FORMAL SPECIFICATION OF
REAL-TIME SYSTEMS

Farnam Jahanian, Aloysius K. Mok,
and Douglas A. Stuart

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-25 June 1988

Formal Specification of Real-Time Systems

Farmam J ahanian?, Aloysius K. MokJf and Douglas A. Stuart'

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

Key words: Real Time Logic, real-time systems, specification, verification, timing COnStraints

Abstract

This paper presents the formal syntax and semantics of Real Time Logic (RTL), a
logic for the specification of real-time systems. An example illustrating the specification
of a system in RTL is presented, and natural deduction is used to verify that the system
satisfies a given safety property. RTL is shown to be undecidable by a reduction from
the acceptance problem for two-counter machines. Decidable subclasses of the logic are

also discussed.

1. Introduction

As real-time safety-critical functions in even civilian applications come under
software control, e.g., the European Airbus, the reliability of software that must meet not
only functional but also stringent timing requirements has become an important issue.
One major area of research addressing software reliability has been formal verification
methods which attempt to prove the correctness of programs with respect to systems
specifications. Past research, however, has concentrated on the relative timing of events
and there has been relatively little work on verifying properties which involve absolute
(wall-clock) time. Since absolute timing properties can be important in the safe opera-
tion of systems, there is a need for applying formal techniques to verifying absolute tim-
ing properties. (Leveson and Harvey [Leveson & Harvey 83] have documented a case
study where a NASA satellite could have been damaged if the time interval between two
occurrences of an event is too short. For a comprehensive survey of software safery

issues, see [Leveson 86].)

1 Supported in part by a research grant from the Office of Naval Research under ONR contract number NOO014-
85-K-0117, and by a University Research Initiative grant under ONR contract number N00014-86-K-0763.

2.

First presented in [Jahanian & Mok 86a], RTL (Real Time Logic) is one such for-
malism. It is a first order logic with a predicate which relates the events of a system to
their time of occurrence. RTL was developed as part of the SARTOR project [Mok 85],
the goal of which is to provide a unified environment for the development and
verification of correct real time programs. Since then, a procedure has been developed to
determine whether the formulas of one useful subset of RTL are satisfiable [Jahanian &
Mok 87], has been used to define the formal semantics of a technique to simplify both
specification and analysis of large systems [Jahanian et al 88b]. RTL has also been
employed by Wing and Barbacci [Barbacci & Wing 87] in incorporating timing con-
straints into abstract data types, and extended by MacEwen [MacEwen 87] into a second

order language for the specification of hardware.

This paper defines RTL in terms of an uninterpreted predicate which avoids some
inconvenient technicalities about using an uninterpreted function to define the time of
occurrence of events that never occur ([Jahanian & Mok 86a]). We also identify the core
set of axioms which must be satisfied by an RTL speci;ﬁcation.i This paper also includes
an example system specification, the proof of a safety property in RTL by natural deduc-

tion, and some results about the decidability of RTL.

RTL reflects a different approach to reasoning about time-dependent systems. RTL
makes no mention of states or transitions, either in the language or in its models.
Although an RTL interpretation can be regarded as a sequence of event sets, it is not
necessary to do so, and this is still very different from most other techniques of modeling
computer systems, which rely on transition systems. In the transition system approach,
the behavior of the system is represented by a sequence of states, which are intended to

represent the system configurations. Two consequences of this distinction are discussed

below.

First, in RTL time passes between sets of events, and the actual sets of events are
instantaneous, while in transition systems, time passes in states, and transitions between
them are instantaneous. Second, transition systems are generally defined by their transi-
tions, so that if two actions of the modeled system occur concurrently, a transition must

be explicitly included to reflect that concurrent act, while such concurrency is imphicit in

% The paper thus constitutes the official definition of RTL.

3-

RTL.

This last difference has two further results. Any computation of a transition system
induces a total order on event occurrences, even those that occur at the same time. The
fact that interleaving guarantees the existence of other computations where the ordering
is different does not change this for any particular computation. Also, if two actions
begin and end at the same time, transition systems introduce faux-states in which one
action has completed and the other has not. This last point deserves more elaboration.

Consider the following scenario.

There are two sensors, X and Y, in a certain distributed system. Sensor X (Y) is
activated to respectively update a variable x (y). Both x and y are set to O initially. Each
sensor takes 1 second to omplete an update. A timing constraint has been specified to
activate both sensors at time=0 and update the variables x and y by time=1. Obviously,
both x and y must be updated in parallel. At time=1, x (y) is respectively updated to a
new value x’ (y’). In the interleaving model, the parallel execution of X and Y is
equivalent to the two execution sequences: (1) X; Y. (2) Y; X. We characterize the state
of the system by the vector (clock,x,y). The trajectories of the system state correspond-

ing to the two execution sequences are:
(1) (0,0,0) - (2.,x°,0) = (1,x,y")
(2) (0,0,0) = (2.0,y") — (1,x",y")

There are two obvious choices: 0 or 1 in assigning a value to the clock variable "?"
in the second state in both trajectories. Neither one makes sense because we know that
both x and y are O when clock=0, and both x and y are 1 when clock=1. The second states

in both trajectories are faux-states.

To avoid faux-states in the interleaving model, one could use a very fine time’ scale
and insist that only one transition can occur at any instant of time. Thus, for example,
sensor X might complete updating at time=1.0 and sensor Y at time=1.1, the basic time
unit being revised downwards to (.1 second. The timing constraint must also be revised
to allow the sensors to complete their updates by time=1.1. However, this approach puts
a bound on the number of event occurrences in a finite interval, and so puts a burden on
the programmer not to write specifications which may violate this bound, e.g.. i 0.1

second precision will not be sufficient if there are 100 instead of 2 sensors.

ol

An alternative approach for avoiding faux-states is to insist that events that happen
simultaneouly must be grouped into a single event. This approach is problematical since
a specification may require two events to happen some of the time but not all of the time,
hence we cannot always use a single joint event to represent two events which may occur
at the same time. Furthermore, a combinatorial explosion in the number of joint events
may result from this approach, since in the worst case, we might have to consider all
comibinations of potentially simultaneous events. As will be seen, by its very nature,
RTL avoids this difficulty.

2. Real Time Logic

The first subsection describes an informal overview of RTL. The subsequent two
subsections provide the formal syntax and the semantics of the logic. The final subsec-
tion introduces a convenient notation in RTL for describing a property of a system over a

time interval.

2.1. Overview

Real Time Logic is a first order predicate logic invented primarily for reasoning
about timing properties of real-time systems. It provides a uniform way for the
specification of both relative and absolute timing of events. In RTL, we reason about
individual occurrences of events where an event occurrence marks a point in time which
is of significance to the behavior of the system. There is an important distinction
between an action and an event in RTL. An action is an operation which requires a non-
zero but bounded amount of system resources. However, events serve only as temporal
markers. An occurrence of an event defines a time value, namely its time of occurrence,
and imposes no requirement on system resources. The execution of an action is
represented by two events: one denoting its initiation and the other denoting its comple-

tion.

Events have unique names. Two classes of events are of particular interest: (1)
start/stop events marking the initiation and completion of an action, and (2) transition

events denoting a change in a state variable.

Start and Stop Events: We use the notation TA to represent the event marking the
initiation of action A, and \A to denote the event marking the completion of action A.
For instance, TSAMPLE and JSAMPLE represent the events corresponding to the start
and the stop of action SAMPLE, respectively.

Transition Events: A state variable may describe a physical aspect or a certain pro-
perty of a system, e.g., an autopilot switch which is either ON or OFF. The execution of
an action may cause the value of one or more state variables to change. A state attribute,
S is a predicate which asserts that a state variable takes on a certain value in its domain.
For example, S may denote the predicate: the autopilot is ON. The corresponding state
variable transition events, represented syntactically by (S:=T) and (S:=F), denote respec-
tively the events that mark the turning on and off of the autopilot switch. Whenever it is

unambiguous, we shall use state variable and state attribute interchangeably.

In addition to the above two classes, other classes of events can be specified when
modeling a real time system. For instance, in [Jahanian & Mok 86a], the class of exter-
nal events was introduced to denote the events that cannot be caused to happen by the
computer system but can impact a system behavior. We use the notation of any name in
capital letters prefixed by the special letter Q (Omega) to denote an external event. For

example, QBUTTONI1 represents the external event associated with pressing button 1.

The occurrence relation, denoted by the letter ® (Theta), is introduced to capture
the notion of real time. The event constants introduced earlier represent the things that
can happen in a system. The occurrence relation assigns a time value to each occurrence
of an event which happens. Informally, ©(e,i,r) denotes that the ith occurrence of an
event ¢ happens at time ¢, where e is an event constant, i is a positive integer term, and ¢
is non-negative integer term. For instance, @(iSAMPLE,l,x) denotes that the first

occurrence of the event marking the completion of action SAMPLE happens at time x.

The notion of an occurrence relation is central to RTL. In particular, a specification
of a system and the timing requirements on its behavior are restrictions on the occurrence
relation and its arguments. Observe that the occurrence relation does not require that all

occurrence of an event must happen since an event may occur only a finite number of

times or even not at all,

RTL predicates are formed from the occurrence relation, or from the mathematical
relations (=, <, <, >, 2) and algebraic expressions allowing integer constants, variables,
addition, and multiplication by constants. RTL formulas are constructed using the
occurrence relation, the equality/inequality predicates, universal and existential
quantifiers, and the first-order logical connectives (-—.,/\,V,—>)?«. Before presenting a formal
treatment of Real time Logic in the next section, a simple example will be shown to illus-

trate how the specification of a system can be expressed in RTL.

Example:

Consider the English description of a simple system which samples and displays infor-
mation on demand from an external stimulus. Upon pressing button #1, action SAMPLE
is executed within 30 time units. During each execution of this action, the information is
sampled and subsequently transmitted to the display panel. The computation time of
action SAMPLE is 20 time units. The following set of formulas is a partial description of

the system in RTL:

ViVt ©@QBUTTONLLY — [xy O(TSAMPLE,ix) A O SAMPLE i,y)
AtSx Ay<t+30]

YVivxy [@(TSAMPLE,LX) A @(iSAMPLE,i,y)] = x+20<y [

Recall that a transition event marks a change in the value of a state variable. RTL
provides a notational device, called a state predicate, for asserting the truth value of a
state variable (e.g., the autopilot switch of an airplane being in the ON position) during

an interval. The syntax and formal definition of state predicates are presented in section
2.4.

2.2. The Language of Real Time Logic

We begin by introducing the language of Real Time Logic. The formulas of RTL

are made up of the following symbols:

» The truth symbols true and false

¢ A set of variable symbols

+ The standard precedence order is assumed for these connectives. — has the highest precedence, /N and V the next highest pre-
cedence, and — the lowest precedence.

-

« A set of constant symbols C

e A set of event constant symbols D

» The function symbol *+’

 The predicate symbols <, £, >, 2, =

» The occurrence relation symbol ©

« The logical connectives A, V, — and —.

« Existential and universal quantifier symbols =}, ¥.

The terms of RTL are expressions built up according to the following rules:
» The constant symbols in C are terms.
 The variable symbols are terms.
* If r1 and ¢, are terms, then the function application
t1+1,
is a term.
The propositions of RTL are constructed according to the following rules:
» The truth symbols true and false are propositions.
o If t; and ¢, are terms and p is an inequality/equality predicate symbol, then
t1pig
is a proposition.
» If 7, and ¢, are terms and ¢ is an event constant, then
Oe ,11,12)
is a proposition.
The formulas of RTL are constructed from the propositions, logical connectives and

quantifiers in the usual fashion.

2.3. The Meaning of an RTL Formula

An interpretation for an RTL formula must assign a meaning to each of the free
symbols in the formula. It will assign elements from a domain to the constants, functions
(over the domain) to the function symbols, and relations (over the domain) to the predi-

cate symbols.

8-

Let N be the set of natural numbers, and E be a set of events. An interpretation /
over the domain NUE assigns values to each of a set of constant, function, and predicate

symbols, as follows:

Each element in the set of constant symbols C is assigned an element in N. Each element
in the set of event constant symbols D is assigned an element in E. The function symbol
'+ is integer addition. The predicate symbols <, <, >, 2, and = are assigned the usual
equality/inequality binary relations. The predicate symbol © is assigned an occurrence

relation.

Definition: An occurrence relation is any relation on the set
EXZ"xN
where E is a set of events, Z* is the set of positive integers, and N is the set of natural

numbers, such that the following axioms hold:

Monotonicity Axioms: For each event e in the set E,

VIV [8(e i) A B it)] — t=t
Vive [i) Ai>1] = [0 Oe,i-1,t) A £ <t]

The first axiom requires that at most one time value can be associated with each
occurrence i of an event e, i.e., the same occurrence of an event cannot happen at two
distinct times. The second axiom expresses the requirement that if the i th occurrence of
an event ¢ happens, then the previous occurrences of e must have happened earlier. This

axiom also requires that two distinct occurrences of the same event must happen at dif-
ferent times.
Start/Stop Event Axioms: For each pair of start/stop events in the set E,

Vivt @dALY — [T &(TALY) A £ <t]

where TA and LA denote the events marking the start and stop of an action A, respec-

tively. The above axiom requires every occurrence of a stop event to be preceded by a

corresponding start event.

0.

Transition Event Axioms: For the transition events in the set E corresponding to a state

variable S,

if S is initially true,
8((S:=T),1,0)
ViVt O@S:=B)i — [T O(S:=D),it) At <t]
Vit (S:=D),i+10) = [t 8(S:=F)it) A t'<t]

if S is initially false,
8((S:=F),1,0)
Vit 8(S:=D)A) — [t e(S:=F)it) At <t]
Vit O(S:=F),i+1,0) » [t &(S:=Dit) A ' <t]

The preceding transition event axioms define the order in which two complementary

transition events can occur depending on whether S is initially true or false.

2.4, State Predicates

A specification of a real-time system often refers to properties of the system over
time. One way to express these assertions is to introduce predicates which are time-
dependent, as is done in temporal logic. In RTL, these assertions are expressed as formu-
las involving the occurrence relation on the appropriate transition events and inequality
relations on the time of occurrences of these events. For convenience, RTL uses a nota-
tional device, called a state predicate, for asserting the truth value of a state variable (e.g.,

the autopilot switch of an airplane being in the ON position) during an interval.

Suppose S is a state variable whose truth value remains unchanged over an interval.
RTL provides nine different forms of state predicates to assert the value of S over an

interval, depending on the boundary conditions:
SIx,yl, S&y), S<x,y>, S[x,y), S[x,y> Syl Sx,y>, S<x,y], and S<x,y).

Each state predicate qualifies the timing of two events, one marking the transition event
that changes the value of the state variable to true and the other marking the transition

event that changes the value of S to false. The two arguments, x and y, in the state

10

predicates are used in conjunction with the symbols "[", "]", "t,oMy, "<t and ">" to

b

denote an interval over which the state variable remains true.

The convention we use for arriving at this syntax requires some explanation. Sup-
pose Et and Ef denote the transition events making S true and false, respectively. Infor-
mally,

"[x " denotes that E_ occurs at time X,

"(x " denotes that E, occurs before or at time x,
"«<x " denotes that Et occurs before time X,

" y]" denotes that E; occurs at time y,

" y)" denotes that E does not occur before time y,
" y>" denotes that Eff does not occur before or at time y,

For example, the state predicate S[x,y] indicates that a state variable S is true exactly dur-
ing the interval between x and y. That is, a transition event making S true occurs at time
x; S remains true between x and y; and the transition event making S false occurs at time
y. Consider another example, the state predicate S(x,y) denotes that a state variable is
true during the interval between x and y, but it says nothing about the value of S before
time x or after time y. Observe that we use this notation only when x <y and that we do
not require the second event to occur in all cases. The formal definitions of these state

predicates follow.
Definition:
If a state variable S is initially true, ®((S:=T),1,0),

SIx,y]l = =i O((S:=D),i,x) A O(S:=R)iy)

Stxy) = =i @(S:=D)ix) A [Vt O(S=F)i) — y<t]

Sixy> = =i 0(S:=T),ix) A [Vt 8(S:=F)it —y<t]

SGy) = FiTt O(S:=T),iL0 A t<x A [V B(S:=F),it) — y<t]
Sx,yl = it O(S:=T).i0) A t<x A O(S:=F)iy)

Stxy> = diTdt 8(S:=Di A t<x A [V O(S:=F)it) = y<t']
S<xy> = it O(S:=DL) A t<x A [VE O(S:=F)it) = y<t']
S<xyl = Hi=dt @(S=T)it) A t<x A O(S:=F)iy)

S<xy) = it 8(S==DA A t<x A [VE 8(S:=F)it) = y<t']

If a state variable S is initially false, ©((S:=F),1,0),

211

Six,yl = 9 8((S:=T),i,x) A O((S:=F),i+Ly)

S[x,y) = 11 O(S:=T),i,x) A [Vt 8(S:=R),i+l,) - y<t]

S[x,y> = —Hi O((S:=D),ix) A [Vt B((S:=F),i+1,t) »y<t]

S(x,y) = it O(S:=T),i) A t<x A [V O(S=F),i+Lt) —» y<t']
Sx,y] = it ©(S:=D)i0) A t<x A O(S:=F),i+ly)

S(x,y> = it O(S:=Di0 A t<x A [V O(S:=F,i+Lt) — y<t']
S<x,y> = —H ot O(S:=Di0) A t<x A [V B(S:=F)i+l,t) - y<t]
S<x,yl = it O(S:=T)i) A t<x A B(S:=F).iy)

S<x,y) = it O(S:=T)it) A t<x A [V O(S:=F),i+1,t") = y<t']

When both arguments of a state predicate are the same, two very useful predicates
are defined. Specifically, the state predicate S(x,x) says that a system attribute S is true at
an interval around time x. Similarly, S<x,x) denotes that S is true prior to time x, i.e., S

becomes true sometime before time x and it remains true at least up to time x.

Similar state predicates can be defined for the case when a state variable is false
during an interval: STxyl, S(xy), S<x,y>, etc. The formal definitions for these predi-
cates are straightforward: replace each (S:=T) with (S:=F) and vice versa in the above

definitions.

3. Example: Moving Control Rods in a Reactor

This section describes an example illustrating the specification of a system in RTL

and it verifies a safety property with respect to the specification.

3.1. Specification

This example involves a system used to monitor and control a reactor. Specifically,
it concerns the part of the system responsible for moving the control rods in a reactor.
(Lowering a control rod slows down a nuclear reaction.) For simplicity, we assume that
the system is currently configured with two primary control rods. As shown in Figure 1,
three asynchronous components are involved in moving the control rods: Subsystem 1,

Subsystem 2, and Manager.

.12

Upon pressing pushbutton #1, Subsystem 1 executes an action to ensure the condi-
tions are satisfied for moving control rod #1, then it requests permission from the
manager to move a rod. After the manager grants the request, Subsystem 1 issues the

appropriate commands to the reactor to move rod #1. The specification imposes two tim-

ing constraints on Subsystem 1:

» When the request is granted by the manager, the action to move the rod must be

started within 5 time units, and

« at most 20 additional time units is required to complete the action to move the rod.

Subsystem 2 performs similar tasks for moving control rod #2 with identical timing con-
straints. The details about the behavior of Manager are hidden at this level of

specification. However, the following timing constraint is imposed on Manager:

e After granting a request, Manager must wait at least 30 time units before granting
another request.

There is no signal from Subsystem 1 or Subsystem 2 to inform Manager after a rod
movement has been completed. Hence, Manager can only rely on the enforcement of the
preceding timing constraint to decide when a granted request has been released, and then

grant permission to move a rod to a waiting subsystem.

SUBSYSTEM 1

press request move
push- access control
button #1 to rods rod #1
MANAGER
SUBSYSTEM 2

press request move
push- access control
button #2, to rods rod #2

FIGURE 1.

.14-

For ease of understanding, we list below the physical interpretation of the events

which will appear in the RTL specification of the above system.

QBUTTONTI1 : external event denoting pushbutton #1 is pressed
TRA1 : start of action to request access by Subsystem 1
IRAIL : stop of action to request access by Subsystem 1
GRANTI1:=T : event denoting request by Subsystem 1 is granted
GRANTI1:=F :manager assumes the granted request is released
TMOVE1 : start of action to move control rod #1

IMOVE1 : stop of action to move control rod #1

The remaining events TRA2, {RA2, GRANT2:=T, GRANT2:=F, TMOVE2, and
IMOVE2 have similar meanings.

The preceding English description of the system can be specified formally in RTL,

as shown bel@w.T

#

specification of subsystem 1

#
VXVt OQBUTTONI ,x,1) — [t O(TRAT,x,) A t<t’] (SPD)
¥x¥t O(TRAL ,x,1) - [t OWURAL,x,) At<t’] (SP2)
Vx V¥Vt ORAL,x,1) — [Tt O(GRANTL:=T), x,t) A t<t’] (SP3)

VXVt O(GRANTL=T), x,t) = [t @TMOVEL,x,t) A t<t" A <t+5] (SP4)
vxVt &(TMOVEL,x,1) — [t ®(GRANTL=T),x, ') A UStAt<t’+5] (SP4)
vx ¥t &(TMOVEL,x,t) — [Tt @UMOVEL,x,t) At<t’ At <t+20 (SP5)
#

specification of subsystem 2

#
VxVt O@QBUTTON2 ,x,1) — [t &(TRA2,x,1) A t<t’] (SP6)
vVt OTRAZ,x,0) — [t OURA2,x,1) At<t’] (SP7)
VxVt OURA2,x,1) — [t O(GRANT2:=T),x,t) A t<t’] (SP8)

Vx V¥t O(GRANT2:=T),x,t) — [Tt @(TMOVE2,x,U') A t<t’ AU <t+5] (SP9)
¥xVt @TMOVE2 . x,1) — [t O@(GRANT2:=T),x,t) ACStAt<t’+5] (SP9)
VxVt @(TMOVE2 ,x,t) — [—t” @UMOVE2,x, ') At<t’ A <t+20 (SP10)
#

1 Certain RTL axioms, as described in [Jahanian & Mok 86a], are omitted here since they do not play
arole in the safety analysis of this example.)

.15-

specification of manager

#

VXVt O(GRANTL=T),x,1) = [t O(GRANTL:=F),x+1,¢) A t+30<t’] (SP1D)

VxVt @(GRANT2:=T),x,t) — [t O(GRANT2:=F),x+1,t) A t+30<t] (SP12)

Vx,y Yintatsts [O(GRANTL=T), x,) N O(GRANTL=F) , x+1 ,19) A
O(GRANT2:=T), v, t3) N O(GRANT2:=F) , y+1,14)]

— 14<ty V <ty (SP13)

3.2. Safety Assertion

Since Subsystem 1 and Subsystem 2 are asynchronous, the requests to move the
rods are made at arbitrary times. The desired safety property is that the reactor rods
should be moved one at a time. In other words, execution of the action to move rod #1

may not overlap with the execution of the action to move rod #2.

Safety Assertion in RTL:

ViV etatats ®TMOVEL, i, 1) A ®UMOVEL,i, ;) A
O(TMOVE2, j ,t5) A @ UMOVE2,j, 10

—> 4<1y A i <tig

3.3. Verification

The RTL formulas describing the system specification and the safety assertion were

presented in subsections 3.1 and 3.2. The proof of the safety assertion from the system

specification is shown below.

16-

1. Show Safety Assertion
Show ®&(TMOVEL,I,T,) A ®{MOVEL ,1,T) A

2.

10.
11,

12.
13.
14.

=

P

©(TMOVE2 ,J, T3 A @IMOVE2,7,T,)
= Tu<T{VTy<T,
&(TMOVEL ,1,T)
OWMOVEL,1,Ty)
O(TMOVE2 ,J,T5)
OWMOVE2,J, Ty
Show T,<T VT,<T,
a. St @(GRANTL=T),Lt) AU<ST, AT St +5
b. O(GRANTL:=T),I,Ts) A Ts<T; AT <Ts+5
a. =1t O(GRANTL:=F), I+1,1") A Ts+30<¢t
b. O(GRANTL:=F),1+1,T¢) A Ts+30< Ty
T,+25<T,
a. 9t ®IMOVEL L) A <T,+20
b. ©WMOVELLT) AT,<T;+20
c. T,<T.;+20
To+5<T,
a. O(GRANT2:=T),, T ATs<T3 AN T5<Tg+5
b. O(GRANT2:=F),1+1, Ty)
c. Ty+5<T,
To<Ts ¥V Tg<Ty
ShowTg<Ty — To<T,

Te< Ty
b, Tg<T,
c. To+5<T,

T9<T5 —> T4<T1
T,<Ty V T,<Ts

VijVintptsts OTMOVEL i, 1)) A ®UMOVEL ,i,1) A

O(TMOVE2 ,j ,t5) A ®MOVE2,j, 1)

—> 1<ty V i<ty

1 Assumption for Conditional Proof
+ Modus Ponens

el
ACP
ACP
ACP

Y Instantiation, 3.a, SP4’, Vi
=} Elimination, 4.a

¥ Instantiation, 4.b, SP11, MP
3 Elimination, 5.2
Transitivity Axiom, 4.b, 5.b

Y Instantiation, 3.a, SP5, MP
—} Elimination, 7.a
Occurrence Relation Ax, 3.b, 7.b
Transitivity Axiom, 6, 7.c
similar to step4.b
simnilar to step 5.b

similar to step 8

Y Inst,4.b,5.b,9.a,9.b, MP

ACP

Transitivity Axiom, 9.a, 11.a
Transitivity Axiom 11.b, 8
Similar to proof in step 11

Disj Exploitation 10, 11, 12

Universal Generalization

4. Undecidability of Real Time Logic

Since RTL is made up of integer arithmetic without multiplication, together with a
single non-algebraic predicate, RTL formulas can be converted into formulas of
extended Presburger arithmetic, which is exactly the language of integer arithmetic
without multiplication, including integer functions, by replacing each occurrence of @ by
the inequality f@>0. Presburger arithmetic with a single monadic predicate was shown to
be undecidable in [Downey 72].

Since the occurrence relation of RTL is constrained by the axioms in section 2.3, RTL is
a proper subset of extended Presburger arithmetic and so the undecidability of extended
Presburger arithmetic does not imply the the undecidability of RTL. However, we can

show that RTL is undecidable by adapting Downey’s proof.

4.1. Background

Before considering the decidability of RTL, it is helpful to define an abbreviation as
was done in [Jahanian & Mok 86a]. If for each event e in some subset E of E

i 31: B(e,i) is satisfied, we will define the function -
@: ExZt >N

such that @(e,i)=r if and only if ©(e,i,t). @ is known as the occurrence function.
Informally, @(e i) is the time of the ith occurrence of event e. Since for each choice of

ecE’ and i such a ¢ exists, @ is a total function. The monotonicity axioms for ® imply
that

(®(e,it) N B(e,jt’) Ni<j) — t<t’,

$0 @ is monotonic in its second argument. RTL formulas which contain only references
to this function, and no explicit references to ®, form precisely the language described
in [Jahanian & Mok 86a], and are a subset of the language of Presburger arithmetic with
uninterpreted function symbols. This abbreviation in no way changes the validity of the
following proof, but does make it notationally more convenient, since the function @

will indeed be total for each of the events used in the proof.

18-

The proof in [Downey 72] reduces the acceptance problem for deterministic two
counter machines to the satisfiability problem in extended Presburger arithmetic. The
proof proceeds by constructing a predicate that is true if and only if its argument is a
configuration in the computation of the corresponding two counter machine on the given
input. This is done by representing the configuration of the machine by a product of
prime powers, similar to a Goedel encoding. As a result, any decidable subset of RTL
will have to be restricted in the amount of multiplication allowed. Since there is little
need for multiplication in the arguments of the occurrence relation in RTL, this does not

appear to be a particularly severe restriction.

Even though the occurrence relation (and @ function) of RTL (when in Presburger
form) is uninterpreted, the result in [Downey 72] is not sufficient to show that RTL is
undecidable, because the standard way of converting a predicate into a function need not
result in a monotonic function. One way of doing so is to replace the unary predicate S
of [Downey 721, by the event S, which is defined so that ©(S ,x 2*x+1) if S(x) is true,
and ©(S ,x,2%x) if S(x) is false. The relation ©(S ,x,r) satisfies the monotonicity axioms,
and still meets all of the conditions imposed on S in [Downey 72], so with this

modification, that proof can now be used to show that RTL is undecidable.

Since this proof of the undecidability of RTL relies on the Goedel-like encoding,
preventing multiplication by three mutually relatively prime constants in any given set of
formulas is one possible way of obtaining a decidable subset of RTL. Restricting multi-
plication is not enough to make RTL decidable, however. A representation for machine
configurations can be constructed that meets this new restriction. There is limited multi-
plication, and the occurrence function is monotonic. Other than the change in representa-

tion, the proof that follows closely follows the proof in [Downey 72].

4.2. Two Counter Machines

A two counter machine 2CM) is a quadruple,(Q,qi,qm,S). Q is a finite set of
states, with q; a distinguished start state and 9y, @ distinguished final state. & is a finite
transition function from Qx{0,+}x{0,+} to Qx{+,—,0}x{+,~0}. The machine can test
each of its counters to see if it is positive or zero, and can then decrement or increment it

by one, or leave it unchanged, n a single transition. Without loss of generality it will be

-19.

assumed that each transition falls into one of four categories. A ptest checks a single
counter to see if it is positive, a ztest does the same for zero, a dec decrements a single
counter, and an inc increments a single counter. Lemma 1 of [Downey 72] shows that a
2CM with only these elementary transitions can be constructed that is equivalent to an
arbitrary 2CM, so this restriction does not affect the expressiveness of the 2CM, and is
done only to simplify the construction and proof. Similarly, it will be assumed that the
machine makes at least two transitions before entering state qm,if it enters A, then it

stays in Ay (and does not halt), and that A%y

A configuration of a 2CM is a triple (s,c1,c2), where se Q, and ¢l and ¢2 are natural
numbers. A computation of a 2CM M on input x is a sequence of configurations
Z=01,02,0'3,..., where Giz(si,cli,CZi), and 51=dy cl =% 021=O, and for all i=1,
5*(61)261 10 where &* is the natural extension of 8 to configurations. M is said to accept
x if for any configuration ¢ in the computation of M on x, 5=q - For the purpose of this

construction, each state will also be identified with some unique positive integer.

4.3. Proof

The configurations of the computation of M on input x will be encoded in the
occurrence function by the addition of three new events, st,ctrl, and ctr2, which will be
used to represent the state of the two counter machine, and the value stored in each

counter. The encoding to accomplish this will be as follows:

Yi>1 s, = @(st,i) — @(st,i-1)
i1 cli =@(ctrl,i) - @(ctrl,i-1)-1
Vi>1 02, = @(otr2,i) - @(ctu2,i~1)-1

and sl=@(st,1), cl 1=@(th1,1)—1, and c21=@(ctr2,1)—-1. As aresult,

Vizl @(sti=Ys;
j=1

izl @(ctrl,i)= Zi;{c 1;4+1)

J=1

Vil @ctr2,i)= ﬁ(c 241)
j=1

Since all of the sj’s are positive, and all of the cl}.’s and CZj’s are non-negative, the

occurrence function above is clearly monotonically increasing in its second argument.
Lemmas 1 and 2 will show that the formula constructed in the proof of Theorem 1 does

result in the above encoding.

Theorem 1: For any 2CM M and input x, an RTL formula can be constructed thar is
unsatisfiable if and only if M accepts x.

Proof: The configurations of the computation of M on input x will be encoded in the
occurrence function as above. With this encoding in mind, the formula F is constructed

of the following conjuncts:

(1)@(st,1)=s1 A @ctrl,D)=x+1 A @(ctr2,1)=1 A
@(st,2)=s1+s2 A @(Ctr1,2)=x+1+012+1 A @(ctr2,2)=1+c22+1

(2) For each transition from state q, to state q_ there is a subformula depending on the
transition:
(a) ptest of counter i
Yt (@(sti+1) — @(st,t) = qq A @(ctri,t+1) - @(ctri,t) > 1) —
(@@tH+2) = @(stt+1) + q, " @(ctri,t+2) = 2*@(ctri,t+1) — @ (ctri,t)
A @(ctri’ t4+2) = 2*@(ctri’,t+1) — @(ctri’ 1))

(b) ztest of counter i
Yt (@(st,t+1) —@(st,t) = dg AN@(ctrit+]) —@(eri,t) = 1) —
(@(st,t+2) = @(st,t+1) + q, N @(ctri,t+2) = 2*@(ctri,t+1) — @(ctri, 1)
A @(ctri’, t+2) = 2*@ (ctri’,t+1) — @(ctri’ 1))

(c) dec of counter i
Yt (@(st,t+1) —@(st,t) = q) =
(@(st,t4+2) = @(st,t+1) + q, N @(etri,t+2) = 2*@(ctri,t+1) — @(ctri,n) ~ 1
A @(ctri’ t42) = 2*@(ctri’,t+1) — @(ctri’))

(d) inc of counter 1
Yt (@(stt+1) — @(st,1) =qs) -
(@(st,t+2) = @(st,t+1) + q, A @(ctri,t+2) = 2*@ (ctri,t+1) — @ (ctri,t)+ |
A @(ctri’,t42) = 2*@(ctri’,t+1) — @(ctri’,t))

(3) Vi @t - @G #q_

Lemma 1: If M does not accept x, then F is satisfiable.

Proof: Let M be the standard model of Presburger arithmetic together with an assign-

i
ment of a function to @ such that V1@ (st,t)=a if and only if a=§:sj, @(ctrl,t)=b if and
j=1

i I
only if b=3"(c 1j+1), and @(ctr2,t)=c if and only if c=3 (c2j+1), and a consistent assign-
=1 j=1
ment to ©. Since M is a model for Presburger arithmetic, it is only necessary to show

that MI=F, which is done for each type of subformula of F.

() Mlz@(st,l)zs AN @(ctrl,1)=x+1 A @(ctr2,1)=1, since s =21: +1=i(01j+1>’ and

j=1 =1
1
=3 (c2j+1). Similarly, M satisfies the subformulas with t=2.
j=1
(2a) ptest for counter 1
Suppose the antecedent is satisfied by M, then Ml=@(st,t+1) — @(st,t)=qS A

@(ctrl,t+1) — @(ctrl,t)>1. By construction of @, s =q and clt+1>0. Since M is

t+1
deterministic, and this only one transition can be enabled in a given configuration, so

this transition is the one that is to be taken, and because the transition is a ptest for

42 1+1
counter 1, $;40=dp cl ¢ +2=Clt L1 and th +2=02t 1 Therefore, le —(Z}sJ)Jrq and
j j=

@(st,t+2)=@(st,t+1)+qr, again by construction of @. Likewise,

fiz(cl +1) = (Z(Cl +13) + (cl +1)
J=1 J J=1 J

t+1
=3 (cl.+1) + Z(cl +1) - Z(cl +1),
i J =
so @ (ctr1,t+2)=2*@ (ctr1,t+1)—@(ctrl,t). Therefore, M satisfies subformulas of this
type.
A similar argument shows that M satisfies the other seven types of subformulas of

type 2.

(3) Since M does not accept x, —wgt 8,70,y therefore M=V t@(st,tﬂ)—@(st,t)#qm
Since M satisfies all of the conjuncts of F, MI=F. [J

22

1
Lemma 2: If MI=F, then for all t, @(sti)= Zs @(czr],t)zz(cij+]), and
=i j=1

@(ctr2,t)= }z:(CZ +17).
=

Proof: By induction on t.
1 1
Base case (t=1 or t=2): Since MI=F, @(st,1)=s =Z @(ctr1,1)=x+1=z(01j+1),
j=1 7=l

1
and @(ctr2,1)=1= 3 (02j+1), because of subformula 1. The case where t=2 is similar.
j=1

Induction step (t=k+2): Assume the lemma holds for all t<k+2. Since
O +Ii"MGk) is some transition that takes M from Oi41 10O o and it must be of one

of the eight elementary types of transitions.
It S} results from Okt by applying a ptest of counter 1, with states dg and

k+1 k
qr,then clk+1>0, SO c1k+1+1>1. Therefore, 2(01}:1—1) - Z(clj+1)>1, and by the induc-

j=1 j=1
1k
tion hypothesis, @(ctrl k+1)—@(ctrl,k)>1. Likewise, since St 179 ZSJ Zs = and
j=1
@(st,k+l)—@(st,k)=qs. Therefore, by the corresponding conjunct of type 2a of F,

K+t k+2
@(st.k+2)=@ (st,k+1)+qr=j§1 sj+qr= El Sj’ since 8140~ Also,

@(errLk+2)=2*(etrL k1) - @CtrLio
= %Y (141 - }_;(cl +1)

j=1 j=1
k+1

= 3 (cl+1)+cl
=
k+1

= Y (cl.+1)+ cl
J
7Ic+2

= 2((:1 +1),

J=1

k+1+1

2+1

k+2
since clk +17C lk o Similarly, @(ctrz,k+2)=j§1 (C2j+1>’ The same argument applies to
the other seven basic transition types, and the lemma holds by induction.[]

Lemma 3: If F is satisfiable, then M does not accept x.

Proof: Let M be a model for RTL, and MI=F. Suppose M accepts x. Then —t>2 such
that =0, From lemma 2, @(st,t)——@(st,t—l)=qm, which is inconsistent with conjunct 3
of F. Therefore the assumption that M accepts x leads to a contradiction, and the lemma
holds.[]

Lemmas 1 and 3 establish the following theorem.

Theorem 2: RTL is undecidable.

Proof: This follows from theorem 1 and the result that the acceptance problem for two

counter machines is undecidable. 1

5. Decidable Subsets

The subclass of quantifier-free Presburger arithmetic with uninterpreted integer
functions has been shown to be decidable in [Shostak 79]. If a Presburger formula con-
taining uninterpreted functions (or predicates) is universally quantified, Shostak shows
that F' can be reduced to an equivalid formula F’ free of uninterpreted functions. The
correctness of the reduction is straightforward; given a model for —F, one can construct a
model for —F’, and conversely. Since F’ is a Presburger formula, its validity can be

checked by a decision procedure for Presburger arithmetic.

The class of RTL formulas in [Jahanian & Mok 87] also has a subset for which a
decision procedure for determining the satisfiability (or unsatisfiability) of a formula in

the subclass can be shown. Suppose an RTL formula is of the form
CiANCy A - AC,
such that each C; is of the form
(@i Ly VLyV - VL,

where Q; is the prefix (quantifiers) for the disjunction and each L ; is an arithmetical rela-

tion. Furthermore, suppose that each inequality L; is of the form

34

occurrence function & integer constant < occurrence function

where the occurrence functions contain integer variables quantified by the corresponding
matrix. Note that the negation of an inequality can be replaced by an equivalent inequal-

ity without the negation.

Theorem: The above subclass is decidable if the quantifiers in each prefix Q; are either
all &/ or all 3 .

Proof: The proof of this theorem follows directly from Herbrand’s Theorem. Suppose F
is a formula in the above subclass. From the hypothesis, skolemizing F produces a set of
clauses S such that each skolem function in S is a O-place function, i.e., a constant.
Furthermore, the integer variables in S (denoting occurrences) appear only inside
occurrence functions. Since the "@" function does not take an instance of itself as an
argument, the Herbrand Universe is finite. By Herbrand’s Theorem, the set of clauses in
S is unsatisfiable iff there is a finite unsatisfiable set S’ of ground instances of S. Since
Herbrand’s universe is finite, its powerset is finite and so there is a finite number of
ground instances of § which must be checked. Checking a finite set of ground clauses
can be done using any decision procedure for propositional logic.

O

6. RTL and Temporal Logic

In addition to the differences in the models of computation and the introduction of
the notion of an event occurrence, there is one further distinction between RTL and pro-
positional linear temporal logics, which are the languages generally used to describe tran-
sition system based models. A similar construction to that in section 4.3 can be used to
show that any finite state control can be simulated by an RTL formula, by encoding the
configurations of the machine as events, and using formulas to reflect the transitions
allowed by the finite state control. Similarly the various acceptance criteria for finite
automata on Infinite strings can also be expressed in RTL. As an example, the require-
ment that a certain state appears infinitely often could be represented as

\fi;{j @(st,j) — @(st,j-1) = desiredstate N j>1i

Accordingly, RTL is at least as expressive as finite state machines over infinite strings.

=25

Propositional temporal logics are equivalent in expressive power to counter-free auto-
mata on infinite strings, and hence cannot express the proposition that the number of
times an event happens is congruent to n modulo m for some n,me N [Pnueli et al 85],
RTL can express such formulas quite easily. For example, if n and m are 2 and the given

event is E, then the desired formula is
Tk Ht OE2%k,1) A Vj>2%k = uO(E,ju) V ——kJtOEk,D).

Combining these two observations, it can be seen that RTL is strictly more expressive

than propositional linear temporal logic.

7. Concluding Remarks

This paper presents the definition of RTL, a logic for reasoning about the absolute
timing properties of real-time systems. Real Time Logic provides a uniform way for the
specification of both relative and absolute timing of events. The ability of RTL to
describe real-time systems has been demonstrated by means of an example specification.
A safety property for this system was verified using natural deduction in predicate cal-

culus.

The goal of our research is to investiage whether formal methods can be applied to
real-time systems. An important direction for future research is determining practical
methods for automating the analysis of systems described by RTL formulas. The undeci-
dability proof of RTL given in section 4 applies to any subset where arithmetic relations
contain at least three time-valued variables, there are at least three events, and where
multiplication by two is allowed. No decision procedure will exist for a superset of this
sublogic. However, it can be shown that the graph algorithm of [Jahanian & Mok 87] is
a decision procedure for a subset of its domain. There are likely to be expressive subsets
of RTL which are amenable to mechanical analysis, either by appropriate syntactic res-

triction or by exploiting semantic information. Both approaches are under investigation.

26w

Bibliography

[Barbacci & Wing 87].
M. Barbacci and J. Wing, *‘Specifying Functional and Timing Behavior for Real-Time
Applications,”” pp. 124-140 in Lecture Notes in Computer Science 259, Springer Verlag
(1987).

[Downey 72].
Peter J. Downey, ‘‘Undecidability of Presburger Arith. with a Single Monadic Predicate
Letter,”” Center for Research in Computing Technology 18-72, Harvard University
(1972).

[Jahanian & Mok 86a].
F. Jahanian and A.K. Mok, “‘Safety Analysis of Timing Properties in Real-Time Sys-
tems,”” IEEE Transactions on Software Engineering SE-12(9) pp. 890-904 (Sept. 1986).

[Jahanian & Mok 87].
F. Jahanian and A.K. Mok, ‘A Graph-Theoretic Approach for Timing Analysis and its
Implementation,”” IEEE Transactions on Computers C-36(8) pp. 961-975 (August 1987).

[Jahanian et al 88b].
F. Jahanian, R.S. Lee, and A.K. Mok, ‘‘Semantics of Modechart in Real Time Logic,”’
Proc. 21st Hawaii International Conference on System Sciences, (Jan. 1988.).

[Leveson & Harvey 831,

N.G. Leveson and P.R. Harvey, ‘‘Analyzing Software Safety,”” IEEE Transactions on
Software Engineering SE-9(5) pp. 569-579 (Sept. 1983).

[Leveson 86].

N. G. Leveson, ‘“‘Software Safety: What, Why, and How,”” Computing Surveys 18(2) pp.
125-163 (June 1986).

[MacEwen 87].

G.H. MacEwen, “*Using Higher-Order Logic for Modular Specification of Real-Time
Distributed Systems,”” CS Lab, SRI International, Menlo Park, CA (1987).

[Mok 85].

A.K. Mok, ““SARTOR-a Design Environment for Real-Time Systems,”’ Proc. 9th IEEE
COMPSAC, pp. 174-181 (Oct. 1985).

[Pnueli et al 85].
Amir Pnueli, Orna Lichtenstein, and Lenore Zuck, ‘‘The Glory of the Past,”” pp. 196-218
in Lecture Notes on CS: Workshop on Logics of Programs, Springer-Verlag (1985).

[Shostak 791.

R.E. Shostak, “*A Practical Decision Procedure for Arithmetic with Function Symbols,”’
JACM, 26(2) pp. 350-361 (April 1979).

