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Abstract

Parallel structuring of External Memory operations has been a rel-
atively unexplored area in Parallel Processing. This thesis effort describes
an effective parallel formulation of two I/O-intensive seismic data process-
ing algorithms on a large shared-memory multiprocessor system. Simulation
modeling has been used as the vehicle for performance evaluation. Results
suggest that applications which are 1/O bound in most uniprocessors would
probably become more compute-bound in memory-rich environments that are

characteristic of large multiprocessor systems.
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Chapter 1

Introduction

1.1 Overview

A major share of research on parallel computation has been directed
towards design of multiprocessor computer architectures and parallel formu-
lation of computation-intensive applications. The result has been very sig-
nificant gains in the compute capabilities realized by such multiprocessor
systems. There has, however, been relatively little attention paid to paral-
lel structuring of external memory operations and to modernizing external

memory architectures.

Many scientific problems are compute bound and deficiencies in the
I/O system may not become apparent. There are, however, a number of
economically significant applications where very heavy demands are placed
upon 1/O systems. Additionally, demands for external memory operations
can be expected to grow proportionally to the compute speed of the system.
The problem of parallel structuring of external memory operations will thus

be aggravated by multiprocessor environments.

The thrust of this thesis is the performance evaluation by simulation
modeling of the execution of a family of I /O-intensive applications on a shared
memory architecture. The system models include parallel structuring of I/O
operations, data placement, buffer management etc., all in the context of

a complete parallel formulation of the 1/O-intensive application. The rest

1
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of this chapter details the problem definition, outlines the approach, and

presents a sumumary of the results.

1.2 Problem Statement

The problem studied in this thesis is the performance of a complete
parallel formulation of a family of the 3D migration algorithms for seismic
data processing. The formulation includes not only parallel formulations
of the computational algorithms, but also parallel formulations of external

memory operations.

The principal architectural target for the execution of this parallel
computation structure is the IBM Research Parallel Processor - RP3 [1,2, .
We have also considered shared-memory multiprocessor architectures with
much faster processors to provide comparisons with current-day production

multiprocessors.

3D migration algorithms are a standard element of seismic data
processing and thus oil exploration. There is a wide spectrum of 3D mi-
gration algorithms. In each case. the size of the data sets are of the order
of several gigabytes, necessitating large amounts of I/O activity. The com-
putational requirements vary from being extremely computation-intensive to
only moderately computation-intensive. It is often the case on conventional
uniprocessors that the many passes of the data through the system required
by constrained memory capacity forces even the computation-intensive algo-

rithms to become I/O bound.

The structure of the computation is very regular. The data access
patterns are quite predictable. Therefore, it 1s possible to construct regular

and effective parallel structures for the external memory operations. It is the



case, however, that the external memory operations do include serialization
points where different computational processes compete to update a shared

variable.

The major thread of research has been the development of param-
eterized simulation models for a complete parallel formulation of a family of
3D migration algorithms. This model includes the mutual exclusion effects,

architectural characteristics, resource allocation algorithms ete.

The effort in this thesis is one of the earliest attempts at viewing
large-scale I/O activities in highly parallel machines. The details of the par-
allel formulation from the viewpoint of the geophysical application domain

can be found in the References[4].

1.3 Approach

Simulation modeling has been used as a vehicle for performance
evaluation in this thesis effort. The rationale behind the use of simulation
is to avoid the expense of making a number of runs to explore the optimal
parallel structuring from a broad set of parameters. The queueing theoretical
pacakage RESQ has been used to develop detailed models of 2 migration

algorithms on the RP3.

The models propose a pipeline structure for the stream-oriented pro-
cessing. The algorithm'’s regularity has been exploited in the data storage to
improve cache-hit ratios and also to pre-fetch data sets, thus overlapping 1 /O
transfers with processor activity. The development of highly parameterized
simulation models with selective increase in resolution at points of interest

has allowed for extensive simulation experimentation.



1.4 Results

Simulation runs from the RESQ models yielded considerable insight.

The principal conclusions that may be drawn from them are:

o Memory-rich environments greatly alleviate the I/0O problem. 3D Mi-
gration processing which is I/O bound in conventional uniprocessors is

probably compute-bound in systems like RP3.

e Data organizations for highly structured data access patterns would

tend to yield near linear speed-ups for parallel data transfers.

e The regularity of the data processing allows for a data set that has been
read into memory to be used a number of times by different processors.
Thus each processor enjoys an effective memory size far greater than

that of a single processor.

1.5 Organization

An overview of seismic data processing is given in the next chapter.
Chapter 3 describes the RESQ models for the migration processing. Ex-
periments and their results are discussed in Chapter 4. We end with a few
concluding remarks summarizing the research and directions for future work.
Appendix A contains details about the RESQ package. Appendix B mentions
the salient features of the RP3. A listing of the code for the RESQ models is

presented in Appendices C through H.



Chapter 2

Seismic Data Processing

2.1 Overview of Migration Processing

Seismic data processing has been chosen as the application to drive
the simulation models. The primary reasons for such a choice are the tremen-
dous number of computational steps and the large-scale 1/0 transfers of big
data sets. This application also evokes commercial interest, particularly in
petroleum exploration. The class of seismic methods that has been selected
is Migration, which refers to imaging methods employing a one-way acoustic
wave equation and the ‘exploding-reflector’ model of seismic data. Two of
the migration algorithms - the Split-Step Fourier and the Phase-Shift have
been incorporated in the RESQ simulation models. The rest of this chapter
‘s a discussion of both the algorithms restricted to the details pertinent to

the thesis.

2.2 Split-Step Fourier Migration

Split-Step Fourier Migration is one of the more accurate migration
algorithms. The ‘Split-Step’ refers to the phase-shifts being performed sepa-
rately - once in the frequency domain before the inverse FFT and then in the
time domain. The main disadvantage in this algorithm is the large number
of computations for the 2D FFTs that malkes it expensive for execution on

conventional uniprocessors.



There are 2 input data volumes(3D arrays) which represent the
ceismic data and the velocity volume as sets of frequency( w) planes and
velocity(v) planes respectively. w planes are complex and so each of them
occupies twice the memory of a v plane which is real. NKX and NKY repre-
sent the dimensions of a single plane.A plane dimension of 1024 * 1024 has
been considered for most experimental cases. Actual plane sizes are usually
smaller. 512(NF) w planes and 1024(NZ) v planes were similarly chosen for
most of the simulation runs. These numbers are typical. Figure 2.1 shows

these data volumes.

Each w plane goes through several stages in the migration process-
ing for every depth step. Each depth step corresponds to a v plane. First,
a 2D FFT is performed, followed by a phase-shift(¢1) and then by the in-
verse FET(FFT™").Subsequently, there is a second phase-shift(¢2) for which
a velocity plane is required. This yields a partial result plane(p) which needs
o be accumulated to the partial results from other w planes corresponding
to that depth step. This accumulation is the evaluation of a single point of
a discrete Fourier transform in the vertical direction. The accumulation of
all the p planes, which are real, is also the last stage of data processing at
that depth step for the w plane. Mutual exclusive access to the partial re-
sult buffer is necessary as the partial result - a shared variable - 1s updated.
Finally, the w plane repeats the above for each depth step. This process is
carried out for all the w planes to vield the data volume comprising of the p

planes. Figure 2.2 shows the computation structure for this algorithm.
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2.3 Phase-Shift Migration

This is greatly similar to the split-step migration discussed in the
previous section. Here, there is only one phase-shift which is performed in
the frequency domain. Also. instead of using a velocity plane(representing
velocities of different points at a depth step, as n the split-step migration),
the phase-shift migration uses a single velocity value for all the points at a
given depth. So there are no v planes in this algorithm. This makes it less
accurate than the split-step but the computational expense of this algorithm
is also far less. The reason for the latter is that the 2D FFTs are not present
for every depth step; only the phase-shift and accumulation of partial results
are. The FFTs are performed only twice - once before the data processing
begins and then after all the data processing has been completed and the
p planes are available. Finally, the p planes in this migration are complex
unlike the split-step. The computation structure of this algorithm is shown

in Figure 2.3.
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Chapter 3

RESQ Models for 3D Migration Processing

3.1 Outline of RESQ Model

A RESQ implementation of the seismic data processing on the RP3
is discussed below. Readers arve assumed to be familiar with the Research
Queueing Package (RESQ)[5.6]. A brief summary of RESQ’s features may
be found in Appendix A. Architectural features of the RP3 are presented in

Appendix B.

Figure 3.1 shows the logical components of the model. The Com-
putation model depicts the split-step migration engine. This includes the
different computation steps, processor resource allocation, data flow paths

and generation of I/O requests to the Data Management unit.

The Data Management unit determines the details associated with
individual I/O requests. Requests may be READ/WRITE for w and p planes,
while v plane requests are READ only. Accordingly, memory buffers are allo-

cated and released through interaction with the Buffer Management section.

The requests are then forwarded to the Striping model which de-
scribes different disk striping schemes for data storage. Physical I/0O requests

are then sent to the I/O subsystem.

As a basic unit of computation in the 3D migration algorithm is
a (horizontal) plane, a large portion of the RESQ model can be developed

independent of the pattern of data storage on disks. Modification would
11
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have to be made only to the Striping sub-model for different disk striping

techniques.

Section 3.2 states a few assumptions made while formulating the
model. Section 3.3 discusses the Computation structure for both the migra-
tion algorithms, while the I/O subsystem is described in Section 3.4. Simu-
lation runs and their outcome are presented in the next chapter. Appendices

C through H give a listing of the RESQ code for the entire model.

3.2 Assumptions

A small number of reasonable assumptions were made while devel-

oping the model which are:

e A B4-processor RP3 with 4MB memory per processor. Other configu-

rations had also been considered.
e All RP3 memory is configured as shared memory.
e 3380 disks with disk caches.
e High cache hit ratio owing to the sequential data access pattern.

e Hot spots caused by simultaneous access for v and p planes are negligi-

ble.
e Utilization of ISPs is low.

e Use of an ‘in-house’ FFT algorithm which does not require scratchpad

Memory.

The assumptions are significant, but realistic. There is a fairly sub-
stantial overhead to access data from another 64-processor block compared to

another processor within the same block. Changes to the model would have
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to be made to incorporate this overhead if the model is scaled up to more
than 64 processors. The results presented for RP3 configurations more than
64 processors in Section 4.1 have notincluded these changes. As the data pro-
cessing is extremely regular, the I/O requests are generated in a predictable
fashion. This was exploited by suitably arranging the planes on disks to yield
high cache hit ratios. The presence of the combining network was assumed
to alleviate the hot-spot problem associated with the contention for v and p
planes. The ISPs had not been modeled in very great detail as their expected
use is low. The page buffers, however, had been incorporated in the model.
The low ISP utilizations were later confirmed with simulation runs. Initial
use of FFT algorithms requiring extra memory space suggested that this ad-
ditional memory requirement would make memory buffers a critical resource.
The use of an ‘in-house’ FFT algorithm eliminates memory as being a critical

factor.

3.3 Computation Structure
3.3.1 Split-Step Migration Algorithm

Figure 3.2 illustrates the structure of the RESQ model describing

the computation for the split-step migration.

A job J(w.i) is an w plane that requires data processing. Associated
with each job are a number of variables of which the most important are w
and i. w represents the w plane associated with the job and ¢ the iteration

number. 7, therefore, indicates the v and p planes required by the job J (w,i).

Jobs are allocated job tokens from a job pool (a passive queue) based
on a pre-defined priority scheme. This token serves as an access right for the

job to enter the system and undergo data processing. Omnce a token has been
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allotted, a job is allowed a specific number of iterations in the system. The
qumber of tokens in the job pool regulates the total number of jobs in the

system at any time.

A set of symbolic notations are used in Figure 3.2 to simplify the il-
lustration. I/O requests are indicated by broken lines. A job issuing a request
may be required to wait for the necessary data transfer to be completed. This
wait is symbolized by ‘W’ before the appropriate queues. ‘M’ represents the
mutually exclusive access for the p planes while A-R, AB-RB and AJ-RJI,
RJ2 denote Allocate-Release nodes for the processor, memory buffer and job

tokens respectively.

A job entering a system needs w, v and p planes. The w planes
are required at each stage of the computation, while the v and p planes are
needed for the second phase shift and summation respectively, 1.e, at the ¢2¢
and the S"¢. I/O requests for the planes can be made in the appropriate
order. Further, since the requirement of v and p planes is known in advance
from the value of the iteration number 7, they may be requested sufficiently
early. This would allow the 1/O transfer of these planes to overlap With the

computation involved in 3¢ (an FFT, a phase shift and an FET™).

Each stage of the computation - 3¢, ¢2¢ and 3¢ - requires processor
resource, which is modeled as a passive queue. Processor tokens are allocated
and released at each of the stages yielding a dynamic allocation of processors
to tasks. Different queues would receive processor resource based on factors
like queue length, service time etc. This represented a flexible mapping with-
out tying processors to particular tasks. More rigid mappings could also be
represented. Use of parallel FFT algorithms, where more than 1 processor

can act on a single job to provide improved performance was also allowed in
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the model. This was realized by multiple allocation of processor tokens for

the queues involving the FFTs, with appropriately reduced service times.

After a job had been serviced by 3¢, $2¢ and 3¢ (i.e, after a set of
computations comprising an FFT, ¢1, FFT !, ¢2 and 3 was complete), it
may have needed to go through additional iterations. In such a case, the job
had to issue requests for the next v and p planes. A request for an w plane was
not necessary as the plane was already in memory. The need for additional
iterations was determined by the organization of the computation ‘Vertical’
or ‘Horizontal’. Figure 3.3 discusses the 2 schemes in detail. Depending on
the scheme employed, p planes or w planes were written out onto the disks to
free memory buffers. When all the iterations for a job had been completed,
the job token was released and the job rejoined the queue for allocation of
a fresh job token. A suitable priority was specified for allocation of the job
tokens to ensure that the computation proceeded correctly. A check was also
made at an appropriate point to see whether all the iterations (1024) had

been completed in which case the job should suitably exit.

All of RP3’s memory was modeled as ‘shared’ and it was assumed
that there is no overhead in accessing the memory of another processor.
Therefore. there was a large single address space (minus the requirements
for an Operating system and the like) available for the seismic data process-
ing. This available memory was partitioned as buffer slots each of which was
the size of a v plane. This was also the size of a p plane. However, each w
plane being complex occupied twice the memory of a v or p plane and needed
2 buffer slots. Memory had been modeled as a passive queue with each token

representing the basic unit of memory - a buffer slot.

When an I/O READ request was issued, a check was first performed
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to ascertain whether the plane being requested was already in memory. If so,
an acknowledgment was sent immediately. If the plane was not in memory,
buffer space was first allocated for the plane (2 for w and 1 each for v and p
planes ) and then the request was forwarded to the I/O subsystem. It was
also possible that the plane had already been requested by a previous job, but
the data transfer had not been finished. In such a case, all requests except
the frst were deferred till the first one had been serviced. Acknowledgments
were then sent for all the requests made for the same plane. This avoided
duplication of requests, needless I /O activity and wastage of buffer space. It
had been assumed that the memory buffer manager was sophisticated enough
to allocate contiguous buffer slots and that it was also able to effectively
coalesce discontinous empty slots. This was significant for vacancies caused
by release of more than one v or p plane buffers was available for w planes,

even if the memory buffers had not adjacent.

Figure 3.4 and Figure 3.5 show the entire model using RESQ sym-

bols for this algorithm.

3.3.2 Phase-Shift Migration Algorithm

In addition to the split-step migration algorithm (described preced-
ing), the phase-shift migration algorithm was also modeled using RESQ. This
was done to study the balance between computation and the I /O data trans-
fers for a less computation-intensive seismic data processing algorithm.

e

igure 3.6 shows the RESQ structure illustrating the phase-shift
migration. As mentioned earlier in Chapter 2, this is similar to the split-step
algorithm except that the two-dimensional FFT is performed only twice for

every w plane. This significantly reduces the computation expense. Also,
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there are no v planes in this migration structure and the p planes-being

complex-would occupy two buffer slots.

The RESQ model for the split-step migration was modified suitably
to simulate the phase-shift migration. The model would, therefore, not run

very efficiently. However, the results would be accurate.

3.4 1I/0 System Model

This section describes the modeling of the disk striping techniques
and the I/O system. The use of sub-models (allowed by RESQ) permitted
different disk striping layouts while retaining the rest of the model. Figure 3.7
shows a flowchart illustrating the I/O subsystem based on which the RESQ
model had been developed. The RESQ model encompassed, among others,

the Page buffers, the Storage Director, the cache, the channel and the disks.

The disk striping model implemented one of the striping schemes of
interest. Striping spreads the data of a single logical request (for a plane)
across multiple disk heads. Multiple disks were accessed through multiple
ISPs to distribute the channel and ISP loads across the system. One striping

scheme gives the mapping:
(plane, index) -> {ISP, CU, disk, logical block}

Each plane was spread across a set of control units and disks and
was accessed through multiple ISPs. (If all accesses were directed through a
single ISP, which is possible in the initial RP3 I/0 configuration, much of the
benefit of striping would be lost since the data transfers would be contending

for a single channel).

Two different striping schemes had been modeled. In the base case
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where no striping was employed, all the data for a set of planes was stored on
a single disk. Different sets were stored across different control units. In the
case where striping was utilized, each plane was spread evenly across a single
disk on each control unit, i.e., the data for a single plane resided across eight

different disks of eight different control units.

For an 1/O transfer, it was necessary to obtain simultaneous posses-
sion of several resources. The page buffer had to be acquired initially. Then
both the channel and the Storage Director were required. After the channel
had been acquired, an attempt to possess the Storage Director had to be
made. If the Storage Director was busy, then the channel was released to

allow for its possible use to service other I/O requests.

Once the channel and Storage Director had been acquired and in
case of a cache-hit, data transfer commenced. After data transfer, the chan-
nel, the Storage Director and the Page buffer were released. As the pattern of
I1/0 requests was regular and known in advance, the data was stored on disks
in an appropriate manner to improve the cache hit ratio. In fact, a proper
data storage technique would result in a cache hit for all READ requests

except for the first set of planes.

In case of a cache miss, both the channel and the Storage Director
were released. The disks had also been modeled as a passive queue. On
acquiring the disk, a ‘seek’ is issued after which the channel and Storage
Director had to be simultaneously acquired again. A response was sent to
the ISP indicating the completion of the ‘seek’ after which the channel and
storage Director was once again released. There is a latency involved in disk
access which for simulation purposes was assumed to be constant. A ‘seek’

has been modeled to take 16ms and the latency 8ms. After the latency delay,
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both the Storage Director and the channel had to be acquired. If either was
busy a rotation was missed, until both could be simultaneously obtained.
Once both were in possession, data transfer was performed, completing the
service of the I/O request, after which all resources were released. However,
the RESQ model had not been developed to this detail as a cache miss would
be rare for reasons discussed before. Figure 3.8 shows the extent to which

the model had been implemented.
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Chapter 4

Experiments and Results

4.1 Simulation Experiments

The parameterized nature of the RESQ model facilitates extensive
experimentation. Some of the more interesting variations for simulation runs

are enumerated below:

e Number of processors and their performance

1. (801-like) RP3 processors
2. Faster processors (2x 4x 8x 10x)

3. Eight or sixteen 3090-like processors

e Plane sizes and number of planes in a data space (base case is 512 x
512 x 1024).

e Degree of parallelism within the processing of a single plane.

e Allocation priorities for processors and memory buffers.

e Disk striping schemes.

e Organization of the computation “Vertical’ and ‘Horizontal’.

e Memory capacity per processor.

e Flexible and rigid mappings of processors to tasks.

28



4.2 Results from Simulation Models

The Split-step and Phase-shift formulations of 3-D migration can
be cast in almost identical parallel computation structures. The primary
difference is that the Phase-shift algorithm requires only two FFTs to be
executed during the processing of an w plane against all velocity planes while
the Split- Step requires an FFT for each w and v plane pair. Since the
FFTs dominate the total computation time the result is that the Phase-Shift
algorithm has a very much lower amount of computation per data element.
Thus use of these two methods vields stress conditions for the computation
portion of the architecture and a stress condition for the I/O architecture.
The results of the simulation model evaluations are given in Tables 4.n (n =

1-5) and in Graphs 4.n (n =1 - 0).

Each table summarizes the resource utilization for a parameter set.
Graphs 4.1, 4.2 and 4.3 (Split-Step) and 4.4, 4.5 and 4.6 Phase-Shift) give
the results for 64 processor, 8 ISP RP3-like configuration for processor speeds
from 1 MFLOP to 50 MFLOPs for striped data organizations. The heavy
compute requirements of the Split-step algorithm lead to compute dominated
resource utilizations until processor speeds of up to 50 MFLOPS are used.
The lower compute requirements of the Phase-shift algorithm lead to an I /O

bottlenecked system for 10 MFLOP processors.

4.3 Simulation Runs - An Analysis

Simulation runs were performed on the RESQ model with parameter

sets that appeared to be of greater interest. Those experimental cases were:
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e Number of processors - G4-processor and 512-processor RP3 configura-

tions were considered.

e Processor speeds - In addition to the base case of a 1-MFLOP processor,

5,10,30 and 50- MFLOP machines were also included.

e Degree of parallelism or Concurrency factor - The parallel processing
for the FFT within a single plane was simulated for a concurrency of

1,8,10, 12 and 16.

e Disk striping - Simulations with and without disk striping were per-
formed. Results discussed below are for cases employing disk striping.
Experiments without disk striping did not offer any advantages and

evoked little interest.

e Organization of the computation - The ‘Vertical’ scheme was used in
all experiments. However, the number of interactions with w planes
after which a p plane was written out onto disks was altered to study

its effect.

Simulations were performed with both the Split-Step and Phase-

Shift migration models.

All the simulation runs were for a data space size of 512x512x1024.
The number of w planes was 512 and the number of p planes was 1024. These
represent typical problem sizes. Allocation of processors and memory buffers
to jobs were on a first-come-first-served basis, as long as the computation
flow required by the ‘Vertical’ scheme was satisfled. A flexible mapping of
processors to tasks had been used throughout. Each processor had been

modeled with a memory capacity of 4 MB all of which was considered ‘shared’.
N ! X
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Service times for the FFT, the phase-shift and the addition of partial
products were obtained by executing sequential FORTRAN code on a Sequent
Balance. These times were scaled to reflect corresponding times on a RP3-like

processor and are tabulated here.

Split-Step Migration - Service fumes

Queue Service time(sec)
3¢ 67.7
$2q 6.2
S q 0.14

Phase-Shift Migration - Service times

Queue Service time(sec)
FFTq 31.7
¢q 6.2
> q 0.14

The concurrency within the processing of a single plane (using par-
allel FFT algorithms ) had been assumed to be ideal. If the FFT time for a
sequential algorithm is ‘t’, then the corresponding time for a parallel imple-

mentation with ‘p’ processors was assumed to be ‘t/p’.

The ‘Vertical’ scheme for computation flow stipulates the following

2 conditions:
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1. The number of jobs allowed in the system should equal the number of w
planes that have interacted with a particular p plane, before the latter

is written onto the disks.

2. Each w plane is written out only after it has undergone processing with

all p planes.

These conditions correspond to the maximum possible use of a data

plane in memory before it was transferred to the disks.

The simulations were performed in a planned fashion, with the fea-
tures of interest from earlier runs suggesting parameter sets for the simula-

tions to follow. The discussion below traces those experiments.

It may be observed that I/O and processor utilizations are not uni-
form throughout the computation. Early load on the I/O system is high as
a specified number of w planes have to be initially read into memory. There
would also be I/0 requests for v and p planes as the computation proceeds.
This initial burst of I/O activity is seen until the said number of w planes
that are allowed in the system have been read into memory. 1/O utilization
then falls to a low value which reflects the channel loads that correspond
to transfers of v and p planes as the data processing progresses. The only
increase in I/O activity thereafter is for writing out w or p planes onto the
disks. However, this increase will not reach the high initial utilizations as at
this stage, the computation will be skewed sufficiently such that the earliest
job is well ahead of the last. The simulations were not run long enough to

reach this stage of computation.

The utilization pattern for processors is different. Initial utiliza-

tions are low as processors wait for 1/O requests to be serviced. As more
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data planes reach memory, processor utilization increases as computations for
these planes begin immediately. Processor utilization reaches a peak when a
sufficient number of data planes have reached memory to keep all or most of

the processors busy.

The preceding discussion suggests that the point at which statis-
tics are gathered is crucial. There are specifically 3 time intervals each of
which yield statistics significantly different from each other. The 3 intervals
correspond to an initial phase when I/O utilizations are high and processor
utilizations are rising, the final phase - a steady state - when I/O utilizations
are low and processor utilizations are high and a transition phase when the
1/0 utilization curve reaches the ‘knee’ and processor utilization levels off to

a maximum value.

Data from the simulation runs were gathered from all the 3 phases,
particularly before and after the final phase began. Graphs 1 to 6 show
processor and channel utilization percentage values of the first two phases
and reflect corresponding values for the final phase gathered independently,
ie, the utilizations corresponding to the first 2 phases were discarded and
data acquisition was restarted for the final phase alone. The results show

utilization values which closely match the algorithm’s pattern.

The initial set of runs were performed for the Split-Step migration
algorithm. A G64-processor configuration was chosen for the first set of ex-
periments. Graphs 4.1,4.2 and 4.3 show utilization values for 3 different
processor speeds(1,5 and 10 MFLOP), with disk striping. Note that the sim-
ulation time axis is not linear. It is seen that with increased processor speeds,
1/0O work-load increases as data sets are requested more frequently. This in-

creased channel utilization would force processors to wait for I/O requests



to be serviced, sharply reducing processor utilization. The runs suggest that
this migration algorithm would achieve a good computation-1/O balance for
a processor running at about 10 MFLOPs- where both processor and channel

utilizations are reasonable.

The same test case was repeated for the Phase-Shift migration. Re-
sults are displayed in Graphs 4.4 to 4.6. As in this algorithm, the FFTs are
performed only twice (compared to 1024 in the Split-Step algorithm) for each
w plane, channel saturation is seen even at low speeds. It may be inferred
that high processor speeds would be unnecessary for the Phase-Shift algo-
rithm and a fair balance between computation and I/0 is achieved at speeds
close to or a little higher than 1 MFLOP. This is significantly less than the

corresponding speed of 10 MFLOP for the Split-Step migration.

Next, a 512-configuration RP3 was considered for the Split-Step
migration. However, the data planes were allowed to reside on disks across
one group of 8 ISPs. The RP3 provides 8 groups of 8 ISPs each, with each
8-ISP group for a 64-processor block. 64 jobs were allowed within the system
at any time. A concurrency factor of 8 was chosen for the FFTs. In the RESQ
models, the service times of 3¢ was changed to an eighth of the sequential
uniprocessor timing to reflect this parallelism. Table 4.1 illustrates the steady-
state results for 3 different processor speeds. Again, at high processor speeds.
the jobs are forced to wait for I/O service pushing up channel use and bringing
down the use of processors. But even at 5-MFLOP speed, both processor and
channel utilizations are relatively low. This may be explained by the fact that
while a concurrency of 8 is applied on the FFTs, all the 512 processors are
busy only if all the 64 jobs are in 3¢. All jobs which are not in 3g-those in ¢2¢,

3" ¢ or just waiting for some other resource - do not engage 8 processors. This



tends to decrease processor utilization. Thus, for a better use of processors,
greater concurrency needs to be applied on each plane for the FFTs or the

number of jobs( w planes) within the system has to be augmented or both.
This may be summarised by the following condition:
(#jobs in system) x(concurrency factor) > #processors in system

Greater concurrency was then considered for the same migration al-
gorithm. Results in Table 4.2 are very similar to those in Table 4.1. The in-
creased concurrency had its effect. At 5-MFLOP speed, processor and channel
utilizations were 83.6% and 10.1% respectively when the concurrency factor
was further increased to 16.We note, however, that processors are not being
maximally used. An explanation for this behaviour is that increased concur-
rency reduces the service time of 3¢ making this time comparable or even less
than the service times for the other queues. Thus the jobs speed through 3¢
while taking long times in the other queues. This defeated the purpose of
multiple allocation of processors to a single job at 3¢g. Concurrency beyond a
threshold, therefore, may not be useful. This is true only if the service times
of 3¢ is allowed to fall in proportion with the increase in concurrency. But,
if this assumption is valid, we conclude that high concurrencies in FFT algo-
rithm do not yield a proportional improvement in performance, if the service
times of the queues with the FFTs decrease below the other queues. Also,
the RESQ model had been developed such that jobs would wait before the
queues involving FFTs for allocation of all the processors (specified by the
concurrency factor) before processing commences. High concurrency factors

would mean longer waiting times to simultaneously acquire all processors.

After studying the effects of the concurrency factor, the number of

jobs allowed inside the system was investigated. Again the split-step migra-



tion algorithm was chosen for the sake of comparison. The simulations were
performed for a processor running at 5§ MFLOPs and for a concurrency factor
of 8. Table 4.3 shows the results for 3 cases. Increasing the number of job
tokens from 64 to 96 and then to 128 yielded better utilization values. The

channels had not been saturated.

The effect of enforcing mutual exclusion for updating the partial
results was then studied. This was practically realized by turning ‘off” the
mutual exclusion and comparing the results with mutual exclusion present.
The effects shown in Tables 4.4 and 4.5 for both the migration algorithms were
not significantly different. In most experiments, the differences in utilizations
were within 2%. It is difficult to accurately determine statistical variability
and error for such low deviations and, therefore, to draw inferences based
on such data. However, it may be noted that no drastic change is seen
by the presence or absence of mutual exclusion. The degree to which the
computation among different jobs had been skewed was one of the reasons
for the mutual exclusion having minimal influence on the resource utilizations.
Sequential servicing of I/0 requests is one of the reasons for causing this skew.
The skew is less pronounced for the phase-shift migration as the FF'Ts are
not performed repeatedly, causing the mutual exclusion effects to be greater

for this case.

Both the seismic data processing algorithms have regular and pre-
dictable data access patterns. Traces of simulation runs showed that data
planes were read into memory in the manner predicted by the algorithms.
The simulations were not run long enough for the planes to be written onto
the disks. The algorithm also predicted high initial loads on the I/O system

to read in data planes, after which the I/O utilization falls. Data processing,
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however, commences after the planes have arrived in memory and processor
wtilization increases thereafter. Data acquisition at different points of time

during simulation runs established this.

A final note - the entire Split-Step migration algorithm computation
involves each of the 512 w planes interacting with each of the 1024 v planes
for a total of 524288 such interactions. By keeping track of the number of
actual interactions in simulation runs, it is seen that for most experiments,

less than 1% of the total data processing was completed.
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SPLIT-STEP MIGRATION
512 PROCESSORS
JTOKENS = 64
CONCURRENCY FACTOR = 8
STEADY-STATE
SPEED UTILIZATION %
(MFLOPS) PROCESSOR CHANNEL
5 61.4 70
10 59.3 14.2
30 39.3 593
TABLE 4.1
SPLIT-STEP MIGRATION
512 PROCESSORS
JTOKENS = 64
STEADY-STATE
SpEED  |CONCURRENCY FACTOR = 10| CONCURRENCY FACTOR = 12
UTILIZATION % UTILIZATION %
(MFLOPS) | pROCESSOR | CHANNEL |PROCESSOR CHANNEL

5 69.0 8.0 75.5 8.8
10 66.4 16.2 72.1 17,6
30 43.0 62.2 433 65.4

TABLE4.2



SPLIT-STEP MIGRATION
512 PROCESSORS
CONCURRENCY FACTOR = 8

s MFLOP
STEADY-STATE
UTILIZATION %
JTOKENS
PROCESSOR CHANNEL
64 61.4 7.0
96 86.4 13.0
128 91.5 15.7
TABLE 43
SPLIT-STEP MIGRATION
64 PROCESSORS
CONCURRENCY FACTOR = 1
STEADY-STATE
SPEED ME PRESENT ME ABSENT
o UTILIZATION % UTILIZATION %
(MFLOPS) | prROCESSOR | CHANNEL |PROCESSOR CHANNEL
1 9.8 0.4 97.0 45
10 97.3 46 96.4 4.4
50 83.3 236 842 242

TABLE 4.4




PHASE-SHIFT MIGRATION
64 PROCESSORS
CONCURRENCY FACTOR = 1

STEADY-STATE
SPEED ME PRESENT ME ABSENT
UTILIZATION % UTILIZATION %
(MFLOPS) | pROCESSOR | CHANNEL |PROCESSOR CHANNEL
1 92.6 4.7 95.5 50
5 78.9 20.4 83.9 223
10 77.11 37.7 78.7 424

TABLE4.S

43



Chapter 5

Conclusions

5.1 Result Summary

The points of significance from the simulation runs have been pre-
sented in the previous section along with the description of the experiments.

They are paraphrased here:

1. High channel loads seriously affect processor utilization.

2. Disk striping alleviates saturation of the I/O system. It is particularly

suited for high processor speeds when the I/O loads are greater.

3. A reasonable processor-I/O balance is obtained in the Phase-Shift mi-
gration for speeds which are significantly less than corresponding speeds

for the Split-Step migration.

4. High concurrency factors are useful only as long as the service times of

the FFT queues are higher than the other queues.

5. Higher number of jobs allowed in the system at any time considerably

improves processor utilization without saturating the I/O system.
6. Data access patterns are very regular as predicted.

7. Preliminary simulations suggest that mutual exclusion effects may not

he serious.

44
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Seismic data processing involves tremendous amounts of computa-
tion and data transfers. The computation, particularly those involving the
FFTs, are long. Data access patterns are regular and predictable. Also, mul-
tiprocessor systems like the RP3 enjoy large memory capacities. All the above
factors alleviate the I/O problem. Seismic data processing, which was 1I/0O
intensive in uniprocessor systems has become quite computation-intensive in

a system like the RP3.

5.2 Future Research

Though the simulation models have produced a number of inter-
esting results, it could be further exploited to give more directions for the
parallel structuring of the problem under study. The nature of implementa-
tion of the models allow for the above to be achieved with relatively minor

changes to the model.

5.2.1 Data Plane Size Variations

A common problem for any experimental case arises when the data
plane size increases beyond a threshold of 2 MB. This is because there are 8
Page Buffers in a 64-processor block, each with a capacity of 256 KB for a
total of 2 MB. Hence a single (logical) plane request should be manifested as

repeated physical requests for plane sizes greater than 2 MB.

For a plane consisting of N points (N=n*n, where the plane is of
dimension n * n), data transfer time would be in the order of N. The FFT
which is done for each point would be NlogN. So for increased plane sizes,
the FFT time would increase by a factor of logN faster than the data transfer

time. Thus the problem becomes more compute-bound for greater plane sizes.



5.2.2 Connectivity Architectures

It would be interesting to study the effect of parallel structuring on
an architecture involving connectivity. Such a message-passing system would

not be able to offer many of the advantages that ‘shared” memory could.

Mapping: The mapping of processors and other resources to jobs and the
memory-model adopted are dependent on each other. A flexible mapping like
the one used so far is possible only with a shared-memory machine. For a
non-shared configuration only a rigid mapping is feasible. A rigid mapping
may be tried in the RP3 to squeeze out additional performance by private

data access.

Flexible mapping - This has been used thus far, with a shared-
memory-model. Here change in data plane sizes would affect executions in
the manner described in the previous section. Also, if the data plane size
increases beyond the capacity of a single processor there is no effect as all the
memory is ‘pooled’. Changes in memory capacity of processors also not be
affected by the model as all resources are treated as a common resource. At
present, memory is not a critical resource. So the capacity of each processor

could be reduced considerably before memory becomes a constraint.

Rigid mapping - This mapping may be used with message-passing
machines or in a RP3 configuration aimed at maximizing performance. The

gain in performance may be viewed as follows:

The overhead for private access compared with shared access in the
RP3 is 1:1.60. In the flexible mapping scheme, all accesses are shared and
the overhead corresponds to 1.60. In a rigid mapping scheme, w planes would

reside in private memory while v and p planes would be shared. Hence w
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plane accesses are cheaper. For modeling, the key is to have a good estimate
of a fraction *f’ of private w plane accesses of all memory accesses. This
would reduce the average memory access time from [1 * 1.60] to [1 * f + (1-
f)%1.60]. f=0 implies pure shared access, while f=1 indicates pure private
access. Phase-Shift migration is a good vehicle for this case as v planes
are absent and p plane accesses would be few compared to private w plane

accesses.

Here each job will be allocated resources which it would hold for all
the queues and for all the iterations, ie, the initial resources allocated would

be released only when the job exits the system.

Mutual Exclusion effects would be ‘real” as processors and memory
buffers would not be utilized during ‘locked’ periods. This contrasts the
flexible mapping where processors would not be allocated unless p planes are

free.

There are greater constraints on memory capacity and data sizes. It

is imperative that w planes fit into one processor for private access.

Also, in a rigid mapping, concurrency > 1 would be irrelevant, for

the processing of a single plane.

Connectivity for External Memories: The interconnection network(along
with its message-combining facility) between the processors and the memories
of the RP3 is one of the contributing factors for the machine’s capabilities.
It would be interesting to consider some reasonable form of connectivity be-
tween the processors and the disks as well. Such connectivity may result
in greater parallelism for I/O activity. This has particular significance for

partitioned memory systems.



Appendix A

The Research Queueing Package(RESQ)

The Research Queueing Package(RESQ) is a special-purpose mod-
eling language with a rich set of modeling primitives that can be used to
effectively develop simulation models for analyzing resource contention sys-

tems.

Typically a RESQ model would consist of a population of jobs, sets
of queues and nodes, rules to specify the movement of jobs among differ-
ent elemnents of the model and details about the solution the model should

provide.

Jobs are objects which require use of system resouces. Such re-
sources are usually represented by queues. There are 2 kinds of queues - ac-
tive and passive. Active queues generally denote servers, while passive queues
allow for the representation of simultaneous resource possession, blocking ef-
focts and the like. Passive queues have a pool of tokens, with each token
representing a distinct unit of a resource. Different priority schemes for allo-

cation of the passive queue tokens are supported.

Different nodes like Se#(to assign values to simulation variables),
Wait(to ensure certain boolean conditions are satisfied), Dummy (to help
specify job movement), Split(to replicate a job), Fission (to create a child
job) and Fusion(to merge child jobs with parents) provide powerful simulation
capability. Use of Submodels permit development of large simulation systems

in a modular fashion.
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RESQ can provide performance measures by both numeric analysis
and simulation. They include resource utilization, throughput, average queue
length etc. RESQ also generates confidence intervals to determine accuracy

of the simulations to overcome statistical variability.



Appendix B

The Research Parallel Processor Prototype(RP3)

The Research Parallel Prototype(RP3) is a highly parallel, shared-
memory MIMD machine with 512 processors. It is expected to provide a
peak performance of 1.3 GIPS, 2 GB of main memory, a peak I /O bandwidth
of 192 MB/sec across 64 channels and inter-processor communication rates

upto 13 GBytes/sec.

Processor-Memory Organizaiion - RP3’s 512 processors are orga-
nized into 8 groups with each group having 64 processors. Each processor
is a 32-bit microprocessor based on the RISC philosophy. Each processor
supports 4 MB of memory(of which any part may be classified ‘private’ or
‘shared’) with a 32 KB cache. A low-latency bipolar network allows a peak

inter-processor communication speed of 13 GByte/sec.

All processors are linked to all the memory elements through a mod-
ified Omega or Banyan network. A combining network has been used to
alleviate the ‘hot-spot’ problem which could otherwise lead to performance
degradation. The interconnection network is part of the memory access path

and there is a single absolute address space.

Each memory reference goes through a mapping process. If the
reference is not satisfied by the 32 I{B private cache, it proceeds to the network

interface. If the required data is in the requesting processor’s memory, then

50
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the data may be obtained without going through the network. If, however,
the data resides in a different processor’s memory, the reference is sent to the
targe node over the network. The memory access time ratios for cache:local

memory:shared memory 1s 1:10:16.

I/0 Organization - The I/O organization of each 64-way subsystem

is symmetric, but independent with respect to the other 64-way units.

Each group of 64 processors is further subdivided into 8 groups each.
Every 8-processor group is supported by an I/O and Support Processor(ISP).
Therefore there are 8 ISPs in each 64-way subsystem. There are also 8 chan-
nels in each 64-way subsystem. The ISPs and the channels are fully connected,
while the processors and the ISPs are not. So any processor can access any

disk on any channel within its (64-processor) subsystem through #ts ISP.

Each channel supports an 1/O bandwidth of 3 MB/sec. The aggre-
gate data transfer rate for the 512-processor RP3 with 64 channels would be

192 MB /sec.



Appendix C

Split-Step Computation Structure

/* RESQ code for modelling split-step migration on RP3
This listing includes the Computation structure and
calls the I/0 system submodels */

MODEL : COMPUTAT /* Model name */

/*

PROMPTING LEVEL:2
METHOD:simulation

NUMERIC PARAMETERS:pwritenum /* number of p planes before write*/
NUMERIC PARAMETERS :wwritenum /* number of w planes before write»/
NUMERIC PARAMETERS: jtokens /* number of w planes in stg */
NUMERIC PARAMETERS:ptokens /* number of processors */
NUMERIC PARAMETERS:parallel /* number of procs applied to FFT */
NUMERIC PARAMETERS:procmem /* amt of mem per proc in MB =/
NUMERIC PARAMETERS:procmips /* Processor speed in MIPS */
NUMERIC PARAMETERS:wmax /* Number of w planes */
NUMERIC PARAMETERS:pmax /* Number of P or V planes */
NUMERIC PARAMETERS:iosysnum /* number of 8 isp clusters(l to 8%/

NUMERIC IDENTIFIERS:btokens memsize planedim
/*Number of buffer tokens is total system memory / size of velocity
plane. Request for w or pr will get 2 and 1 tokens respectively */
BTOKENS: ptokens*memsize/ (planedim*planedim*4) /* vel plane */
MEMSIZE :procmem*1024*1024 /* calculate system mem in bytes */
PLANEDIM:512
NUMERIC IDENTIFIERS:initime
INITIME:.0000001

Time values for the three processing steps.... */
NUMERIC IDENTIFIERS:threetime phitwotime sigmatime
THREETIME:67.7/procmips /* times for base speed of 1 mip =/

PHITWOTIME:6.2/procmips
SIGMATIME:0.14/procmips
NUMERIC IDENTIFIERS:vdelaytime pdelaytime /* Delays to order I/0 */
VDELAYTIME: .0000001 /* requests correctly */
PDELAYTIME: .0000002
INCLUDE:const
GLOBAL VARIABLES:indexnum totplane
INDEXNUM:1
TOTPLANE: O
GLOBAL VARIABLES:puse (pmax) pbusy (pmax)
PUSE: 0 /* Usage of p and v planes */
PBUSY: 0 /* Busy flags for p planes */
GLOBAL VARIABLES:winmem{wmax) vinmem(pmax) pinmem{pmax)
WINMEM: 0 /* In-memory status for planes */
VINMEM: 0
PINMEM: O
MAX JV:15
QUEUE:initg
TYPE:is
CLASS LIST:ini
SERVICE TIMES:initime
QUEUE:processorg
TYPE:passive
TOKENS:prokens /* Tetal number of processors */
DSPL:fcts
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ALLOCATE NODE LIST:ap3q apphilyg apsigmaqg
NUMBERS OF TOKENS TO ALLOCATE:parailel 1 1 /* parallel FFT =/
RELEASE NODE LIST:rp3q rpphilg rpsigmag
QUEUE: jobg
TYPE:passive
TOKENS: jtokens /* number of jobs in system */
DSPL:prty
ALLOCATE NODE LIST:af
NUMBERS OF TOKENS TO ALLOCATE:1
PRIORITIES:jv{iter) /* Higher priority for jobs with lower*/
RELEASE NODE LIST:rjl rj2 /* iterations*/
QUEUVE:bufferqg
TYPE:passive
TOKENS :btokens
DSPL:fcfs
ALLOCATE NODE LIST:abw abv abp/* w plane needs 2 slots*/
NUMBERS OF TOKENS TO ALLOCATE:2 1 1/* v & p need 1 each */
DESTROY NODE LIST:dest
CREATE NODE LIST:createw createp
NUMBER OF TOKENS TC CREATE:2
QUEUE: threeq
TYPE:is
CLASS LIST:three
/* Adjust FFT time for parallel processing */
SERVICE TIMES: (threetime/TH (processorq))
QUEUE:phitwog
TYPE:is
CLASS LIST:phitwo
SERVICE TIMES:phitwotime
QUEUE:sigmagq
TYPE:is
CLASS LIST:sigma
SERVICE TIMES:gigmatime
QUEUE:vdelayg
TYPE:is
CLASS LIST:vdelay
SERVICE TIMES:vdelaytime
QUEUE:pdelayg
TYPE:is
CLASS LIST:pdelay
SERVICE TIMES:pdelaytime
SET NODES:giveindex
/* Allot each job its index number */
ASSIGNMENT LIST:jv({index)=indexnum indexnum=indexnum+l++
jviiter)s=l
/* Set parameters for different I/0 requests */
SET NODES:wread
ASSIGNMENT LIST:jv{read)=1 jv{item)=1 jv{len)=planedim*planedim=*§
SET NODES:vread
ASSIGNMENT LIST:jv(read)=1 3jv(item)=2 jv{len)=planedim*planedim=*4
SET NODES:pread
ASSIGNMENT LIST:jv(read)=1 jv(item)=3 jv{len)=planedim*planedim*4
SET NODES:wwrite
ASSIGNMENT LIST:jv(read)=0 jv{item)=1 winmem(iv{index))=0 +
jv{(len)=planedim*planedim*8g
SET NODES:pwrite
ASSIGNMENT LIST:jv{read)=0 jviitem)=3 vinmem(jv{iter))=0 b
jv(len)=planedim*planedim=4 pinmem(jviiter))=0
/* Increment usage of p planes to check completion of iterations*/
SET NODES:incpuse
ASSIGNMENT LIST:puse(jv{iter))=puse(3jv(iter))+1 ++
totplane=torplane+l
SET NODES:inciterl inciter2 /*increment iteration # for next pass*/
ASSIGNMENT LIST:jv(iter)=jv(iter)+1
/* Provide mutually exclusive access to p planes using busy flags=®/
SET NCDES:setpbusy



ASSIGNMENT LIST:pbusy{jv(iter))=1
SET NODES:resetpbusy
ASSIGNMENT LIST:pbusy(jv{iter)}=0
/* Indicate data transfer into memory with "1" being in memory */
/* and "2" for being transfered, "0" is for not in memory */
SET NODES:setwinmem
ASSIGNMENT LIST:winmem(jv(index))=1
SET NODES:setvinmem
ASSIGNMENT LIST:vinmem(iv{iter))=1
SET NODES:setpinmem
ASSIGNMENT LIST:pinmem{jv(iter))=1
SET NQODES:vreg
ASSIGNMENT LIST:vinmem{jv{iter))=2
SET NODES:preg
ASSIGNMENT LIST:pinmem(jv{iter))=2
WAIT NODES:mutex /* Mutually exclusive access to p planes*/
PREDICATE LIST:until{pbusy(jviiter))=0}
/* Wait for data transfer to be completed for v and p planes */
WAIT NODES:waitforv
PREDICATE LIST:until({vinmem(jv(iter))=1)
WAIT NODES:waitforp
PREDICATE LIST:until{(pinmem{jv{iter))=1)
SPLIT NODES:spll spl2
FISSION NODES:fisl fis2Z £is3
FUSION NODES:fusl fus2 fus3
DUMMY NODES:duml dumZ ioreq ioack wack pack
/®*/
/* To test computation model without I0 overhead use INCLUDE: i02 */
INCLUDE: ic
INVOCATION: ios
TYPE:io
C:compchain
CHAIN:compchain
TYPE:open
:ini->giveindex~>aj~>fisl
tfisl~>fus3 fis2 pread:;fission
:pread->pdelay ;if {pinmem{jv(iter) =0}
:pread->fus3 ;if {pinmem(jv{iter))}=1)
:pread->waitforp ;if (pinmem{jvi{iter))=2)
:pdelay->preg->abp->dest~>ioreqg
:fis2->fus2 £is3 vread;fission
:vread->vdelay ;if (vinmem({jv(iter)}=0)
svread->fus2 sif(vinmem(jv(iter))=1)
:vread->waitforv ;if(vinmem(jv{iter}}=2)
tvdelay~>vreg->abv~>dest
:£is3->fusl wread;fission
:wread->abw fusl ;if (winmem({jv(index)}=0) if(t)
:abw->dest
rwaitforv->fus2
rwaitforp->fus3
:fusl->ap3g->three~->rp3g->fus2
:fus2->apphi2qg->phitwo->rpphi2g->£fus3
:fus3->mutex->setpbusy->apsigmag->sigma->rpsigmag->resetpbusy
:resetpbusy->incpuse
rincpuse->spll duml;if (puse{jvi{iter)) mod pwritenum=0) if(t)
:spll->duml pwrite;split
:pwrite->ioreqg
sduml=->ril dum2;if (jv(iter)=pmax) if{t)
:xjl=>sink
sdum?2->r32 inciterl ;if{jv{iter) mod wwritenum=0} if{t)
iz42=->spl2
;spl2=->inciterZ wwrite;split
rinciter2->aj
rwwrite->ioreqg
rinciterl->fisl
ricack->wack sif(viitem)=1)



(@21
(@4

:icack->setvinmem;if (jv{item}=2)
:icack->»pack ;if{ivi{icem) =3}
iwack->setwinmem createw ;if{(jviread)=1) 1if{t)
:pack->setpinmem createp :if(jv(read)=1) if(t)
:setwinmem~>fusl
:setvinmem=->fus2
:setpinmem=->fus3
ccreatew->sink
:createp->sink
:ioreg~>ios->ioack

CONFIDENCE INTERVAL METHOD:none

INITIAL STATE DEFINITION -

CHAIN:compchain
NODE LIST:ini

INIT POP:wmax

/* use this line to eliminate start up effects

INITIAL PORTION DISCARDED: (in percent)*/

RUN LIMITS -

LIMIT - CP SECONDS:100

TRACE: no /¥
INITIALLY ON:yes
TURN TRACE ON -
TURN TRACE OFF =
JOB MOVEMENT:yes
QUEUES:no
EVENT HANDLING:no
EVENT LIST:no
SNAPSHOTS:no*/



Appendix D

I/0O Systems

/* This file gives a listing of 2 submodels of the 1/0 system,
The first submodel chooses between striped and unstriped
cases, while the second submodel shows the modeling of the
page buffers, disks, channel etc. */

SUBMODEL: io /* Submodel to combine striping*/
CHAIN PARAMETERS: ¢ /* submodel with io subsystem. *®/
DUMMY NODES: dl d2 din dout

/* Use striping model below for no striping */

INCLUDE: stripe2
/* Use striping model below for striping across all 8 isp/stgdir */
/*INCLUDE: stripe*/
INCLUDE: iosys
INVOCATION:iosystem(8) /* At most 8 sets of 8 ISPs used */
TYPE:iosys
I0:c
INVOCATION:striping
TYPE:STRIPE
C:c
I0ACK:d2
ICREQ:d1l
CHAIN:c

rexternal

INPUT: din

CUTPUT: dout

rdin->striping->dout

/*I0 requests for w planes are partitioned evenly across all
sets of ISPs present. All P and v planes are assumed to reside

on ISP set 1. */
:dl->iosystem(2) iosystem(3) iosystem(4) iosystem(5) losystem(6)++
iosystem(7) iosystem(8) iosystem(1); ++

if(jv(item)=wplane and floor(jv(index—l)/(jtokens/iosysnum)}*1-2)
if{jv(item)=wplane and floor{jv(index—l)/(jtokens/iosysnum})+l-3)
if(jv{item)=wplane and floor(jv(index-l)/(jtokens/iesysnum))+l~4}
if(jv{item)=wplane and floor(jv(index-l)/{jtokens/iosysnum;)+1~5)
if(jv(item)=wplane and floor(jv(index-l}/(jtckens/iosysnum})+1-6}
if(jv(item)=wplane and floor(jv(index—l)/(jtokens/iosysnum)}+1-7)
if(jv(item)=wplane and floor(jv(index~l)/(jtokens/icsysnum))41-8)
if(e)
:losystem{*}->d2

END OF SUBMODEL 10

/* This submodel models one 64 processor 8 ISP portion of RP2 10
subsystem. Requests to this submodel contain information about which
ISP, stgdir, and disk, as well as the length of the request and an
indication of read or write.

Currently the model assumes a fixed mapping: ISPk only communicates with
the correspoding storage director.
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SUBMODEL:i0sys
CHAIN PARAMETERS: io
DUMMY NODES:ind outd
SUBMODEL:ispm
CHAIN PARAMETERS: ¢
NUMERIC IDENTIFIERS:diskperstr /*number of disks per string*/
ISKPERSTR:3

NUMERIC IDENTIFIERS:pbsize /*page buffer size */
PBSIZE:16*1024 /* 16k bytes per page buffer*/
WUMERIC IDENTIFIERS:numpb /*number of page buffers */

NUMPB:16/*16 page buffers per ISP */
NODE ARRAYS:agchan2(diskperstr)
/* ISP Page Buffer Passive Queue =/
QUEUE:pagebuffer /*Page buffers are passive g */
TYPE:passive
TOKENS: numpb
DSPL:fcts
ALLOCATE NODE LIST:aqgpb
NUMBERS OF TOKENS TO ALLOCATE:jv{len)/pbsize
. RELEASE NODE LIST:relpb
/* ISP Page Buffer Passive Queue */
QUEUE:channel
TYPE:passive
TOKENS: 1
DSPL:fcfs
ALLOCATE NODE LIST:agchanl agchanZ(*)
NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:relchanl relchan2 relchan3
SUBMODEL:disksys
NCDE PARAMETERS:relchanl relchan2 agchan2l agchan2? agchan23
CHAIN PARAMETERS:c
NUMERIC IDENTIFIERS:xzferrate xferdelay
XFERRATE:3*1024*1024 /*3mb/sec */
XFERDELAY:.001 /* 1 ms transfer delay */
NCDE ARRAYS:agsd2 {diskperstr) xfermiss{diskperstr}
/* Stgdir Passive Queue */
QUEUE :stgdir
TYPE:passive
TOKENS:1
DSPL:fcfs
ALLOCATE NODE LIST:agsdl agsd2(*)
NUMBERS OF TOKENS TO ALLCCATE:l
RELEASE NODE LIST:relsdl relsd2
/* Data Transfer Queue */
QUEUE :xfer
TYPE:fcfs
CLASS LIST:xferhit xfermiss(¥)
SERVICE TIMES:jv{len)/xferrate
DUMMY NODES: dummyin
/* Disk submodel */
SUBMODEL:diskm
NODE PARAMETERS:agchan? xfermiss agsd2
CHAIN PARAMETERS:c
NUMERIC IDENTIFIERS:seek latency
SEEK:.016 /* 16 ms seek */
LATENCY:.008 /*8 ms latency */
QUEUE:deviceg
TYPE:passive
TOKENS: 1
DSPL:fcfs
ALLOCATE HODE LIST:agdisk
NUMBERS OF TOKENS TO ALLOCATE:1
RELEASE NODE LIST:reldisk

TYFE:fcfs
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CLASS LIST:svc
SERVICE TIMES:seek+latency
CHAIN:c
TYPE:external
INPUT:aqdisk
CUTPUT:reldisk
:agdisk->svc->aqgchan2->agsd2->xfermiss
:xfermiss~>reldisk
END OF SUBMODEL DISKM
INVOCATION:disksl
TYPE:diskm
AQCHANZ :aqgchan2l
XFERMISS :xfermiss (1)
AQSD2: agsd2{l)
C:c
INVOCATION:disks2
TYPE:diskm
AQCHANZ2:agchan2?2
XFERMISS :xfermiss(2)
AQSD2: agsd2{2)
C:c
INVOCATION:disks3
TYPE :diskm
AQCHEANZ:aqchan23
XFERMISS:xfermiss(3)
AQSD2: agsd2(3)
C:c
CHAIN:c
TYPE:external
INPUT:dummyin
CUTPUT:relsd2
:dummyin->agsdl relchanl; if(ta>0) if(t)

/* un comment following line for disk cache */
ragsdl->relsdl xferhit;if(jv(index)=1) if{t)

/* uncomment following line for no disk cache */

/*:agsdi~>relsdl =/

:relsdl->relchan?
:relchanZ->disksl ; if(jvidisk) = 1)
:reichanZ->disks2 ; if(jvi(disk) = 2}
:relchan2->disks3 ; if(jvidisk) = 3)
:disksl disks2 disks3 ->relsdZ
ixferhit->relsd?2
END OF SUBMCDEL DISKSYS
INVOCATICN:disksysl
TYPE:disksys
RELCHEANl:relchanl
RELCHAN2:relchan2
AQCHAN21:agchan2 (1)
AQCHANZ2:agchan2 {2)
AQCHAN23:agchan2 (3}
C:c
CHAIN:c
TYPE:external
INPUT:agpb
OUTPUT:relpb
;relchanl->agchanl
:agpb->agchanl->disksysl
:disksysl~>relchan3;
:relchan3->relpb
END OF SUBMODEL ISPM
INVOCATION:ispsi{8)
TYPE:ispm
C:io
CHAIN:io
TYPE:external
INPUT:1ng



QUTPUT :outd
rind->isps (1)
rind~>isps (2}
rind->isps (3):
rind->isps (4);
rind->isps (5);
rind->isps (6);
:ind->isps(7);
:ind->isps (8);
:isps(*)->outd
END OF SUBMODEL IOSYS

if{3viisp)=1}
if (jviisp)=2)
if (4v({isp)=3)
if (jv{isp)=4)
if{jviisp)=5)
if(3vi{isp)=6)
if(3v(isp)=T7}
if(jv(ispi=8)



Appendix E

Striping Schemes

/* This appendix has the

/* Striping submodel. Thi

listing for the striped and unstriped cases*/

s version divides each of the three planes

into 8 equal blocks and distributes them on disks across each of 8
ISPs. The three sets of planes reside on different disks.

A request to the submodel spawns 8 request to the IO subsystem, and

then waits until all 8
SUBMODEL:stripe

IO requests have been serviced. */

NCDE PARAMETERS: ioack, ioreq

CHAIN PARAMETERS: ¢
SET NODES:sl
ASSIGNMENT LIST:
y=1, jv{isp)=1
SET NCDES:s2
ASSIGNMENT LIST:
y=2, jviisp)=2
SET NODES:s3
ASSIGNMENT LIST:
}=3, jviisp)=3
SET NODES:s4
ASSIGNMENT LIST:

SET NODES:s$S
ASSIGNMENT LIST:

SET NODES:s6
ASSIGNMENT LIST:

SET NODES:s7
ASSIGNMENT LIST:

SET NODES:s8
ASSIGNMENT LIST:

FISSION NODES:spl

jv{disk)=jv(item), jv(len)=jv(len)/8, v (stgdir++
jv{disk)=jv(item), jv(len)=jv{len)/8, jv(stgdir++
jvidisk)=jv(item), jv(len)=3v{len)/8, jv(stgdir++
jvi{disk)=jv(item), jv(len)=3v(len)/8, jvi{isp)=4++

Jvistgdir)=4

jvidisk)=jv{item), jv(len)=1v{len)/8, jv(isp)=5++
jv(stgdir)=3

jvidiski=jv{item), jv{leni=3v(len}/8, jv(isp)=6++
jv{stgdir)=6

jv({disk)=jv(item), jv{len)=3v(len}/8, jv{ispi=T++
jv{stgdir)=7

jv{disk)=jviitem), jv(len)=3v{len} /8, jv{isp)=8++
jv{stgdir)=8

FUSION NODES:JN1 JN2 JN3
DUMMY NODES:outd ocut dd

CHAIN: ¢
TYPE:external
INPUT:spl
QUTPUT:QUT

spl->dd sl s2 s3 s4 s5 s6 s7 s8;fission

dd->3nl ;if (jv
dd->3n2 ;if(jv
dd->3n3 ;if(4v
sl s2 s3 s4 s5
icack~->jnl ;if
icack->9n2 ;if
icack~>3n3 ;if

{item)=1)

{item)=2)

{item)=3)

56 s7 s8->outd-~>icreg
{(jvi{item)=1)
(jv{item)=2)
(jviitem)=3)

inl 3dn2 jin3->out

END OF SUBMODEL STRIPE
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/% This version of the striping submodel divides a regquest into eight
plocks f{(since ISP page buffers are limited) all on the same disk,
i.e. it represents the no striping case. =/
SURMCDEL:stripe
NODE PARAMETERS: iocack, ioreq
CHAIN PARAMETERS: ¢
SET NODES:sl
ASSIGNMENT LIST:jv{disk)=jv{item),jv(len)=jv{len)/8, jv(stgdir++
y=JV(ITEM), JV(ISP)=JV(ITEM)
SET NODES:s2
ASSIGNMENT LIST:jv(disk)=jv{item),jv(len)=3iv(len)/8,jv(stgdir++
y=JV(ITEM), JV(ISP)=JV(ITEM)
SET NODES:s3
ASSIGNMENT LIST:jv(disk)=3jv(item),jv{len)=3jv{len)/8, jvistgdir++
y=JV{ITEM), JV(ISP}=JV(ITEM)
SET NODES:s4
ASSIGNMENT LIST:JV(DISK)=JV{(ITEM),JV(LEN)=JV(LEN)/8 ++
JV(STGDIR)=JV(ITEM) JV{ISP)=JV (ITEM
SET NODES:s5
ASSIGNMENT LIST:JV(DISK)=JV(ITEM),JV(LEN)=JV(LEN)/8 e
JV(STGDIR) =JV{ITEM) JV(ISP)=JV(ITEM)
SET NODES:s6
ASSIGNMENT LIST:JV(DISK)=JV(ITEM),JV(LEN)=JV(LEN)/8 +
JV(STGDIR)=JV{ITEM) JV(ISP)=JV(ITEM)
SET NODES:s7
ASSIGNMENT LIST:JV(DISK)=JV{ITEM),JV(LEN)=JV(LEN)/8 4
JV(STGDIR)=JV(ITEM) JV(ISP}=JV(ITEM)
SET NODES:s8
ASSIGNMENT LIST:JV(DISK)=JV{ITEM), JV(LEN)=JV(LEN)/8 ++
JV{STGDIR)=JV(ITEM) JV(ISP)=JV(ITEM)
FISSION NODES:spl
FUSION NCDES:JN1 JN2 JN3
DUMMY NODES:outd out dd

CHAIN:C
TYPE:external
INPUT:spl

OU”D"T ouT

spl->dd sl s2 s3 s4 s5 s6 s7 sB8;fission
dd=>jnl ;if (jv(item)=1)
dd->3n2 :;if{jv(item)=2)
dd->3n3 :if (jvi{item)=3)
sl s2 s3 84 s5 s6 s7 s8->outd->ioreq
icack=->34nl ;if (jv(item)=1)
icack=>9n2 ;if(jviitem)=2)
iocack=>3in3 ;if(jv{item)=3)
inl 3n2 jn3~->out

END OF SUBMODEL STRIPE
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Appendix F

Definition of Constants

/* This file contains list of constants used in both split-step
and phase-shift migration models */

NUMERIC IDENTIFIERS:item index iter cubin read disk len isp lblock ++
track stgdir wplane vplane pplane readreq write

ITEM:1 /* velocity, partial result, or omega */
INDEX:2 /* index of plane out of total space */
ITER:3 /* which iteration plane is on */
CUBIN:4

READ:5 /* 1 means a read request for plane */
DISK: 6 /* Disk index where for this request */
LEN:7 /* Number of bytes in this request */
ISP:8 /* Which ISP to route request through */
LBLOCK: S /* Logical block on disk */
TRACK:10 /* Track on disk */
STGDIR:11 /* Which storage director for io req. */
WPLANE: 1 /* omega plane */
VPLANE: 2 /* velocity plane */
PPLANE:3 /* partial result plane */
READREQ:1

WRITE:Q
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Appendix G

Sample Reply File

/* This is a typical reply file for running the models */

64 /*PWURITENUM*/

1024 /* WWRITENUM*/

64 /*JTCKENS */

512 /*PTOKENS=NUMBER OF PROCESSORS*/

8 /* DEGREE OF PARALLELISM WITHIN 30%/

4 /* megabytes of memory per processor*/
1 /* PROCESSOR MIP RATE */

512

1024

1 /* NUMBER OF IO SYSTEMS*/

ut
GV (TOTPLANE)
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Appendix H

Phase-Shift Computation Structure

/* RESQ code for modelling phase-shift migration on RP3
This listing includes the Computation structure and
calls the I/0 system submodels */

MCDEL : COMPUTAT /* Model name */

/*

PROMPTING LEVEL:2
METHOD:simulation

NUMERIC PARAMETERS:pwritenum /* number of p planes before write*/
NUMERIC PARAMETERS :wwritenum /* number of w planes before write*/
NUMERIC PARAMETERS:itokens /* number of w planes in stg */
NUMERIC PARAMETERS:ptokens /* number of processors in system */
NUMERIC PARAMETERS:parallel /* number of procs applied to FFT */
NUMERIC PARAMETERS:procmem /* amt of mem per proc in MB */
NUMERIC PARAMETERS :procmips /* Processor speed in MIPS */
NUMERIC PARAMETERS:wmax /* size of problem (w planes) */
NUMERIC PARAMETERS:pmax /* size of problem (v and p planes*/
NUMERIC PARAMETERS:iosysnum /* number of 8 isp groups to use */

NUMERIC IDENTIFIERS:btokens memsize planedim
/*Number of buffer tokens is total system memcry / size of velocity
plane. Request for w or pr will get 2 and 1 tokens respectively */
BTOKENS : ptokens*memsize/ (planedim*planedim*4) /* vel plane */
MEMSIZE:procmem*1024*%1024 /* calculate system mem in bytes */
PLANEDIM:512
NUMERIC IDENTIFIERS:initime
INITIME:.0000001
Time values for the three processing steps.... */
NUMERIC IDENTIFIERS:threetime phitwotime sigmatime
THREETIME:31.7/procmips /* times for base speed of 1 mip */
PHITWOTIME: 6.2/procmips
SIGMATIME:0.14/procmips
NUMERIC IDENTIFIERS:vdelaytime pdelaytime /* Delays to order I/0 */
VDELAYTIME: .0000001 /* requests correctly */
PDELAYTIME: .0000002
INCLUDE:const
GLOBAL VARIABLES:indexnum totplane
INDEXNUM:1
TCTPLANE: O
GLOBAL VARIABLES:puse (pmax) pbusy(pmax)
PUSE: 0 /* Usage of p and v planes */
PBUSY: 0 /* Busy flags for p planes */
GLOBAL VARIABLES:winmem({wmax) vinmem(pmax) pinmem{pmax)
WINMEM: 0 /* In-memory status for planes */
VINMEM: 0
PINMEM: 0
MAX JV:15
QUEUE:initg
TYPE:is
CLASS LIST:ini
SERVICE TIMES:initime
QUEUE:processoryg
TYPE:passive
TOKENS :ptokens /* Total number of processors */
DSPL:fcfs
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ALLOCATE NODE LIST:ap3g apphilg apsigmag
NUMBERS OF TOKENS TO ALLOCATE:parallel 1 1 /¥ parallel FFT */
RELEASE NODE LIST:rp3q rpphilqg rpsigmaq
QUEVE: jobg
TYPE :passive
TOKENS: jtokens /* number of djobs in system */
DSPL:prty
ALLOCATE NODE LIST:aj
NUMBERS OF TOKENS TO ALLOCATE:1l
PRIORITIES:jv{iter) /* Higher priority for jobs with lower*/
RELEASE NODE LIST:rjl rj2 /* iterations*/
QUEUE:bufferqg
TYPE:passive
TOKENS:btokens
DSPL:fcfs
ALLOCATE NODE LIST:abw abv abp/* w plane needs 2 slots*/
NUMBERS OF TOKENS TO ALLOCATE:2 1 2/%* */
DESTROY NODE LIST:dest
CREATE NODE LIST:createw createp
NUMBER QOF TOKENS TO CREATE:2
QUEUE:threeqg
TYPE:is
CLASS LIST:three invift
/* Adjust FFT time for parallel processing */
SERVICE TIMES:threetime/TH(processorq)
QUEUE :phitwog
TYPE:is
CLASS LIST:phitwo
SERVICE TIMES:phitwotime
QUEUE: sigmag
TYPE:is
CLASS LIST:sigma
SERVICE TIMES:sigmatime
QUEUE:vdelayqg
TYPE:is
CLASS LIST:vdelay
SERVICE TIMES:vdelaytime
QUEUE: pdelayq
TYPE:is
CLASS LIST:pdelay
SERVICE TIMES:pdelaytime
SET NODES:giveindex
/* Allot each job its index number */
ASSIGNMENT LIST:jv{index)=indexnum indexnum=indexnum+l++
jvi{iter)=1
/* Set parameters for different I/C reguests */
SET NODES:wread
ASSIGNMENT LIST:4v{read)=1 jvi{item)=1 jv(len)=planedim*planedim*8
SET NODES:vread
ASSIGNMENT LIST:jv{read)=1 jvi{item)=2 jv{len)=planedim*planedim*4{
SET NODES:pread
ASSIGNMENT LIST:jv(read)=1 jv(item)=3 jv{len)=planedim*planedim*8
SET NODES:wwrite
ASSIGNMENT LIST:jv{read)=0 jv(item)=1 winmem{jv{index))=0++
jv{len)=planedim*planedim*8
SET NODES:pwrite
ASSIGNMENT LIST:dv{read)=0 jv{item)=3 vinmem{jv(iter))=0++
iv{len)=planedim*planedim*8 pinmem(jv{iter))=0
/* Increment usage of p planes to check completion of iterations®*/
SET NODES:incpuse

ASSIGNMENT LIST:puse(jv{iter))=puse{jv{iter))+l +4+

totplane=totplane+l
SET NODES:inciterl inciter2 /*increment iteration # for next pass*/
ASSIGNMENT LIST:jv{iter)=jv{iter)+l
/* provide mutually exclusive access to p planes using busy flags+*/
SET NODES:setpbusy
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ASSIGNMENT LIST:pbusy(jv(iter})=1
SET NODES:resetpbusy
ASSIGNMENT LIST:pbusy({jv(iter))=0
/* Indicate data transfer into memory with "1" being in memory */
/* and "2" for being transfered, "0" is for not in memory */
SET NODES:setwinmem
ASSIGNMENT LIST:winmem{jv{index))=1
SET NODES:setvinmem
ASSIGNMENT LIST:vinmem(jv{iter))=1
SET NODES:setpinmem
ASSIGNMENT LIST:pinmem{jv{iter))=1
SET NODES:vreq
ASSIGNMENT LIST:vinmem{jv(iter)}=2
SET NODES:preg
ASSIGNMENT LIST:pinmem(jv(iter))=2
WAIT NODES:mutex /* Mutually exclusive access to p planes*/
PREDICATE LIST:until{pbusy(jv(iter)}=0)}
/* Wait for data transfer to be completed for v and p planes */
WAIT NODES:waitforv
PREDICATE LIST:until(vinmem{jv{iter))=1)
WAIT NODES:waitforp
PREDICATE LIST:until (pinmem(jv{iter)}=1}
SPLIT NODES:spll spl2
FISSION NODES:fisl fis2 £is3
FUSION NODES:fusl fus2 fus3
DUMMY NODES:dum( duml dum2 ioreg ioack wack pack
/**/
* To test computation model without IO overhead use INCLUDE: ic2 */
INCLUDE: io
INVOCATION: ios
TYPE:io
C:compchain
CHAIN:compchain
TYPE:open
sini->giveindex->aj->fisl
:£fisl=>fus3 £is2 pread:fission
:pread->pdelay ;if (pinmem({jv{iter))}=0}
:pread->£fus3 ;if {pinmem(jv{iter))=1)
ipread->waitforp ;if (pinmem(jv(iter))=2)
:pdelay->preg->abp->dest->ioreg
:fis2->fus2 £is3 vread:fission
_:vread->fus2 ;if (vinmem{jv(iter))=0)
:vread->fus2 ;if(vinmem({jv(iter))=1)
;vread->waitforv ;if (vinmem{jv{iter))=2)
ivdelay->vreq->abv->dest
:£is3~>fusl wread;fission
cwread=>abw fusl ;if(winmem{jv(index))}=0) if(t)
:abw->dest
:waitforv->fus2
:waitforp->£fus3
:fusl->ap3qg fus2;if (puse({jv{iter)}=wmax) if(t})
:ap3g->three~>rp3g->fus2
: fus2->apphi2qg->phitwo=->rpphi2g->fus3
. fus3~>mutex->setpbusy->apsigmag->sigma->rpsigmag->resetpbusy
:resetpbusy->incpuse
:incpuse->invEft duml; if(puse(jv(iter))=wmax) if(t)
sinvEft=->duml
:dum0->spll duml:if (puse(jv{iter)) mod pwritenum=0) if(t)
:spll->duml pwrite;split
:pwrite->ioreg
cduml->z31 dum2;if {jv{iter}=pmax) 1£{t}
srjl=>sink
:dum2->r3j2 inciterl ;if{jv{iter) mod wwritenum=0) if{(t}
:x32->spl2
:spl2->inciter2 wwrite:split
rinciter2->aj
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END
END

swwrite->ioreq
sinciterl->£fisl

s ioack~->wack ;if{dv{itemi=1}
:iocack->setvinmem;if (jviitem)=2)
: ioack->pack ;if{jv{item)=3)

:wack->setwinmem createw ;if (jv{read)=1) 1f(t)
:pack->setpinmem createp ;if{jv(read)=1) if{t)
: setwinmem->fusl
: setvinmem->£fus2
: setpinmern->£us3
:createw->sink
:createp->sink
:ioreqg->ios->iocack
CONFIDENCE INTERVAL METHOD:none
INITIAL STATE DEFINITION -
CHAIN:compchain
NODE LIST:ini
INIT POP:wmax
RUN LIMITS -
LIMIT - CP SECONDS:100
TRACE: no /%
INITIALLY ON:yes
TURN TRACE ON -
TURN TRACE OFF -
JOB MOVEMENT:yes
QUEUES:no
EVENT HANDLING:no
EVENT LIST:no
SNAPSHOTS:no*/
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