- SPECIFYING IMPLEMENTATIONS
TO SATISFY INTERFACES: A STATE

TRANSITION SYSTEM APPROACH®

Simon S. Lam and A. Udaya Shankart

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-30 August 1988
June 1989 (Revision)

*The work of Simon S. Lam was supported by National Science Foundation Grant no. NCR-8613338. The work
of A. Udaya Shankar was supported by National Science Foundation Grant no. ECS-8502113.

tDepartment of Computer Science and Institute for Advanced délanﬁuter Studies, University of Maryland, College
Park, Maryland 20742, '

Specifying Implementations to Satisfy Interfaces:
A State Transition System Approach*

Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

A. Udaya Shankar
Department of Computer Science and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742

August 1988
Second revision, June 1989

Abstract

We present a formalism to specify interfaces and implementations of program modules in a hierar-
chy. Our formalism is based upon the relational notation for specifying state transition systems and a
refinement relation between such specifications. We define what it means for a program module to offer
an upper interface 10 a user, and to use a lower interface offered by another program module. We then
solve the problem posed by Leslic Lamport to participants of the Specification Logics session of the
1987 Lake Arrowhead Workshop. A formal specification of a serializable database interface is first
presented. Specifications of two database implementations, using a two-phase locking protocol and a
multi-version timestamp protocol, are then given, together with a proof that each implementation
satisfies the interface. In the two-phase locking implementation, we assume that it uses a lower inter-
face to access a physical database.

*The work of Simon S. Lam was supported by National Science Foundation Grant no. NCR-8613338. The work of A. Udaya
Shankar was supported by National Science Foundation Grant no. ECS-8502113.

1. Introduction

We consider the specification of program modules that interact via interfaces. The program
modules, or simply modules, are organized in a hierarchy. Each module in the hierarchy offers an upper
interface to a user, which may be a module at a higher level of the hierarchy. Each module may use a
lower interface offered by a module at a lower level of the hierarchy. (See Figure 1. While the upper
interface of a module can be offered to at most one user, the module can make use of multiple lower
interfaces cach offered by a different module at some lower level of the hierarchy. Thus, the hierarchy
is, in general, a tree with tree nodes being modules; each tree node offers an upper interface to its father
while making use of lower interfaces to access its sons.

user
upper interface

module
lower interface

module at a lower level

Figure 1. A module and its environment.

An interface between a module and its user can be characterized by a set of input events, a set of
output events, and a set of allowed sequences of the input and output events. Each allowed event
sequence represents one possible interaction between the user and the module. Input events are con-
trolled by the user. QOutput events are controlled by the module. This view is similar to that of Lynch
and Tutile [13],

While it is conceptually simple to view an interface as a set of allowed event sequences, some
convenient way of specifying this set is needed in practice. In Section 2, we present one such
specification formalism. Before doing so, we discuss informally what it means for a module that offers
an upper interface and uses a lower interface, to satisfy its interfaces. (A more formal treatment is glven
in Section 2.)

In our formalism, an interface is specified by a state transition system, a set of invariant require-
ments, and a set of progress requirements. Each event of the state transition system is either an input
event or an output event of the interface.

We specify a module by a state transition system and a set of faimess requirements for some of its
events: Suppose the module offers an upper interface and uses a lower interface, as illustrated in Figure
1. By design, some module events are said to correspond to certain events of its upper and lower inter-
faces. (This notion of event correspondence will be made precise in Section 2.5.) We require that each
module event corresponds to at most one interface event. The correspondence between module and
interface events induces a correspondence between event sequences. For any sequence # of module
events, the image of ¥ on the upper (lower) interface is defined to be the sequence obtained from # by
deleting from it, module events that do not correspond to any upper (lower) interface event, and replac-
mg the remaining module events in it by their corresponding interface events. :

We say that the module satisfies its interfaces if and only if (iff) every event sequence u allowed
by the module satisfies this condition: if the image of u on the lower interface is an allowed sequence of
the lower interface, then the image of 1 on the upper interface is an allowed sequence of the upper inter-
face.. In our formalism, presented in Section 2, the above condition is met if

« . the module specification is a refinement {8] of each of the interface specifications, and

+ it satisfies the invariant and progress requirements of the upper interface assuming that the invari-
ant and progress requirements of the lower interface are satisfied.

The above definition of what it means for a module to satisfy its interfaces extends in a straightforward
manner to modules that offer an upper interface while using multiple lower interfaces.

Our basic notion of a module satisfying an offered interface is essentially the same as that in other
state-transition formalisms [4,10,11,13]. The working definition in our formalism is based upon the
refinement relation between state transition systems in [8], which is adapted from our earlier work on
projection mappings between state transition systems [6,21]. Our formal treatment of the more general
notion of offering an upper interface while using some lower interfaces appears to be new.

Other authors allow arbitrary compositions of modules [5,13]. Our approach is not so general
But by imposing a hierarchical relationship between modules that interact via an interface, we get fairly
simple conditions for composing the modules. In our experience, we have not found the hierarchical
structure of modules assumed here to be restrictive. This is because a module in our formalism can be
an arbitrary network of processes. In Section 7, we give a more detailed comparison of our method with
other approaches in the literature, and describe various other applications of our method.

1.1. Database examples

In Figure 2, the problem posed by Lamport is illustrated. The database system is a module. The
client programs together constitute the user of the module. It is assumed that client programs execute
concurrently. Each issues a sequence of transactions to be processed by the database system. We refer
to the interface offered by the database system to the client programs as the database interface. We will
provide formal specifications of the database system and the database interface. However, the module
representing the client programs will not be explicitly specified. '

client programs

database interface

database system

Figure 2, A database system.

~Lamport’s informal specification of an interface consists of a set of procedures that can be exe-
cuted concurrently [12]. We model such an interface procedure P by two events: Call(P} and
Return(P). Since several invocations of P can be concurrently active, we tag each call of P with a
unique identifier, which is also used in the corresponding return of P. Therefore each interface pro-
cedure P is modeled by the two events: Call(i, P) and Return (i, P), where the identifier i is unique
over all concurrent invocations of P. A call event is an input event of the mterface A retum event is
an output event of the interface.

In specifying the database system module, each procedure is also modeled by two events
Call (i, P) and Return (i, P), which are obtained by refining the corresponding events of the interface,
Because the action of each event in our formalism is atomic, the atomic actions in our module
specifications may be too large — in the following sense. For a practical programming language, such
as Pascal or C, a procedure execution consists of a call event occurrence, followed by occurrences of
events that constitute the procedure body, and concluded by a retumn event occurrence. State variables
are updated by events in the procedure body. The call and retum events can only transfer control and
parameter values. Thus for implementation in a practical programming language, the module
specifications given in this paper will have to be refined further; specifically, state variables that are
updated in the actions of Return (i ,P) events will have to be made ‘‘auxiliary variables.” In Section 6,
we indicate how such refinements can be carried out. ' '

1.2. The balance of this paper

In Section 2, we present our formalism for specifying state transition systems, safety and progress
propertics, interfaces, and modules. The refinement relation between State transition systems is intro-
duced. Sufficient conditions for a module to satisfy its interfaces are formally stated.

In Section 3, the database interface is specified. Two implementations of the database system are
then specified, one using a two-phase locking protocol in Section 4, and the other using a multi-verison
timestamp protocol in Section 5. The two-phase locking implementation, as specified informally by.
Lamport, makes use of a lower interface to access a physical database; we formally specify this inter-
face also in Section 4. For each implementation, we provide a proof that it satisfies the database inter-
face. (Our progress proof for the two-phase locking implementation employs a novel metnc based upon
lexicographic ordering [7].)

In Section 6, we discuss how to refine Return (i , P) events to satisfy the atomicity requirements of
a practical programming language. In Section 7, we discuss related work by other authors and comparc
our approach with those of others.

2. Model and Proof Method
We first present the relational notation for specifying state transition systems introduced in [8, 22].

2.1. State fransition systems

A state transition system is specified by a set of state variables, v={v1,v3, - }, asctof events,
ey, e -+, and an initial condition, as defined below. For every state variable, there is a specified
domain of allowed values. The system state is represented by the set of values assumed by the state
variables. Parameters may be used for defining groups of related events, as well as groups of related
system properties. Let w denote a set of parameters, each with a specified domain of allowed values.

Let v denote the set of variables {v”: v € v}. In specifying an event, we use v and v’ to denote,
respectively, the system state before and after an event occurrence. Instead of a programming language,
the language of predicate logic is used for specifying events. We assume that there is a known interpre-
tation that assigns meanings to all of the function symbols and predicate symbols, and values to all of
the constant symbols that we use. As a result, the truth value of a formula can be determined if values

are assigned to its free variables.!

"We use formula to denote well-formed formula.

-4-

The set of variables in our language is viu v\ w. We will use two kinds of formulas: A formula
whose free variables are in v w is called a state formula. A formula whose free variables are in
vuv wwis called an event formula.

A state formula can be evaluated for each system state 1o be true or false by adopting this conven-
ton: if a parameter occurs free in a state formula, it is assumed to be universally quantified over the
parameter domain. .

We say that a system state s satisfies a state formula F iff F evaluates to true for 5. A state for-
mula F represents the set of system states that satisfy F. In particular, the initial condition of the sys-
tem is specified by a state formula. A system state that satisfies the initial condition is called an initial
State.

Events are specified by event formulas. Each event (formula) deﬁnes a set of system state transi-
tions. Some examples of event definitions are shown below:

viz2 a V2 e {1,2,5}

€2 = V>V A vitvy'=5

€1

where *“ = ' denotes *‘is defined by’’; in each definition, the event name is given on the left-hand side
and the event formula is given on the right-hand side. For convenience, we sometimes use the same
symbol to denote the name of an event as well as the event formula that defines it. The context where
the symbol appears will detennme what it means.

Conventlon Given an event formula e, for every state. variable v inv, if v’ is not a free vanable of e
then each occurrence of the event ¢ does not change the value of v ; that is, the conjunct v =y 1s implicit
in the event formula.

For example, consider a system with two state variables v and v,. Let e, above be an event of
the system. The conjunct v y"=v is implicit in the above formula that defines e.

If a parameter occurs free in an event definition, then the system has an event defined for cach
value in the parameter domain. For example, consider : :

_ es(m) = vi>va A vi+vy'=m _
where m is a parameter. A parameterized event is a convenient way to specify a group of related
events.

An event can occur only when the system state satisfies the enabling condition of the event. In
any system state, more than one event may be enabled. The choice of the next event to occur from the
set of enabled events is nondeterministic.? When an event occurs, we assume that the state variables of
the system are updated in one atomic step.

Formally, the enabling condition of an event formula e,tobe denoted by enabled (e) is given by

enabled(e) = [IV: el
which is a state formula.
Some of the state variables in v may be auxiliary variables, which are needed for specification or

verification only, and do not have to be included in an actual implementation of the spc;:ciﬁcation.3 For
example, an auxiliary variable may be needed to record the history of certain event occurrences.

*The choice is not strictly nondeterministic if the system specification includes faimess requirements for some events,
3A rigorous explanation of this statement can be found in [8]. What we call auxiliary variables here are also known as history variables. Abadi

Informally, a subset of variables in v is auxiliary if they do not affect the enabling condition of any
event nor do they affect the update of any state variable that is not auxiliary. To state the above condi-
tion precisely, let u be a proper-subset of v, and w’ = {v”: v € u}. The state variables in u are auxiliary
if, for every event ¢ of the system, the following holds:

e = [Vudu" e]
For convenience in specification, we will also use state functions, that is, functions of the system:
state. For example, we can define a boolean state function even such that even (v) is true iff the value

of the state variable v is an even integer. (Note that state functions can always be transformed into state
variables.) :

Each execution of a state transition system can be represented by a behavior, namely, a sequence
<5o,fo. S 1.f1. + - > of alternating states and events, where s¢ is an initial state, and for each i, s;
denotes the system state at the start of the i th transition, f; denotes an event that is enabled in s;, and
the transition (s;, s;.1) satisfics f;. A behavior may be finite or infinite. By definition, a finite behavior
ends in a state. Safety properties of the system are determined by the set of its finite behaviors.

For a system to have desirable progress properties, it may be necessary that some events must be
scheduled to satisfy a fairness criterion. Note that a state transition system in itself does not have any
notion of faimess. Therefore, in specifying a state transition system using the relational notation, wé
explicitly include a set of fairness requirements. The faimess requirements should be as weak as possi-
ble to facilitate implementation. Generally, to achieve certain progress properties, only some of the
events in a specification need to be fairly scheduled. Very often, we define a new event 1o be the dlS-
junction of a set of events already defined, e.g., -

[3m: e3(m)]

e1ver

]

€3

€4
because it is the new event that needs to be fairly scheduled, and not the individual events in the set.

The only faimess criterion we will use in this paper is weak fairness, also called Justice [15].
Informally, if an event e having weak faimess is continuously enabled, it eventually occurs, More pre-
cisely, consider a specification consisting of a state transition system and some fairness assumptions.
An infinite behavior w satisfies an assumption of weak faimess for event e iff e occurs infinitely often
or is disabled infinitely often inw .

The allowed behaviors of the specification are defined as follows: 4

» A finite behavior of the state transition system is an allowed behavior of the specification iff every
event that has a faimess assumption in the specification is disabled in the last state of the behavior.

+ An infinite behavior of the state transition system is an allowed behavior of the specification iff
every faimess assumption of the specification is satisfied by the behavior. -

The progress properties of the specification are determined by the set of its allowed behaviors.

2.2, Safety and progress properties

We use two kinds of assertions to describe the behaviors allowed by a specification. For safety
properties, we use assertions of the form: P is invariant, where P is a state formula. P is invariant for a

and Lampon [1] defined another kind of auxiliary variables called prophecy variables.

*This definition is applicable for spemﬁcanons in which each event may be scheduled with no fazmess weak faimess or strong falmess see [8].
‘What we define to be an allowed behavior is called a fair behavior by Lynch and Tutile [13].

behavior w iff every state of w satisfies P. P is invariant for a state transition system iff P is invariant
for every finite behavior of the system. '

To state proof rules for assertions, we need the following notation: for an arbitrary state formula
R, R’ denotes the formula obtained from R by replacing every state variable v init by v”. ‘

For any state transition system A, let v4 denote its set of state variables, and Initialy be a state
formula specifying its initial condition.
Invariance rule: P isinvariant for state transition system A if
« Initialy = P, and
« foreveryevente of A, P re =P’
If I is invariant for A, then we can replace P r e = P’ with I A I° A P n ¢ = P in the above rule.
If P is invariant for a system, then any state formula implied by P is also invariant for the system.

For progress propetties, we use assertions of the form: P leads—to (0, where P and ¢ are state
formulas. P leads—to @ for a behavior w iff the following holds: if some state 5; in w satisfies P then
there is a state 5; in w, j2i, that satisfies Q. P leads—to Q for a specification iff P leads—to Q for
every allowed behavior of the specification. Some rules for proving leads-to asserions are given

below.” '

Leads-to rules: For a given specification, P leads—to Q if one of the following holds:

« P =0 isinvariant . [implication]
« for some event e that has faimess, P leads—to Q via e : [event] .
» forsome R, P leads—to R and R leads—to Q [transitivity]
* P=P,V Py, Py leads—to Q and P; leads—to Q [disjunction)

where the following definition is assumed:

Definition: For a given specification in which event e has weak faimess, P leads—to Q via e iff
@ Pre=Q,) |
(i) foreveryevent f, P n f= P’ v Q’, and
(iii) P = enabled (¢) is invariant.

If I is invariant for the specification, it can be used to strengthen the antecedent of each logical
implication in the above definition; that is, replace P by 7 A I’ A P in each part of the definition. For a
given specification, if / is invariant and P A I leads~to Q , then we infer that P leads—to Q.

2.3. Refinement of state transition systems

We next define a refinement relation between two state transition systems A and B. Let the state
varidble set of system A be v4 = (vy,V3, -, V,} and the state variable set of system B be vp =
(vi.v2, - **,Vm}, where m<n. That is, in deriving A from B, every state variable in B is kept as a
state variable in A with the same name and the same domain of values. Since vg is a subset of vy,

¥ For a comprehensive treatment of proof rules, the reader is referred 10 [4,15,19]. For distributed systems with unreliable communication chan-
nels, see [8] for the P leads-to Q) via M rule, where M denotes a set of messages.

7-

there is a projection mapping from the states of A to the states of B, defined as follows: The set of states
in A having the same values for {v1,v2, ***, v} are mapped to the same state in B [6,8,21], We
further require that every parameter in B is a parameter in A with the same name and same domain of
values. Given the above requirements, any state formula of system B can be interpreted directly for
systemi A without translation.

Let {a;) denote the set of events of system A, and {b;) the set of events of system B. Event a; in
system A is a refinement of events in system B if, for some invariant /4 of system A, one of the follow-
ing holds: ' '

Iy A gp=[dj: by] - (event refinement condition)

Is M@= v=v Av=van - Ay, =V, (null image condition}

Very often, a; is the refinement of a single event in system B. In this case, to check that g;
satisfies the refinement condition, it is sufficient to show that, for some b;, either a; = b; or
Ip N a; = b;.

It might appear that the use of a multi-valued possibilities mapping [13] between A and B is more
general than the use of a projection mapping, as described above. This is not the case, however,
because we allow state variables in B. to be replaced by new state variables in A, and then made into
auxiliary variables in A. To prove that events of A and events of B satisfy the event refinement and
null image conditions, an invariant /, is to be found. This invariant represents a multi-valued possibili-
ties mapping from the values of the old state variables to the values of the new state variables.

System A is a refinement of system B iff every event in A is a refinement of events in B and
Initial, = Initialy. This ensures that any invariant property of B is an invariant property of A. (By
imposing additional conditions, we can ensure that some, or all, leads-to properties of B are also leads-
to properties of A [8].)

Suppose A is a refinement of B. For this paper, A represents a module implementation and B a
module interface. We impose the additional requirement that every event of A that does not have a null
image, is a refinement of a smgle event of B ; that is, every event of A has a unique image in B. For any
sequence w=<sg, dg, 51, * * - > of alternating states and events of A, we define the image ofwinB 10
be the sequence obtained from w by (i) removing every (a;, 5;+1) pair in w such that @; has a null
image, and (ii) replacing every remaining state and event in w by their images in B. The requirement
that every event of A has a unique image (which may be null) guarantees that the image of any behavior
of A is a behaviorof B.

2.4. Specifying interfaces
The specification of a module interface B consists of the followmg
~« A state transition system B , whose events are divided into input events and output events.
+ Asectlp of invariant requirements.
« A set Ly of progress requirements.
In specifying an interface, we do not need to know whether it is the upper or lower interface of a
module. For a given specification, a behavior of the state transition system that also satisfies the invari-

ant and progress requirements is said to be an allowed behavior of the interface. An event sequence is
allowed by the interface iff it is the sequence of events in an allowed behavior of the interface. (Note

that an allowed behavior may be finite or infinite.)

Note that /p is a set of state formulas that are required to be invariant for B. For notational con-
venience, we will also use /p t0 denote a state formula that is the conjunction of all the state formulas in
the set Ip; Iz’ is a formula obtained from the state formula /3 by replacing every state variable v in it by

r’

v’
For every event f of the interface, define
possible(fy = Ign[dvg " faig’]

The formula possible (f) is a state formula. It is true for every interface state where the event f is
allowed to occur. Note that possible (f) = enabled (f) holds.

In the above, we have provided two ways to specify the safety requirements of an interface:
namely, a state transition systern, and a set of invariant requirements. It is our experience that some
safety requirements are more easily expressed by invariant requirements, while some are more easily
expressed by state variables and events. Our approach is a flexible one. We could use a state transition
system that is very small. Inthe extreme case, a single state variable is enough, namely, a trace variable
recording the sequence of all event occurrences. Each event is always enabled and its action consists of
only updating the trace variable. On the other hand, we could try o specify safety requirements using a
state transition system only, without any invariant requlrement however, doing so generally results in a
cumbersome state transition system.

2.5. Specifying modules

Consider a module A that offers an upper interface B -and uses a lower interface C. Interface B
(C) is specified by a state transition system B (C), a set of invariant requirements Iy (I¢) and a set of
progress requirements Lg (Lc). An implementation of the module is specified by a state transition sys-
tem A together with a set of weak faimess requirements for events. .

As defined in Section 2.1, a behavior w of the state transition system A is an allowed behavior of
the module if and only if

» w isinfinite and w satisfies every fairness requirement of the module
. w is finite and no event with a fairness requirement is enabled in the last state of w.

An event sequence is allowed by the module iff it is the sequence of events in an allowed behavior of
the module. - As defined in the Introduction, module A satisfies its interfaces iff every event sequence u
allowed by A satisfies this condition: if the image of u on the lower interface C is an allowed sequence
of C, then the image of 4 on the upper interface B is an allowed sequence of B.

We present here a set of sufficient conditions for a module to satisfy its interfaces. These will be
teferred to as module implementation conditions:

MI1. A is arefinement of C. Additionally, the only way for an event of A .to access state variables of
C is by including an event of C as a conjunct in its definition. We say that module event ¢
corresponds to lower interface event fiff e includes f. (Note that e is a refinement of £) Each
module event can include at most one lower interface event.

M2. A is arefinement of B. Additionally, every event in A either satisfies the null image condition
or it is the refinement of a single event in B. (Any invariant /4 that is used in proving the null
image condition or the event refinement condition for events in A will have to be proved for A.)
We say that module event e corresponds to upper interface event fiff e is a refinement of £.

9.

M3. Everyeventin A corresponds to at most one interface event.

M4. Let module event e correspond to interface event f. If f is an input event of the upper interface
or an output event of the lower interface, then f is externally controlled, that is, the execution of f
causes the execution of e; otherwise, f is controlled by the module, and the execution of e
causes the execution of f. For every extemnally-controlled interface event f, the foliowing condi-
tion is required: there is an event e in' A corresponding to f such that possible (f) = enabled (e)
is invariant for A. '

MS5. The specification of A satisfies the invariant requirements /5, the progress requirements Lg, and
any invariant requirements /4 needed for event refinement in M2, assuming that the faimess
requirements of A, and the invariant requirements /¢ and the progress requirements L¢ of the
lower interface are satisﬁed ' '

Condition M1 ensures that for every behavior w of the state transition system A its image in C is
a behavior of the state transition system C. Condition M2 ensures that for every behavior w of the state
transition system A, its image in B is & behavior of the state transition system B. With M1 and M2,
every safety requirement that is implicitly specified by the state transition systems of the upper and
lower interfaces is a safety property of the module. Condition M3 is a straightforward way to ensure
that no module event corresponds to more than one externally-controlled interface event. Condmon M4
ensures that the module is always ready to accept inputs from the upper interface and outputs from the
lower interface. Consequently, if the progress requirements L¢ are satisfied by interface C, they are
guaranteed to hold for A and can be used in the proof specified by M5. (M4 rules out a vacuous 1mple-
mentation of the module.)

Given M1—M4, to show that module A satisfies its interfaces B and C, our proof obligation is
stated in M5. We assume the invariant and progress requirements of the lower interface (that is, the
lower interface is offered by a correctly-implemented module at a lower level). We also assume that
any actual implementation of module A satisfies the fairness requirements in its specification. Given
these assumptions, M5 requires a proof that module A satisfies (1) the invariant requirements /p and
progress requirements Ly of the upper interface, and (2) any invariant requirements f4 used in M2,

In formulating condition M4, we have made use of the invariant requirements of an interface.
Thus M4 is a weaker condition than requiring every module event that corresponds to an externally-
controlled interface event to be always enabled, which is assumed in [13].

The above conditions can be generalized, in a straightforward manner, for specifying a module
that does not use a lower interface or one that uses several lower interfaces. For a module that does not
use a lower interface, we do not need M1; also, I and L¢ are absent in M5. ‘For a2 module that uses
several lower interfaces, we require that the module satisfies M1 for each lower interface, and the
invariant and progress requirements of all lower interfaces are assumed in M5.

Lastly, we elaborate on how a module A can make use of a lower interface C that is offered by
another module. Consider the constraint stated in M1 that module A can access state variables of its
lower interface C only via lower interface events. Given this constraint, the state variables of C are
effectively not observable by A. Consequently, the state variables of C may be auxiliary variables in
the module that offers interface C to A. For the same reason, the state variables of the upper interface
B may be auxiliary variablesin A.

-10-

3. Database Interface Specification

We define the following constants. Let OBJECTS denote the set of objects in a database, VALUES
the set of values each object can have, KEYS a set of keys, and IDS a set of transaction identifiers, The
entries of IDS are needed to specify correct usage of keys. They are also adequate as identifiers in inter-
face procedure calls, given that each transaction has at most one procedure call outstanding. We will
use key, obj, val, id. as variables that range over the corresponding sets. For each Ob_], let its initial
value be given by INITVALUE(obj).

We say that a transaction has a procedure invocation outstanding if it has called the procedure and
the procedure has not yet returned. We say that the transaction is active if its-Begin call has returned
with a key, and the transaction has not yet ended. :

3.1. State variables

H: sequence of {(id, Begin, key), (id, Read , key, obj, val), (id, Write, key,obj, val , OK),
(id, End, key, OK), (id, Abort, key)}.
Initially, H is the null sequence.

History of the retums of procedure invocations. The (id, Abort, key) cntry'is used to record
every return that aborts a transaction. The other entries indicate successful retums. An unsuc-
cessful Begin return is not recorded in H. H is adequate for stating serializability.

status (id):. {NOTBEGUN, READY, COMMITTED, ABORTED} U
{(Begin), (Read, key , obj), (Write , key, obj, val), (End, key), (Abort , key)}.
Initially, status (id)=NOTBEGUN.

Indicating the status of transaction id. NOTBEGUN means that the transaction has not yet
issued a Begin call, or such a call has returned with FAILED. READY means that the transac-
tion is active and has no interface procedure invocation outstanding. A tuple, such as
(Read , key , obj), means that the transaction is active and has a procedure invocation outstand-
ing as specified by the tuple. COMMITTED means that the transaction has ended successfully.
ABORTED means that the transaction has ended by aborting,

allocated (key). boolean. Initially false.
True iff key is allocated 1o a transaction.

Notation: When we refer 1o a tuple in the domain of status (id), such as (Read, key , obj), where a com-
ponent in the tuple can have any of its allowed values, we shall omit that component in our reference.
For example, status (id) = (Read, obj) means status (id) =+«Read, key, obj) for some value of key.
More than one component in a tuple may be omitted. For example, (ob)) refers to (Read , key , obj) for
some key or (Write, key, obj, val) for some key and some val. The same notational abbreviation is
used in referring to elements of H. For example, (id,obj)e H means that H has a
(id ,Read, obj, key , val) or a (id , Write , obj, key , val, OK) entry for some key and some val.

3.2. State functions

active (id): boolean
True iff (id, Begin) e H, and neither (id, End) nor (id, Abort) isinH.

accessed (id): powerset of OBJECTS
The set of objects that have been accessed by transaction id.

=11-

={obj: status (id y=(obf) v (id, obj) e H}.

concurrentaccess (id) boolcan : :
True iff there is an { € IDS—{id} such that transactions id and i have accessed a common
object and were simultaneously active at some time in the past. Formally, it is true
iff accessed (i) M accessed (id) is not empty, and for some prefix 2 of H,
(id, Begin), (i, Begin) € h and (id, End), (i, End), (id, Abort), (i, Abort) & k.

3.3. Events -

For readability, we model each procedure retum by two return events, one for success and one for
abort. Also, the enabling condition of an event is placed on the first line of its definition. We use @ to
denote concatenation.

Call(id, Begin) =
status (id)=NOTBEGUN
n status (id Y=(Begin)

Return(id, Begin , key) =
status (id y=(Begin) n —allocated (key)
" A status (id Y=READY
n allocated (key)
n H'=H@ (id, Begin, key)

Return(id, Begin , FAILED) =
status (id y=(Begin)
n-status (id Y=NOTBEGUN

Call(id, Read, key , objf) =
status (id "READY n allocated (key)
n status (id Y=(Read , key , obj)

Return(id , Read , key , obj, val) =
status (id ¥=(Read , key , obj)
A status (id Y=READY
H'=H@ (id, Read , key , obj, val)

Return(id, Read , key , obj, ABORT) =
status (id=(Read , key , obj) » concurrentaccess (id)
- status (id Y=ABORTED
n —allocated (key Y
A H’=H@ (id, Abort, key)

Call (id, Write,, key , obj, val) =
status (id "READY » allocated (key)
A status (id Y=(Write , key , obj, val)

Return (id , Write , key , obj, val , OK) =
status (id =(Write , key , obj, val)
n status (id)Y =READY
A H’=H@ (id, Write , key , obj, val , OK)

=]2-

Return (id , Write , key, obj, val, ABORT) =
status (idy=(Write , key , obj, val) » concurrentaccess (id)
n status (id Y=ABORTED '
‘A —allocated (key)
A H'=H@ (id, Abort, key)

Call (id, End , key) =
status (id }=READY A allocated(key)
A status (id Y=(End , key)

Return(id , End , key, OK) =
status (id y=(End , key)
n status (id Y’=COMMITTED
n —allocated (key Y
n H’=H@ (id, End , key , OK)

Return{id, End, key , ABORT) =
status (id Y=(End , key) » concurrentaccess (id)
n status (id)’=ABORTED
A —allocated (key)’
nH'=H@ (id, Abort, key)

Call (id, Abort , key) =
status (id >>READY A allocated (key)
n status (id Y=(Abort , key)

Return(id, Abort , key) =
status (id y=(Abort , key)
n status (id Y=ABORTED
n —allocated (key Y
n H'=H@ (id , Abort , key)

3.4. Safety requirements

One safety requirement is that each transaction can only issue a correct sequence of procedure
calls. Specifically, the following state function is invariant for the interface:

legal (id): boolean
True iff the subsequence of (id) entries in H is a prefix of (id, Begin Y@<successes>@ <final>,
where <successes> is a sequence of zero or more (id, obj) entries, and <final> is either
(id, Abort) or (id, End).

It can be shown that legal (id) is invariant for the interface state transition system above (proof omit-
ted). Thus, this first safety requirement has been specified by the state transition system and does not
have 10 be explicitly stated. '

Let us point out some other safety requirements that are implicit in the state transition system. An
invocation of Begin is always enabled to return FAILED. (In an actual implementation, an invocation of
Begin returns FAILED only when there are insufficient resources to start another transaction, e.g., when
there is no unallocated key.) '

An invocation of Read, Write, or End by transaction id aborts only if it has accessed an object
that has been accessed by another transaction, one that was concurrently active at some time in the past.

This requirement has been specified by including concurrentaccess (id) in the enabling conditions of
the comesponding return events. (For a single-version implementation, this- condition can be
strengthened by requiring both id and i to be currently active.)

The only invariant requirement of the interface to be explicitly specified is serializability. Before
defining serializability, we need to define some more notation. For any sequence h, we use h; to denote
the ith element of A, % <; to denote the prefix of 2 up to but excluding k;, and k; to denote the prefix
of h up to and including h;. For any id, H (id) denotes the subsequence of H obtained from it by
including only the (id) entries. '

For any obj and any sequence / of transaction returns, define
lastvalue (obj, h): VALUES '

=INITVALUE(ob)), if (obj) ¢ h. _
=val , if (obj) € h and (obj, val) is the last such entry.

Definition: H is serializable iff there is a permutation id, idy, - - -, id, of all the
committed transactions such that S = H (id)@H (id)@ - - - @H (id,) satisfies
S;=(Read , obj, val) = val=lastvalue (obj, S). .

Define the following state functions:

keyoRid): KEYS U {NULL}
=NULL, if —active (id).
=key , if active (id) and (id, Begin, key)in H .

correctkeyuse : boolean.
True if every transaction has used the correct key in all its procedure calls, i.e., every

(id, key) € H satisfies key=keyof(id).
The interface specification includes the following:

Invariant requirement: correctkeyuse = H is setializabie.

A comment on the above definition of serializability is in order. We find three definitions of seri-
alizability in [3): conflict serializability, view serializability, and multi-version view serializability. The
first two are applicable to single-version implementations. The two-phase locking implementation
satisfies conflict serializability, the strongest condition of the three. However, the multi-version times-
tamp implementation satisfies only multi-version view serializability, the weakest condition of the
three. The above definition is a statement of multi-version view serializability, which is the only condi-
tion of the three that can be used for both implementations to be specified in this paper.

3.5. Progress requirements
A progress requirement specifying that every procedure call eventually returns is this:

Ly = status(id)e ((Begin), (Read), (Write), (End), (Abort)Y
leads —t0 Status (id) € {fREADY, ABORTED, COMMITTED, NOTBEGUN}

Lamport’s assumption that if a transaction is not aborted, then the transaction is eventually ter-
minated (by its client program) with an invocation of End, can be stated as follows: If every Read and
Write call made by the transaction returns successfully, then the transaction eventually issues an End
call. Formally:

-14-

Ly = (status (id) € {(Read), Write)} leads—to status (id >READY)
= (status (id "READY leads —to status (id y=(End))

The interface specification includes the following:
Progress requirement: L { holds, assuming that correctkeyuse is invariant and L 5 holds.

4. Database Implementation Using Two-Phase Locking

The two-phase locking implementation is built on top of a physical database. The interface
offered by the physical database is the lower interface used by the two-phase locking implementation.
In Section 4.1, we specify the lower interface. In Section 4.2, we specify the module that implements
the two-phase locking protocol such that it satisfies module implementation conditions M1—M4. In
Sections 4.3 and 4.4, we show that it satisfies the proof obligation in MS5.

4.1. Lower interface specification |
Note that outstanding procedure calls at the lower interface for accessing the physical database are
uniquely identified by the entries of KEYS.

State variables

statusy (key). {READY, (AcqLlock, ob)), (RelLock , obj), (Ready , objf), (Writer,, obj, val)}.
Initially READY,

Indicating the status of any procedure invocation identified by key. READY means that key
has no procedure invocation outstanding at the lower interface. Otherwise, the outstanding pro-
cedure invocation is indicated by a tuple.

owned (key , obj}: boolean. Initially false.
True iff key has locked obj.

storedvalue (obj): VALUES. Initially, INITVALUE(oby).
The value of obj in the physical database.

State functions
waiting (key , obj): boolean.

True iff status; (key Y=(AcqLock , obj). Defined for notational convenience.
waitfor graph:

Directed graph defined by nodes KEYS \ OBJECTS and
edges {(x,k): owned(k x)} U {(k.x):waiting (k x)}.

icycle (k1. k2, - -, k;): boolean.
True iff keys k1, k2, - - -, k; form a cycle in waitfor graph, that is, there exist objects x 1, x 3,
*++, X; such that waiting (k;, x;) » owned (k; 41, x;) for 15j <i, and
waiting (k;, x)~ owned (k1, X 1).
deadlock (key , obj): boolean. _
True iff there is a cycle including the edge (key, oby)) in waitfor graph.

-15-

Events

The interface events are the calls and returns of the interface procedures AcgLock, RelLock , Read; , and
Writey,.

Call (key , AcgLock , obj) =
statusy (key >READY
A statusy (key Y=(AcqLock , obj)

Return (key , AcqLock , obj, GRANTED)
statusy (key (AcqLock , obj) » Vk: —aowned k obj)]
A statusy, (key Y=READY
n owned (key , obj)’

Return(key , AcgLock , obj, REJECTED) =
statusy (key Y=(AcqLock , obj) n deadlock (key , obj)
n statusy (key Y=READY

Call (key , RelLock , obj) =
statusy (key >READY
n statusy, (key Y=(RelLock , obj)

Return (key, RelLock , obj) =
statusy, (key =(RelLock , obj) n owned (key , Obj)
n statusy (key Y=READY
n —owned (key , obj)’

Call (key , Ready, obj) =
statusy (key =READY
A statusy (key Y=(Ready,, obj)

Return (key, Ready , obj, val) =

statusy, (key Y=(Ready,, obj)
n statusy (key Y=READY
n val =storedvalue (obj)

Call (key , Write;,, obj, val) =
statusy (key Y"READY
n statusy (key Y=(Writey,, obj, val)

Return (key , Writey , obj, val) =
statusy (key Y=(Writey, , obj, val)
A statusy (key Y=READY
A storedvalue (objY=val

Safety requirements

Safety requirements of the lower interface are all implicitly specified by the state transition sys-
tem. The enabling condition of Return (key , AcgLock , obj, GRANTED) ensures that obj is not owned
by any other key. Its action updates owned(key,obj) to true. The enabling condition of
Return (key , RelLock , objf) ensures that obj is owned by key. Its action updates owned (key , 0b)) 10
false. No other event updates owned (key , obj).

16~

The enabling condition of Return(key,AcqLock, obj, REJECTED) ensures that (key, obj) is
involved in a deadlock.
Progress requirements

The physical database that offers the lower interface guarantees progress properties Q; through
Qs

Q1 = statusy (key y=(Ready) leads —to statusy (key }=READY
Q2 = statusy (key)=(Writer) leads —to statusy (key ="READY
Q3 = statusy (key y=(RelLock , obj) » owned (key , obj)
leads —to statusy (key "READY. r —~owned (key , obj)
Q4 = G4holds, assuming that R 4 holds
where
Ry = [Vk 2 waizz'ng (k 1, obf) » owned (k,, objf) leads —to waiting (k 1, obj) » —owned k2, 0bj)]
G 4 = waiting (k 1, obj) leads —to owned (k 1, obj) '

Q 4 specifies the property that every call to Acglock eventually returns successfully provided that
every granted lock is eventually retumned and the caller continues to wait for the lock (i.e., is not
aborted). In other words, if Return (key, Acgl.ock , obj, GRANTED) is enabled infinitely often, it even-
tually occurs. This is how we interpret Lamport’s statement that the interface does not starve an indivi-
dual process [12]. a _

Qs = cycle(ky, ka, * -, ky) leads—to [3k;, 1<i<n: statusy (k;>READY]

Q s specifies that if there is a cycle of deadlocked processes, it is eventually broken.

4.2. Two-phase locking implementation

The two-phase locking implementation is obtained from the database interface by adding state
variables, refining the databasc interface events, and adding new events. The new events are obtained
by refining events of the lower interface. '

State variables

In addition to the state variables H, status, and allocated in the database interface specification,
and the state variables status; , owned , and storedvalue in the lower interface, we add the following:

locked (key , obj): boolean, Initially false.
True iff key has locked obj.

localvalue (obj, key): VALUES U {NULL}. Initially NULL.
Current value of obj as seen by transaction using key.

aborting (key). boolean. Initially false. -
True iff the transaction using key has been rejected in acquiring a lock and it has not yet aborted.

S: sequence of {(id, Begin, key), (id, Read , key , obj, val), (id , Write , key , obj, val , OK),
(id, End, key, OK)}.
Initially, S is the null sequence.

An auxiliary variable. A serial history obtained by concatenating the histories of committed tran-
sactions in the order of commitment.

.17-

The state variable H in the database interface specification becomes an auxiliary variable. This
also makes auxiliary all state functions defined in terms of H, such as concurrentaccess, etc. Recall
that the values of auxiliary variables and functions cannot affect the enabling conditions of events nor
can they affect the update of a nonauxiliary variable. ' '

State functions

holdinglocks (key). boolean.
True iff locked (key , obj) is true for some obj.

Events
Implementation events that are obtained by refining database interface events are listed first. In an
event formula, we use <previous definition> to denote the formula defining the corresponding event
given in Section 2.3. This notation is used whenever the refinement consists of adding conjuncts only.
When the refinement is not of this simple form, we add a safety requirement which will have to be
proved later. ' '

Call(id, Begin) = <previous definition>

Retrn (id, Begin, key) = <previous definition> » —holdinglocks (key)
Return id,, Begin, FAILED) = <previous definition>

Call (id, Read , key, obj} = <previous deﬁnitiofn>

Return (id, Read, key , obj, val) = <previous definition> A localvalue (0bj, key):tNU__IL
n val =localvalue (obj, key) '

Return (id , Read , key , obj, ABORT) =
status (id Y=(Read , key , obj) » aborting (key)
A status (id Y=ABORTED
n H'=H@ (id , Abort , key}
n —allocated (key Y
N —gborting (key)
n [Vx: localvalue (x, key)=NULL]

For the above to be a refinement of the comesponding interface event, it is sufficient that
concurrentaccess (id) is true whenever status (id y=(obj) and aborting (key) are true. The following
safety requirement is adequate: "

Ay = keyof(id=key ~ status (id y=(obj) » aborting (key) = concurrentaccess (id)
Call (id , Write , key , obj, val) = <previous definition>

Return (id, Write, key , obj, val,OK) = <previous definition> A locked (key, 0b))
A localvalue (obj, key Y=val

=18-

Return(id, Write, key, obj, val , ABORT) =
status (id y=(Write , key , obj, val) » aborting (key)
n status (id Y=ABORTED
A H'=H@ (id, Abort, key)
n —allocated (key Y
A —aborting (key Y
A [Vx: localvalue (x, key Y=NULL]

A 1 ensures that the above event satisfies the event refinement condition.

Call (id, End , key) = <previous definition>

Return(id, End, key, OK) = <previous definition> » [Vx: localvalue (x, key }"NULL]
nS '=S@H (id) '

Réturn (id, End , key , ABORT) is never enabled, and is absent in the implementation.
Call (id, Abort , key) = <previous definition>

Return(id, Abort , key) = <previous definition>
A [Vx: localvalue (x, key Y'=NULL]

In addition to the above events obtained by refining database interface events, the following events
are obtained by refining lower interface events. These events have null images at the database interface
because they do not update any state variables of the database interface.

RequestLock (id, key, obf) =
status (id e {(Read , key , ob)), (Write , key , obj)} » —locked (key , obj)
n Call (key , AcgLock , obj)

LockAcquired(key, obj) =
Return (key , AcqLock , obj, GRANTED)
n locked (key , objy

LockRejected (kéy yob) =
Return(key , AcqLock , obj, REJECTED)
A aborting (key Y

" RequestRead (id, key , obj) =
status (id Y=(Read , key , obj) » locked (key , obj) » localvalue (0bj, key }>"NULL
A Call (key , Read; , obj)

ReadCompleted (key , obj, val) =
Return (key , Ready,, obj, val)
n localvalue (obj, key Y=val

RequestWrite (id , key , obj) =
status (id Y=(End , key) » localvalue (obj, key YANULL
n Call (key , Writey , obj, localvalue (obj, key))

-19-

WriteCompleted (key , obj) =
Return (key , Writer,, obj, val) .
n localvalue (obj, key Y=NULL

RegRellock (key , obj) =
—allocated (key) » locked (key , obj)
n Call (key , RelLock , obj)

LockReleased (key , obj) =
Return (key, RelLock , obj)
n —locked (key , obj)

It can be easily checked that module implementation conditions M1—M4 are satisfied. In partic-
ular, M4 is satisfied for every call event of the database interface because the corresponding implemen-
tation event is exactly the same. M4 is satisfied for every return event of the lower interface because
each such event f appears in an implementatibn event of the form fA p and enabled (p) is true. Condi-
tion M5 will be established in Sections 4.3 and 4.4.

We now give an informal description of the two-phase locking implementation, by indicating the
sequence of event occurrences for each transaction call. (Those who are familiar with the two-phase
locking protocol might want to go ahead to Section 4.3.) For brevity, we will omit parameters in event
names whenever the omission results in no ambiguity. :

Suppose a client program begins a new transaction by issuing a Call (Begin). Evenmally the
implementation executes either Return (FAILED) or Return (key). In the former case, the transaction’s
execution is over. In the latter case, read or write calls can be issued for the transaction, and the transac-
tion enters its growing stage.

Suppose a Call (Write, key , obj, val) is issued, where obj has been previously accessed by the
transaction. Then obj is locked by key. The implementation assigns val to localvalue (obj, key) and
executes Return (Write , OK)

Suppose a Call (Write, key, obj, val) is issued, where obj has not yet been accessed by the tran-
saction. Then obj is not locked by key. The implementation executes RequestLock (key , obj). Eventu-
ally the lower interface retums causing either LockAcquired (key , obj) or LockRejected (key , obj) to
occur. In the first case, the implementation sets localvalue (obj,id) to val and executes
Return (Write , OK). The second case will be considered below.

Suppose a Call (Read, key , obj) is issued, where obj has been previously accessed by the transac-
tion. The implementation executes Return (Read , val) where val equals localvalue (obj, key).

Suppose a Call (Read , key , obj) is issued, where obj has not been previously accessed by the tran-
saction. As in the case of the write above, the implementation executes RequestLock (key , obj), which
is eventually followed by either LockAcquired (key , obj) or LockRejected (key, obj). In the first case,
the implementation executes RequestRead (key, obj). Eventually a retum from the lower interface
causes ReadCompleted (obj, val) to occur. At this point, val, which equals storedvalue(0bj), is
assigned to localvalue (obj, id). After this, the implementation executes Rewrn (Read, obj, val).

Suppose a Call (End , key) is issued by the client program. The transaction goes through two
stages of activity. In the first stage, referred to as committing, the local value of each object accessed by
the transaction is written into the physical store. Specifically, for each obj with
localvalue (obj, key y#NULL, there is an occurrence of RequestWrite (key , obj) which is followed by an
occurrence of WriteCompleted (key , obj). When all the local values have been writien to the physical

database, the implementation executes a Return(End, OK), ending the transaction’s execution. The
second stage, referred to as lock-releasing, then follows. In this stage, the implementation returns all
the locks acquired by the transaction. For each obj such that locked (key , obj) is true, the implementa-
tion executes a ReqRelLock (key , obj), which is followed by the occurrence of LockReleased (key , obj).
The second stage ends when all the locks are returned. The key can now be reallocated to a new tran-
saction.

Two cases have not yet been considered: a Call (Abort) issued for the transaction, and the
occurrence of LockRejected (key , obj) following a RequestLock (key, obj). In each case, the implemen-
tation returns the locks acquired by the transaction, exactly as m the lock-releasing stage fo]lowmg a
Call(End, key).

4.3. Proof of safety

We prove that the above implementation satisfies the following invariant requirements, assuming
that correctkeyuse is invariant:

Ay keybﬁjd Y=key A status (id y=(obj) » aborting (key) = concurrentaccess (id)
Ay = Si=(Read, obj,val) = val=lastvalue (obj, § ;).

A} ensures that the implementation events are refinements of the database interface events. A»
ensures serializability. Recall that S is a serial history obtained by concatenating histories of committed
transactions in the order of commitment. We provide here an informal Jusuﬁcatlon of the invariance of
A1 and Aj. A formal proof is given in Appendix A..

Consider Ay. Assume keyof(id y=key status (id }=(obj). When transaction id becomes active,
aborting (key) is false. It is set to true only in the LockRejected event, when the lower interface exe-
cutes Rewrn (key, AcqLock, obj, REJECTED). The latter occurs only if deadlock(key, obj) is true.
From the definition of deadlock, we have a cycle in the waitfor graph involving the edge (key, ob)).
Thus, owned (k, obj) is true for some key k+#key that is allocated to a transaction i. Since transaction i
is also waiting for a key, it is active. Additionally, obj belongs to accessed (i). From status (id }=(obj),
we know that transaction id is active and obj belongs to accessed (id). Thus, concurrentaccess (id)
holds just before aborting (key) becomes true. Once concurrentaccess (id) holds, it is obvious from its
definition that it never becomes false.

Consider A,. The Return(id, End, OK) event is the only event that can affect A,. It concatenates
H(id) o the end of S. Thus A is invariant if the following is invariant:

A3 = active(id) » H (id);=(Read , obj, val) =
(2) ((obj) ¢ H (id)«; = val=lastvalue (0bj, $)) »
(b) ((obj) € H(id)<; = val=lastvalue (obj, H (id);))

To establish that A 5 is invariant, we need to relate several values associated with each object: i.e.,
its stored value, its last value in §, and, whenever it is locked by a transaction, its local value and last
value in H. The following invariant assertions relate these values during the growing and committing
stages of a transaction:

Ay

= (Vkey: —locked(key, obf)) = storedvalue (obj)=lastvalue (obj, S)
As = keyoflid y=key » —locked (key , obj)= (id, obj)é H n localvalue (obj, key)=NULL
Ag¢ = keyoflid)=key n locked (key, obj) » status (id YH(End) =

storedvalue (obj)y=lastvalue (obj, §) »

21-

(a) [((id, obj) ¢ H » localvalue (obj, key NULL) v
) ((id, obj)é H » localvalue (obj, key Y=lastvalue (obj, S)) v
{c) ((id, obj) € H » localvalue (obj, key Y=lastvalue (obj, H (id)))]

A7 = keyoflid)=key » locked (key , obj) » status (id y=(End) =
(id,obj)e H »
(a) [(localvalue (obj, key y=lastvalue (obj, H (id)) » storedvalue (objy=lastvalue (Obj, Ay}
(b) v (localvalue (obj, key y=NULL r storedvalue (obj)=lastvalue (obj, H (id)))]

A 4 states that when an object is not locked by any transaction, its stored value is its last value in
S. This is true initially, when both are equal to the initial value of the object. This is preserved when-
ever the stored value is changed, because a change happens only when a transaction has locked the
object and is in the committing stage. When the transaction commits, § is updated and the conscquent
of A 4 is established. And A 4is preserved when the lock is released subsequently. :

A s is invariant because a transaction reads or writes an object onty after it has locked the object.

A is about an object locked by a transaction that is in its growing stage. The first conjunct it the
consequent states that its stored value equals its last value in §. This holds when the transaction first
acquires the lock on the object (by A 4). It holds subsequently because this transaction is not in its com-
mitting stage, and because no other transaction can change its stored value while this transaction has a
lock on it. The second conjunct in the consequent relates the local value of the object to its last value in
H. Disjunct (a) holds just after the transaction has locked the object, when its local value is NULL, If
the transaction’s first access to the object is a Read, disjunct (b) holds after the stored value has been
retrieved into the local value but before Return (Read) occurs. Disjunct () holds after the successful
retum of a read or write call. '

A 7 is about an object locked by a transaction that is in the commlttmg stage. . In the consequent, .
the first conjunct states that the object has been accessed by the transaction. The second conjunct relates
its local value, its last value in H (id), its stored value, and its last value in §. Disjunct (a) holds just
after the transaction has invoked Call (End) because of A ¢; note that at this point S does not yet include
H(id). Disjunct (b) holds afier the local value has been written into the stored value. Also, when
Return(End, OK) occurs, A 4 is established for this object because of disjunct (b).

We use the notation A;_; to denote A; A A;q b - -+ M Aj.
Lemma 1. A, A A4 qisinvariant, assuming that correctkeyuse is invariant. (Proof in Appendix A.)

It remains for us to prove that A 5 is invariant, which ensures serializability of the database inter-
face. Recall that it is sufficient to prove A 5 to be invariant. By Lemma 1, we can make use of the result
that A s and A ¢ are invariant in our proof. From A s, observe that an object is accessed by transaction id
only if the transaction has locked it. Thus, the consequent of A g holds just prior to the occurrence of
Return (id, Read, obj, val). There are two cases. If (obj) ¢ H (id) bolds prior to the occurrence, then
we have val = lastvalue (obj, S), by Ag(b). If (0bj)e H (id) holds prior to the occurrence, then we have
val = lastvalue (obj, H (id)), by A ¢(c). In each case, the consequent of A 5 holds after the occurrence.

4.4. Proof of progréss

_ The following fairness requirement for events of the two-phase locking module implementation is
assumed:

-22-

F1: Every event that is not a call event has weak fairness.

Progress requirements Q;, @1, Q3, @4, Q5 are assumed to hold for the lower interface. By M4, 0
through Q s also hold for the module implementation We proceed to prove that the module implementa-
tion satisfies the progress requirement of the database interface.

Lemma 2. The following progress assertions hold for the module implementation:

Wy = status (id =(Begin) leads —~to status (id) € {READY, NOTBEGUN}

Wa = status (id y=(End , key) leads—to status (id }=COMMITTED

W3 = status Gd=(Abort) leads—to status (id y="ABORTED

Wa= status(id)=(key, obj) » locked (key , obj) leads—to status (id }=READY

Ws = status (id y=(key , obj) » —locked{(key , obj) leads—to waiting (key , obj)
We = status (id =(key , obj) » aborting (key) leads—to status (id y>ABORTED

Proof:

W, holds as follows. The state formula status(id)=(Begin) can only be falsified by
Return(id, Begin , FAILED) and by Return (id, Begin, key) for some key. The occurrence of the latter
establishes status (id)=READY. The former is continuously enabled, and its occurrence establishes
status (id =NOTBEGUN.

W 2 holds as follows. From (3, RequéstWrite , and WriteCompleted , we have:

status (id YEnd , key) n localvalue (obj, key y¥NULL
leads —to status (id)=(End key) » localvalue (obj, key }=NULL

No event can falsify localvalue (Obj, key }=NULL while status (id y=(End , key) Therefore, from the
above we have:

status (id y=(End , key) leads —to
status (id Y=(End , key) » (Vobj: localvalue (obj, key }=NULL)

From Return{End, key), we have:

status (id Y=(End , key) n (N obj: localvalue (obj, key y=NULL)
leads —to status (id yx=COMMITTED

Combining the above two, we have W .
W 5 holds from Return {(Abort).
W 4 holds as follows. From Q 1, RequestRead and ReadCompleted , we have:

status (id y=(Read , key , obj) » locked (key , obj)
leads —to status (id Y=(Read , key , obj) » localvalue (obj, key y#*NULL

From above and Return (Read , val), we have:
' status (id)=(Read , key , obj) » locked (key , obj) leads—to status (id)=READY
From Return (Write , OK), we have: |

status (id y=(Write , key , obj) » locked(key , obj) leads—to status (id)"READY
Combining the above two, we have W 4. '
W s holds from RequestLock .

W ¢ holds from Return (Read , key , obj, ABORT) and Return (Write , key, Obj, ABORT).
End of proof.

The events that falsify waiting (key . 0bj) establish either locked(key, obj) or aborting (key).
Therefore, from Wy, Wo, Wi, W4, Ws, W, all that is left to establish the desired progress property is:

Wq = waiting (k 1, obj) leads —to —waiting (k 1, obj)
where we have used k in place of key for notational convenience.

We prove W7 using a lexicographically ordered metric on the waitfor graph. Recall that the
waitfor graph is the directed graph defined on by nodes KEYS(OBJECTS and edges
{(x.k): owned (k x)} W ((k.x):waiting (k,x)). Note that there is no edge from a key 10 a key, or from
an object to an object. Every node can have at most one outgomg edge. Because k| is wamng, it has an
outgoing edge. :

Consider the succession of nodes on the path starting from &£;. Let k3, xy, k2, X2, ***, k7 be the
sequence of distinct nodes such that waiting (k;, x;) and owned (ki 41, x;) for 1<i <J, and k; satisfies one
of the following three mutually exclusive conditions:

unblocked(k;) = k;y is not waiting for any object.
blocked(ky) = k; is waiting for an object that is not locked by any key.
deadlocked(k;) = k; is waiting for an object locked by k; forsome i, 1<i</.

While & is waiting, this path can grow and shrink. We need to prove that eventually this path
shrinks to only k;. Observe that J is a state function indicating the number of keys in the path, and &y
indicates the last key on the path. At any time, 1</<IKEYS|. Every &;, 1<i <J, is waiting and hence
allocated to some transaction. The last key &y can be either allocated or not allocated. It is not allo-
cated if ks is in the stage of releasing locks acquired when it was last allocated and has not yet released
the lock on x;y_;.

Define the following functions, where 1<i<IKEYS|. We assume that IOB]ECTSI <M , for some
arbitrary but fixed integer M . S

«;: integer
= number of objects locked by k;, ifi<J,ori=/ and allocated (ky).
=M, ifi=J and —allocated (k;)
=0, ifi>J.

B;: integer
= pumber of times x; has been unlocked since &; Iast started to wait,
if i <J,or i=/ and ky is waiting.
=0, ifi>J,orifi=J and k; is not waiting.

Define the function A= (By, &, B2, 03, - -, Qigeysi, Bikeys1). The values of A are we]l-orderéd
lexicographically. We shall prove the following:
Wg = waiting (k1, x1) » A=a leads—to —waiting(k1,x1) vV A>a '

We first show that W4 follows from Wg. W g states that that A increases without bound unless &
stops waiting. For A to increase without bound, either ; or o; must increase without bound for some i.
The former is not allowed by Q 4, which says that the lock manager in the physical database is fair, The
latter is not allowed by Lo, the assumption that every transaction accesses at most a finite number of

-24-

objects. Thus, it suffices to prove Ws.
Lemma 3. The following progress assertion holds:
Wo = unblocked(k;) » A=a leads—to W, v Wo, v Wy, where
= unblocked(ks) n A>a
Wop = blocked(ks) » A>a
W, = deadlocked(ks) » Aza

Proof.

Assume J=j and —allocated (k;), that is, k; is releasing its locks, J=j and A=a hold until k; releases
its lock on x;_;. At this point, W, holds with J=j—1 and A>a. o decreases from M to 0, and B;_;
increases by 1. No ot_l_1er o; or B; is affected. A increases because B;_; is lexicographically more
significant than ;. _ :

Assume J=j and allocated (k;). Eventually the transaction using k; requests an abort, a commit, or an
access to an object not previously accessed by it (by L, and W 4). If the transaction requests an abort or
a commit, &; eventually becomes deallocated (by W 3 and W3). When this happens, o; becomes M and
J remains j. Thus, A increases and we have Wo,. :

Suppose J=j and k; requests access to an object not previously accessed by it. If the object is not
locked, then Wy, holds with J=f and A=a. If the object is locked by some key already on the path,
(that is, by &; for some #, 1<i <j), then Wy, results with J=j and A=a. If the object is locked by some
key not already on the path, then the path gets extended, resulting in A>a; specifically, J becomes [>],
and oy increases from O for j <i<l. W, holds if unblocked(k;). W ¢p holds if blocked(k;) Wgc holds
iff prior to the request by k;, k; was a predecessor to a key on the path.

End of proof.

Lemma 4. The following progress assertion holds:
Wi = blocked(ky) » A=a leads—to unblocked(k) v A>a

Proof. Assume J=j, and let k; be waiting for x;. The LockAcquired(k;, x;) event is continuously
enabled while blocked(k;), and it eventually occurs unless some other key locks x;. Assume the former
case: that is, k; locks x;. If j=1, we get unblocked(k 1). If j>1, we get A>a because a; increases by 1.
In either case, the value of J remains to be j. Next assume that x; is locked by a key other than k;. We
get A>a because J becomes j+1 and o, increases from Q.

End of proof.

Lemma 5. The following progress assertion holds:
W = deadlocked(ky) » A=a leads —to unblocked(k)V A>a

Proof. Assume J=j. Then we have a cycle consisting of &; and other (perhaps all) keys in the path.
LockRejected (k;, x;) is enabled for every k; in the cycle, and eventually the lock manager in the physi-
cal database executes one of them (by Q5). Suppose LockRejected (k;, x;) occurs, for some 1<I<j. If
[=1, we get unblocked(k). 1f I>1, then J becomes /, o; and B: become 0 for I <i<j, and ¢y increases
to M. A>a holds because oy is lexicographically more significant than o; or P, for / <i <j.

End of proof.

Applying the transitivity and disjunction rules to Wg, W0, and Wy (with Wy at Wep, and Wy
at W), we get unblocked(k;) » A=a leads—to unblocked(k,) v A>a. Applying the disjunction rule
to this, Wi and Wy, we get Wsg, noting that unblocked(k)= —waiting (k1,x;) and
unblocked(k;) v blocked(k;) v deadlocked(k;) = true. Recall that Wy is sufficient for Wo, and Wi—
W, are sufficient for the module implementation to satisfy the progress requirement of the database
interface.

5. Multi-Version Timestamp Implementation

The multi-version timestamp module implementation is obtained from the database interface by
adding state variables, and refining the database interface events. Unlike the two-phase locking imple-
mentation, there is no lower interface.

The implementation uses ‘‘timestamps"” that are nonnegative integers. To be consistent with the
database interface specification, timestamps will be referred to as keys. ‘For each object, the implemen-
tation maintains multiple versions, one for each transaction that has written into the object and has not
yet aborted. Each version ov is a record with three components: ov.wkey, the key of the transaction that
wrote the version; ov.value , the value that was written; and ov.rkey , the largest key among keys of tran-
sactions that have read the version. The versions are ordered by wkey; that is, ov<ov: iff
ov 1.wkey <ov 2.wkey . When a transaction reads the object, it gets the value of the highest version that is
less than or equal to the transaction’s key. '

The keys in [ov.wkey..ov.rkey] constitute the interval of ov, where [i..j] denotes the set
{i,i+1, ,j)}. While a version ov of an object exists, no transaction whose key is in
[ov. wke'y .ov.rkey—1] can write into the object. This ensures that for any transaction that has read this
version (such as the transaction using ov.rkey), ov continues to be the highest version less than or equal.
to the transaction’s key. By not allowing such writes, the intervals of any two distinct versions ov and
ov, of an object have the following property: [ov .wkey..ov 1.rkey—1] M [ov a.wkey..ov.rkey~1]={ }.
Observe that ov 1.rkey =ov ,.wkey holds iff a transaction with that key first read from ov; and then wrote
into the object. Also observe that if a transaction writes a version of an object and a different transac-
tion subsequently reads that version, then the first transaction cannot write into the object again,

State variables

In addition to the state variables H status., and allocated of the database interface, we add the fol-
lowing:

aborted. powerset of KEYS. Initially empty.
Set of keys of aborted transactions.

done : powerset of KEYS. Initially empty.
Set of keys of transactions that have committed or aborted.

laststarted : KEYS. Initially 0.
Largest key allocated to a transaction.

versions (obj). powerset of VALUESXKEYSXKEYS.
Initially {ov: ov.value —INI'I'VALUE(obj) ov.wkey=ov. rkey=0].

Versions of obj currently maintained.

dependsupon (key). powerset of KEYS. Initially empty.
Set of keys that the transaction using key has read from; if k¥ € dependsupon(key) then k#key and
~ key has read a version ov written by k.

S: séquence of {(id, B'égin, key), (id, Read , key , obj, val), (id , Write , key , obj, val, OK),
(id, End, key, OK)}.
Initially, S is the null sequence.

An auxiliary variable. A serial history obtained by concatenating histories of the committed tran-
sactions in increasing order of their keys (timestamps).

The state variable H of the database interface becomes an auxiliary variable. We use H (key) to
denote the subsequence of H consisting of all entries using key. We use S (<key) to denote the prefix
of S consisting of all entries using keys less than key. Similarly, § (>key) denotes the suffix of § con-
sisting of all entries with keys higher than key. We continue to use our subscript notation to specify
entries of a sequence. Thus, § (>key); is the ith entry of S(>key), and S (>key).; is the prefix of
S (>key) consisting of all entries up to but excluding § (>key);.

Events

The following definition is to be used in the events that follow:

Abort{key) =
aborted’=aborted U {key }
n done'=done U {key }
n [Vobj: versions (objY={ov € versions (obj): ov.wkey key }]
A status {id '=ABORTED
n —allocated (key Y
n H'=H@ (id, Abort , key)

Module irnplemeritation events are obtained by refining the database interface events. The nota-
tion <previous definition> refers to the event’s definition given in Section 2.3.

Call (id, Begin) = <previous definition>

Return (id, Begin, key) = <previous definition>
n key=laststarted '=laststarted +1
~ dependsupon (key Y={ }

Return(id , Begin, FAILED) = <previous definition>
Call(id, Read, key, obj) = <previous definition>

Return(id, Read , key , obj, val) = <previous definition>
A dependsupon (key) M aborted={ }
A [Hov: ov=max{ov | € versions (obj). ov 1.wkey <key } » val=ov.value

n ov.rkey ‘=max(key , ov.rkey)
n dependsupon (key)'=dependsupon (key Y\ {k: k—ov wkey n k#key }]

For ov € versions (obj), the notation ov.rkey "=k means that versions (objY is the same as versions (obj)
except that ov is updated as specified.

27

Return(id, Read , key, obj, ABORT) =
status (id)=(Read , key , obj) » dependsupon (key) "\ aborted#{}

n Abortkey)
For the above to be a refinement of the corresponding database interface event, it is sufficient that
concurrentaccess (id) is true whenever status (id)=(obj) and dependsupon(key) Maborted+ { } are true.
The following safety requirement is to be proved:
By = keyofiid)=key status (id }=(obj) » dependsupon(key) M aborted #{} .
= concurrentaccess (id) _

Call (id , Write, key , obj, val) = <previous definition>

Return (id , Write , key , obj, val ,OK) = <previous definition>
n dependsupon (key) N aborted={ }
n =[Jov € versions (obj). key € [ov.wkey..ov. rkey-11]
n versions (objY={ov 1 € versions (obj): ov 1.wkey #key }
U {ovq: ova.value=val n ov . wkey=ov 2.rkey=key }

Return (id, Write, key, obj, val , ABORT) =
status (id y=(Write , key , obj, val)
n [dependsupon (key) Naborted#{ }
v [Jov € versions (ob)): key € [ov.wkey..ov.rkey—1]1]]

n Abort(key)
For the above 1o be a refinement of the corresponding database interface event, it is sufficient if the fol-
lowing is invariant in addition to B 1: '
By = keyofid y=key n status (id =(obj) 1 ov € versions (obj) » key € [ov.wkey..ov.rkey —1]
= concurrentaccess (id) ‘

Call (id, End, key) = <previous definition>

Return (id , End, key, OK) = <previous definition>
n dependsupon(key Ycdone ~aborted '
A done '=done L {key }
A §'=S (<key Y@H (key)@S (>key)

Return(id, End, key , ABORT) =
status (id Y=(End , key) » dependsupon (key) N aborted * { }
n Abortkey)
Call (id, Abort , key) = <previous definition>

" Return(id , Abort , key) = <previous definition>
n Abort(key)

It can be easily checked that module implementation conditions M2—M4 (in Section 2.5) are
satisfied. Condition M35 is established in the following two sections. ' '

228

5.1. Proof of safety

We prove the following to be invariant, assuming that correctkeyuse is invariant:

By = keyofidy=key n status (id =(obj) » dependsupon(key YN aborted#{}
= concurrentaccess (id)
By = kevof(id)=key » status (id }=(obj) r ov € versions(obj) » key € [ov. wkey .ov.rkey—1]

= concurrentaccess (id)
B3 = S$;=(Read, obj,val) = val—lastvalue (ob], S &i).

B and B ; ensure that the implementation events are reﬁnements of the database interface events.
B3 ensures serializability. We provide an informal justification of the invariance of B, B,, and Bs.
(Additional invariant assertions needed for a formal proof are indicated below.)

Assume that the antecedent of B holds currently. Let ke dependsupon(key) M aboried, and let
id, be the transaction that was allocated k;. The key k; entered dependsupon(key) due to an
occurrence of Return (id , Read , key), which read from a version ov with ov.wkey =k ;. Clcai'ly, transac-
tion id was active and accessing obj when this event occurred. Transaction id had accessed obj and
was either active or committed when the event occurred, because ov existed. It could not be committed
because k1 is in aborted. Consequently, both id and id; were active when the Read returned and both
had accessed obj. Hence concurrentaccess (id) was true, and continues to be true (by its definition).

Assume that the antecedent of B holds currently. Let ov.rkey=k and let id; be the transaction
that was allocated k;. The value of ovrkey was set to k; due to an occurrence of
Return(id 1, Read , k), which read from ov. Clearly, transaction id ; was active and access'ing obj when
this event occurred. Transaction id is currently active and accessing obj; because status (id Y=(obj). It
suffices to show that transaction id was also active when the Read returned. This is true because from
key <k 1, transaction id was active before transaction id; became active. Consequently, both id and id,
were active when the Read returned, and both have accessed obj. Hence concurrentaccess (id) was
true, and continues to be true (by its definition), '

Consider Bs. The only event to affect B3 is the Return(End, key, OK) event, which inserts
H (key) between § (<key)} and S (>key). Thus B 3 is invariant if B 4, B 5 and B ¢ shown below, are invari-
ant: _

B4 = key ¢ done » dependsupon(key Ycdone—aborted
n H (key)i=(Read , obj, val) » (obj) ¢ H(key); = val=lastvalue (obj, S (<key))

Bs = key ¢ done » dependsupon(key Yodone —aborted -
n H (key);=(Read , obj, val) » (obj) € H (key)<; = val=lastvalue (Obj, Hkey)e;)
Bg = key ¢ done n dependsupon(key Yodone —aborted

A S (key)i=(Read, obj, val) r (obj) ¢ S (Gkey)i = (Write , obj) & H (key)

B4 specifies that if the transaction using key can commit successfully and its first access to an
object is a Read , then the value read is the last value in § (<key). Bs specifies that if a transaction can
commit successfully and has read an object that was previously accessed by it, then the value read is the
same as what was read or written in its previous access. B g specifies that if the transaction using key
can commit successfully, and there are committed keys k1 and & o such that & ;<key <k and &, has read
a version written by k1, then the transaction has not written the object. Therefore, the value read by k2
will still be equal to the last value in S {(<k) after H (key) is inserted into S

-29.

To establish that B 4, B 5 and B ¢ are invariant, we need to relate the versions of an object with its
last values in S (<key) and H (key). The following invariant assertions relate these various values dur-
ing the execution of the transaction using key :

By = key ¢ done » dependsupon(key) N aborted ={} » H(key);=(Read, obj, val)
n(obj)¢ Hkey)ei= .
[3ov e versions (obj). key € [ov.wkey+1..ov.rkey] ~ ov.value=val
A gv.wkey € dependsupon(key)]
By = key ¢ done dependsupon(key)aborted={} 1 (obj)€ H (key)=
{Jov e versions(ob)): key € [ov.wkey..ov.rkey] ~ ov.value=lastvalue (obj, H (key)]
Bg = S;=(Read,k,obj,val)r(k,ob))é S = '
[Sov € versions (obj): k € [ov.wl_cey+1..ov.rkgy] n ov.wkey € done —aborted)

Bio = 0V, 0v2€ versions (obj) ovi#ovy = _
[ov 1.wkey..ov 1.rkey =11 [ov | wkey..ov 2.rkey —11={ }
By = [3ov e versions (obj): ov.value=val r ov.wkey=key] <>
[3(Write , key , obj, val) € H : key ¢ aborted) _
By = [Bov € versions (obj): ov.value=val » ov.wkey=key € done—aborted] <

[A(Write, key, obj,val)e S}

B 4 states that if the transaction using key is active and not about to be aborted, and its first access
to an object was a read, then the version ov from which it read still exists and ov.wkey belongs to
dependsupon(key). B g states that if the transaction using key is active and not about to be aborted, and
has accessed an object, then there is a version ov whose interval includes key and whose value equals
the last value of the object in H(key). By states that if a committed transaction’s first access to an
object was a Read, then the version ov from which it read still exists and the transaction that wrote the
version has committed. B 1o through B j, state obvious properties.

We prove that B, is invariant given that B, B, B11 and Bjp are invariant. Assume the
antecedent of B 4. The antecedent of B4 is satisfied. Hence, there exists ov € versions (obj) such that
ov.value=val , key € [ov.wkey+1..0v.rkey], and ov.wkey € dependsupon(key). This last condition and
the antecedent of B 4 together imply that the transaction ailocated ov.wkey has committed. Thus, § con-
tains the entry (Write , ov.wkey , obj, val), by B 2. The existence of ov also jimplies that H, and hence
S, does not contain an entry (Write , k, obj) with k € {ov.wkey..ov.rkey -1}, by B j0 and B ;. Therefore,
val=lastvalue (obj, S (<key)), which is the consequent of B 4.

We prove that Bs is invariant given that By and B o are invariant. Bs holds initially. It is
preserved by every event occurrence. The only nontrivial case” is an occurrence of
Return(Read , key , obj, val). Assume the antecedent of Bg, which is implied by the antecedent of B s.
From the consequent of Bg and from Byp, we sec that the value retumned by the Read is
lastvalue (obj, H{key)<i). ' : -

We prove that B¢ is invariant given that By, B g and By are invariant. Assume the antecedent of
B¢, namely: for some key k and some i, S (>key)i=(Read , k , 0bj, val) and (obj) é S (>key)<i. From
Bo, there is an ov € versions(obj) such that k e [ov.wkey +1.ov.rkey] and ov.wkey is committed.
Because (obj)é S(>key); and key is not. committed, it follows that ov.wkey <key. Because
(key)¢ S (>key), we have k>key. Thus, key € [ov.wkey+1..0v.rkey—1] and n'ansaction id could not
have written obj, by B 10 and B 1. h

-30-

We still have to establish that B 7 through B 1, are invariant. B and B g hold initially, because
{obj) ¢ H (key). Successful reads and writes preserve By and Bg. A version ov referred to in their con-
sequents ceases to exist only if the transaction using ov.wkey aborts, in which case
dependsupon(key) m aborted is not empty and B 7 and B g hold vacuously.

B g holds initially because S is the null sequence. B is affected only by a transaction committing;
when H (key) is inserted into S. B g is preserved because of B, and because key is committed only
after all the keys it depends upon have committed.

Bio through B 12 hold initially. It is casy to sec that they are preserved by every event occurrence.

Lemma 6. B3~ B 7.5 are invariant, assuming that correctkeyuse is invariant. (Proof omitted.)

To prove the above lemma formally, by showing that the assertions satisfy the invariance rule,
additional assertions are needed. Let us retrace the steps our proof of safetly. Recall that serializability
is ensured by the invariance of Bs. The invariance of B y_;; is sufficient for the invariance of B4 g,
which is sufficient for the invariance of B 5.

5.2. Proof of progress

We prove that the multi-version timestamp module implementation satisfies the progress require-
ment in the database interface specification, assuming that the followmg fairness requlrcment is
satisfied:

F1: Every event that is not a call event has weak faimess.

In the following, we use lastdone to denote the largest key such that [0..lastdone Jcdone . We use
lastdone 2 dependsupon (key) to mean lastdone 2k forevery k € dependsupon(key)

Lemma 7. The following progress assertlons hold:
X = staws(id=(Begin) leads—to status (id) e {READY, NOTBEGUN}

Xa = status (id y=(Abort) leads—to status (id y=ABORTED

X3 = status(id)=(ob)) leads—to status(id) e {READY, ABORTED}

X4 = status(id)=(End, key) » lastdone Zdependsupon(key) leads —to
status (id) € {COMMITTED, ABORTED;

Xs = lastdone=j A laststarted >} leads—to lastdone >j

Proof. '

X and X, are proved exactly as W and W5 are proved for the two-phase locking 1mplcmem;at10n (in
proof of Lemma 2).

X 3 holds as follows. Assume status (id }=(Read , key , obj). If dependsupon(key) m aborted ={ }, then
Return(Read , key, val) is continuously enabled; it eventually occurs, resulting in status (id =READY,
unless dependsupon{key) ™ aborted becomes nonempty. If the Ilatter happens, then
Return(Read, key, ABORT) is continuously enabled and it eventually occurs, resulting in
status (id yxABORTED. The argument for status (id)}=(Write , key , obj) is similar.

X 4 holds as follows. Assume status (id)=(End, key) and lastdone 2dependsupon(key). One of either
Return(End, key , ABORT) or Return(End , key, OK) is continuously enabled and it eventually occurs.
Occurrence of the former results in status (id J=ABORTED, the latter in status (id)=COMMITTED.

X 5 holds as follows. Assume lastdone=j » laststarted >j. Thus, all transactions with keys less than or -

-31-

equal to j have either committed or aborted. Consider the transaction using key j+1. This transaction
is active, otherwise lastdone would be greater than j. From L, it eventually issues a Call (End),
unless it is aborted (during a write attempt or due to an abort request). If it is aborted, then lastdone
increases. Assume that the transaction issues Call (End). Because all transactions it depends upon have
committed (otherwise it would have aborted), it commits and lastdone increases. Thus, in each case,
lastdone >j holds.

End of proof.

Applying the transitivity rule repeatedly to Xs, we get status(id)=(End, key) leads—to
lastdone 2dependsupon(key). Combining this with X 4, we get status (id)~(End) leads—to status (id)
e {COMMITTED, ABORTED]. Applying the disjunction rule to thxs and X through X 3, we get the
desired progress property.

6. Implementation of Procedure Calls

" Lamport’s informal specification of a module interface consists of a set of procedures [12] In our
model, each interface procedure P is represented by Call (id, P) and Return (id, P) events. In a practi-
cal programming language, such as Pascal or C, the return of a procedure call transfers conirol and
parameter values only. State variables are updated during the call execution by atomic events that con-
stitute the body of the procedure. In our specification of implementation events, however, nonauxiliary
state variables can also be updated as part of the atomic action of Return (id, P). For example, given an
interface procedure P with input parameters x and result parameters y, we have implementation events
of the following form: .

Return(id,P,x,y) = status(id)=(P,x)
A status (id Y=READY » y=f(v) » v'=g(v)
where, f and g are functions and v is a subset of state variables, some of which are nonauxiliary. The
second and third conjuncts in the above event formula represent the transfer of control and parameter
values respectively, and the last conjunct specifies the update of state variables.

To satisfy the practical requirement that the return of a procedure call transfers only control and
parameter values, the implementation specifications in this paper need 1o be refined further. We bneﬂy
discuss how such a refinement can be carried out without actually doing it.

Let all the variables in v become auxiliary variables. Introduce addmoﬁal_state variables u. Letw
be a subset of u that holds the result parameters. The return event above is refined to have the following
form:

Return(id, P ,x,y) = status (id =P, X) » finished(u)
A status (id Y=READY & y=w A v'=g(v)
where finished is a boolean function of u. Note that aside from sratus (id), the state variables that are
updated in the action of the above event are auxiliary. Hence, it satisfies the requirement of a practical
programming language stated above. For this new event to be a refinement of the old event, however,
we will have to establish the following to be invariant:

status (id =(P , x) » finished(u) = w=£v)

To update the state variables in u, we need to introduce a set of events (body;, i=1, -+, n} that
constitute the body of the procedure P. Each such event has the following form: '

-32-

body;(id, P,x) = status{(id)}=(P ,x) A b;(u)
A u'=h;(u) :
where b; is a boolean function of u and u’=k;(u) represents a computation that the new implementation
can perform as an atomic action. Observe that each body; event is a refinement because it has a null
image with respect to v, the state variables of the old implementation. These events perform the update
specified by the function g in the old event, but in » atomic actions instead of one.

The above approachis similar to one suggested by Lamport [9], where he transforms the nonauxi-
Liary state variables in v in the old implementation to auxiliary state functions in the new implementa-
tion. ' '

7. Conclusions

We have presented a formalism for specifying interfaces and implementations- of program
modules in a hierarchy. Our formalism is based upon the relational notation for specifying state transi-
tion systems. A module interface is specificd by a state transition system and a set of invariant and pro-
gress requirements. A module implementation is specified by a state transition system and some fair-
ness requirements for events. A module offers an upper interface to a user and it may use one or more
lower interfaces each offered by a module at a Iower level of the hierarchy. In Section 2.5, we give
some sufficient conditions for a module implementation to satisfy its interfaces. They are referred to as
module implementation conditions M1—MS.

In Sections-3-5, we specify a serializable database interface and two module implementations that
offer the interface. For each 1mp1emcntauon we also sketch a proof that it satisfies the serializable
database interface.

- For a module A, the notion “‘A dffers B” where B is an interface, is just a specialization of the
notion ‘‘A implements B** where B is a service specification. The meaning of A implements B in our
formalism is essentially the same as that in other state-transition formalisms [4,10,11,13]. The basic
definition of A implements B in each formalism is the following: every ‘‘observable behavior’’ of A is
an ‘“‘allowed behavior’” of B. Our formalization of the more general notion ‘A uses C to offer B*’
appears to be new.,

While it is conceptually simple to define A implements B in terms of behaviors, some convenient
way of specifying the sets of observable and allowed behaviors and reasoning with them is needed in
practice. Specifically, it is desirable to have conditions that require reasoning with just the states and
state transitions of A and B, instead of sets of behaviors. Towards this end, Lamport defined a
refinement mapping from A to B {1,10], Lynch and Tuttle defined a possibilities mapping from A to B
[13], and we defined a projection mapping from A to B [6,8,21].

Refinement and projection mappings are conceptually the same. It might appear that these map-
pings are less general than a multi-valued possibilities mapping. This is not so, however, because the
extra information in a multi-valued possibilities mapping can be provided by auxiliary variables and
invariant requirements; see Section 2.3 and [8].

The module implementation conditions that guarantee A uses C to offer B are based upon the
refinement relation between state transition systems, which was adapted to the relational notation [8]
from projection mappmg {6,21].

In the context of A gffers B, where B is a module interface, we found it convenient to define an
observable behavior of A o be a sequence of observable events; this is the approach of Lynch and Tut-
tie [13). (Such an event sequence, referred to in the literature as a trace, is used exclusively in process-

-33-

based approaches such as CSP [5].) In most state-transition formalisms [1,4,6], the observable behavior
of a module is a sequence of states. There is, however, no fundamental difference in the two
approaches. By including an auxiliary variable, the observable state of the module can be defined to
include the sequence of observable events. For example, an auxiliary variable T can be included in the
module, and the conjunct T’=T@image (f) is added to every event f of the module, where image (f) is
the ‘‘observable image’’ of f on the interface.

In formulating module implementation conditions, there arc some advantages to having events
observable on an interface. First, with a set of interface events, we can give a precise description of how
two modules that share an interface interact; specifically, by dividing interface events into input events
and output events, we can specify for each interface event the module that controls it. (This type of
information is very important for implementors.) A second advantage of having events is that it is easy
to eliminate a vacuous implementation; for example, our condition M4 suffices.

The various formalisms differ greatly in how they allow modules to be composed. The approach
of Lynch and Tuttle {13], as well as some temporal-logic approaches [17,20], allow the composition of
arbitrary networks of modules. Because of the generality, applications of these approaches requlre a
great deal of notation,

We restrict the network structure to be a tree, with each tree node being a program module.
Specifically, we impose a hierarchical relationship between two modules that share an interface, such
that one module is a user and the other is the service provider. Note that this hierarchical relatlonslrup is
encountered in many large software systems, in addition to the examples of this paper, e.g., communica-
tion networks. By sacrificing some generality, we get fairly simple conditions for module compositon
(i.e., the module implementation conditions). Since each module in our model can be a network of
processes, our model is still applicable to the specification of many software systems.

A consequence of the hierarchical structure is the following: If a module uses a lower interface
offered by another module, the lower interface events are invisible on the upper interface; thus, in our
model, there is no need for renaming of events [13]. There are a couple of differences between our
approach and the approach of Lynch and Tuttle [13] that are not the result of the hierarchical structure.
First, we do not require an externally-controlled event e to be always enabled. It is sufficient that e is
enabled whenever the interface is allowed to initiate it; thus in formulating M4, we make use of the
invariant requirements in an interface specification. Second, we allow a module to have events that do
not have faimess requirements; that is, only some events controlled by a module need to be fairly
scheduled in an actual implementation. These fairness requirements are explicitly stated and are part of
the module specification.

The approaches of Chandy and Misra [4] and Lamport [11] are also top-down That is, starting
with an interface specification, they derive, by stepwise refinement, an implementation that offers the
interface. However, the notion of a lower interface that can be used by the implementation is not con-
sidered in their approaches.

Lynch et al. have applied the I/O automaton model to specnfy transactlon-processmg systems [14].
Even though their work and ours were parallel developments, the two approaches towards the modeling
of database systems have a number of similarities. This may be because both approaches are based
upon state-transition formalisms.

In another paper [22), we have developed a stepwise reﬁnement heuristic by extending the
refinement relation between state transition systems to a conditional refinement relation. The
specification of transport-layer communication protocols that use various lower interfaces is considered.

-34-

Each lower interface represents one type of service provided by the network layer of 2 communication
network. Specifically, several sliding window protocols that provide reliable data transfer for network
layers that can lose, duplicate and reorder messages are presented. In [16], the specification of a com-
plete transport protocol, with the functions of connection management and reliable data transfer in both
directions, is considered. The transport protocol is derived by composing single-function protocols such
that it is the refinement of each instance of the single-function protocols.

All of the state-transition and temporal-logic formalisms referenced above use the interleaving
model of concurrent execution. The interleaving model is fundamentally different from process-based
models, such as CSP [5]. Process-based models generally use traces for reasoning and allow the com-
position of arbitrary networks of modules. The absence of a global state, however, makes it difficult to
relate a module implementation to its interface specifications [2,5].

Lastly, some readers might object to our use of a state transition system for specifying an inter-
face. In our experience, such an approach is crucial to the specification of nontrivial systems. Concep-
tually, the use of a state transition system to specify an interface does not really constrain an implemen-
tor, for the following reason: in M1, we require that a user of the interface can access the state variables
of the interface only through the interface events. Thus, all of the interface state variables can be made
into auxiliary variables in 2 module that offers the interface, For example, the history variable H of the
database interface in Section 3 is made into an an auxiliary variable in both the two-phase locking and
multi-version timestamp implementations. In practice, however, the state transition system specifying
an interface will bias implementors of modules that offer the interface; in fact, the larger the state transi-
tion system, the greater will be the bias. We believe that implementation-independence is not in itself a
desirable attribute of specifications. A specification should be of help to an implementor, guiding him
but without seriously limiting his options. We believe that our formalism is flexible enough for
expressing specifications with the appropriate balance. '

Acknowledgements: We thank the anonymous referees for their constructive criticisms. The presénta-
tion of this paper is much improved because of their diligence. We also thank Ken Calvert of the
University of Texas at Austin for his helpful comments.

References

{11 M. Abadi and L. Lamport, The existence of refinement mappings, Technical Reﬁoxt, Digital Sys-
tems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, August 1988.

[2] R.J.R. Back and R. Kurki-Suonio, ‘‘Distributed cooperation with action systems,”” ACM TOPLAS,
Vol. 10, No. 4, October 1988, pp. 513-554.

(3] P.A. Bemstein, V, Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database
Systems, Addison-Wesley, Reading, Massachusetts, 1987,

[4] KM. Chandy and J. Misra, A Foundation of Parallel Program Design, Addison-Wesley, Reading,
Massachusetts, 1988.

[5] C.AR. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, N.J., 1985,

[6] S.S. Lam and A.U. Shankar, “‘Protocol verification via projections,”” IEEE Transactions on
- Software Engineering, Vol. SE-10, No. 10, July 1984, pp. 325-342,

[71

(8]

(%

[10]

[11]

[12]

(13}

[14]
[15]

{16]

[17]
[18]
[19]

120]

[21]
- protocols,”” ACM Transactions on Computer Systems, Vol. 1, No. 4, November 1983, pp. 331-

[22]

-35-

S.S. Lam and A.U. Shankar, ‘‘Specifying an implementation to satisfy interface specifications: A
state transition approach,”” 26th Lake Arrowhead Workshop on How will we specify concurrent
systems in the year 20007, September 1987,

S.S. Lam and A.U. Shankar, ‘‘A relational notation for state transition systems,’’ invited talk at
the Eighth International Symposium on Protocol Specification, Testing, and Verification, Atlantic
City, N.J., June 1988; full version available as Technical Report TR-88-21, Department of Com-
puter Sciences, University of Texas at Austin, May 1988 (revised August 1989).

L. Lamport, ‘*An assertional correctness proof of a distributed algorithm,’” Science of Computer
Programmmg, Vol. 2, 1982, pp. 175-206. :

L. Lamport, ‘‘Specifying concurrent program modules,”” ACM TOPLAS, Vol. 5, No 2, April
1983, pp. 190-222.

L. Lampont, ‘‘What it means for a concurrent program to satisfy a specification: Why no one has
specified priority,”” Proc. 12th ACM Symposzum on Principles of Programming Languages, New
Orleans, January 1985.

L. Lamport, **A serializable database interface,”” 26th Lake Arrowhead Workshop on How will we
specify concurrent systems in the year 20007, September 1987.

N.A. Lynch and M.R. Tuttle, ‘‘Hierarchical correctness proofs for dxstnbutcd algorithms,”’
Proceedings of the ACM Symposium on Prmczples of Distributed Computmg, Vancouver, B.C,,
August 1987.

N. Lynch, M. Merritt, W, Weihl and A. Fekete, "A 'I'heory of Atomic Transactions,” Technical
Report MIT/LCS/TM-362, Laboratory for Computer Science, M.LT, June 1988.

Z. Manna and A. Pnueli, ‘‘Adequate proof principles for invariance and liveness properues of con-
current programs,’’ Science of Computer Programming, Vol. 4, 1984.

S.L. Murphy and A.U. Shankar, **Service specification and protocol construction for the transport
layer,”” CS-TR-2033, UMIACS-TR-88-38, Computer Science Dept., Univ. of Maryland, May
1988; an abbreviated version appears in Proc. ACM SIGCOMM '88 Symposium, August 1988.

V. Nguyen, A. Demers, D, Gries, S. Owicki, ‘‘A model and temporal proof system for networks of
processes,”’ Distributed Computing, Vol. 1, No. 1, 1986.

S. Owicki and D. Gries, *‘An axiomatic proof technique for parallel programs 1, Acta Informa-
tica, Vol. 6, 1976, pp. 319-340.

S. Owicki and L. Lamport, *‘Proving liveness Iproperties of concurrent systems,”’ ACM TOPLAS,
Vol. 4, No. 3, 1982. '

A. Pnueli, “In transition from global to modular temporal reasoning about programs,’’ NATO
ASI Series, Vol. F13, Logics and Models of Concurrent Systems, KR. Apt (ed.), Springer-Verlag,
Berlin, Heidelberg, 1985, pp. 123-144.

AU, Shankar and S.S. Lam, ‘“An HDLC protocol specification and its verification using image

368.

A.U. Shankar and S.S. Lam, **Time-dependent distributed systems: Proving safety, liveness and
real-time properties,”” Distributed Computing, Vol. 2, No. 2, 1987.

-36-

23] A.U. Shankar and S.S. Lam, *‘A stepwise refinement heuristic for protocol construction,”” Techni-
cal report UMIACS-TR-87-12, University of Maryland, College Park, March 1987 (revised March
1989). :

Appendix A
A proof of Lemma 1 is given in two steps. First, we prove the invariance of the following formu-
las, which specify that every allocated key is associated with a unique active transaction:
Ag = —allocated (key) = [Vid: keyofiid Y#key]
Ag allocated (key) = [Jexactly oneid: keyof(id y=key]
Lemma Al. A g Agsatisfies the invariance rule, assuming that correctkeyuse is invariant.
(Proof omitted.)

To prove Lemma 1, namely, A;n A4 7 is invariant, we need the following formulas, which
specify relationships between state variables during the growing stage of a transaction. During this
stage, the transaction acquires a keéy and then acquires locks.

n

Ap = status (id) e {NOTBEGUN, (Begin)} = (id)¢ H
Aq = keyof(id Y=key n status (id)}=READY = statusy (key ="READY
As = keyof(id)=key n —locked (key , obj)= (id, obj)¢ H n localvalue (obj, key ¥=NULL
Ap = keyof(id y=key A statusy (key y=(AcqLock, obf) = —locked (key , obj) » status (id y=(key , ob))
Ag = keyof(id y=key n locked (key , 0b)) » status (id YHEnd) =
storedvalue (obj)=lastvalue (obj,)

{a) [((id, obj) ¢ H » localvalue (obj, key Y>NULL) v

{b) ((id, obj) ¢ H » localvalue (obj, key Y=<lastvalue (6bj, S)) v

{c) ((id, obj)e H n localvalue (obj, key y=lastvalue (obj, H (id)))]
Ai = keyof(id y=key ~ status (id y=(key , obj) » locked (key, obj) » localvalue (obj, key y=NULL

= (id, obj)¢ H

A= keyof(id y=key ~ statusy (key Y=(Read],, obj) = locked (key , obj)
n localvalue (obj, key }=NULL A (id, obj)¢ H » status (id }=(Read , key , obj)

Ais = keyoflid)y=key n locked (key , obj) = obj e accessed (id)

The following formulas specify relationships when a transaction is aborting:
A= keyoRid)=key n aborting (key) = [3obj: status (id =(key , obj)]
Ay = keyof(id =key n aborting (key) = concurrentaccess (id)

The following formulas specify relationships when a transaction is committing its writes:
Ap = keyof(id Y=key n locked(key, obj) » status (id }=(End) » localvalue (obj, key y*NULL
= storedvalue (objy=lastvalue (obj, §)
Ag = keyof(id =key n statusy (key y=(Write, , obj, val)
= status (id y<(End , key) » val=lastvalue (obj, H (id)) ~ locked (key, obj)
Aqr = keyoflidy=key n locked (key, obj) » status (id }=(End) =
(id,objye H »
(a) ((localvalue (obj, key y=lastvalue (obj, H (id)) » storedvalue (obj)=lastvalue (obj, §))

.37-

{b) v (localvalue (obj, key "NULL storedvalue (obj=lastvalue (obj, H (id)))]

The following formulas specify relationships during the lock-releasing stage of a ifansaction:

Ay = —allocated (key) = localvalue (obj, key }=NULL
Ay = statusy (key Y=(RelLock , obj) = —allocated (key) » locked (key , obj)
Aq = —locked (key , obj) = localvalue (obj, key =NULL

The following are also needed:
Ay = (Vkey: —locked (key, obj)) = storedvalue (obj)=lastvalue (obj, §)
Ap = owned (key , obj) < locked (key , obj)

[

Ax

Lemma A2. A7 A4 70 A o3 satisfies the invariance rule, given that A g~ A g is invariant.
(Proof omitted.)

owned (key , obj) = (Vk#key . mowned (k, obj)).

