DATA TRANSFER SCHEDULING”
Kiran Kumar Somalwar
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-31 September 1988

* This work was partially supported by the IBM Corporation under Contract Number 616513.



DATA TRANSFER SCHEDULING

by

KIRAN KUMAR SOMALWAR, B. Tech.

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF ARTS

THE UNIVERSITY OF TEXAS AT AUSTIN
December, 1988



Abstract

The problem of data transfer scheduling is a problem of multiple
resource allocation. It is cast as an edge coloring problem. Several exact
algorithms for edge coloring, in the literature, are described. A new algorithm
for edge coloring, when no color can be used more than k times, is designed

and analyzed. Several inexact algorithms are described and evaluated for

their cost effectiveness.
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Chapter 1

Introduction

Data transfers are an intrinsic part of any computation. Data trans-
fer operations occur in unit sizes ranging from individual bytes or words,
typically on a bus within a processing element, to megawords on a channel
between high-speed disks and large RAMs. It is frequently the case that
many sources and sinks for data transfer operations use some common set of
resources for the execution of their operations. These resources again span the
scale from buses, coupling functional units in memory, and pools or channels

coupling multiple disk controllers to multiple processors in a multi-processor

architecture.

The use of shared resources introduces a contention, and thus the
need, for scheduling of operations to effectively utilize the shared resources.
It is becoming clear that in many circumstances scheduling may become an
important factor in the performance of data transfer operations. Scheduling
problems were studied in the 1960’s when many processors typically con-
tended for a few disks. There has been, however, less interest in recent years.
This data transfer scheduling is now again becoming important as macro-level
parallelism is becoming more and more prevalent in the architecture computer
of systems. Increase in number of processors is requiring a much greater focus

on management of resources for external data transfer operations.
Scheduling of data transfer operations is intrinsically different from
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the classical scheduling problems of mapping requests for service to proces-
sors or allocating blocks of memory to processes. The state of the system is
typically distributed and the information necessary to make a scheduling de-
cision may not be immediately available at any one site. It is sometimes the
case that multiple entities must elaborate to effect a data transfer. Schedul-
ing must often coordinate the scheduling of the requests of several entities.
Therefore the concepts typically used for scheduling of computer work to
processors, etc. are not directly applicable to data transfer scheduling. This
thesis defines scheduling problems in terms of familiar concepts from graph
theory and defines algorithms for execution of these scheduling operations,

investigates their properties and evaluates their effectiveness.

The next section expands upon the problem statement, the approach

and the results.

1.1 Overview of the Thesis

In this section, we define the problem, briefly explain our approach,

and summarize the results.

1.1.1 Problem Statement

Optimal scheduling of a set of data transfers in a parallel system
requires the optimal assignment of resources required for the data transfers.
An optimal schedule is one which meets the criteria of the minimum sched-
ule length for the set of data transfers, or the maximum throughput of the
channels. It must map the resources of the system, in the form of processing
nodes and channels, to the data transfers. The minimum resources required

to complete a data transfer are the processing nodes involved in the data



transfer, and the channel connecting them. More resources, in the form of
channels and processing nodes may be required if there is no direct channel

connecting the two nodes between which the data transfer is required.

A set of data transfers can be represented by a weighted undirected
graph, G=(V,E) where V defines the set of processing nodes, and E specifies
the data transfers that are required to be done. If an edge (x,y) belongs to
E, then it means that a data transfer is required to be done between x and
y. The weight associated with each edge gives the cost of the data transfer.
In other words, the weight associated with an edge gives the time required to

complete the data transfer, assuming a channel of unit bandwidth.

We also study the problem of dynamic scheduling of data transfers.
This analysis applies to a more realistic situation in which new data transfers
are added to the graph G, at the end of each time unit. That is, new data
transfers are required to be done, even when the original set has not been

completely scheduled.

The research described in this thesis is probably the first attempt at
the problem of scheduling data transfers, in its general form. This problem
has been ignored by researchers earlier mainly because parallel systems have
become popular only recently, and due to the general feeling that scheduling
is not really cost-effective, if the data transfers are simple and have low cost.
Scheduling is definitely cost-effective if the data transfers have a high cost.
Such data transfer operations typically arise in interactions with I/O systems,

and I/0O intensive applications.



1.1.2 Approach

We use a well studied problem in classical graph theory, namely
the edge-coloring problem, as the basic paradigm for optimal scheduling of
the data transfers. The edge-coloring problem[6] is to assign colors to the
edges of a graph, so that no two adjacent edges' have a common color. The
edge-coloring paradigm is directly applicable to the class of data transfer
scheduling problems in which there is a direct path between every pair of
nodes, and all transfers are of unit cost. The paths need not be unique or
seperate. Other data transfer scheduling problems can be mapped to this
simpler problem. Specifically, the problem of data transfer scheduling, when
the number of channels in the system is limited, is cast as what we call the
limited edge coloring problem. Consequently, the edge-coloring paradigm is

applicable to more complex data transfer scheduling problems.

It should be noted, however, that not all data transfer scheduling
problems can be effectively and optimally solved using this paradigm. For
example, consider the situation wherein we have multiple paths connecting
any pair of nodes. The edge-coloring paradigm, defined and characterised
herein, will fail to give the optimal solution to this problem, because it does
not have the ‘power’ to make the correct choice of the path, in addition to
making the choice of the pair of nodes between which the data transfer is to
be done. We hypothesize that the edge coloring paradigm, will however give

a good solution.

1Two edges are adjacent if and only if they have a common vertex.



1.1.3 Results

Several exact algorithms are defined and evaluated for their cost-
effectiveness. Heuristic algorithms, with lower cost, are proposed and evalu-
ated. The applicability of the algorithms to the dynamic situation wherein
new data transfers are added to the graph, at the end of each time unit, and
the set of data transfers have not been completely scheduled, is also studied

and evaluated.

New algorithms with improved run-time performance are developed
for the edge-coloring problem, and applied to the data transfer scheduling

problem

1.2 Organization of the Thesis

In chapter 2, the definitions and the notation used through the rest
of the thesis are given. The problem is defined in complete detail in Chapter
2. Classes of data transfer scheduling problems are defined. We discuss the
edge—coloring paradigm, and study the mappings required to be done to the
various data transfer scheduling problems, so that the paradigm can apply.
In Chapter 4, we discuss two representative algorithms in the literature. In
chapter 5, we present a new algorithm with improved time performance for
limited edge coloring, and heuristic algorithms for edge coloring. In Chapter
6, we present the analysis and cost-effectiveness of the algorithms. The con-
cluding remarks are contained in Chapter 6. We present a summary of our

research, and suggest future research directions.



Chapter 2

Basic Definitions and Notation

In this chapter, we present the definitions of terms and the notation
we use in the rest of this thesis. Most of the definitions are for graph-theoretic

terms|6).

A graph G is a pair (V, E) where V is a finite non-empty set of
elements called vertices and E is a finite set of distinct unordered pairs of
elements of V called edges. V is called the vertex set of G, and E is called the
edge-set of G. Figure 2.1 gives an example of a graph. If e = (z,y) is an edge
in G, then e is said to join the vertices x and y. We also say that e is incident
to x and y. We can also say that x is a neighbor of y and vice-versa. Two
edges are adjacent to each other if they have a common vertex. Two edges
are independent if they are not adjacent to , that is, they have no vertex in
common. For example, in Figure 2.1, (af) and (c,f) are adjacent to each

other, the common vertex being f.

A multigraph is a graph in which the edges may occur several times.
Figure 2.2 gives an example of a multigraph. If G is a multigraph, then
two or more edges of G joining the same pair of vertices x and y are multiple

edges; the number of such edges is called the multiplicity of (x,y).

For each vertex x of a graph or multigraph G, the number of edges

incident to x is called the degree of the vertex. The mazimum degree of a



Figure 2.1: A graph.

Figure 2.2: A multigraph.



graph is maximum of the degrees of all its vertices. The combined degree of
an edge is the sum of the degrees of the two vertices it is incident on. We will
usually use the term degree to refer to the maximum degree of the graph. If
all the vertices of a graph G have the same degree, then G is called a regular
graph. A graph, G = (V,E), is said to be bipartite if its vertex set can be
partitioned into two sets A and B, such V=AU B and ANB = ¢!, and the
only edges in the graph are those that join vertices in A to vertices in B. A
bipartite graph will be represented by a triple of the form (A,B,E), through
the rest of this thesis. A graph is said to be k-complete with respect to a

constant p, if

1. All vertices have degree less than or equal to p.

2. The number of edges in the graph, m is equal to k x p.

Figure 2.3 gives an example of a k-complete graph.

A matching, on a graph, is a set of edges such that no two edges
in the set are adjacent to each other. The set {(a,e), (b,f)} is a matching
on the graph in Figure 2.1. A mazimum matching is a matching that has
the maximum number of edges in it. The vertez cover, or simply cover of
a set of edges S is the set of vertices W such that S contains all and only
vertices in W. A critical matching on a graph is the matching whose vertex
cover includes all the maximum degree vertices of the graph. For the graph
in Figure 2.1, the matching { (a.e), (¢,f), (d,g) } is a critical matching. As

an aside, a critical matching need exist for bipartite graphs only.

14 represents the null set.
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Figure 2.3: A 3-complete graph with respect to p = 3.

An edge-coloring of a graph ( or multigraph) is an assignment of
colors to edges so that no two adjacent edges have the same color. Figure 2.4
gives an edge-coloring for the graph in Figure 2.1. The numbers alongside
the edges are the colors assigned to them. The minimum number of colors
required for edge-coloring a graph is called the chromatic indez, and is denoted

by x.

An euler partition of a graph is a partition of the edges of a graph
into open and closed paths, so that each vertex of odd degree is at the end
of exactly one path, and each vertex of even degree is at the end of no paths.
An euler split of a bipartite graph G:(A,}B,E) is a pair of bipartite graphs
G,=(A,B,E;) and G;=(A,B,E;) where E; and E; are formed from an euler
partition of E by placing alternate edges of the paths into E; and E». Any
vertex of even degree in G will have half the degree of G, in both G, and G,
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e f g
Figure 2.4: An edge coloring of the graph in Fig. 2.1.

while any vertex of odd degree in G will have degrees in G; and G, differing
by 1. This implies that both G, and G, will have their maximum degree as
[d/2], if d is the maximum degree of G. A perfect euler splitis an euler-split
(G;,G;) such that the number of edges in G, and G, differ by at most 1.
That is, G; and G have an equal number of edges, if the number of edges in
G is even, or differ in the number of edges by 1, if the number of edges in G
is odd. An euler split and a perfect euler split, as defined, need exist only for
bipartite graphs. Figure 2.5 gives an euler split for the graph in Figure 2.1,
and Figure 2.6 gives a perfect euler split for the same.
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Figure 2.5: An euler split of the graph in Fig. 2.1.

G, G,

Figure 2.6: A perfect euler split of the graph in Fig. 2.1.



Chapter 3

Problem Statement

Typical scheduling algorithms for data transfer in a single channel
system (eg. a system with all nodes connected on a bus) have been based on
first come first served queues, priority queues, CSMA/CD[18]. These algo-
rithms are obvious and easy to analyze because of the presence of only one
channel in the system. Moreover, as the number of channels is just one, the
choice of the algorithm is uéually determined by other factors . For exam-
ple, CSMA /CD protocols are used in systems where centralised control is not
possible. First come first served queue algorithms are rarely used for bus allo-
cation, or bus scheduling because of the need for an expensive centralised bus
controller in hardware, to implement the algorithm. Typically, bus allocation

algorithms have been based on static priority or dynamic priority.

The situation is drastically different when there are multiple chan-
nels in the system. The reason for having multiple channels ( through which
several nodes can complete their data transfers simultaneously), is to provide
large bandwidth and thus satisfy system requirements. It is important that
algorithms be designed so that the total bandwidth provided by the chan-
nels is utilized to the maximum possible extent. Very little work has been
done on the problem of scheduling data transfers in a multiple channel system.
Data transfers between memories and processors in many current parallel sys-

tems [19] have been supported by multistage interconnection networks (e.g.,

12
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RP3[19]). The multistage interconnection networks provide multiple simulta-
neous paths for data transfers. Data transfer operations in such systems are
low-cost memory operations, and it has not been cost-effective to schedule
them. They have been scheduled on an ad-hoc basis. In the case of mul-
tistage interconnection networks, each node in the interconnection network
schedules the data transfers that need to go through it, on a first come first

served basis.

In this thesis, we are concerned with the usage of such multichannel
systems to provide data transfer paths and bandwidth between the processors
and external memory units. Since the data transfers that are involved are
themselves quite expensive, it is a good idea to schedule them. That is,.
the overhead of scheduling the data transfers is cost-effective in terms of the
lesser time it takes to complete the data transfers, if they are scheduled. For
example, in many seismic applications, the basic unit of transfer from the
external memory device is a 1000 by 1000 matrix of real numbers ( 4 bytes).
Assuming a channel rate of 4 MB/sec, which is typical of many systems, time
required to complete the transfer is 1 second. This is a large time, and hence

scheduling such data transfers should be cost-effective.

3.1 Graph-theoretic Representation of the Problem

We present a graph-theoretic model for the problem of scheduling
data transfers. The set of data transfers that need to be accomplished can be
represented by a graph G = (A, B, E) where A is the set of processor nodes
involved in the data transfers, B is the set of external memory units involved
in the data transfers, and E is the set of data transfers themselves. An edge

e = (X, y) in E represents the data transfer between x and y. There can be
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multiple edges between a pair of nodes in the graph. Strictly speaking, such
a graph is called a multigraph. The weight of the edge represents the cost
of the data transfer. Our goal is to schedule the data transfers so that the
total time taken is the minimum possible. In the rest of this thesis, will use
the expression ‘schedule of a graph G’ to refer to the schedule of the data

transfers represented by G.

3.2 Method of Solution

We shall initially consider the situation wherein all the edges of
the graph have equal weights, and then extend the analysis to the general
problem, wherein edges have different weights. We assume a full connectivity

network currently, and extend the method to the multiple bus configuration

in Section 3.2.3.

3.2.1 Uniform Cost Problem

We assume that all the edges in the graph have the same unit cost.
The problem of scheduling a graph G, assuming edges in G have equal weights,
is equivalent to the problem of edge coloring of G. An edge coloring of Gisan
assignment of colors to edges so that no two adjacent edges are assigned the

same color. The minimum edge coloring is a coloring that uses the minimum

number of colors.

Lemma 3.1 An edge coloring for a graph G gives a schedule for the data

transfers represented by G. The converse s also true.

Proof: Assume that an edge coloring for G, using r colors 1 ...r, was found.

All edges colored with a single color, say i, are independent of each other ,
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and represent concurrently schedulable data transfers. This means that they
can be scheduled to run simultaneously. Since there are r colors, and edges
(actually data transfers represented by the edges) in each color are scheduled
to run concurrently, this method of scheduling gives a schedule that takes r
time units. Conversely, given a schedule, all edges which are scheduled at one
time can be given the same color. Consequently, if the schedule takes r time

units, then the corresponding coloring has r colors.

Corollary 3.1 A minimum edge coloring for a graph G gives a minimum

schedule for the data transfers represented by G.

Proof: In the lemma above, we proved that for any graph, if there is a
coloring for the graph with r colors, then there is a schedule that takes r time
units. It was also shown that for every schedule that takes r time units, there
is an edge-coloring with r colors. As a result of this one to one mapping,

a minimum edge-coloring for G gives the minimum schedule for the data

transfers represented by G.

We assume here that there is no limit on the available communi-
cation resources, that is, the number of available communication channels is
not less than the cardinality of the largest edge set with the same color. In

Section 3.2.3, we consider a situation wherein the number of communication

channels is limited.

3.2.2 Extension of the Method to Weighted Edges

We extend our method to the situation in which edges have weights
corresponding to the cost of the data transfers. However, a few assumptions

are made about the problem. It is assumed that the weights are integers, and
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that each data transfer can be split up into parts, and each part transferred
separately. Specifically, we assume that each data transfer can be split up
into as many parts as its weight. Unless, we make this assumption, it seems
difficult to use the algorithms and transformations we define in this thesis to

solve the problem.

The problem of scheduling a weighted graph G is equivalent to the
problem of coloring a multigraph G’ obtained as follows. Each edge of weight z
is replaced with w edges each of weight one, between the same pair of vertices.
G’ has the same edges as G, but the multiplicity of each edge is equal to the
weight of the edge in G. More accurately, if G has an edge (v, w) of weight y,
then G’ has y edges between v and w. Notice that, for the schedules derived
by this method, a required data transfer is partitioned into a set of smaller

data transfers, and these smaller data transfers may be scheduled at different

times.

3.2.3 Extension of the Method to the Multiple Bus Configuration

In a multiple bus configuration, with k buses, not more than k data
transfers can be done concurrently. We assume full connectivity through
the multiple bus system. Figure 3.1 gives a diagrammatic representation
of a typical system under consideration. An example of such a system is
the 1/0 organization of the parallel machine RP3 [19]. Figure 3.2 gives the
I/O organization of the RP3. In addition, only independent data transfers
are permitted to take place concurrently, as was the case with the previous
problems. So, the problem of finding an optimal schedule is equivalent to
the problem of finding the minimum coloring of a multigraph, under the

constraint that any color cannot be used more than k times. In the rest of
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nodes

buses

Figure 3.1: A typical multiple bus system organisation.

this thesis, we will refer to the problem of finding the minimum coloring of
a multigraph as a general coloring problem, and the problem of finding the
minimum coloring of multigraph, under the constraint that any color cannot

be used more than k times as the limited coloring problem.
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Chapter 4

Results and Previous Work

The edge-coloring problem has been studied by graph-theorists quite
extensively. A substantial amount of work has been done on the problem, in
terms of algorithms and theoretical results [4,5,6,7,8,10,11,13,16]. We are
interested only in edge-coloring of bipartite graphs, hence we will concentrate
on it. Edge-coloring of general graphs is a tougher problem, and the results

are somewhat different. The interested reader is referred to [6,11,13].

The following theorem is useful in proving the theorem after that,
which specifies the minimum number of colors required to color a bipartite

graph. Theorem 4.3 addresses the problem of limited coloring, when no color

can be used more than k times.

4.1 Basic Theorems on Edge Coloring

Theorem 4.1 [1] Every bipartite graph has a matching which covers all ver-

tices of the mazimum degree.
Proof: The proof is given in [1].

Theorem 4.2 [6] The minimum number of colors needed to color a bipartite

graph, or multigraph, of mazimum degree d, 1s d.

19
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Proof: The proof is by induction on the degree of the graph. From Theorem
4.1 above, for every bipartite graph there exists a matching which covers all
the vertices whose degree is equal to the maximum degree of the graph. If M
is such a matching, the graph G — M would be a bipartite graph of degree
d — 1. By induction hypothesis, the graph G — M can be colored with d — 1
colors. The edges in M are all independent of each other, and can be assigned

a single color. Hence G can be colored with d colors.

As an aside, if G is a general graph, then either d or d+1 colors will
be required to color G. It is an NP-complete problem to determine whether

d or d + 1 colors are required to color the graph.

We now turn our attention to the limited coloring problem, namely
the problem of edge-coloring a bipartite graph, assuming that no color can be
used more than k times. The following theorem states the minimum number
of colors required to color a bipartite graph of degree d, when no color can be
used more than k times. In fact, in the next chapter, we show constructively

the exact number of colors required to find a limited coloring of a graph.

Theorem 4.3 The minimum number of colors required to color a bipartite
graph, which has m edges, and whose degree is k, such that no color is used

more than k times is > max(d, [m/k]).

Proof: The proof is rather straightforward. Since there are m edges to be
colored, and not more than k edges can be colored with a single color, we need
at least [m/k]) colors to color the graph. 'Also, since the maximum degree of
the graph is d, there is a vertex which has d edges incident on it. As each of

the d incident edges on this vertex needs to be colored with a different color,
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at least d colors are required to limited-color the graph. Hence, the minimum

number of colors required to limited-color a bipartite graph is max(d, [m/k]).

In the following two sections, we present two representative algo-
rithms, one for the general edge-coloring problem [7], and one for the limited
edge-coloring problem [2]. Several other algorithms are available for both
these problems [4,5,8]

4.2 Gabow’s Algorithm(7]

This algorithm is based on the divide and conquer technique. If the
graph is of even degree, then the graph is divided into two graphs, each of
whose degree is half the degree of the original graph. Each of these two new
graphs is colored seperately. If the graph is of odd degree, additional work
is done before divide and conquer can be applied to obtain the minimum

coloring. The procedural description of the algorithm follows.

procedure colorl(G,d) comment Obtains the edge-coloring

of graph G, of degree d.

begin
1. if d is odd
begin
2. Find a matching M that covers every vertex of degree d,
and assign the edges in M a single color.
3. G=G-M
end

comment G has even degree now.
4. if G is not an empty graph
begin
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5. Divide the graph into two graphs, G; and G, such that both G,
and G, have degree |d/2].
6. colorl(Gy, |d/2]).
7. colorl(G-, |d/2)).
end
end

Steps 2 and 5 are elaborated further. If the graph has even degree,
then it is divided ( actually, the edge set is divided) into two graphs G; and
G- such that both have maximum degree d/2. In fact, G; and G, are the
euler split of G. By Theorem 4.1, both G; and G, can be colored with d/2
colors each, thus giving a coloring for G using d colors. If the graph has odd
degree, a matching covering all the maximum degree vertices is found. the
edges in the matching are removed from the graph, to obtain a graph G’,
whose degree is d — 1. The edges in M are all independent of each other,
hence they can be assigned a single color. Since G’ has its degree even now,
divide and conquer technique can be applied on G’ to obtain a coloring for

G’ with d — 1 colors only. Thus G can be colored with d colors.

Step 2 is implemented, utilizing a technique due to Mendelsohn-
Dulmage [14]. The procedural description for realizing Step 2 is given below,

followed by an explanation.

procedure MD(G,d) comment Finds a matching covering all the
maximum degree vertices in G. Let G=(5;, 5;, E)

begin

1. for i=1,2 do comment find a matching M; that covers every vertex

of maximum degree d in S;
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begin
2. Let T be the set of vertices in S; that do not have maximum
degree
3. Let H be the multigraph G - T
4. Let M; be a maximum matching on H
end

comment form the required matching M from M; and M,
5. M= M, N M,
6. N=M M,

7. for each connected component C of N do
begin
8. Let C be the sequence of edges ey, ... €,
9. without loss of generality assume that C starts with a

vertex of degree d

10. for i=1 stSep 2 tor do
11. put e; in M

end
end

From Theorem 4.2, it is obvious that there is a matching covering all
the maximum degree vertices in S;. The same is true for S;. The respective
matchings M; and M, are found in steps 1 to 4. To find M;, all the vertices
( and edges incident on them) in S; that do not have the maximum degree
are deleted from the graph, and a maximum matching found on the resulting

graph. Such a maximum matching will cover all the maximum degree vertices

n S,'.



24

Steps 5 to 11 find the required matching. The edges that are com-
mon to both M; and M, are included in M directly. Since a vertex is incident
to at most two edges in M; @ M,, one in M; and one in M;; so a connected
component of My @ M, is a path with edges alternately in M, and M,. The
symmetric difference of M; and M, consists of 5 types of paths and cycles,
as shown in Figure 4.1. In each case it is possible to select a matching M’
C M, @ M, such that M’ covers all the vertices of S covered by M; —M,, and
all the vertices of S, covered by M, — M;. Then M = M'U(M; N M) is the
required matching. Steps 7 to 11 find the matching M’. For each connected
component C, put all the edges of M; N C in M, where i is chosen as follows.
If C is an open path of odd length, choose i so that | M;NC | is maximum.
If C is an open path of even length, exactly one end of C is a vertex of degree
d; choose i so that M; covers that vertex. If C is a closed path, choose i

arbitrarily.

Step 5 in colorl is realized by the method of euler partition. {Gi, G;}
is the euler split of G. The euler partition of G is obtained as follows][1]:
Choose a vertex of odd degree; if none exists, choose a vertex of even, nonzero
degree. Traverse an edge from that vertex to another and erase the edge.
Continue traversing and erasing the edges until a vertex with zero degree is
reached. This gives a path in the partition. Then choose a new start vertex
and repeat the process. Do this until no possible start vertex remains. The
euler split is formed from the euler partition by placing alternate edges of

the paths into E; and F,. The procedural description for the euler split is as

follows.

procedure ES(G) comment finds an euler split of G.
begin
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Figure 4.1: Symmetric difference M; @ M,.
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comment find the euler partition first.

1. make P an empty list, and S an empty queue

2 add all vertices of odd degree to the queue S
3. add all vertices of nonzero even degree to the queue S
4 while S is nonempty do

begin
5. let s be the vertex at the front of the queue in S
6. delete s from S

comment vertex s may have degree 0, since edges are deleted

from G in line

7. if vertex s has nonzero degree
begin
8. let p be an empty path
9. v=s
10. while vertex v has nonzero degree do
begin
11. let (v,w) be an edge in G
12. put(v,w) in p, and delete it from G
13. v=w
end
14. put the path p in P
15. if vertex s has nonzero degree
16. put sin$
end
end

comment P is an euler-partition of the graph

17. let E;, and E, be empty edge sets
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18. for each path pin P
19. traverse p putting alternate edges into E;, and E;
comment G, = (51, 5,, E;) and G, = (S;, 52, E;) form the euler
split.

end

This coloring algorithm takes O(n'/?mlog n+n) time and O(n+m)
space, where n is the number of vertices, and m is the number of edges
in the graph. The time and space analysis is given in the reference. An
improved algorithm, in which the matching M in Step 2 of colorl is found
more efficiently, is described by Cole et al [4]. The time required is O(mlogn).

4.3 Bongiovanni’s Algorithm[2]

This algox\'ithm solves the problem of limited edge-coloring for a
bipartite graph. Bongiovanni et al [2] describe the algorithm in a matrix
notation, and do not use graph theory concepts and notation. We present
the algorithm here in a graph-theoretic framework. From theorem 4.3, the
minimum number of colors required to color a graph, such that no color is
used more than k times, is s = maz(d, [m/k]), where d is the degree of the
graph, m is the number of edges in the graph. Let n be the number of vertices

in each of the partitions.

The following pre-processing work is done. The graph is converted
into a k-complete graph with respect to s, by adding edges to the graph.
We can easily see that the minimum number of colors to limited color the
k-complete graph is s. The added edges are later ‘dummied’ out at the end
of the computation. We describe the method to convert any graph into a

k-complete graph with respect to the corresponding s, in the next chapter,
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where we present our algorithm. The algorithm, assuming the graph has

already been pre-processed, is as follows:

procedure color2(G,s) comment G is a k-complete graph with respect

to s.
begin

1. for i=1 to s do

begin
2. Find a critical matching, M, of size k
3. Assign all the edges in M a single color
4. G=G-M

end

end

It is obvious that Step 2 is not easy. We present the details and
analysis of this step in the next chapter. It seems like the time complexity
of th algorithm is O(n?s?) and the space complexity is O(ns), where s is the

number of colors required for the coloring.



Chapter 5

Algorithms for Edge-Coloring

In this chapter, we present our divide and conquer algorithm for

solving the limited edge—colorihg problem. The heuristic algorithms are also

described.

5.1 Divide and Conquer Algorithm

We present some theorems in the following subsection to facilitate
the presentation of the algorithm after that. Through the rest of this chapter,
let us assume that the degree of the graph is denoted by d, and the number
of edges in the graph is denoted by m. Let s = max(d, [m/k]), and let
G = (AB,E). Let ny = |A|, and ng = |B|. We also implicitly assume
that k < min(ng,npg), since the number of times a color can be used is
automatically restricted by the number of vertices in the partitions A and B,

whichever is smaller.

5.1.1 Preliminary Theorems

Theorem 5.1 Any bipartite graph can be converted into a k-complete graph
with respect to s, by adding appropriate edges.

Proof: The proof is constructive. If the number of edges, m, is less than k x s,
then there exists a vertex v, € A such that v, has degree less than s, since the

29
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number of vertices in A is greater than or equal to k. Similarly, there exists
a vertex v, € B such that v, has degree less than s. Add the edge (va,0p) to
the graph, and update the degrees of the vertices, and m. This procedure is
repeated until m‘ = k x s, when the graph has become a k-complete graph

with respect to s.

Throughout the construction, the degree of the graph is not in-
creased. It is always equal to s. The number of edges in the graph, at the
end of the above construction, is m = k x s. Hence, the resulting graph is a

k-complete graph with respect to s.

Now, we present a procedure to convert a graph into a k-complete

graph.

procedure KC comment converts a graph G=(A,B,E) into a k-complete graph
begin

comment let A = { ag,a;...0n, -1 }, and B = { bo,b;...bnp1 }

1. i=0;3=0

2. while (m < ks) do

case:

3. (degree(a;) < s) and (degree(b;) < s) :
begin

4. Add an edge between a; and b;

5. Update the degrees of a; and b,

6. Update m
end

7. (degree(a;) = s) and (degree(b;) < s) :

8. i=1i+1

9. (degree(a;) < s) and (degree(b;) = s) :
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10. j=j+1

11. (degree(a;) = s) and (degree(b;) = s) :
12. i= i+l = j+1

end

Lemma 5.1 The time and space required to convert a given bipartite graph

into a k-complete graph with respect to s are O(n) and O(n) respectively.

Proof: The number of edges added to the graph is ks —m. Hence, the time
required is O(ks —m+n4 +ng) = O(n), where n is the number of vertices in
the graph. The space required is equal to the number of edges added, which
is O(ks — m) = O(n).

The following theorem is easily derived from Theorem 4.1, and help

in proving Theorem 5.3.
Theorem 5.2 A regular bipartite graph has a matching of size ns(= np).

Proof: Tt should be noted that, in a regular bipartite graph, n4 = ng. From
Theorem 4.1, there exists a matching that covers all the maximum degree
vertices. Since there exist exactly 2 x n4 maximum degree vertices, and each
edge in the matching can cover only two vertices, there exists a matching of

size ng.

Theorem 5.3 A k-complete graph with respect to s has a critical matching
of size k.

Proof: We recollect that a critical matching is a matching that covers all

the maximum degree vertices. This theorem is different from Theorem 4.1,
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because it is applicable to only k-complete graphs, and more importantly,
it requires that the size of the matching be k. The proof is constructive.
The following paragraph defines an algorithmic procedure to find a critical
matching of size k. The construction is presented, for ease of description,
when n4 = ng = n; we later show how the construction can be modified for
the situation when ny # ng. We use the notation ag,a1...an-1 for the n

vertices in A and bg, by ... b,—; for the n vertices in B.

1. Add n—k vertices to both A and B. Let the new vertices added to A and
Bbe A; = Gn,anpq - - - Aznk-1, and By = by, bryy .. ban_g-1. Denote the

original vertices in A and B by Ag and Bo.

2. Add edges between the vertices in the set Ag and vertices in the set
B, such that the degree of each vertex in AgU B; is equal to s. While

adding the edges, degree of no vertex should become greater than s.

Call these edges Fp;.

3. Add edges between the vertices in the set By and vertices in the set
A, such that the degree of each vertex in BolJ A4 is equal to s. While

adding the edges, degree of no vertex should become greater than s.

Call these edges Fig.

4. The resulting graph is a regular bipartite graph of degree s. Find a
maximum matching M on this graph. M N E gives the required critical

matching of size k.

Steps 2 and 3 are possible. Assume that Step 2 is not possible. Then

two situations are possible:

1. All vertices in Ao have degree s, but there exists a vertex in B; which

has degree less than s. The total number of edges incident on Ao is
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n x s. Of these n x s edges, k x s belong to E. The number of edges
that belong to Fp; isn x s — k x s = (n — k) x 5. Hence, no vertex of

B, can have degree less than s. This is a contradiction.

2. All vertices in B; have degree s, but there exists a vertex in Ag which
has degree less than s. The number of edges in Fo,; is (n — k) X s, and
since the number of edges in E is k X s, the number of edges incident on
Ay is n x s. Hence, no vertex in A can have degree less than s. This is

a contradiction.

Following the same method, we can prove that Step 3 is also possible.

All the edges incident on vertices in A; are in Fyo. Hence, n — k
edges of any maximum matching, of the resulting graph, should belong to
Fo. Similarly, n — k edges of any maximum matching, of the resulting graph,
should belong to F;. From Theorem 5.2, the matching M in Step 4 contains
2 x n—k edges. Of these, exactly 2 x (n— k) edges do not belong to E. Hence,
M N E contains (2xn—k)—2x(n—k) = k edges. If a vertex was a maximum
degree vertex in the original graph, then all the edges, incident on the vertex,
in the constructed graph are in E. Therefore, M (1 E covers every maximum

degree vertex in the original graph. Hence M N E is a critical matching of

size k.

The procedure for realizing Step 2 is as follows. The procedure for

realizing Step 3 will be very similar.

procedure FO01 comment implements Step 2 in proof of Theorem 4.3.
begin

1. i=0;j=n

2. while (i < n) and (j < 2n — k) do
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case:

3. (degree(a;) < s) and (degree(b;) < s) :
begin

4. Add an edge between a; and b,

5. Update the degrees of a; and b;
end

6. (degree(a;) = s) and (degree(b;) < s) :

7. 1=1+1

8. (degree(a;) < s) and (degree(d;) = s) :

9. =3+

10. (degree(a;) = s) and (degree(b;) = s) :

11. i=1+1;j = j+1

end

Lemma 5.2 The time and space required to find a critical matching of a

k-complete graph with respect to s, are O(n'®s) and O(ns) respectively.

Proof: Step 1 of the constructive proof for Theorem 5.3 takes O(n—k) = O(n)
time. In Step 2, (n-k)s edges are added to the graph, and in the procedural
description of Step 2, the counters i and j are changed from 0 to n, and n
to 2n-k respectively. Hence Step 2 takes O((n — k)s + n 4+ n — k) = O(ns)
time. Step 3 takes O(ns) time. The resulting graph, at the end of Step
3, is a regular bipartite graph with 2n — k vertices in each partition, and
(2n — k)s edges. Finding a maximum matching on this graph, using Hopcroft
and Karp’s algorithm [12] takes O((2n — k)s X (2n —k)®) = O(n'®s). Finding
the edges common to M and E, in Step 4, will take O(2n — k) = O(n) time,
as it just involves checking the indices of the end vertices of M. Hence, the

total time required for finding the critical matching is O(n'?®s).



35

In Step 1, 2(n — k) vertices are added to the graph, and in steps 2
and 3, 2(n — k)s edges are added to the graph. The space required for storing
the matching M is O(2n — k) = O(n). Hence, the total space required for
finding the critical matching is O(ns).

5.1.2 The Algorithm

We can now describe the algorithm. We assume that the given graph

is preprocessed so that it is k-complete with respect to s.

procedure color3(G,s) comment Obtains the edge-coloring of
G, which is a k-complete graph with respect to s.

begin

1. if s 1s odd

begin
2. Find a critical matching M of size k, and assign the edges
in M a single color.
3. G=G-M.
end

comment G has even degree now.

4. if G is not an empty graph

begin
5. Divide the graph into two graphs, G; and G3, such that both
G, and G, are k-complete with respect to |s/2].
6. colorl(Ghy, |s/2])).
7. colorl(G,, |s/2)).

end end
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The method for implementing Step 2 is given in the proof of The-
orem 5.3. Step 5 is realized through a perfect euler split. The perfect euler
split is easily achieved through a modification of the procedure described for
achieving the euler split, in Chapter 4. The method for finding the euler
partition is the same. Care is taken at the time of the traversal of the paths
to form the euler split. It is always ensured that, at the end of traversal of
a path, that E; has no lesser edges than E,, and that E; has, at most, one
more edge than E;. A boolean variable ‘balance’ is used to indicate if both
E, and E, have an equal number of edges. ‘balance’ is true when both E;
and E; have an equal number of edges, and false when E; has one more edge
than E,. If ‘balance’ is true at the beginning of the traversal of a path, then
E, gets the first edge of the path. If ‘balance’ is false at the beginning of the
traversal of a path, then E; gets the first edge of the path. The algorithm for
the perfect euler split is given below.

procedure PES(G) comment finds an euler split of G.
begin
comment find the euler partition first.

1. make P an empty list, and S an empty queue

2 add all vertices of odd degree to the queue S
3. add all vertices of nonzero even degree to the queue S
4 while S is nonempty do

begin
5. let s be the vertex at the front of the queue in S
6. delete s from S

comment vertex s may have degree 0, since edges are deleted

from G in line



10.

11.
12.
13.

14.

15.
16.

17.

18.

19.

20.

20.

21.

22.

if vertex s has nonzero degree
begin
let p be an empty path
V=S
while vertex v has nonzero degree do
begin
let (v,w) be an edge in G
put(v,w) in p, and delete it from G
v=w
end
put the pathpin P
if vertex s has nonzero degree
put sin S
end
end
comment P is an euler-partition of the graph
let E; and E; be empty edge sets
balance = true
for each pathpin P
if balance
begin
traverse p putting alternate edges into Ey, and Ej,
putting the first edge into E;.
if p is of odd length then balance = false
end

else begin

traverse p putting alternate edges into E;, and E,,

37
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putting the first edge into Es.
23. if p is of odd length then balance = true
end
comment G, = (5, 5;, E;) and G; = (51, 5;, E;) form the
perfect euler split.

end

The procedure finds the perfect euler split. It is a modification of
the procedure for an euler split given in [7]. The proof of correctness is given
in the reference. Hence, the procedure here finds an euler split. That the
euler split found by this procedure is indeed perfect is true because, at the
end of the traversal of a path, the number of edges in E; is at most one’
more, and never less than the number of edges in E;. The time and space

required for finding the perfect euler split are O(|E| + |V|) and O(|E| + |V])

respectively.

Theorem 5.4 The algorithm color3 finds a limited coloring for a given graph,

which 1s k-complete with respect to s, in O(n'Sslog s) time, and O(ns) space.

Proof: The proof is by induction. Consider the situation when s is even. In
this case, a perfect euler split of the graph is obtained. Both the graphs G;
and G, of the euler split, have maximum degree s/2and have exactly ks/2
edges. Hence, they are k-complete with respect to s/2. By induction, the
two graphs G; and G, can be colored with s/2 colors each. Hence, G can
be colored with s colors. If s is odd, a critical matching, M, covering all the
maximum degree vertices is found. The edges in the critical matching are
removed from the graph, to obtain a graph G’. Since G’ has ks—k = k(s—1)

edges, and has a maximum degree of s — 1, it is k-complete with respect to
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s — 1. The edges in M are all independent of each other, hence they can be
assigned a single color. Since G’ is k-complete with respect to s-1, which is
even, divide and conquer can be applied to G’ to obtain a coloring of s-1
colors. Thus, G can be colored with s colors, when s is odd. The base case

situation, when s = 1, is trivial to prove.

Let T(n,s) denote the time required to find a limited coloring of a
k-complete graph with respect to s. The time for finding a critical matching

is O(n'®s). Hence, we get the following obvious recurrence relation:
T(n,s) = O(n'®s) + 2T(n, |s/2])

Solving the recursive equation, we get T(n,s) = O(n'*slog s).

Space required for calculating the critical matching is O(ns). The
depth of recursion is logs. Notice that, to form the perfect euler split, no
extra edges are added. Additional storage is needed to store the copies of
the vertices for the two graphs in the euler split. This storage is O(n) for
each level of recursion, thus requiring a total of O(nlogs). Hence, the total

storage required by the algorithm color3 is O(ns).

The time and space required for limited coloring an arbitrary bi-
partite graph must include the time and space required for converting it to
a k-complete graph with respect to s, and the time and space required by
color3. Hence, the time required for limited coloring, from Lemma 5.1, and
Theorem 5.4, is O(n'%s) + O(n) = O(n'*®s). The space required for limited
coloring, from Lemma 5.1, and Theorem 5.4, is O(ns) + O(n) = O(ns).
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5.1.3 The Asymmetric Situation

We presented our algorithm for limited coloring assuming that the
number of vertices in A is equal to the number of vertices in B. The only
place where we used this assumption was in the proof of Theorem 5.3. The
theorem also holds for the situation when ny # np. In this case, in Step
1 of the construction, ng — k vertices are added to A, and n4s — k vertices
are added to B. At the end of Step 3 of the construction, a regular graph
with n4 + ng — k vertices in each partition is obtained. The matching, M, in
Step 4, contains nyg + ng — k edges. It can be easily that M E contains
exactly k edges. The other theorems and steps of the algorithm hold even if

the partitions A and B of the bipartite graph are not of the same size.

5.2 Heuristic Algorithms

In this section, we present inexact algorithms for edge coloring. The

motivation for the heuristic algorithms is as follows:

e The exact algorithms are expensive and require a substantial amount

of memory. The heuristic algorithms, hopefully, are not as expensive.

e The heuristic algorithms are, typically, much more simpler than the

exact algorithms. Hence, they are easier to implement. This is true of

the heuristics we present.

e THe heuristic algorithms typically take less time than the exact algo-
rithm.

However, there is a price to be paid. The schedules obtained from
the heuristic algorithms are not guaranteed to be optimal. In the next two

subsections, we present two heuristic algorithms.
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5.2.1 Highest Degree Algorithm

The idea of this heuristic is as follows: Choose edges, whose end ver-
tices have high degrees, to be assigned a single color. This heuristic attempts
to reduce the maximum degree of the graph, as well as the degree of the high
degree vertices, as the maximum degree of the graph is a lower bound on the

number of colors needed.

procedure HD(G)
begin
1. Arrange the vertices in descending order of their degrees

2. while G is not an empty graph

begin
3. currentset = ¢
4. Choose an edge e, such that e is not adjacent to any edge in

currentset and one of its vertices has as large a degree as

possible. If no such edge exists, then go step 6.

5. Add the edge e to currentset, and remove it from the graph G.
Go to step 4.
6. Rearrange the vertices in order of their degrees.
7. Assign all edges in currentset a single new color. Goto step 4.
end
end

The procedure above can be easily modified to do limited coloring. No more
edges are chosen in Step 4, if the number of edges in currentset becomes k.
Step 1 does not require a costly sort algorithm. As the degree of the graph

can vary only from 0 to d, we can implement a bucket sort algorithm, with
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a ‘bucket’ for each degree from 0 to d. The same reasoning applies for the
Step 6. Step 4 is realized by scanning the list of vertices in descending order
of their degrees, and checking the corresponding edges from the vertex, until
an edge which satisfies the condition, of not being adjacent to any edge in

currentset, 1s found.

The time required for the bucket sort in Step 11is O(d+n). To form
currentset for a single color, all the edges may be scanned, in the worst case.
Hence, to form currentset for a single color, time required is O(d + n + m).
The time required for Step 7, is O(m). Hence, the total time required by the

heuristic algorithm is ((m +n +d) X numberofcolors).

We will include an obvious enhancement to the approximate algo-
rithm by improving the Step 4: If there are several edges that can be selected

from the highest degree vertex, chose the one whose other end vertex has the

highest degree.

5.2.2 Highest Combined Degree Algorithm

The idea of the heuristic is to select edges that have a high combined
degree, to be assigned a single color. This heuristic attempts to reduce the

degrees of the high degree vertices.

procedure HCD(G)
begin
1. Arrange the vertices in descending order of their degrees
2. while G is not an empty graph
begin

3. currentset = ¢
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4. Choose an edge e, such that e is not adjacent to any edge in
currentset and has as large a combined degree as possible. If no

such edge exists, then go step 6.

5. Add the edge e to currentset, and remove it from the graph G.
Go to step 4.
6. Rearrange the edges in order of their combined degrees.
7. Assign all edges in currentset a single new color. Goto step 4.
end
end

The procedure above can be easily modified to do limited coloring. No more
edges are chosen in Step 4, if the number of edges in currentset becomes k.
Step 1 does not require a costly sort algorithm. As the combined degree of
the edges in the graph can vary from 0 to £d, we can implement a bucket sort
algorithm, with a ‘bucket’ for each number from 0 to 2d. The same reasoning
applies for the Step 6. Step 4 is realized by scanning the list of edges in
descending order of their combined degrees until an edge which satisfies the

condition, of not being adjacent to any edge in currentset, is found.

The time required for the bucket sort in Step 1 is O(m). To form
currentset for a single color, all the edges may be scanned, in the worst case.
Hence, to form currentset for a single color, time required is O(m). The time
required for Step 7, is O(m). Hence, the total time required by the heuristic

algorithm is (m x numberofcolors).



Chapter 6

Evaluation of the Algorithms

The evaluation of the algorithms, in terms of how cost effective
they are, is presented in this chapter. We evaluate the exact algorithm and
the heuristic algorithms on several sample input data. The sample data
that we consider in our evaluation are from three sources: random graphs,
data transfer requests generated in a 3-D visualization application, and data

transfer requests generated for a split-step 3-D migration program.

6.1 Sample Data

The sample data for evaluating our algorithms is from three different

sources.

6.1.1 Random Graphs

The graphs are generated using a random number generator to gen-
erate the edges. The number of vertices in each partition, of the graph, is
64 and 16. The edges in the graph are generated randomly. The number
of edges in the graph determines the density of the graph. We present our

results for different densities in the graph, in the next section.
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6.1.2 3-D Visualization

This is a highly I/O intensive application. The aim is to visualize
a large volume of three dimensional data. It is assumed that the volume of
data does not fit into the availlable memory . All the points of the volume,
which is a read only data, on a cutting plane, are displayed. We restrict our
attention to the cutting planes, which are horizontal, or vertical. The cutting
plane can move, and the display of data should be done in real time. The
3-D visualization problem is I/O intensive only when all of the volume does

not fit into memory.

The large volume of data is divided into cuboids, each side of which
is 16. Thus, there will be 64° = 2!® such blocks in the whole volume. To
improve performance, and to achieve load balancing, we stagger the blocks,
so that each successive cuboid in the x dimension ( and y dimension) is
staggered, in the vertical direction, from the previous block by 1. When the
horizontal cutting plane moves vertically, the staggering scheme described
above achieves the effect of load balancing. To achieve load balancing for
the moving vertical cutting planes, cross-sections, other than the rectangular

one, that we consider here need to be considered. We do not consider other

cross-sections here.

We map the partitions onto storage units. We use a (d;, d,) skewing
scheme to map the partitions onto the storage units. All blocks sitting on
a single cross-section, are stored on a single mass storage unit. The (d;,d;)
scheme is described as follows: Each successive cross-section in the x dimen-
sion is stored at a storage unit dymodM away from the previous one, where
M is the number of mass storage units. Each successive cross-section, in the

y dimension, is stored at a storage unit d;modM away from the previous one.
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By a simple analysis, we can easily show that M should be relatively prime
to dy and d,. The 3-D visualization application is defined in greater detail in
[3]. We chose M to be a prime close to 32, which is 31.

The number of mass storage units being considered is 31. We assume
that the processing work to determine the points in the cutting plane, and to
initiate data transfer requests with the mass storage units is divided among
16 processors. Thus, the graphs generated by this application are bipartite
graphs with 32 and 16 vertices in each partition. We generate requests for

two situations:

1. A horizontal cutting plane which moves.

2. A vertical cutting plane which is parallel to the x axis and moves.

All other vertical cutting planes generate requests similar to the requests

generated above.

6.1.3 Split-Step Migration

Split-Step Fourier Migration is one of the more accurate migration
algorithms. The ‘Split-Step’ refers to the phase-shifts being performed sepa-
rately - once in the frequency domain before the inverse FF'T and then in the

time domain.

There are 2 input data volumes(3D arrays) which represent the
seismic data and the velocity volume as sets of frequency( w) planes and
velocity(v) planes respectively. w planes are complex and so each of them
occupies twice the memory of a v plane which is real. Typical volume sizes

are 1024 by 1024 by 1024.
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Each w plane goes through several stages in the migration process-
ing for every depth step. Each depth step corresponds to a v plane. First, a
2D FFT is performed, followed by a phase-shift(¢1) and then by the inverse
FFT(FFT™!).Subsequently, there is a second phase-shift(¢2) for which a ve-
locity plane is required. This yields a partial result plane(p) which needs to
be accumulated to the partial results from other w planes corresponding to
that depth step. This accumulation is the evaluation of a single point of a
discrete Fourier transform in the vertical direction. The accumulation of all
the p planes, which are real, is also the last stage of data processing at that
depth step for the w plane. Mutual exclusive access to the partial result buffer
is necessary as the partial result - a shared variable - is updated. Finally, the
w plane repeats the above for each depth step. This process is carried out for

all the w planes to yield the data volume comprising of the p planes.

We do our evaluation assuming that that there are 64 processors in
the system. Each plane in each of the 3-D volume is split or ‘striped’ into 8
segments and stored on seperate sets of storage units. The three volumes are
stored on seperate storage units. This implies that the data is stored on a
total of 24 storage control units. We assume that only the first 64 w planes
are going through their depth steps, and that the the 64 w planes are saved

onto the mass storage, after going through 64 depth steps.

6.2 Results

Tables 6.1 to 6.4 present the analysis for random graphs, when the
number of buses, varies from k=4 to k=16. In each table, the number of edges,
m, for the graph is varied from 100 to 1000, representing different densities
of the graphs. The numbers on the left hand side of the tables correspond to
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Table 6.1: Comparison of performance and execution time of the algorithms
in a random graph on a 4 bus system.

eract hd hed Rd(unsoried) | hcd(unsorted)
wolors T time | colors | time | colors | time | colors | time | colors | time
100 25 62.4 25 1.2 25 2.6 26 0.79 26 1.6
200 50 1354 50 2.79 50 7.6 51 0.8 52 5.8
400 | 100 | 257.6 | 100 54 100 26 102 1.8 101 19.4
600 | 150 | 406.2 | 150 8.6 150 53.8 152 5.8 157 452
800 | 200 [579.2] 200 12 200 83 204 3.2 213 66
1000 | 250 684 250 16 250 | 129.8 1 254 3.8 263 | 100.4

m. The algorithms in the table are as follows:

exact The exact algorithm that we described in Chapter 5.
hd The highest degree heuristic.
hcd The highest combined degree heuristic.

hd(unsorted) The highest degree heuristic, with the difference that the
vertices are not rearranged at the end of each iteration. The vertices

are sorted, according to their degree, only initially.

hcd(unsorted) The highest combined degree heuristic, with the difference
that the edges are not rearranged at the end of each iteration. The

edges are sorted, according to their combined degree, only initially.

We can easily see that the heuristics perform extremely well. The
highest degree heuristic and the highest combined degree heuristic give op-
timal or near optimal schedules all the time. The unsorted versions of these

algorithms come up with near optimal schedules when the density of the
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Table 6.2: Comparison of performance and execution time of the algorithms
in a random graph on a 8 bus system.

ezact hd hed Rd(unsorted) | hcd{unsorted)
<olors T time | colors | time | colors | time [ colors | time colors | time
100 13 314 13 1.2 13 3 14 0.6 13 1.6
200 25 59.2 25 1.4 25 6.4 27 0.8 28 5.2
400 50 119.8 50 3.2 50 21.8 54 14 55 19.2
600 75 206.4 75 4.8 75 46.8 78 1.8 87 40
800 [ 100 1306.39 | 100 7.2 100 88.2 103 2.8 114 67.2
1000 | 125 307.8 125 88 125 110661 133 3.6 145 1 109.99

Table 6.3: Comparison of performance and execution time of the algorithms
in a random graph on a 12 bus system.

exact hd hed Fd(unsoried) | hcd(unsoried)
wolors 1 time | colors | time | colors | time colors | time | colors | time
100 11 21 11 0.8 11 1.6 11 04 11 14
200 18 36.8 18 1.2 18 5.8 21 0.6 19 5.2
400 34 96.6 34 2.8 34 24.2 44 1.8 40 20
600 50 116.4 50 3.6 50 47.4 70 2.4 67 39.8
800 67 161 67 5.2 67 129.8 93 6.59 88 108.4
1000 84 194 84 7.2 84 143.59 | 114 4.8 108 | 148.8
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Table 6.4: Comparison of performance and execution time of the algorithms
in a random graph on a 16 bus system.

ezact hd hed Rd(unsorted) | hcd(unsorted)
eolors T time | colors | time | colors | time | colors time | colors | time
100 11 32.99 11 1 11 2.6 11 0.6 11 2.39
200 18 36.2 18 1.6 18 5.6 18 1.6 18 5.6
400 33 97.2 33 7.6 33 24.59 33 1.2 33 22.2
600 47 139.19 47 12 47 51.79 47 2.6 47 43.99
800 63 131 63 6.8 63 72.19 63 2.4 63 69.2

1000 81 196.8 81 18 81 164.8 82 3.4 81 109.99

graph is low, or when the number of buses, in the system, k,is low. When
k is small, colorings generated by even a naive heuristic are good because, at
most k independent edges need to be selected at any time, so that they can

be assigned a single color.

The weaker heuristics, namely hd(unsorted) and hcd(unsorted), do
poorly when the density of the graph is high. The schedules( or coloring)
generated differ from the optimal coloring by as much as 20%. On the other
hand, the better heuristics, namely the hd and hcd algorithms give near
optimal solutions all the time. The reason why hd(unsorted) does not do
as well as the hd, is that the vertices are not rearranged at the end of each
iteration. Rearranging of vertices, according to their degree, at the end of
each iteration, seems to be a very crucial step. A similar analysis applies for

the comparison of hed to hed(unsorted).

On the other hand, hd(unsorted) and hed(unsorted) take a lot less
time than hd and hcd respectively. All the four heuristics have better time

performance than the exact algorithm. The exact algorithm takes a lot more
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time to complete the coloring. The heuristic hd(unsorted) takes the least
amount of time. hd comes next best, in terms of time performance. The
heuristic hed takes more time than the heuristic hd, but is still better than

the exact algorithm, in terms of time performance.

The time performance difference between the hd and hd(unsorted)
algorithms and the difference in the quality of coloring by the two algorithms,
suggests to us the following : we could have spectrum of algorithms depending
on how frequently the rearrangement of vertices is done. In case of hd, it is
done at the end of each iteration. In case of hd(unsorted), it is done only
at the beginning. The quality of schedules generated by such an algorithm
would not be as good as that of hd, and would be better than the quality
of schedules generated by hd(unsorted). Similar remarks apply for hed and
hcd(unsorted). Tables 6.5 and 6.6 show the quality of schedules generated for
the data transfers required for the 3-D visualization application. The numbers
in the left hand side of the table are the number of buses in the system. Again,
hd and hcd do very well, giving near optimal solutions. On the other hand,
hd(unsorted) and hed(unsorted) perform very badly, generating colorings that

take as much as 30% more colors than the optimal coloring.

Table 6.7 shows the quality of schedules generated for the split step

migration problem.

We also evaluate the ‘goodness’ of the algorithms for the situation
when edges are added dynamically to the graph. The evaluation is done in
the following manner. Exactly |k/2| Edges are added to the graph at the
end of each iteration. After more than the number of edges in the original
graph have been colored, the computation is stopped, and the number of

colors used is determined. Table 6.8 gives the number of edges colored and
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Table 6.5: Comparison of performance and execution time of the algorithms
for the 3-D visualization problem, for a vertical cutting plane.

exact hd hed hd{unsoried) | hcd(unsorted)
wolors T time | colors | time | colors | time | colors | time colors | time
4 45 484 45 1.6 45 6.8 46 0.6 46 4.8
8 23 20 23 3.2 23 11 24 04 27 66 |
12 15 10.6 16 0.8 15 4.6 20 04 20 6.79
16 12 7.39 13 1 12 7.19 14 04 14 54

Table 6.6: Comparison of performance and execution time of the algorithms
for the 3-D visualization problem, for a horizontal cutting plane.

ezact hd hed hd(unsoried) | hcd(unsorted)
colors T time | colors | time | colors | time | colors | time colors | time
41 256 |[361.19] 256 20 256 | 185.4 | 260 15.2 276 | 189.2
81 128 238.6 128 16.2 128 | 199.6 | 136 | 4.19 148 122
12 86 148.6 86 122 86 136.2 1 123 6.8 120 778
16 64 52.6 67 54 64 98 6 34 80 75.4
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Table 6.7: Comparison of performance and execution time of the algorithms
for the split-step migration problem.

ezact hd hed hd(unsorted) | hed(unsorted)
colors | time | colors | time | colors | time | colors | time | colors | time
168 |1 7254 ] 168 13.8 168 88 171 3.8 171 724
84 249.6 84 6.39 84 71.6 91 2.6 91 64.6
64 170.6 64 58 | 64 694 64 3 64 64
64 157 64 6.8 64 69.4 64 3.8 64 64.4

o Oy b WO

the colors used to color them. The numbers on the left of the table correspond
to the initial number of edges in the graph. The lesser the number of colors
used the better the heuristic is for the dynamic situation. The data from the
experiment seems to indicate that all the four heuristics use the same number
of minimum possible colors to color the edges. Hence, all the four algorithms

are good for the dynamic situation.
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Table 6.8: Comparison of performance and execution time of the algorithms
for dynamic random graphs, with k = 8

hd hed hd(unsoried) | hcd(unsorted)
colors | edges | colors | edges | colors | edges | colors | edges
100 13 104 13 102 13 104 13 104
200 25 200 25 200 25 200 25 200
3001 38 304 38 304 38 304 38 304
400 | 50 400 50 400 50 400 50 400
500 63 504 63 503 63 504 63 504

Table 6.9: Comparison of performance and execution time of the algorithms
for dynamic random graphs, with k = 12

hd hed hd(unsorted) | hcd(unsortied)
colors | edges | colors | edges | colors | edges | colors | edges
100 9 108 9 106 9 108 9 108
200 17 204 17 204 17 204 17 204
3001 26 312 26 308 26 312 26 312
400 | 34 408 34 408 34 408 34 408
500 | 42 504 42 504 42 504 42 504




Chapter 7

Conclusions

7.1 Summary

We summarize the results and the contribution of this thesis. The
problem of data transfer scheduling is cast as an edge coloring problem. Data
transfer scheduling, when the number of channels, k , is limited, 1s cast as
an edge coloring problem, wherein no color can be used more than k times.
We call this problem the limited edge coloring problem. We present a new
divide and conquer algorithm for limited edge coloring. The algorithm takes
O(n'®slogs) and O(ns) space, where n is the number of vertices in the bi-
partite graph, and s is the number of colors required to color the graph. The
value of s is [m/k], where m is the number of edges in the graph. We de-
fine and evaluate four new heuristic algorithms for edge coloring. All the
four heuristic algorithms are based on the idea that the edges attached to
the maximum degree vertices need to be chosen first when edges are to be
assigned a color. The complexity of the heuristics is O(m x numberofcolors).
Of these four inexact algorithms, two algorithms, namely hd and hed, give
very good and near optimal solutions for the sample data. For the other
two heuristic algorithms, hd(unsorted) and hed(unsorted), the schedules gen-
erated by them differ from the optimal by a substantial amount, when the
graph is dense. On the average, the time taken by the algorithms are in the

following order:

55
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exact > hed > hed(unsorted)> hd > hd(unsorted)

If we consider the length of the schedules generated by the algorithms, the

ordering would be as follows:
hd(unsorted), hed(unsorted) > hd, hed > exact

It seems that hd is the best algorithm to use, if we consider both time
performance and the quality of the schedules. Of course, the exact algorithm

should be used if it is necessary to obtain the optimal solution.

The algorithms are also analyzed for for their performance when
edges are added to the graph dynamically. All the four heuristic algorithms
perform very well by being able to schedule the maximum number of edges

possible with the given number of colors.

7.2 Future Work

In the thesis, we assumed that there was a direct path between every
pair of nodes in the system. The extension of the data transfer scheduling
problem, when not all pairs of nodes are directly connected to each other, is
an important problem. Further work needs to be done to extend the solution
to be applicable to this situation. Extension of the solution to the situation
of hierarchical buses and multistage interconnection networks would have in-
teresting applications. New exact algorithms for edge coloring with improved
time complexity need to be designed. More analysis of the dynamic situa-
tion when new data transfer requests are added to the graph, needs to be

done. Adequate measures of ‘goodness’ for the dynamic situation need to be

defined.
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