The Kyklos (n Mod r = 0) Routing Algorithm

F. F. Haddix, A. G. Dale,
R. M. Jenevein, and C. B. Walton

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-27 July 1988

Abstract

Tree network routing algorithms and node labeling sequences can simultaneously achieve O(1/N) proces-
sor loads among interior node processors, level processor loads among leaf node processors and
O(1/N1-(1%)y maximum traffic per link, where N is the number of I/O processors located at the leaf nodes,
and r is the number of tree replications. Proposed routing algorithms are an r-iree analog to the 2-tree H-2
strategy [Jene86], and the Y-2 strategy, which improves network performance on significant traffic
metrics relative to H-2. If m is the tree branching factor, and n = log N is the number of levels in each
tree, the routing algorithms work for any m, n and r; however, they are most effective form =2 and n
modr=0.

Kyklos n Modr HDJ&W--Page 2

I. Introduction.

The KYKLOS topology [Mene85] is a multicomputer network based on a multiple tree
interconnection topology. In a KYKLOS-x<m,r,n> network, there are N (= mn) leaf node
processors (L-nodes) and B {=[r/ (m - 1)](mn - 1)} interior branch node processors (IB-nodes).
The L-nodes are I/O processors, while the IB-nodes have no secondary storage. x refers to the
interconnection schema. In KYKLOS-I, a two-tree network replicates the IB-nodes of the first
(upper) tree in the second (lower) tree. In KYKILOS-II, the second tree is "shuffled"”, improving
connectivity and reducing certain traffic characteristics.

The number of nonequivalent interconnection strategies in the KYKLOS topology
increases with m and n, where the actual number for KYKLOS-x<m,2,n> is given by
N!/(m!lm**a-1)m-D] [Mene86]. With such a large number of choices, the choice of
interconnection strategy is important. The objective of this study is to identify an
interconnection topology which supports a general approach to routing, minimization of
maximum link traffic, and equal loading of processors.

The motivation of this study is the problem of computing a relational join on a
partitioned data base. Using the KYKLOS topology with the database distributed across N L-
nodes, there will be N2 partial joins. Two relations, R and S, are joined on a set of common
attributes which become the join attributes. In the general case, the N R fragments must be
merged with the N S fragments in order for the join to be executed. The investigation is limited
to operations on two partitioned relations, R (the smaller in pages) and S (the larger in pages).

The notation used to describe a KYKLOS network refers to trees, links and nodes. Ther
trees are designated 0, 1, ..., r-1; the N L-nodes are named 0 through N-1. Relations R and S are
partitioned horizontally and allocated equally to the L-nodes. Each IB-node has a three-part
name, <tvo> or <t,v,0>, where t is the tree name (0 through r-1), v is the level name (0 < v <=n,

n = log,N), and o is the node specifier (0 <= 0 < 2n-v).

Kyklos n Mod r HDJ&W--Page 3

A consistent routing algorithm for all nodes is necessary for an approach to be
generalizable. One way of assuring that this will happen is to have symmetric rules for assigning
processing to nodes. In turn, this should yield symmetric (and simple) routing algorithms.

The following discussion assumes that partial joins will take place at IB-nodes. The site
of the join is a function of the source nodes of the R and S fragments. Ideally, the node at which
a particular partial join is performed is on the path between the R-fragment originating node and
the S-fragment originating node. Otherwise, unnecessary traffic would be generated in
transferring join candidates to the join site IB-node.

If the joining node is selected so that it is closer to the S-fragment originator, additional
savings in traffic result from moving the larger S fragments less and the smaller R fragments
farther. If this approach is used in concert with level processor loading, the S fragment is moved
only in the tree of its partial join, and only toward the root of that tree, thereby producing the
minimum traffic for S fragments, since the S fragment must be moved at least to the level of its
partial join. These two properties imply the additional property of nearly equal link traffic
balance with respect to S fragments, since each succeeding level v will have 1/ m (mnv / ma-v+1)
links (1 /2, if m = 2) and will have approximately 1 /m {(mn-v - 1) / (ma-v+1 - 1)} fragments to
transfer.

Note that the above relationship holds with respect to the results of the partial joins if the
results are stored at the originating node of the S fragment (or anywhere else in the subtree of the

partial join site node).

Kyklos n Mod r HDJ&W--Page 4
Using the above philosophy, the principal remaining problems to be solved are the
following:
a. Determining in which tree a particular partial join will occur (objective: equal
processing and traffic in all trees);
b. Determining at which level a particular partial join will occur (objective: equal
processor loading between nodes of different levels); and
¢. Determining the routing path for the R fragments (objective: minimizing
maximum link traffic.)
Note that if the tree and level of a particular partial join have been determined, at that
level in that tree there will be only one ancestor IB-node of the S-fragment originating L-node,
and this will be the join site. This defines the routing of the S-fragment, as being toward the root

of that tree only as far as that level.

II. Dividing Processing Load Between L-nodes and IB-Nodes.

In the KYKLOS architecture configuration, data is stored at the L-nodes while the IB-
nodes have no secondary storage capacity. Due to this and the I/O and other processing load on
L-node processors, it is desirable to have different loads on L-node and IB-node processors, but
equal, or level loads among all L-node processors and among all IB-node processors.

One reliable rule for dividing the work load that will always work is the following:

For a particular partial join <R;, Si>,

Ifi=}, join at L-node i;

else join at an IB-node.

Kyklos n Mod r HDJ&W--Page 5

This means that each L-node will be the site for exactly one partial join, regardless of n,
thus leaving (IN2 - N) partial joins to be performed at the B {=[r/ (m - 1)](m» - 1)} IB-nodes.
Thus,

Average joins per IB-node =(N2-N)/{[r/(m- D](mn- 1)}

=(mN-N)/r

Since the number of IB-nodes at level v is r*mv and the number of leaves is N, the
number of S fragment assignments per level per L-node is the following:

S fragment assignments per level per L-node =[(MmN-N)/r]*{*mv/N)

=[(m - 1) * m]

ITI. A Conceptual View of the Routing Problem

Going beyond SISD solutions to multiple computing problems requires that individual
processors be distinguishable, and have a method of unique access. The most convenient
solution would be to assign each computer a unique name, which not only gives its location, but
how to reach it.

There exists a relationship between the binary digits of a number and a binary tree, well-
documented in the literature [Lee59], [Bene65], [Sing81], [Horo81], [Mene88]. If the L-node
processors are enumerated from 0 to N - 1, left to right, the binary representation of the
processor name (number), will give the Huffman code routing from the root to the processor.

The same routing methodology can be used for trees with branching factor (m) greater
than 2. For these, the address should be converted to a base m representation. The routing is
then based on an increasing left-to-right correspondence, that is, if m = 3, 0 would refer to the

left branch, 1 to the middle and 2 to the right.

Kyklosn Modr HDJ&W--Page 6

Routing from the root to the L-node is helpful; however, of greater value is routing
between L-nodes. A simple approach, would be to start from the first L-node, traverse to the
root, and then use the foregoing routing to traverse to the destination L-node. This routing
specifies going to the root on every traversal between two leaves, which is clearly unnecessary in
many cases.

One way of conceptualizing this problem is to say that each L-node processor occupies a
unique position in an n-dimensional space, where n is the length of the address, and each digit of
the address gives the coordinate for the corresponding dimension. Each level of a tree
corresponds to a dimension in this space, the correspondence being that at that level and only
that level within the subject tree can the spatial coordinate for that dimension be changed.l A
traversal from L-node i to L-node j is a journey to the appropriate levels in order to execute the
appropriate changes of coordinate.

An efficient routing within a tree will only go as far toward the root as the highest level
for which a dimensional change of coordinate is necessary. A message going from L-node i to
L-node j starts with physical coordinates corresponding to the address of i. Its iarget coordinates
correspond to the address of j. When the physical coordinates of the message equal its target
coordinates, it has arrived at its destination. If i <> j, it will have traversed one or more IB-nodes
and if r > 1, it may have traversed IB-nodes of more than one tree and L-nodes intermediate (in
some sense) to i and j. To the extent that coordinates (for corresponding dimensions) within the
addresses of i (initial physical) and j (target = final physical) are the same, they represent a level
at which no coordinate change is necessary (hence, traversal may not be necessary). However, if
the coordinates are different, then the level corresponding to this dimension (digit in m-ary

representation of the address) must be traversed.

1 If there are r trees in the network there are r levels at which the change could take place, one

per tree. One of these levels would occur in each of the following ranges: between levels 1 and
h:h+l, 2h; o h(r-1)+1, th,

KyklosnModr HDJ&W--Page 7

Some of the levels for which no change of coordinate is necessary must be traversed in
order to reach a level for which a change of coordinate is necessary, except in the case of the
HyperKYKLOS [Mene87a], where the number of trees is equal to the number of levels (=
dimensions = log,N, where N is the number of L-node processors),

The above described changes in dimensional coordinates will be referred to hereinafter as
transforms. The corresponding level traversals are independently necessary if a transform is
needed at that level and dependently necessary if a transform is not needed at that level, but the
traversal is part of the routing to a level of independent necessity. Hereinafter, an independently
necessary level traversal will be referred to as an 1-transform, a dependently necessary level
traversal will be referred to as a O1-transform, and a possible transform not used in a specific
routing will be referred to as a 00-transform. Thus, 00- and 01- transforms form the set of O-
transforms, those transforms which may be of use in the instant routing for traversing but not for
transforming.

Within a particular network topology, the number of 1-transforms for a particular routing
is constant, as is the number of O-transforms; however, the numbers of 00- and 01-transforms are
functions of routing strategy.

Once a routing strategy has been determined in a KYKLOS topology, an instance of
routing will require that a specific level in a specific tree must be attained. The message routed
must traverse the tree toward the root until it reaches that level. This level will be a 1-transform,
since it must be necessary and a O-transform would not be necessary. Once this level is attained,
the message goes down the tree. For each IB-node, there are m branches, each having a different
orientation. For example, if m = 3, each IB-node would have one link each of left, middle and
right orientation. If the link taken going away from the root is the same as the link taken when

going toward the root, it is a O-transform; if the two links are different, it is a 1-transform.

Kyklosn Modr HDJ&W--Page 8
The XOR (exclusive OR) operator classifies potential link traversals as being 0-
transforms (value 0) or 1-transforms (value 1). However, it does not discriminate between
necessary and unnecessary level traversals where no transform is required (0O1-transforms versus
00-transforms). Recall the operation X = XORy, (i, j). If we subscript the digits of base m
representation of 1 and j fromright to left as 0, 1, ..., n - 1, then the following holds:
1=1p; *mel + g0 * mn2 + .. +ip ¥ m2 + 13 ¥ m + ip, which can be represented as
1= 1ip4inz...12i1d0
j=Jo1 Fmol4 o *me2+ .+ 2 *m2+ j; ¥ m + jo, which can be represented as
J = Ju-tjn2--j2jijo
If we similarly subscript the bits (base 2 representation) of X:
X=X ¥ 2014+ Xpp ¥ 202 + .+ Xp ¥ 22+ X * 2 + X, which can be represented
as X = X, 1 Xp2... X0 X1 X0,
where X = XORy, (4, j) => Xg=01if ig = j,

Xe=11ifig<>]js, O <=g <,

IV. Describing the Interconnection Network

If processing is allocated equally among trees using a symmetric basis for allocation, and
if symmetric routes are selected, then both total traffic load and maximum link traffic will be
balanced among the trees. The interconnection network (ICN) must be specified before loads
can be allocated among regions (trees, levels). The KYKLOS-II topology has many benefits
[Mene88] and is used herein.

Once the tree topology has been selected, the next choice is of a logical labeling
sequence. The (n mod r = 0) shuffle is amenable to the development of comprehensible routing
algorithms. For a KYKLOS-II<m,n,r> network, n is the number of levels. n is also the number
of base m digits in the address of a L-node processor. Thus, if (n mod r = 0), we can allocate the

n base m digits equally among the r trees.

Kyklos n Mod r HDJ&W--Page 9

In distinguishing among regular shuffles, where regular means that one simple rule is
applied at each level (but not necessarily all levels within a tree), a useful discriminator between
levels is span. Span for a given level is defined as the difference between the lowest? L-node
number within each successive subtree of a child of an IB-node of that level. Figure 1 illustrates
this concept. This is expressed as span,, = m**(zy - 1), where a unique zy is associated with
each level v within a tree t, (0 < v, zyy <= 1), and each tree t, (0 <=t <=71), has a complete set of
Zy, defined as above. Note that this z;,, corresponds to dimension number in the discussion of
transforms in Section III. In other words z;, indicates which dimension’s coordinates can be
changed when level v of tree tis traversed. When a series of spans or dimensions is given to
describe the topology of a tree, the order is from level 1 to the level of the root.

For a KYKLOS-I<m,r,n> tree, where v=1,2,,nand z, = 1, 2, ..., n. Thus as we go
up a KYKLOS-I<2,r,n> tree, our spans (span,,) would be 1, 2, 4, 8, ..., indicating, for example,
that the O node and the 1 node would be children of the same level 1 parent. In turn, the O node
and 1 node would have the same level 2 ancestor as nodes 2 and 3 (difference 2). Likewise,
nodes 0, 1, 2, 3 would have the same level 3 ancestor as nodes 4, 5, 6, 7 (difference 4).

Similarly, for the lower tree of a KYKLOS-II<m,r,n> interconnection network, z,, = n,
n-1,n-2, ..., 1, 0. Thus, in a KYKLOS-1I<2,r,4> lower tree, going to higher levels of this tree,
our spans would be &, 4, 2, 1. This tells us that nodes 0 and 8 would have the same level 1
parent; nodes 0 and 8 would have the same level 2 ancestor as nodes 4 and 12; and nodes 0, 4, 8,
12 would have the same level 3 ancestor as nodes 2, 6, 10, 14. The fourth level is the root. An

example is shown in Figure 2.

2 Note that using highest, median or mean L-node name will give the same result as using the
lowest L-node name.

> span = 8

® span = 4
» Span = 2
span
=1
DOOBOWEFOOEOLVWOLVLUVWY
) span = 3 span = 4 - S#paélj‘ézafil

Figure 1: Original KYKLOS-II topology illustrating span: N = 16, r = 1.

10

Figure 2: Original KYKLOS-II topology, where N = 16, r = 2.

11

Kyklosn Modr HDJ&W--Page 12
The objective stated in Section I. was to identify an interconnection topology which
supports a general approach to routing, minimization of maximum link traffic, and equal loading

of processors. The topology proposed to meet these objectives assigns spans by the following
formulation:
t=tree (0 <=t<r1);
v = level (0 <= v < n);
m = branching factor (0 < m);
h=n/13
Zw=h*¥t+v-1
if(v > h)
Zw=Ziw+h+1-2%((v-1)modh+ 1)
Ziy = Ziy mod n
where
mod refers to the integer modulo function,
div refers to integer division (floor function
understood), and
/ also refers to integer division, but is used only
in places where the floor property is not needed.
span, = My
Examples: n=6, m=2, r=3:
h=6/3=2
t=0, v=2:
Zop=2F0+2-1=1

Zop = Imod6=1
=>spang =ml! =2

3 Note that (n mod r = 0) implies that h is an integer.

Kyklos n Mod r HDJ&W--Page 13
t=0, v=3:
203=2*O+3-1=2
Zz=2+2+1-2*%(B-Dmod2+1)=3
zn=3mod 6 =3
=> §pang = m3 = §
t=1, v=3:
Zi3=2*1+3~1=4
z;3=4+2+1-2*%(@B-mod2+1)=5

Ziz=5mod6=5
=>gpanyz = mS = 32

t=2, v=06:
Zpe=2%2+6-1=9
Z6=9+2+1-2%({(6-1)mod2+1)=28
Zs=8mod 6 =2
=>§pame =m2 =4
The entire set of spans for two KYKLOS-II<m,r,n> networks with the proposed topology

are given in Table 1.

Proposed KYKLOS-1I<2,3,6>

Ziy spany
tree tree tree tree tree free

level O 1 2 0 1 2
1 0 2 4 1 4 16
2 1 3 5 2 8 32
3 3 5 1 8 32 2
4 2 4 0 4 16 1
5 5 1 3 32 2 8
6 4 0 2 16 1 4

Proposed KYKLOS-1I<2,2,6>

Zyy Spany
{ree {ree tree tree
level O 1 0 1
1 0 3 1 8
2 1 4 2 16
3 2 5 4 32
4 5 2 32 4
5 4 i 16 2
6 3 0 8 1

Table 1. Spans (spany,) and dimensions (z) for each level (v) and tree (t) in proposed
KYKILOS-1I<2,3,6> and proposed KYKLOS-11<2,2,6> configurations.

Kyklosn Modr HDJ&W--Page 14

Labeling sequence refers to the order of nodes in a tree if the free is rearranged so that no
links cross. The characteristic labeling sequence of KYKL.OS-II is the Gamma(m,N) sequence
[Mene85]. It is not immediately clear that the proposed topology is KYKLOS-II, particularly
because both upper and lower trees in the r = 2 version have crossing links. (See Figure 3 for N
= 16 example.)

The KYKLOS-II Labeling Sequence for the upper tree:

U:{0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15}

Gamma Sequence describing lower tree [Gamma(2,16)]:

L:{0,8,4,12,2,10,6,14,1,9,5, 13,3, 11,7, 15}

If the upper and lower trees of the original KYKLOS-II shown in Figure 3 are redrawn so
that no links cross, the following labeling sequences result:

U:{0,1,2,3,8,9,10,11,4,5,6,7, 12,13, 14, 15}
L:{0,4,8,12,2,6,10,14,1,5,9,13,3,7, 11, 15}

Without loss of generality (since the U’ names are artifacts of routing strategy but not
topology), the nodes in U’ and L’ can be renamed such that U’ = U. Referring to the renamed
sequences as U* and L*, a comparison of U’ and U* defines the conversions to be made to L in
order to derive L*. See Figure 4 for example of mapping of the conversions.

Since L* is equal to Gamma(2,16), we assert that the proposed topology is an instance of
KYKLOS-II. Figure 5 shows an intermediate step in the conversion from the proposed topology

to the original. The labeling sequence for IB-nodes is given in Appendix B.

® span = 4

& span = 8

span = 2

span

; o =1
%:©@®

i span = 4

Figure 3: Proposed KYKLOS-II topology, where N = 16, r = 2.

15

Derivation of conversions

U:0 1 2 3 8 9 10114 5 6 7 12 13 14 15
U0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NP4

>0 4 8 122 6 10141 5 9 133 7 11 15
L0 8 4 122 10 6 141 9 5 133 11 7 15

Application of conversions

Figure 4: Illustration of conversions between ’ and * sequences

16

Figure 5: Proposed KYKLOS-II network of Figure 3, relabeled in accor-
dance with Figure 4. If it is twisted to remove the cross-over from the upper
tree, this network becomes equivalent to the original KYKLOS-II network
shown in Figure 2.

17

Kyklosn Modr HDJ&W--Page 18

V. Routing in Multiple Tree Interconnection Networks
One solution to routing with more than one tree is the binary solution of KYKLOS-II

[Mene87b]. This uses X = XOR(S, D), where S is the source node name and D is the destination
node name. In order to make the routing handle more than one tree, the node name is mapped
into the tree topology for both trees. This is achieved by letting the increasing order of
significance direction within the node name represent the upper tree, and the opposite order, for
the lower tree. If routing was between node 15 and node 37 in a KYKLOS-11<2,2,6>

interconnection network, the following would result:

15: 001111
37. 100101
X: 101010

With the transform concept of routing, there are three 1-transforms to be made in the two
trees. All the transforms must be made, but they can be made in either tree. One possibility
would be to traverse only the upper tree. Since this traversal must go all the way to the root, the
total traversal is length 12.

Another possibility is to traverse only the lower tree. Routing here is exactly the same as
in the upper tree, except that we start from the other end. This is because the spans in the lower
tree are 32, 16, §, 4, 2, 1, the reverse of the order in the upper tree; however, the total traversal

here is of length 10, because the root node need not be traversed.

Kyklos n Mod r HDJ&W--Page 19

This paradigm is also useful for describing routes that use both trees. In the above
example, there are six possible transforms, three that are independently necessary (1-transforms)
and three that are dependently necessary or unnecessary (O-transforms). Findiﬁg the minimum
path requires minimizing the number of dependently necessary transforms (01-transforms). The
lower tree routing above was shorter because it considered the transform corresponding to the
span = 1 level to be unnecessary (00-transform), rather than a Ol-transform, as in the upper tree.
Any routing which considers one O-transform to be a 00-transform will be of length 10 (and in
this case, minimal). Two-tree traversals which are minimal, avoid the unnecessary transforms
for the span = 4 and span = 16 levels. There are four such routings:

Avoiding the span = 4 transform: Traversing three levels of the lower tree, then two
levels of the upper tree; and traversing two levels of the upper tree, then three levels of the lower
tree.

Avoiding the span = 16 transform: Traversing one level of the lower tree, then four
levels of the upper tree; and traversing four levels of the upper tree, then one level of the lower
tree.

In this example, there are five minimal paths. One can be selected on the basis of other
criteria, such as minimizing maximum traffic density. As in the one tree case, the X string only
indicates how far up to go in a particular tree, i.e., which levels are to be traversed. The specific
coordinate change to be made at a level is derived from the base-m representation of the
destination node name.

Finding the minimum path is described [Mene88] as a process of finding the largest
sequence of consecutive (s (representing potentially unnecessary transforms) in the X string,
and eliminating them from the routing. For the r > 2 condition, an analogous process exists.

In the one tree (r = 1) case, the minimum path is found by eliminating the upper (toward

the root) unnecessary traversals.

Kyklos n Modr HDJ&W--Page 20

In the two tree case, the largest group of consecutive unnecessary traversals can be
removed. This is possible because of the redundancy between the two trees. If the ordering of
the spans is inverted between the two trees any 1-transform can be performed in either tree.
Thus, 1-transforms for levels above the selected group of consecutive O-transforms can be
moved to the second tree4.

In the r tree case, a useful analytic concept is the slice previously defined for the two-tree
case [Jene86]. Forr > 2, the slice becomes a subgraph of the interconnection network such that
the levels represented constitute a n-member set containing one and only one level
corresponding to each of the n implicit dimensions of the network, and for each tree ¢, if level v
is included in the subgraph, then levels 1 to v - 1 are also included. An equi-slice, corresponding
to the mid-slice previously defined [Jene86], can be defined as a slice which contains an equal
number of levels from each tree. For more than two trees, no simple path optimizing rule
analogous to the rule removing the largest groups of consecutive O-transforms from a routing in
the two-tree case. If the metric of interest is path minimization, the largest group of O-transforms
can be removed from any pair of consecutive trees; however, this may foreclose the use of the
second tree in a pairing with its successor, and the use of the first tree with its predecessor. A
different metric, such as minimizing maximum link traffic may add to the problem’s complexity.

In the proposed routing, the mapping from the m-ary representation of a node name
applies the general principles enunciated above. If the number of levels (n) is divided by the
number of trees (r), h is obtained, where h is the height of an equi-slice and is the length of the
routing string corresponding to the lower h levels of one tree.5 Note that h is the height of a mid-
slice in the two-tree case. Before the above can be directly applied to the proposed topology, the

base-m representation of the node name and X = XOR(S, D) must be recast as follows.

4 In this view, one tree traversals are degenerate cases in which all or none of the 1-transforms
are moved to the second tree.

5 If only one transform is required, and it falls in a tree’s lower h-levels, then the shortest path
will traverse only that tree.

Kyklosn Modr HDJ&W--Page 21
r segments of X (X(r-1), X(r-2), ..., X2, X1 X0) can be defined such that the H-2 routing
string Xt, associated with tree t, is of length h (= n/r) and is derived from X as follows:
Xty = Xgun
so that
X0 = Xp1..Xg... X1 X and X0y = X,
X1 = Xon1.. Knpage . Xne1Xn and X1g = Xy

Xt = X(Hl)}ﬂ...Xtmg...XmJ,le and th = Xm+g

X(@-1) = Xproo X tihage - XD 1 X - 0h @and X(1-1)g = Xryhag
The Y-2 routing string for tree t is then constructed as followss:
Yt =X((t-1)mod r)’ cnc ... cnc X{((t+2)mod r)’ ecnc X((t+1)mod r)’ cne Xt
where cnc indicates the concatenation operator--adding the second string
onto the end of the first, and ’ indicates that the operation of inverting the bit positions has been
performed (first becomes last, next-to-first becomes next-to-last, and so forth,

In the routing between two L-nodes, i and j, X = XOR(,j), and Yt = f(X), as described
above. An analogous conversion is performed on the D (destination node name) string in order
to determine which branches to use in the routing. If starting from i, D = j and vice versa. Note
that the Xt strings determine the depth of traversal for H-2 routing, the Yt strings will be used to
determine the depth of traversal for the Y-2 routing and the Dt7 strings give the choice of branch

during descent of a tree (as discussed in Section IIL).

6 Note that inverted ordering is a characteristic of both the original and proposed KYKLOS-II
topologies.

7 The Dt = {(i) or Dt = {(j) string would be defined somewhat differently for H-2 and Y-2
routing.

KyklosnMod r HDJ&W--Page 22
Example 1:
Traversal fromnode 24 tonode 62, N=64,n=6,1=2, m = 2)
S: 24: 011000
D: 62: 111110

X: 100110 => X0 = 110; X1 = 100; X0’ =011; X1’ = 001.
YO: 001110 (001 cne 110)

Y1: 011100 (011 cnc 100)

DO: 111110

Di1: 011111

The above indicates a path length of 4 * 2 = 8 in tree 0, and a path length of 5* 2 = 10in
tree 1. This routing is not amenable to pass-through. If tree 0 were traversed, the routing would
go up four levels from node 24, then descend to node 62 taking successive branches right, right,
right, left. If tree 1 were traversed, the routing would ascend five levels from node 24, then
descend to node 62 taking the right link at each of the five IB-nodes.

Example 2:

Traversal fromnode 60tonode 14, N=64,n=6,r=2, m=2)

S: 20: 010100
D: 14: 001110

X: 011010 =>X0=010; X1 =011; X0’ = 010; X1’ = 110.
YO: 110010 (011 ¢cnc 010)

Yi: 010011 (010 ¢cnc 110)

DO: 100110

Di1: 011001

Kyklosn Modr HDJ&W--Page 23
The above indicates a path length of 6 ¥ 2 = 12 in tree 0, and a path length of 5 * 2 = 10
in tree 1. Inspecting X0 and X1 indicates the longest group of 0’s is 2, indicating a shortest path
length of (6 - 2) * 2 = 8. This corresponds to a two-level deep traversals of both trees. One of
the routings would be to go up two levels in tree 0, coming down with aright and then a left;
then going up two levels in tree 1, coming down with a left and then aright. The second routing
reverses the order of tree traversal. If our traversal was from 14 to 20, the directions would be

different but the paths would be the same.

V1. Discussion of Routing Strategies

Several routing strategies applicable to KYKLOS-II topologies have been previously
proposed, including the M-2 [Jene86], H-2 [Jene86], P-2 [Mene87b] and modified P-2
[Mene88].

The M-2 routing strategy selects the minimum path within one tree. Its principal virtue is
its simplicity. The M-r strategy would be to select the shortest path within one of the r trees
within a network.

The H-2 routing strategy uses the concept of mid-slice, a routing being limited to the
lower half of each tree. The H-r routing strategy uses the concept of equi-slices of height h,
routing being limited to the lower h levels of each tree. This means that a particular 1-transform
is assigned to a specific tree, thereby limiting the number of alternative routings.

The P-2 routing strategy is a minimum path strategy, using the non-pass-through routing
if pass-through and non-pass-through routings are of equal length. Pass-through routing refers to
a traversal of an L-node other than the source and destination nodes. The P-r routing strategy is
a minimum path strategy, using minimum number of pass-throughs to arbitrate between paths of

equal length.

Kyklos n Modr HDJ&W--Page 24

The modified P-2 routing strategy is a minimum path strategy, using the path which is
closest to the L-nodes if two or more paths are of equal length. The modified P-r routing
strategy is a minimum path strategy, using the path closest to the L-nodes if two or more paths
are of equal length.

The strategies described thus far are adequate to support the (r > 2) correlates of the M-2,
H-2, P-2 and modified P-2 routing strategies. Applying these routing strategies to networks with
more than two trees (r > 2) suggests several generalizations of theorems and definitions
previously stated for KYKLOS-TI<m,2,n> and KYKLOS-II<2,2,n>, for cases wherer > 2:

Definition: A slice in KYKLOS-II<m,r,n> is the subgraph composed of the nodes from
level s; and below in tree t, such that

§=0,1,.01-1

Definition: An equi-slice, or h-slice, in KYKLOS-II<m,r,n> is the slice in which

h=s;,0<=j<1, (h=1/)

Theorem: The H-2 Routing Strategy describes a unique traversal of each tree.

Theorem: If g is the number of trees with non-trivial traversals, then there are g! possible
routings with H-2 Routing, all of which have the same path length. (A method for selecting the
first tree to be traversed in given in Appendix A.)

Theorem: The traffic at level v using the H-2 Routing Strategy is as follows:

O<v<=h: 2 *[1 - (1/m)-v+l] * N2;

h<v<=n: 0. |

Theorem: The traffic per link at level v using the H-2 Routing Strategy is as follows:

O<ve=h {2 *[1 - (1/m)b-v+1] * N2}/(r * fo-v+1)

=2*%mv*N*(m*mh-mv)/(r* mb2);

h<v<=n: 0.

Theorem: The maximum traffic density per link using H-2 Routing occurs at level h and

is the following:

KyklosnModr HDJ&W--Page 25

[2%mb*N*(m*mh-mb)]/(r*mbh*m2)

= {[2 * (m- D]/ (r * m2)} * N1+(1m, (mh = N)
= O(N1+(11)

Unexpected is the failure of the P-2 and the modified P-2 [Mene88] routing strategies to
dominate the less-sophisticated H-2 routing strategy with respect to the metric of maximum
traffic density per link (Ty(v,n)). Since the P-2 and the modified P-2 strategies minimize traffic,
it is intuitively appealing to believe that they would dominate the H-2 strategy. They fail to do
this because both are extreme strategies. Comparing them to the H-2 strategy demonstrates this.
It is possible to start with the H-2 strategy and convert its routings to P-2 or modified P-2.

A difficulty with the P-2 Routing Strategy is that it may take two H-2 traversals to level h
- 1 and convert themto anh + 2 and an h - 5 traversal. This reduces the path length and total
traffic, and yet it increases link traffic at level h, relative to that of H-2.

Although the modified P-2 strategy does reduce traffip at level h from P-2 in cases where
P-2 might randomly select a routing with higher density atlevel h. Conversely, in other cases,
the P-2 routing creates lower density, such as the case where the X strings for two adjoining trees
are all 1’s. P-2 would traverse 2h levels of one tree, modified P-2 would traverse h levels of
both trees. Both P-2 and modified P-2 will increase density at level h if it reduces total traffic.

The Y-2 routing strategy starts with the routing defined by the H-2 strategy and then
moves transforms from the equi-slice area of a tree to higher levels only if doing so will reduce
maximum link traffic density. In order to significantly reduce maximum link traffic, it is
necessary to take advantage of some of the potential for total traffic reduction. The Y-2 strategy
has lower maximum traffic density for two reasons, traffic at the level of maximum traffic
density (h) is moved toward the root, and total traffic is reduced. Indeed, the total traffic
reduction approaches that of the P-2 or modified P-2 strategies. The criteria used to fine tune the
Y-2 strategy are the primary objective of minimizing maximum link traffic and the secondary

goal of reducing total traffic.

Kyklos n Mod r HDJ&W--Page 26
Y-2 (Hybrid) Routing Strategy (for m = 2)8
The Y-2 routing strategy is based on the single slice traversals of the H-2 routing
strategy. In attempting to minimize maximum link traffic, it is significant that in the H-2
strategy maximum link traffic occurs at level h, the highest level in the lowest equi-slice.?
Traffic at level h is easily reduced by moving traversals from level h to the upper levels of the
tree--the challenge is to reduce traffic at level h without creating higher traffic levels at the upper
levels. The Y-2 strategy achieves this in the following way:

The H-2 routing is used for the first tree unless the last bit in the first slice
and the first bit in the second slice are both on. In this case, the transforms of the
first slice of tree t + 1 are moved to the second slice of tree t. In this way, 25 % of
the traffic at level h (in H-2) is moved to level h + 1. However, to avoid
overloading at the higher levels, the traffic beyond the first O above level h + 1 is
moved back to tree t + 1. If there are no zeros in the second slice (and there is a
third slice), the traversal may continue on into subsequent slices. The process is
repeated for subsequent trees. Step-by-step procedures to implement this strategy
follow:

Step 1. {Preliminaries--Setting up H-2 routing.}

Recall that H-2 Routing is contained in the r strings Xt (0 <=t < r) of length h.
Under H-2 Routing, there will be r or fewer tree traversals, each traversal being of h or
fewer levels.10 Define the gth bit in each H-2 routing string Xt as Xtg1. Select the start
tree. (A method for selecting the start tree to be traversed in given in Appendix B.) Let
the start tree be s, the current tree be t, and the current slice in the current tree be k. Sett
=5, k =0, and lcv (loop control variable) = 0.

Note that whenever 1 or k is added to t, the mod r function should be applied. For

brevity and clarity these () mod r’s have been omitted.

If(Ye>0)
While (number of trees processed < 1)

Step 2. {Determine highest level traversed for tree t in accordance
with H-2 strategy.}

Find highest on (= 1) bit in Xt. If highest on bit is bit g, then levels
=g+ 1.

8 Demonstrated in Appendix C to give a 25 % reduction in maximum traffic density per link
over H-2 Routing, if m=2 andr = 2.

9 Demonstrated in Appendix C.

10 Each traversal going to the highest on (= 1) bit in the Xt routing string.

KyklosnModr

HDJ&W--Page 27
If ((Jevels (t) < h) or (X(t+1)p1 = 0)

Step 3. {If tree t traversal includes transforms from only
one equi-slice, prepare to process tree t + 1.}
Increment t and lcv.

Elseif (lcv+ 1 <1)

Step 4. {If tree t traversal is of transforms of more than one
equi-slice, determine the number to be included.}

Increment k and lcv.

While (X(t+k) =28~ 1y and (lcv+ 1 < 1))

Calculate how many additional equi-slices are to be
included in routing for tree t. Each increment in k indicates
another tree which the current routing does not traverse.

Increment k and lcv.

If X(t+k)p = 1)

Step 5. {Current tree traversal ends within next
equi-slice.}

First 0 bit in X(t+k)’ is g. Number of successive 0’s
following and including g is f.

Levels(t)=k*h +g.

Levels (t+k)=h-g- 1.

{Prepare to process next tree}

t=t+k+1

Iev=1cv+1

k=0

Else
Step 6. {Current tree traversal stops with last
transform (inverted order) of current equi-slice.}
levels(t)=h *k
t=t+k
k=0

End {While (Icv < 1)}
If ((k > 0) and (X{t+k), = 1) and (levels (s) = h))

Step 7. {Allow slice s to be included in the routing if tree s is not
part of a multi-slice routing.}

First 0 bit in X(s)’ is g. Number of successive 0’s following and
including g is f.

Levels(t)=k*h+g.

Levels(s)=h-g-f.

{At this point, all trees to be traversed in the routing are known, and the
number of levels to be traversed in each tree is also known. }

Step 8. {Routing for the S (larger relation) fragment.}

As discussed in Section I, the routing for the S fragment to be joined is to
move up the start tree (s) to the level of the join site. Be definition, this is the site
of the partial join.

KyklosnModr HDI&W--Page 28

Step 9. {Determine the routing for the R (smaller relation) fragment}

t=t; {The initial reference point is the tree containing the partial join
site, although this will be the last tree to be traversed}.

entry = j {The entry point into the first tree to be traversed is the L-node
containing the fragment of relation R.}

dest=1 {The routing is calculated as though going all the way to i,
although it stops at the partial join site.}

While (Icv < 1)
t=t-1
If (levels(t) > 0)

Dt = (i)

{The i string may be treated analogously to the X string,
that is we may think of it is being composed of r substrings i0, i1,
.o, i{r-1), of length h, and we may also denote the inverses of the
substrings by ’. Then, Dt = i(t-1)’ cnc i(t-2)’ ... cnc i(t+2)’ cnc
i(t+1)’ cnc it, where cnc is the string concatenation operator. }

traverse up the tree levels(t) levels
{traversals up the tree are performed so that enfry =
parent(entry) as described in Appendix B.}
If(t<>t) _
traverse down the tree levels(t) levels

Else
traverse down the tree (levels(t) - v) levels
{where v is the level of the partial join site}

{traversals down the tree are performed so that entry =
child(entry) as described in Appendix B, and the branch taken
(child selected) at level g is determined by examining bit g-1 in Dt,
as discussed in Section 1I1.}

{ At the end of each tree traversal, entry is the name of the L-node used for
pass-through from the tree just traversed to the next tree.}

End of Y-2 Routing Strategy
VIIL. Level Processor Loading for IB-Nodes (m = 2).

Recall that the allocation of processor loading discussed earlier gives a load per IB-node
of (m-1)* N/r=N/r. Given arouting between two L-nodes containing fragments to be
joined of relations R(smaller) and S(larger), how is the join site <t, v, o> specified, where the
join site is the IB-node specified by tree t, level v, node o, so that processor loading of the order
of N /r will be obtained. Tree tis selected in accordance with Appendix A. IB-node o will be

|
the ancestor of the L-node containing the S fragment in tree t.

KyklosnMod r HDJ&W--Page 29
Earlier we discussed the concept of dimensionality as applied to levels. Here we apply
dimensionality to frees, using the (Y-2 tree) routing string Y's of tree s to define the points within
the space of each dimension. Then the problem of applying equal loads becomes one of
partitioning an r-dimensional space. The permutations of techniques for achieving this allow a
wide range of choices; however, the additional constraint that the routing of a join must pass
through the specified level-tree combination reduces the number of possibilities dramatically.
For the two-tree case, we consider two dimensions, represented by the (H-2 slice) routing
strings of length h =n/ 2, Xs and Xt, where s is the start tree and t is the other tree.
{t=(s + 1) mod r} Consider the grid representing the set of points representing all the possible
XOR combinations of Source and Destination nodes. This must be allocated meeting the
following requirements: Balance between levels within a particular tree, balance between a
particular level in different trees, and the join locations must be on the routing between the two

nodes. Table 2 gives an example of one such allocation consistent with Y2 routing.

Xt 000 001 010 011 100 101 110 111
Xs
000 <0,0> <Lt> <lt> <l,t> <lLt> <lt> <lt>
001 <l,s> <l s> <ljs> <l,s> <l,s> <l,5> <l,8> <ls>
010 <2,8> <2,8> <2,8> <2.,5> <2,8> <2,8> <2,8> <258>
011 <2,8> <2,8> <2.8> <25> <2,8> <2,8> <2,8> <258>
100 <l,s> <l 5> <l <l,s> <l,s> <l,5> <l,s> <«l,8>
101 <l,5> <l,;s> <ls> <ls> <l,s> <l;8> <l,8> <l,s8>
110 <3,8> <4d,8> <38> <5,5> <35> <4,8> <35> <ls>
111 <3,8> <4,8> <35> <5,5> <3,8> <4,5> <3,8> <0,5>

s -- Tree is start tree according to Appendix A.

t -- Tree is the other tree (not the start tree).

Xs -- H-2 routing string for tree s.

Xt’-- Inverse of H-2 routing string for tree t. If Xt’ is concatenated onto
the left hand side of Xs, the result is the Y-2 routing string Y's for tree s.

Table 2. <level, tree> pairs applicable to specific routing (XOR) strings,
for a KYKLOS-11<2, 2, 6> network.

Kyklosn Modr HDJ&W--Page 30

There are two significant attributes to the above allocation. The first is that it is
consistent with the processing load division described in Section II, that is, one partial join per L-
node source is allocated to the L-node, 32 partial joins are allocated to level one join sites, and
each higher level has half the partial joins allocated to the next lower level. By level, the
potential still exists to have N/ r partial joins per IB-node. The second attribute is that the
algorithm to implement it is simple.

The first step is the allocation of three special cases.

i. If Ys = 0, assign the partial join to level O (Assign the partial join to L-node, if
both relation fragments are stored there).

ii. If Ys =N - 2, assign the partial join to level 1.

iii. If Ys =N - 1, assign the partial join to level n (The general case portion of

the algorithm does not assign partial join sites above leveln - 1).

The second step assigns the remaining partial joins to appropriate levels. Note that for
half the routing strings should have a O in any bit position. However, we should assign partial
join sites that are the Y-2 routing. If we assign all partial joins with routing strings that have a 0
in bit 1 (the second bit from the right) to level one, we have achieved this end!l, subject to the
special cases abovesp;. We then can assign half the remaining partial joins to each successive
level, using a 0 in the v+1th bit location as the discriminator for level v.The following Level

Assignment Algorithm (find v) corresponds to the above description.

11 Note that although this holds for the H-2 and Y-2 routing strategies it would not hold for a
minimum path (or global traffic minimization) algorithm.

12 Special case i. handles the situation in which the routing will not go into the trees, thereby
reducing the N /2 assignment by 1. Special case ii. handles two difficulties: the reduction in
level 1 loading due to special case i., and with special case iii., handles the remnant in the in the
assignments which the general algorithm would assign based on (non-existent) bitn and
following.

Kyklos n Mod r HDJ&W--Page 31

Y=Ys

v=1

if(Y ==0)thenv=20
if(Y==N-2)thenY =0
if(Y == N - 1) then begin

v =1;

Y=0
endif
Y=Y/m

while (Y > 0) begin
if (Y %m)thenv=v+1

else Y =0
Y=Y/m
endwhile
return v

This algorithm achieves processor loading of N/ 2 (for m = 2 and r = 2), the processor
loading objective stated above in Section I and can be made suitable for H2 routing or the

HyperKYKLOS topology with minor modification. Theoretically achievable loadings are the

following:
H-2 Routing:
v=0: 1
v=1: N/Z+Nnz-]
l<v<=h: N/2
h<v<=n: 0
Y-2 Routing:

v=0 1
O<v<=n: N/2
Partial join assignments to IB-nodes were simulated for a number of topologies with
results within 10% of predicted loading for two-tree standard topologies and somewhat larger
deviations for other topologies. Work continues in this area as the actualization of KYKLOS

approaches.

Kyklos n Mod r HDJ&W--Page 32
VIII. Comparison of Various Routing Strategy Metrics
The following table compares Processor Load and Link Traffic metrics for the above
algorithms and network with earlier results, including an earlier KYKLOS-II<2,2,n> [Mene87b].

Maximum Link Traffic Density

N K-1 M-2 H-2 P-2 Y-2
4 4 3 4 3 3
16 64 36 32 26 24
64 1,024 576 256 196 192
256 16,384 9,216 2,048 1,616 1,536
1024 262,144 147,456 16,384 15,808 12,288
4096 4,194,304 2,359,296 131,072 173,568 98,304
Maximum IB-node Processing Load
N K-1 P-2 H-2 Y-2
4 4 2 3 2
16 64 12 11 8
64 1,024 88 39 32
256 16,384 928 143 128
1024 262,144 9728 543 512

K-1 = KYKLOS-I<2,2,n> using Mid-Point Join Strategy

M-2 = KYKLOS-1I<2,2,n> using M-2 Routing

H-2 = KYKLOS-I1<2,2,n> using H-2 Routing and (Quasi-) Level Processor Loading
P-2 = KYKLOS-1I<2,2,n> using P-2 Routing and Mid-Point Join Strategy

Y-2 = KYKLOS-11<2,2,n> using Y-2 Routing and Level Processor Loading

Table 3. Comparison of Various Routing Strategies

Kyklosn Mod r HDJ&W--Page 33
IX. Conclusions

The number h (= n / r) defines the equi-slice for a given (n Mod r = 0) KYKLOS
topology. The KYKLOS topology defined by m = 2 and the shuffles defined by the proposed
series of spans supports the semantics of H-2 and Y-2 routing strategies for all r. The H-2
routing strategy is defined by the equi-slice for all r. The Y-2 routing strategy is derivable from
the H-2 routing strategy and dominates it on the metrics of total traffic, maximum link traffic and
equal IB-node processor loading. The Y-2 routing strategy balances processor loading and total
traffic among all trees, balances processor loading between IB-nodes of the same tree, produces
maximum link traffic and maximum IB-node partial join loads less than previously described

routing strategies and addresses the preceding problems in KYKILOS networks with more than

two trees.

REFERENCES

[Bene65] V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic

Academic Press, 1965.

[Horo81] Ellis Horowitz and Alessandro Zorat, "The Binary Tree as an Interconnection
Network: Applications to Multiprocessor Systems and VLSI", IEEE Transactions on
Computers, 1981.

[Jene86] Roy M. Jenevein and Bernard L. Menezes, "KYKLOS: Low Tide High Flow,"
Proceedings of the Sixth International Conference on Distributed Computing, May, 1986.

[Lee59] C. Y. Lee, "Representation of Switching Circuits by Binary Decision Programs”, Bell
Systems Technical Journal, 1959,

[Mene85] B.L.Menezes and R.M.Jenevein, "KYKILOS: A Linear growth Fault-tolerant
Interconnection Network," Proceedings of the International Conference on Parallel

Processing, August, 1985, pp. 498-502.

Kyklosn Modr HDJ&W--Page 34

[Mene86] Bernard L. Menezes and Roy Jenevein, "Managing Combinatorial Explosions in a
Family of Interconnection Networks", Proceedings of International Computer
Symposium, December, 1986.

[Mene87a] B.L.Menezes, K. Thadani, A.G.Dale, R.Jenevein, "Design of a HyperKYKL.OS-
Based Multiprocessor Architecture for High-Performance Join Operations”, Dept. of
Computer Sciences, Technical Report TR-87-18, the University of Texas at Austin,
Austin, Texas, May, 1987.

[Mene87b] B.Menezes, D.Brant, D.Loewi, A.G.Dale, R.Jenevein, "An Interconnection Network
Supporting Relational Join Operations"”, Dept. of Computer Sciences, Technical Report
TR-87-25, the University of Texas at Austin, Austin, Texas, June, 1987.

[Mene88] Bernard L. Menezes, "The KYKLOS Multicomputer Network: Interconnection
Strategies, Topological Properties, Applications”, Ph.D. Dissertation, Department of
Electrical and Computer Engineering, the University of Texas at Austin, Austin, Texas,
May, 1988.

[Sing81] A.D. Singh, F. G. Gray, and J. R. Armstrong, "Tree Structured Sequential Multi-

Valued Logic Design from Universal Modules", IEEE Transactions on Computers, 1981.

Appendix A. Partial Join Assignment to Tree.
Fragment Xt is used to determine which fragments are assigned to tree t. The tree
assignment algorithm is the following:

1. Consider a fragment Sy, originating at L-node i, and to be joined with fragment Rj;
2. Determine X = XOR;, (i, j);
3. The start tree is

s = (n * N - bitcount(j) - j /1) mod 1;

Kyklosn Mod r HDJ&W--Page 35

4. Assign the S;-Rj partial join to the tree t

a. If X =0 (all Xt’s = 0), the partial join is assigned to the L-node, (which
belongs to all trees).

b. Xs>0,t=5s.

c. If Xs =0 and X > 0, assign the partial join to the first tree greater than s such
that Xt > 0. (For all t such that Xt > 0, t = (s + k;) mod r, and k; > 0, select the t with the
smallest k;.)
5. Step 7. of the Y-2 Routing Strategy may require that the partial join site tree be

changed, although the level of the partial join site would not be changed.

Appendix B. Connection Sequences for L-nodes and IB-nodes.

The labeling sequences for L-node and IB-nodes are to assign increasing integers from
left to right. Thus, the IB-node ancestors of L-node 0 will be <t,1,0>, <t,2,0>, . . ., <t,v,0>, . . .,
<t,n,0>.

The concept of span,, was described in Section IV. In describing connections of nodes, a
useful related concept is real span, referred to hereinafter as r-span,,. This refers to the span of a
IB-node based on its children rather than the lowest L-nodes in the subtrees of its children.
While the span concept is more useful in developing a taxonomy of interconnection networks, r-
span is more useful in considering problems of construction. This is because r-span allows
consideration of connections between nodes of successive levels (level of L-nodes = 0), without
reference to the L-nodes (except at the lowest IB-node level, 1).

The following Table B-1 sets forth real spans for several KYKILOS networks. The lesser
real spans in the proposed KYKLOS-II suggests that if construction difficulty is related to
number of link crossings, the proposed KYKIL.OS-II may be more easily constructed than the

original topology.

Kyklosn Mod r HDJ&W--Page 36

dv
Original Proposed Proposed
KYKLOS-II KYKLOS-II KYKLOS-II
<2,2, 6> <2,2, 6> <2,3, 6>
tree O 1 0 1 0 1 2
level
6 0 0 0 0 0 0 0
5 0 1 1 1 1 1 1
4 0 2 2 2 0 2 0
3 0 3 0 3 1 3 1
2 0 4 0 3 0 2 4
1 0 5 0 3 0 2 4
r-spanty - 1 = maximum number of link crossings
6 0 0 0 0 0 0 0
5 0 1 1 1 1 1 1
4 0 3 3 3 0 3 0
3 0 7 0 7 1 7 1
2 0 15 0 7 0 3 15
1 0 31 0 7 0 3 15
Total number of link crossings:3
6 0 0 0 0 0 0 0
5 0 1 1 1 1 1 1
4 0 6 6 6 0 6 0
3 0 28 0 28 4 28 4
2 0 120 0 56 0 24 120
1 0 496 0 112 0 48 - 240
Tree totals: O 651 7 203 5 107 365
Network totals: 651 210 477

Table B-1. Comparison of link crossing metrics in selected networks.

113 Total link crossings at level v = 2nv-d, * (r-spangy - 1)

Kyklos n Modr HDJ &W--Page 37
Real span (r-spany,) can be computed for level v in tree t by the following formulation:
1. Level v in tree t has associated with it an implicit dimension, z,, and a
nominal span, spany,. These may be computed as described in Section IV.
2. Compute d,,, where dy is the number of dimensions whose associated level is
greater than v, and whose dimension is less than z,.

Thus, dyy = count (zig < Zu)

gl=v+l,.n
3. Compute r-spany = mdy,
r-spangy can be used either to determine the parent of a child, or the children of a parent:
Computing the parent of child <t, v, o>:
1. u=r-spanyy.
2. w=omod u+u* [odiv (m* u)]
3. parent <t, v+1, w>
Computing the child of parent <t, v, 0>:
1. u=r-spany
2. wo=omodu+m*u *[odivu]

3. Wi=Wo+Uu
W,=Wo+C¥*u
Wpi=wo+(m-1)*u

4, The m children of «t, v, o> are <t, v-1, wg>, <t, v-1, wi>, . . .,

<t, v-1, we>, . .., <t, V-1, Wn1>.

Kyklosn Modr HDJ&W--Page 38
Appendix C. Maximum Link Traffic Density using Y-2 Routing.

A simple way of looking at link traffic density in H-2 routing is to look at the r routing
strings of length h from the top down. For a given string, ((m-1)/m=1-1/m) is the
probability of reaching level h. Similarly for level h - 1, 1 - (1 / m)2, the probability of an on bit
inthe h- 1 or h - 2 positions. Thus, the probability of reaching level v in any tree tis 1 - (1/
m)bv+! (=1 - mv / (m * mh))

The number of links in any tree at level v = m * ma-v, while the number of joins to be
performed in the network = N2. The foregoing can be combined for the following results:

Traffic Density per Link using H-2 Routing:

O<v<=h
Tho(v,n) = {N2*[1 -mv/ (m * mh)]}/ (m * mn-v})

Tuo(v,n) = 2v * N ¥ (2 % 20 - 2v) / 2hs2

Typ(h,n) = 20 * N * (2 * 2h - 2h) / 2me2
Trip(hn)=N*2n/4
h<v<=n:
Tw(vn) =0
Maximum Traffic Density per Link:
Tpo(v,n) = 2v* N * (2% 20-2v) /2041, 0< v <=h
letv=h-d,0<=d<h
Tpp(d,n) = 20-d * N * (2% 20 - 20d) / 2041, O <=d <h
To(dn)=(N/2)*2n*24%(2-24),0<=d<h
The first two terms are unrelated to d, the last two terms are largest when d is
smallest. Thus, this function is maximized whend =0=>v =h.
The Y-2 Routing Strategy is based on reducing traffic at level h. The reduction
achieved is at least 25 % if m = 2. This is demonstrated below for the most extreme case,

re=2.

Kyklosn Mod r HDJ&W--Page 39
Traffic Density per Link after Y-2 Step 4:

Step 4 removes 1/ 4 of the traffic at level h in the first two trees. Forr> 2,
additional amount are removed based on trees other than the start tree, so that the total
reduction is between 1 /4 and 1 /3. The following is based on the r = 2 case as it is the
most restricted:

O<v<h:

Typ(vn) =2v*¥N* (2% 20-2v) / 2042 - (N *2v) / 16
= (2v*N) * [(2n - 2v-1) / 20+1 - 1 / 16]

Ty(v,n)=(3*N*28)/16
h<v<=2h=n:
Tp(vn) =N *2v) /16
Traffic Density per Link zifter Y-2 Steps 5 and 6.:

This sub-step removes the transforms of a routing at levels greater than h+g from
the current tree if the level h+g transform is a O-transform. As this O-transform is then
removed from the routing, this step removes traffic on the upper part of the tree, by
transferring it to the lower tree (at levels below h), or eliminating it from the routing.
Half the traffic moved to the level h + 1 is removed by one of these actions. Likewise,
for three-fourths of the fraffic at level h + 2, and similarly, for the higher levels.

O<v<h-1:

Tyo(v,n) <= [(20* N) * 2517256
v=h-1: \
Typ(vn) = (N*20*5) /32

Tp(vn)=(N*20%*3)/16
h<v<=2h;
Typ(v,n)=(N*28)/8

