
following another” can be used to define the concepts of "a system state being reachable from
another” and "the system reaching a state starting from another” as we did for the First System.

V. Correctness of Second System

In this section, we prove that the Second System satisfies the same five properties that we
proved for the First System. However, rather than prove these properties from scratch as we did
for the First System (henceforth denoted FS), we prove that the Second System (henceforth
denoted SS) is, in some sense, equivalent to FS, and therefore it satisfies the required properties

since FS satisfies them. In this way, the relationship between the two systems is made explicit.
First we define a mapping f from the system states of SS to the system states of FS. For
each state s of SS, the corresponding state f(s) of FS is constructed from s as follows:

Each D isreplaced by C.

Each S is replaced by R.

Each T whose right neighbor is not an N is replaced by W.
Each T whose right neighbor is an N is replaced by R.
Each X is replaced by W.

Each M is replaced by L.
Each Nis replaced by L.

We now show that the mapping f satisfies some useful properties.

Lemma 1: The kth symbol of a state s of SS is D if and only if the kth symbol of state f(s) of
FS is C.
Proof: The lemma is a direct consequence of mapping f. [1

Lemma 2: If s and s’ are system states of SS such that s' follows s, then either f(s) = f(s"), or
f(s") follows f(s) over some state transition of FS.

Proof: The proof is by considering the eight cases: s' follows s over uy, fork =0, .. .,7.

Fork =0, f(s') follows f(s) over tg.
For k = 1, f(s') follows f(s) over t;.

Fork =2, f(s") = {(s).
Fork =3, f(s') = f(s).
For k =4, {(s’) follows f(s) over t3.

Fork =5, f(s') follows f(s) over ty.

9

Fork =6, f(s") = 1(s).
For k=7, f(s') follows f(s) over ty. i1

Lemma 3: Every sequence sp, Sq,. - - of the states of SS, where for each k, si, 1 follows s
and f(sy) = f(s41), is finite.
Proof: Let sg, sy, ... bea sequence of the states of SS such that for each k, sy, 1 follows s
and f(8y..1) = f(sy). From the proof of Lemma 2, if s follows over ug, uy, uy, us, or uy, then
f(sy) # f(sp41). For every k in the sequence, sy, 1 follows s over uy, u3, or ug. Define the
following non-negative rank for each state s, in the sequence:

rank of s = 2*(#S) + #T + #M
where #S (or #T or #M) is the number of S (or T or M) symbols in sj.. Transition uy replaces one

S symbol by one T symbol, u3 replaces one T symbol by one X symbol, and ug replaces one M

symbol by one N symbol. Hence each of these three transitions reduces the rank, and the sequence
is finite. L]

Each state of SS that is mapped by f to the home state of FS satisfies the regular expression:
D.(M + N)n'l; we call each such state a home state of SS. Since SS has more than one home state,
the definitions of: mutual exclusion, progress, and self-stabilization for FS need to be modified
before they can be used for SS; in particular, each mention of "the" home state should be replaced

%, 8t

by "a" home state. The definitions of the two other properties, namely non-interference and

liveness, remain unchanged. We are now ready to establish the correctness of SS.

Theorem 6 (Non-interference of SS): For every transition u , if u is enabled at the kth symbol
of a system state s of SS, and if a system state s’ follows s over a transition u' enabled at the k'th
symbol of s where u 2 u' or k 2 k', then u is enabled at the kth symbol of s'.

Proof: The proofis similar to that of Theorem 1. I

Theorem 7 (Liveness of SS):At every system state of SS, at least one state transition is enabled.

Proof: Lets be any system state of SS. If s has at least one D symbol, then ug or uy is enabled

10

at s. If s has no D symbols, then its left most symbol is S, T, or X, and its right most symbol is
either M or N. Therefore s has two adjacent symbols of the form:

SM (in which case ug is enabled),
SN (in which case u, is enabled),
TM (in which case u3 is enabled),
TN (in which case uy is enabled),
XM (in which case ug is enabled), or

XN (in which case uy or us is enabled). [1

Theorem 8 (Murual Exclusion of SS): Every system state of that is reachable from a home state
of SS has at most one D symbol.
Proof: The theorem follows from Theorem 3 and Lemmata 1, and 2. [

Theorem 9 (Progress of SS): Starting from a home state of SS, the system will reach a state in
which the kth symbol is D, foreach k, 1 £ k< n.
Proof: The theorem follows from Theorem 4 and Lemmata 1, 2, and 3. []

Theorem 10 (Self-Stabilization of SS): Starting from any state of SS, the system will reach a
home state.
Proof: The theorem follows from Theorem 5 and Lemmata 2 and 3. []

VI. Implementation

The Second System can be implemented as a delay-insensitive circuit. In particular, each
process can be implemented as an asynchronous sequential machine that has one input line from,
and one output line to each neighboring machine. For convenience, we call the machine that
implements process bottom (middle, or top) machine bottom (machine middle, or machine top
respectively). The system configuration is shown in Fig. 1. Notice that each connecting wire has
two names, one name is used in discussing the machine from which the wire is output, and the
other is used in discussing the machine to which it is input.

11

nin;, ,nout nin nout

machine
top

machine v machine
bottom v middle

tout! 'in tout tin

P
o w, e wr o e e e

Fig. 1 Implementation

We start by defining machine middle; later, we show that machines bottom and top can be
constructed by slight modifications to machine middle. The state of process middle has six distinct
values: M, N, ..., or X. Thus, machine middle must have at least three flipflops to store the
current value of its state. We design machine middle to have three flipflops, named "a", "b", and
"¢"; thus, its state has eight distinct values. To ensure self-stabilization, each of these values
should correspond to a value of the state of process middle. (If there is a value of the state of
machine middle that does not correspond to a value of the state of process middle, then starting the
machine at this value does not necessarily guarantee that the system will converge to a good state,
violating the requirement of self-stabilization.) We choose the mapping from the states of machine

middle to those of process middle shown in Table L.

Table I
Correspondence between the states of machine middle and those of process middle

State of Machine State of Process
Middle (abc) Middie
000 M
001 N
011 D
010 D
110 D
111 S
101 T
100 X

12

This mapping satisfies the property that any legal change in the value of the state of process
middle, i.e., Mto N, NtoD, ..., or X toM, can be realized by changing the value of only one
flipflop in machine middle. (This is not the only mapping that satisfies this property, and we could
equally well have used any other mapping that satisfies this property.)

Machine middle has two outputs named "nout” and "tout"; their values depend upon the
machine's state as shown in Table I

Table I

Output of machine middle

nout = 1 if current state of middle = 001
(which corresponds to state N)
=0 otherwise
tout =1 if current state of middle = 101
(which corresponds to state T)
=0 otherwise

From the state transitions of the Second System, one can factor out the state transitions of
process middle. These can then be translated, taking into account the values of the two inputs nin
and tin, into state transitions of machine middle. This translation is straightforward with one

exception, the transition D - S of process middle is translated into three transitions of machine
middle:

011 - 010
0160 - 110
110 - 111

The resulting state transitions of machine middle are shown in Table III. ("x" denotes a don't care

value.)

13

Table IIT

Transitions of machine middle

Current Current Next
State Input State
(abc) (nin tin) (abc)
000 x 0 001
001 x 1 011
011 X X 010
010 X X 110
110 X X 111
111 1x 101
101 0 x 100
100 1 x 000

So far, we have only encoded process middle in a binary form; it remains now to show how
to implement this binary form as an asynchronous machine. First, from TablesI and II, we get

nout=a' - b' - c,and
tout=a - b -c,
where " a' " denotes the boolean negation of "a", and " - " denotes the boolean "and" operator.
Second, by choosing flipflops "a", "b", and "¢" to be SR-flipflops, Table III yields the following
equations for the two inputs S; and R; (i = a,b,c) of each flipflop. ("+" is the boolean "or"

operator.)

14

a=a’~b-c’

Ra=a-b’-c’-nin

Sb=a'-b'-c-tin
Rb=a- b- ¢-nin

Scg=@ - -b-c-tin)+@- b- c)
R.,=(@- b -c-nin)+(@ -b-c)
A schematic for machine middle is shown in Fig. 2; it has the three flipflops a, b, and ¢, two

combinational circuits y, and z, and nine internal wires: k, Sy, and Ry, where k = a,b, or c.

<G
|52 flipflop 2
| Ra |, >
i n tout
=_tm_.> comb. | _Sb g comb. f—
o flipflop b
. ¢ .
nin CH;‘“ Rb b < c1r<z;u1t nout
4S
| OC) flipflop c
Rc c b

Fig.2 Schematic of machine middie

We design machines bottom and top to resemble machine middle; in particular, each is
assigned three flip-flops, also named "a", "b", and "c" for convenience, to store the current state.
Tables IV and V define the correspondence between the states of machines bottom and top and
those of processes bottom and top, respectively.

15

Table IV
Correspondence between the states of machine

bottom and those of process bottom

State of Machine State of Process
Bottom (abc) Bottom
000 D
001 D
011 D
010 D
110 D
111 S
101 T
100 X
Table V

Correspondence between the states of machine top

and those of process top

State of Machine State of Process
Top (abc) Top
000 M
001 N
011 D
010 D
110 D
111 D
101 D
100 D

16

The output and transition tables for bottom and top are identical to Tables II and III
respectively.
From the transition table of machine bottom, the only way bottom can make a transition from
state 000 is when tin = 0, and the only way it can make a transition from state 001 is when tin = 1.
(Otherwise, the state transitions of bottom are independent of tin.) But in the first case nout = 0,
and in the second nout =1. Therefore, we choose
tin = nout
for machine bottom. Similarly from the transition table of machine top, we choose
nin = tout'
for top. The resulting schematics for machines bottom and top are shown in Fig. 3. This completes
our implementation of the self-stabilizing token system as a delay-insensitive circuit.

. § 4 nout nin
noutl Same as < \<¢—— Sameas
machine X N machine
- 3 1
fin i v tin i
middle toutl : i middle tout
H 1)
(a) (b)

Fig.3 Schematics of machines (a) bottom and (b) top

The above circuit is not self-stabilizing in the absolute sense since it is not guaranteed to
converge to a legitimate state starting from any state. For example, if the circuit starts at a state in
which the two inputs of a flipflop are both "1", then the circuit's behavior is indeterminate. That
our circuit is not self-stabilizing in the absolute sense should not be surprising; in fact, by extending
the above argument, it can be shown that no circuit, synchronous or asynchronous, is
self-stabilizing in the absolute sense. Therefore we have to make some assumption concerning the
initial state of our circuit. Moreover, to ensure that at no instant during the circuit's execution the
two inputs of a flipflop are both "1", we need to make an assumption that relates the "delays” of the
combinational circuits and flipflops in each sequential machine in the circuit. (Such an assumption

does not violate the delay insensitivity of the circuit provided it does not relate the delays of
combinational circuits or flipflops in different machines. [11]) In order to state these two
assumptions we need the following definitions.

We assume that at each instant each wire has a single value, either "0" or "1." A wire that is
an output of a combinational circuit or a flipflop C is said to be in equilibrium at some instant if and
only if its value is consistent with the function of C and the values of the input wires of C at that
instant. We assume that if a wire is in nonequilibrium with value v at some instant t, then either it
is in nonequilibrium with value v at all preceding instants, or there is an instant t' preceding t such
that the wire is in equilibrium with value v at t', and it is in nonequilibrium with value v at every
instant between t' and t.

Any wire that is an output of a combinational circuit C and is in nonequilibrium at some
instant will return to equilibrium within some maximum time period called the delay of C. Any
wire that is the output of a flipflop F and is in nonequilibrium at some instant will return to
equilibrium only after it has been in nonequilibrium for some minimum time period called the delay
of F provided that the inputs of F have fixed values during the period in which the wire is in
nonequilibrium. We are now ready to state the two assumptions upon which the correctness of our
circuit is based:

0. Initially all wires that are outputs of combinational circuits are in equilibrium.
1. The delay of combinational circuit y in a machine is less than
minimurmy _ a’b’c(delay of flipflop k) in the same machine.

(Notice that the delay of combinational circuit z, which connects each machine with its neighboring
machine remains unconstrained.)

With these assumptions, it can be shown that the two inputs of any flipflop in the circuit
cannot both be "1" at any instant during the circuit's execution. Also, it can be shown that the
inputs of each flipflop cannot change so long as its output is in nonequilibrium. In other words,
the circuit behaves in accordance with the three transition tables III, IV, and V.

VII. Discussion

We have developed a self-stabilizing delay-insensitive circuit that implements a token system.
We believe that the task of developing this circuit was greatly simplified by starting with systems
whose state transitions are non-interfering.

18

The token systems that we presented are simple. Each process in the First System has at
most three noncritical section states; this is the smallest number of states known for any such
system. In this regard, our First System matches Dijkstra’s best system [3]. Each process in the
Second System has at most five noncritical section states. Finally, our hardware implementation
requires only one type of machine (recall that machines bottom and top are created by making
external modifications to machine middle), and only two wires between each pair of neighboring
machines. The simplicity and robustness of our systems should demonstrate the elegance of
self-stabilization in achieving fault-tolerance.

The First System invites a number of interesting variations; we consider here two of them.
The first variation reduces the potential number of state transitions that occur between one process
relinquishing the token, i.e. leaving state C, and another process receiving the token, i.e. entering
state C. The second variation demonstrates that the waiting commands used in our system are not
necessary, and can be replaced by using CSP-primitives.

In our system, the token propagates from left to right; then, once top relinquishes the token,
(n-1) state transitions must occur before the next process, bottom, receives the token and enters
state C. By modifying the code of process middle to become:

middle w ¥L; G R, W C]

only one state transition occurs between any process relinquishing the token and another process
receiving it. In this system, the token travels in a ping-pong fashion, propagating from left to right
then from right to left, reflecting off bottom and top. An apparent problem with this variation is
that it is not strictly fair; each middle process will receive the token twice as often as bottom or top.

The second variation, due to Ira Forman at MCC, implements our System without using
waiting commands. The processes execute the following programs:

bottom o ¥ Ro— CIlIR1 = skip]
middle » *[Ro-> Lo; L1; CIR1 > skip]
top w ¥ Lo L1, C]

The new operators can be defined informally as follows.
Li(i=0,1) is a command to communicate with the left neighbor. Li causes the executing

process to wait until its left neighbor reaches Ri then both the executing process
and the left neighbor move to their next commands.

19

R0-S0 1l R1-»S1 indicates waiting for the right neighbor to reach either Lo, in which case the
executing machine executes Rothen So, or L1, in which case the executing
machine executes R1 then S1.

skip is the command to do nothing.

In the original system, commands R and W both test the state of the right neighbor of the
executing process; the difference between the two commands is that W leaves the neighbor at
command L, while R allows the neighbor to progress to command C. In this variation, a process
that communicates with its right neighbor is able to determine which of the two L commands its
right neighbor executed; one of the L commands, Lo, leaves the neighbor executing an L command,
namely L1, while the other L command, L1, allows the neighbor to progress to command C. In
effect, a single bit is transferred from right to left when two neighbor processes communicate.

The correctness of these two variations can be established by showing that each is, in some
sense, equivalent to the First System as we did for the Second System.

For other examples of self-stabilizing systems and protocols we refer the reader to [1] and
[10].

Acknowledgements

We are indebted to Edsger W. Dijkstra for without his guidance this paper would not have
been possible. We are thankful to the members of the Austin Tuesday Afternoon Club for
suggesting many improvements in our presentation; in particular we would like to thank K.M.
Chandy, A. Emerson, W. Hesselink, C.A.R. Hoare, W. Hunt, S. Lam, C. Lengauer, J. Misra,
and A. Pnueli. We would also like to thank P. Attie, M. Evangelist, 1. Forman, S. Katz, and J.
Peterson of MCC for many helpful comments. The comments of the anonymous referees are also
appreciated.

20

(1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

References

G. M. Brown, "Self-Stabilizing Distributed Resource Allocation,” Ph.D. Dissertation,
Department of Electrical and Computer Engineering, University of Texas at Austin, 1987.

E. W. Dijkstra, "EWD391 Self-Stabilization in Spite of Distributed Control,” reprinted in
Selected Writings on Computing: A Personal Perspective, Berlin: Springer-Verlag, 1982,
pp-41-46.

E. W. Dijkstra, "Self Stabilizing Systems in Spite of Distributed Control,” Communications
of the ACM, vol. 17, pp. 643-644, November 1974.

E. W. Dijkstra, "A Belated Proof to Self-Stabilization,” Distributed Computing, vol.1,
pp. 5-6, January 1986.

C. A. R. Hoare, "Communicating Sequential Processes,” Communications of the ACM,
vol. 21,, pp. 666-677, August 1978.

H. S. M. Kruijer, "Self-Stabilization (In Spite of Distributed Control) in Tree-Structured
Systems," Information Processing Letters, vol 8,, pp. 91-95, February 1979.

L. Lamport, "Solved Problems, Unsolved Problems, and Non-Problems in Concurrency,
Invited Address,” Proceedings of the Third ACM Symposium on Principles of Distributed
Computing. pp. 1-11, Vancouver, Canada, August 1984.

L. Lamport, "The Mutual Exclusion Problem: Part II-Statement and Solutions,” Journal of
the ACM, vol. 33, pp. 327- 348, April 1986.

A. J. Martin, "The Probe: An addition to Communication Primitives," Information Processing
Letters, vol. 20, pp. 125-130, April 1985.

N. Multari, "Self-Stabilizing Protocols,” Ph.D. Dissertation, Department of Computer
Sciences, University of Texas at Austin, in preparation, 1987.

C. Seitz, "System Timing" in Introduction to VLSI Systems by C. Mead and L. Conway,
Reading, Massachusetts: Addison-Wesley, 1980.

