A NOVEL STORAGE SCHEME FOR
PARALLEL JACOBI METHODS

Robert A. van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-88-26 July 1988

Abstract

A novel storage scheme is presented that allows efficient parallel implementation of the Jacobi method
for symmetric matrices by taking advantage of symmetry. For a fixed number of processors, efficiency
approaches 100% as the size of the problem is increased.

1. Introduction

In this paper, we present a novel scheme for distributing matrices among the memories of a parallel
multiprocessor computer that allows efficient parallel implementation of Jacobi’s method for solving the
symmetric algebraic eigenvalue problem. For distributed memory parallel computers, the storage method
allows the computation to be distributed among the processors while requiring a limited amount of com-
munication. For shared memory multiprocessors, the storage scheme can be used to reduce memory bank

conflicts.

Much progress has been made in parallelizing eigenvalue algorithms for symmetric matrices: For tri-
diagonal matrices, see [DoSo87],[L.oPS87]; For full symmetric matrices, Jacobi methods are now very
competitive ([BeSa88], [BrLu85], [IpSa86], [LuPa88], [Same71]). Typically, parallel implementations of
the Jacobi method either do not take advantage of symmetry (resulting in 2 doubling of the number of arith-
metic operations), or do not result in optimal speedup due to load balancing problems. In §2, we propose
the storage scheme. An efficient parallel Jacobi method that does take advantage of symmetry is presented
in §3. Complexity analyses indicate the efficiency of the resulting scheme quickly approaches 100% if the
number of processors is held constant and the problem size is increased. Practical experience, presented in

84, supports this claim. Further uses for the storage scheme are briefly discussed in the conclusion.

Throughout this note, we assume all matrices, vectors, scalars, and arithmetic to be real. All resulis
can be easily extended to complex matrices and complex arithmetic. We will assume the multiprocessor
has p processors, Py, ..., P,_;, which are connected in a ring so that P; is adjacent to P ; if
[{ —j| %p =1, where .%. indicates the modulo operator. We further assume that communicating m float-
ing point numbers between neighboring processors requires time o+ m 3, while a floating point operation

requires time .

2. The Storage Scheme

For simplicity, we assume the dimension of matrix 4 is # =mhp for some integer h and m. Parti-

tion matrix A as follows:

[

=

A= A31 A32 ae e A3(mp) 5
A Ampr - Amp)omp) |

where A;; € R**. For m =1, the proposed storage scheme, which we refer to as the Block Hankel-

wrapped storage scheme, assigns submatrix A;; to processor Py, .04, as illustrated by the superscripts
pp g i D (i+j~2)%p y p 1Y

below:
AR AR AR .. ARE ALY
AR AR AR .. AR AR
AR AR AP .. AR, AP
-1 0) 4 (& -3 -2
AR AD AD L AEY ACD,
1t should be noted that this storage scheme is an example of a skewed storage scheme for shared memory

multiprocessors [HoJe81].
In general, the Block Hankel-wrapped storage scheme for a given m, BHW,, assigns A;; 0
P{(&j_z}/m }%P' In the next section, the case m=2 is used, which assigns submatrix A;; 10 processor
{(g + -2)/2J%p :

Al

o g
AR AR AR ... ALY 1Cp)
o
Aéi) Ag) AE(? “ o AZ(Zp -1 Aé?%p}
1 1 o
A3(1) As(z) Aa(? AB(p ~1) A§(p>

1) (]) -2 -1
AGY AGy Al - A&NBn AlNdey

Justification for using m=2 will be given at the end of the next section.

3, The Jacobi Method

A plane rotation in the (¢,)-plane (i <j) is of the form

ji-—l

P = i,

i j=i=1 H

-5 [

I]
where c2+ s?=1 and I; equals the identity matrix of dimension k. Given symmetric matrix A, one can
compute a rotation P;; in the (i,7)-plane such that PijAPg has a zero {i,j) entry. Jacobi rethods for
finding the eigenvalues of a symmetric matrix successively compute rotations to annihilate off-diagonal
elements of A. If the order in which off-diagonal elements are annihilated is chosen properly, the off-
diagonal elements of A will converge to zero. One such ordering (known as the column-serial Jacobi
method), is given by the ordering (sweep) of plane rotations

(1,2, (1L3), ..., (L,r), 23), ..., (2n),..., (n=Ln) .1
Detailed discussions can be found in [GoVL82] and [FoHe60].

Turning now to our parallel implementation, assume the upper triangular part of A is distributed us-
ing the BHW, storage scheme, as illustrated in Fig. 1 for p=3 and k=3, This figure also indicates the com-
putation required to annihilate a typical element (i,i+1). Here, Xs are nonzero elements of the upper tri-
angular part of A; Cs indicate the elements from which a plane rotation is computed; Ls indicate elements
affected by the application of the plane rotation from the left and Rs indicate those affected by the applica-

tion of the plane rotation from the right. Notice that each processor must update 2k pairs of elements of

X X X X X X|X R R X X X|X X X X X X
X X X X X|X R R X X X{X X X X X X
X X X X|X R R- X X X|X X X X X X
¥ ¥ X X R R[X X X X X x[X X X
X X X R R|X X X X X X|X X X
X X R R|X X X X X X|X X X
¥ R R X X X[X X X X X X
c cL L L|L L L L L L
c L L L|L L L L L LP
X X X X X X[X X X
X X X X X|X X X
X X X X|X X X
¥ X X X X X
X X X X X
X X X XP
X X X
X X
X P,

Figure 1: Annihilating (/,/+1)

rows and/or columns ¢ and {+1. Hence, once the appropriate processor has computed and broadcast the ro-

tation, the processors perform approximately an equal amount of computation.

[Stew85] shows how a sweep of rotations can be implemented while only annihilating elements
(i,i+1) by exchanging rows and columns / and i+1 once the rotation in the ({,i+1)-plane has been com-

puted and applied. The interchange can be combined with P;; by applying P ; instead of P;;, where

-

Ii—l

Fy= I
c -
Iﬂ

"'j j
The above scheme allows p processors to be used by taking advantage of the inherent parallelism
that exists during the application of a particular plane rotation. Pseudo-code driving the processors is given

by the following:

Algorithm 1:
Do until convergence
for j=1,...,n/2
fori=1,...,n—1
if i %Ak =0 send boundary data left

Gy Aia
compute P; .y, from

on P,
*a (i+1)(£+1)} G-y
broadcast P;; .,

in parallel update A according to I;j(iﬂ)

if i %h =0 send boundary data right

Note that one iteration of the outer loop constitutes a sweep. Whenever ¢ is a multiple of h, all processors
must send data to their right neighbor since the data required to compute and apply the rotation do not exist

on the same processor. The above parallel scheme implements the column-serial Jacobi method.

Communication overhead can be greatly reduced by also computing several rotations simultaneous-
ly, thereby keeping all processors busy during the computation of rotations and increasing the amount of
work done between communications. For example, while Py computes a rotation to annihilate a,, P; can
compute a rotation to annihilate @ 41y442) and P, can compute a rotation to annihilate a gy .1y0ms2). The

task of updating the matrix according to all these rotations can also be performed in parallel. This leads to

the following algorithm:
Algorithm 2:
Do until convergence
forj=1,...,n72
Part 1.

for k=0, ...,2p—1 simultaneously (on P.q,)
fori=1,...,h-1
compute P gy iywh+i+1)
update A 1)1y according to P siyansivny
distribute all rotations to all processors
in parallel apply all rotations to the remainder of the matrix
Part 2:
send boundary data left
in parallel compute P g, .4y es+4+1) 00 Peotyap
distribute all rotations to all processors
in parallel apply all rotations to the remainder of the marix

send boundary data right

All rotations in Part 1 are computed simultaneously, requiring the submatrices on the diagonal to be updat-
ed, after which the rotations are applied to the remaining submatrices. Part 2 deals with the boundaries of
the storage scheme, which requires each processor to pass data to the left neighbor before rotations can be
computed and applied. After the matrix has been updated, the data is returned. It should be noted that the

order in which rotations are computed and applied is in some sense equivalent to the column-serial Jacobi

method [LuPa88].

The time complexity for a given iteration of the loop indexed by j can be obtained as follows: Com-
puting all rotations for i=h and updating the blocks on the diagonal appropriately requires time
2k — 1)(8 + 4(h — 2))y, distributing all rotations to all processors requires time (p — 1o+ 4(k - 1)) on a
ring of processors; updating the remainder of the matrix blocks requires time 2(2p — 1)(4(h — 1)A)y; send-
ing the appropriate data to the neighbor to the left when iterate i =k can start requires time o+ 2 3/2; com-
puting the rotations for i=h requires 2 x &y; distributing the rotations requires time (p — 1)(a +4B); updat-
ing the matrix requires time (4(2p—1)(24)-8)y; and returning the updated data to the original processor re-

quires time o+ n /2. The total time complexity per sweep therefore is

=3 2Dy 2000 2np

on a ring of processors. This compares favorably with the sequential time complexity of

(=2 [zm (n - 1)}y [GOVLE31. If p is fixed, lim %((—:—;—))— — p, indicating that asymptotically the

efficiency is 100%.
We can implemented Alg. 1 using the BHW, storage scheme. However, some parallelism is lost in

Alg. 2 if p is even since then only even numbered processors have access to submatrices on the diagonal,

requiring half the processors to idle during the computation of rotations.

4. Numerical Experiments

To test performance, we simulated a distributed memory parallel processor on a Sequent Balance
21000 multiprocessor. The shared memory feature of the Sequent was only used to pass messages between
processors. The following table reports the time per sweep in seconds for a straight-forward implementa-
tion of the column-cyclic Jacobi method on a single processor (routine SJAC) and an implementation of

Alg. 2 (routine PJAC), both coded in C. The number in parentheses reports the speedup attained.

SIAC PIAC
n p=1 p=2 p=4 p=8
32 2.6 1.7 (1.5 1.1 (24 9 (29

& | 193] 111 anl 63 GO | 45 @3
128 | 1536 || 817 (19) | 439 (35| 272 (56
356 | 1217.9 || 6237 (19) | 3453 (3.5) | 1954 (62)

5. Conclusion

Both theoretically and through numerical experiments, it has been shown that the Block Hankel-
wrapped storage scheme allows efficient implementation of the Jacobi method. Further applications of the
storage scheme include the efficient parallel implementation of the QR algorithm for nonsymmetric ma-
trices [Vand88]. We are currently pursuing the possibility of developing a portable EISPACK-like pack-

age of parallel routines that utilize the Block Hankel-wrapped storage scheme.

References

[BeSa88] Berry, M. and Sameh, A., "Parallel Algorithms for the Singular Value and Dense Symmetric

Eigenvalue Problems,” CSRD report No. 761, 1988

[BrLu85] Brent, R. and Luk, F., "The Solution of Singular Value and Symmetric Eigenvalue Problems

on Mult-processor Arrays,” SIAM J. Sci. Stat. Comp., 6, 69-84, 1985.

[DoSo87] Dongarra, J.J. and Sorensen, D.C., "A Fully Parallel Algorithm for the Symmetric Eigenvalue

Problem,” SIAM J. Sci. Stat. Comp., Vol. 8, No. 2, March 1987

[FoHe60] Forsythe, G.E. and Henrici, P., "The Cyclic Jacobi Method for Computing the Principal values

of a complex matrix", Trans. Amer. Math. Soc., 94, 1-23, 1960
[GoVL83] Golub, G.H. and Van Loan, C.F., Matrix Computations, Johns Hopkins Press, 1983
[HoJe81] Hockney, R.W. and Jesshope, CR. Parallel Computers, Adam Hilger Ltd,, Bristol, 1981

[IpSa86] Ipsen, LCF and Saad, Y. "The Impact of Parallel Architectures on the Solution of Eigenvalue

Problems," Large Scale Eigenvalue Problems, 1. Cullum and R A, Willoughby (Ed.), Elsevier Sci-

ence Publishers, 1986

[LoPS87] Lo, S.S., Philippe, B., and Sameh, A., "A Multiprocessor Algorithm for the Symmetric Tridi-

agonal Eigenvalue Problem," SIAM J. Sci. Stat. Comp., Vol. 8, No. 2, March 1987

[LuPa88] Luk, F.T. and Park, H., "On the Equivalence and Convergence of Parallel Jacobi SVD Algo-
rithms," Proceedings of SPIE, Advanced Algorithms and Architectures for Signal Processing II,
Vol. 826, 152-159, 1988

[Same71] Sameh, A, "On Jacobi and Jacobi-Like Algorithms for a Parallel Computer,” Math. Comp.,

Vol. 25, pp. 579-590, 1971

[Stew85] Stewart, G.W., "A Jacobi-like Algorithm for Computing the Schur Decomposition of a2 Non-
Hermitian Matrix,” SIAM J. Sci. Stat. Comp.,

B 6, pp. 853-64, 1985

[Vand88] Van de Geijn, R. A, "Storage Schemes for Parallel Eigenvalue Algorithms,” The University of

Texas at Austin, Dept. of Computer Sciences, Technical Report

