EFFICIENT COMPUTING
OF LEAST FIXPOINTS

Krzysztof R. Apt
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-88-33 September 1988

Efficient Computing of Least Fixpoints

Krzysziof R. Apt

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and

Department of Computer Sciences,
University of Texas at Austin, Austin, Texas 78712-1188, US.A.

We systematically derive efficient algorithms for computing the least fixpoints of monotonic operators in the
context of deductive databases. To this purpose we ideniify additivify as a key property assumed from the
operator and study additive operators on complete lattices. To handle the general case certain combina-
tions of additive operators need to be considered.

1. INTRODUCTION

Bottom up computing lies at the heart of the deductive databases. It is an indispensable component in
a bottom up evaluation of queries. It boils down to the problem of computing the closure of a finite
set of facts under a finite set of rules in a first order language without function symbols.

In this paper we provide a systematic account of the efficient algorithms for computing this closure.
To this purpose we reformulate this problem as the problem of computing the least fixpoint of a
monotonic operator formed in a natural way from the given set of facts and set of rules.

This allows us to study the original problem in an abstract setting. We identify the general princi-
ples on which these algorithms rely by studying additive operators on complete lattices and their least
fixpoints. Additivity is a stronger property than monotonicity and turns out to be a key concept in
these investigations. A study of additive operators is sufficient for handling a special case of the prob-
lem.

To handle the general case we need to modify appropriately the framework and study certain corm-
binations of additive operators. The correctness of derived algorithms is a simple consequence of cer-
tain general theorems concerning powers of additive operators or their combinations. We show that
some of these algorithms are in a certain sense non-redundant.

The algorithms obtained, when reformulated in the original context of deductive databases become
essentially the algorithms proposed in Rohmer, Lescoeur and Kerisit [RLK], Balbin and
Ramamohanarac [BaR] and elsewhere.

2. PRELIMINARIES

2.1. Closures
Throughout this paper we consider a first order language without function symbols. By a fact we
mean a ground atom in this language and by a clause a formula in this language of the form

AQ(—-Al,”.ﬁAm

where m=0 and each 4; is an atom. Such a clause is to be read as “if 4;, .., and 4, then 4o”.
When m =0 we call such a clause a unit clause and when m=1 we call such a clause a rule.

Let now A be a finite non-empty set of facts and R a finite non-empty set of rules. By the closure
of A under R, denoted by CIx(A), we mean the least set of facts containing A and closed under R. A
set of facts B is closed under R if for any rule Age<A;, - -+, A4, from R the following closure

2

condition holds:
{416, ...,4,6}CB = 4¢0€B,

for every ground substitution § defined on all variables of Ag<A4;, ..., 4, A closure is easily seen
to exist.

The problem of an efficient computing of the closure Clr(A) is central in the theory of deductive
databases. When A is the set of facts in the deductive database and R the set of rules, then Cig(A) is
the intended meaning of this deductive database. While usually computation of the whole set Clg(A)
is not practical, the computation of Clg/(A’) for suitably smaller sets A’ and R’ derived from A and R,
turns out to be an essential ingredient of a bottom up evaluation of queries (see e.g. Rohmer,
Lescoeur and Kerisit [RLK] and Beeri and Ramakrishnan [BR]).

The problem of an efficient computing of the closure CIg(A) has been extensively discussed in the
literature (see e.g. Ullman [U] (Chapter 3) and Balbin and Ramamohanarao [BaR] where also previ-
ous references on this subject can be found).

For a subsequent study of closures we need to introduce some basic concepts concerning mono-
tonic operators and their powers.

2.2, Powers of monotonic gperators
Let L be a complete lattice with the least element # and ordering C. X UY stands for the union of
elements X and Y of L.

An operator T on L is monotonic if for all X,Y

XCY = TX)CI(Y).
Given a monotonic operator T on L, we define its powers by putting for an element X of L
"Mox) = X,
TMn +1XX) = T(Tn(X)) for n=0,
and its cumulative powers by putting
MoXx) = X,
TH(n + 1YX) = T(Tn(X)) U Tin(X) for n=0.
We abbreviate T1n(@) to T1n and Tfn(D) to Tfn. X is called a fixpoint of T if T(X)=X X is
closed under T f T(X)CX.
By the Knaster-Tarski theorem every monotonic operator T has the least fixpoint which we denote
by Ifp(T).
The following straightforward lemma summarizes the properties of powers and cumulative powers
we shall need later.

Lemma 1. Ler T be a monotonic operator.

i) Foralln=0Tin CTHn+1)

i) If for some n Ttn=T"MNn +1) then for all m>nTTm =T1n.

iii) For all X and n=0 Tfn(X) C THn + IYX).

iv) For all X, if for some n Tin(X)=T1{(n + I}X), then for all m>n T{m(X)=T{n(X).

v) If L is finite then for some n=0 lfp(T)=T1n.

vi) If L is finite then for some n=0 T{n(X) is the least element of L containing X and closed under T.
O

Given now an element Z of L we associate with T an operator T{Z] defined by

TZYX) = TV Z.

3

When 7 is monotonic, T{Z] is monotonic, as well and its powers are related to the cumulative powers
of T by the following lemma.

LEMMA 2. Suppose that T(2)= @. Then for all Z and n=0
TIZNn+1) = Tin(Z).

PrOOF. We prove by induction on # that for all n=0

THn(Z) C T(Tn(Z) U Z. ™
The base case is obvious. Assume (*) holds for some n=0. Then
TYn+1¥Z) = T(Tn(Z) U Tn(Z)
(by the induction hypothesis)y C T(Tfn(Z)) U T(THn(Z))VZ
= T(Tn(Z)U Z
(by Lemma 1 iii) and monotonicity of 7) € T(Tf(n +1)YZ)VZ,

so (*) indeed holds for all n=0.
We now prove the lemma by induction on 7 using (*). We have

TIZ)N= T1Z)(2)

=T(2)UZ
(since T(@) =)= Z
= TY0(Z)
which settles the base case. Suppose now that the claim holds for some 7>0. Then
TNZn+2) = TIZXT[Z)M(n+1)
(by the induction hypothesis) = T[Z (TTn(Z))
= T(Tm2Z)HvZz
Gbyy = TITMmEZYUTMZ)UZ
= THn+IX2H)uZ
(by Lemma 1iii)) = TH@n+1)2). O

This lemma shows that when T(@)= @, in order to study the cumulative powers Tfn(Z) of T it is
sufficient to study the “usual” powers T1Z 1n of T[Z].

2.3. The immediate consequence operator
To relate these observations to our particular situation we need first to recall some notation and ter-
minology.

By a logic program we mean a finite, non-empty set of clauses. As in the assumed language there
are no function symbols, we consider here only a special case of logic programs sometimes called
datalogs or deductive databases. By Bp we denote the Herbrand base of P, ie. the set of all ground
atoms in the language of P. By the assumption Bp is finite. By T we denote the immediate conse-
quence operator introduced in Van Emden and Kowalski [VEK]. Tp is an operator on the complete
lattice formed from the subsets of Bp ordered by inclusion and is defined as follows:

Tp(I) = {A: for some By, ... ,B,el A«<By,...,B, is a ground instance of a clause from F}.

1t is well known and straightforward to prove that Tp is monotonic.

Let now A be a finite, non-empty set of facts and R a finite, non-empty set of rules. It is an
immediate consequence of the definitions that the closure Clg(A) is the least subset of Bp containing
A and closed under the operator Tg.

The following summarizes the relevant properties of the immediate consequence operator.

4

LEMMA 3.
i) For all subsets I of Bpyua

TrIAI)=Trua().
i} For all n=0

Trual(n +1) = Trfn(A).
iif) Clr(A)= Ifp(Trua)-

ProOF. i) Clear, but note that Ty is considered here as an operator on a possibly larger lattice con-
sisting of all subsets of Bryx.

i) By i) and Lemma 2. Note that Tr(2)= 2.

iii) By ii) and Lemma 1 ii), iv) v), vii). O

Of course iii) can also be proved directly without resorting to Lemma 2.

We thus see that the problem of computing the closure Clg(A) reduces to the problem of comput-
ing the least fixpoint of an operator Tp. This leads us to the study of least fixpoints of monotonic
operators in a general setting. In this specific situation the appropriate level of abstraction is achieved
when studying monotonic operators on products of complete lattices.

3. ADDITIVE OPERATORS

Let Ly, ..., L, k=1, be fixed complete lattices, each with its least element @ and ordering C.
From now on L=L; X... XL stands for the complete lattice whose domain is the Cartesian product
of the domains of Ly, ...,L;, and whose operations are interpreted componentwise. We use @ to
denote the least element of L and C to denote the ordering of the elements of L. The operations of
U (union) and \ (difference) extend from L, ...,L; to L componentwise. From the context it will
be always clear to which lattice & belongs or on what lattice a particular operation is interpreted.

We denote the elements of L by X, Y, Z. (X), stands for the i-th component of X and X[i/ Y] for
the element obtained from X by replacing in it the ith component, (X);, by (¥);.

To every set A there corresponds a complete lattice L(4) whose domain consists of all the subsets
of A ordered by set inclusion. Later on we shall deal only with such complete lattices or their pro-
ducts.

Note that using this notation T is an operator on L(Bp). The following notion will play a crucial
role in our investigations.

DErFINITION 4. An operator T on L is additive if for all i, 1<i<k, X, Y and Z
TX/YUZY) = TXTI/YDUT(XG/Z))
Thus an additive operator distributes union over all its components. Clearly, every additive operator
is monotonic but the converse is not true.
ExampLe 5. Consider the complete lattice L({0,1}) and the operator T on L({0,1}) defined by
T(2)= &,
T((0)) = T({1}) = {0},
7({0,1}) = {0,1}.
Then T is monotonic but not additive. [

By the definition of the union operation, the identity operator on L is additive. Other, more interest-
ing additive operators will be studied in Sections 6 and 0.

The following lemma captures an important property of the additive operators.
Lemma 6. Suppose T is additive. Then for all X,Y such that Y CX
k
T(X) = U TX/X\YDUT(T)

This lemma states that the value of T on X can be computed in terms of values of T on some ele-
ments smaller than X.

Proor. We have by additivity
T(X) = T(Z) where for j=1,...k (Z); = (Y);U(X\T);
= U{T(Z): for j=1,...k (Z); = (Y); or (Z); = (X\Y);}

k
= igl{T(Z): (Z); = (X\Y); and for j=1,...k, j55i (Z); = (Y); or (Z); = (X\ Y);}JUT(Y)

I
c
o
N
N

; = (X\Y); and for j=1,...k, j&i (Z); = (Y);UX\Y);}UT(Y)

= gi)lT(X[i/X\Y])UT(Y). 0

i

As the identity operator is additive, we obtain as a corollary the equality
k
X = U X/X\YIUY

where Y C X.
When L is a product of k lattices, each of the form L(4), then this equality corresponds to the logi-
cal equivalence
(@i, ..., q)eXcdi(l<iskNge(X\ YY) AVj(Ij<kNizEj—ae(X);)
Viay,...,a,)€Y where YCX.

Next lemma improves upon the above lemma by showing that the value of 7 on X can be com-
puted in terms of values of T on some elements smaller than X[i/X\ Y] and Y.

Lemma 7. Suppose T is additive. Then for all XY such that Y CX
k
T() = U TRGX,YHUT(Y)
i =

where

RGX,Y) = XU/ YL[i -V Y[i/X\ Y]

Proor. Fix some i, 1<<i<k. Consider some Z where (Z),=(X\Y); and for j=1,..k, i%j
(Z2);=(Y); or (Z);=(X\Y);. Letj, be the smallest j such that (Z);=(X\ ¥);.
Then

JoSt,

for all j, 1<<j<j,,(Z);=(Y);,

), =(X\ Y,

for all j, j,<j<k (Z); C(X);.

Thus Z CR(j,, X, Y) and consequently

Now

T(X)

{as in the proof of Lemma 6}

= 0,(T@) @) = X\ V) and for j=1,...k, jo#i (Z) = (¥); o1 (2); = K\ DJUT(D)
{by monotonicity of T and (*)}

c Y, UTRGX VT

= itkzjl TREX,Y)HUT(Y).

To prove the inclusion in the other direction first note that for i =1,....k
R(E,XY) C X[i/X\Y]

Thus by the monotonicity of T for i =1,....k
T(RGXY)) € T(X[I/X\ YD

and the desired inclusion follows by Lemma 6. O

By the additivity of the identity operator, we obtain as a corollary the equality
k
X = '91 RGX, YUY
where Y CX. ' :

When L is a product of k lattices, each of the form L(4), this equality corresponds to the following
logical equivalence

(@i, ...,q)eXe di(Isisk
AVj(I<j<i—ae(Y))
Na;e(X\ Y
AVji<j<k—a;e(X))
Viay,...,a,)eY

where YCX.
Call now two elements X, Y of L disjoint if for some i, 1<i<k
X:N(Y) = 2.

The following observation will be helpful in the next section.

Note 8. Suppose ¥ CX. Then for all i,j=1,...k

e forisjR(,X,Y)and R(j,X,Y) are disjoint,

® R(i,X,Y)and Y are disjoint. »

ProOF. Suppose i <j. Then (R(/,X,Y));=(¥);. But (REXY),=(X\T);, so
REXY)NRGXY)), = &

and
REXTYNY), =2. O

The above note in conjunction with Lemma 7 states that for an additive operator T,T(X) can be
computed in terms of values of T on some elements smaller than X which are pairwise disjoint.

4. COMPUTING POWERS OF ADDITIVE OPERATORS
Let T be a monotonic operator on L. We define
AT10 = @,
ATt +1) = T+ 1)\ T1n for n=0.
As by Lemma 1 we have Ttn CT1(n +1) for n=0, AT1n denotes the increase computed during the
n-th iteration of 7.
The following theorem shows how T(n + 1) can be computed using AT1n when T is additive.
THEOREM 9. Suppose T is additive. Then for all n=0
k
TNn+1) = .U]T(TTn[i/ATTn buTin
i=

PrOOF. For n=0 the claim clearly holds, so assume that n>0. We have
Ti(n+1)
= T(Ttn)
{by Lemma 6 with X:=T1n and Y:=T%(n - 1)}

= é} T(Tn[i/ATtn DU T(THn — 1))

W =

: T(Ttn[i/ATn YU T, O

We now show that T1(n +1) can be computed in a different way which will lead to a more efficient
algorithm. For the notational purposes we assume that TN—1)= 2.

TueoreM 10. Suppose T is additive. Then for all n=0
k
THn+1) = ,UI T(S(i,n)UuTrn,
g =

where
S(,n) = Tn[l/THn—D].[i —1/Ttn - DJ[i/ATtn]
Thus using the notation of Section 3,
S@,n) = R(G,Ttn, TH(n —1)).)
Note that for i =1,..., k
S@,n) C Ttnli/ATTn],

s0 T(n +1) is now computed in terms of smaller values than those given in Theorem 9.

8

Proor. We leave to the readers checking that the theorem holds for n =0. Assume n>>0. We have
Tin+1)
= I(T1n)
{by Lemma 7 with X:=T1n and Y:=T1(n —1)}

= 53, TR, T, THn—1) U T(THn —1))
{since R(i, Ttn, THn —1)=5(i,n)}
= .tZJ] T(SGn) U Tt O

We now show that the arguments of T used in the computation of the sequence T1n, n =0,1,... by
means of the method given in Theorem 10 are pairwise disjoint.

Lemma 11. For all i,j,m,n such that m,n =0, 1<<i,j<k, if (i, m)5=(j,n) then S(i,m) and S(j,n) are dis-
Joint.

PROOF. Suppose iz%j and m =n. Then by (1) and Note 8 S(i,m) and S(j,n) are disjoint.
Suppose now that ms£n, say m<n. Then, again by (1) and Note 8, S(j,n) and T{(n —1) are dis-
joint. But

S(@Em) € Ttm C T(n—1),
so S(i,m) and S(j,n) are disjoint, as well. (]
5. ALGORITHMS I

We now apply the results obtained in the previous section to derive efficient algorithms computing the
least fixpoint of an additive operator. The following simple observations will be used in the sequel.

Note 12. For a monotonic operator T on L, for all n=0
i)

TMn+1) = Tin U ATY(n +1),
i)y f ATtn=0 then Ttn=Ifp(T). O

We now define for an additive operator T on L
AATY0 = 2,
k
AATN(n +1) = ~U1 T(T1nli/ATTn)).
i=
Norte 13. For an additive operator T on L, for all n=0
ATHn +1) = AATHn + 1)\ T1n

Proor. By Theorem 9. [

Assume now that the lattice L is finite and consider a monotonic operator T on L. By Lemma 1
eventually TPn=T1(n +1), ie. eventually ATfn=2 and then by Note 12 T1n equals the least
fixpoint Ifp(T) of T.

The following simple minded algorithm computes the least fixpoint of T using Note i2, We

9

introduce here a variable 7 to compute T1n and a variable Az to compute ATfn. Here and in the sub-
sequent algorithms we use the assignments to an auxiliary variable n to express the relevant invariants
and assertions. The assignments to n do not belong to the algorithm. Formally, this use of auxiliary
variables to establish correctness of an algorithm is justified by the rule of auxiliary variables of
Owicki and Gries [OG].

Algorithm 1
{n:=0;}
t:=9;
At:= @
repeat {1=T1nA\At=ATtn}
At:=TO\
t:=tUAt
{n:=n+1}
until Ar=0
{(t=TmNATn=0}
{1=1p(T)}

When T is additive we can use Theorem 9 to compute its least fixpoint more efficiently. To this pur-
pose we additionally introduce a variable AAf to compute AAT'Tn. This algorithm relies on Notes 12
and 13.

Algorithm 2

{n:=0;}
.=,
At:=0,
AMi:= @,
repeat {t=T1n/\At=AT1n}

ii=1;

i-1
while izk +1do (AAr= U T(Ttnli/ AT)}

AAt: =AM UT@[i/Ae])
=i+l
od; {AAr=AAT}(n +1)}
Ar:=AMN T
=t UAL
AAt:=@;
{n:=n+1}
until Ar= 2
(=Tt NATtn=2}
{t=Ifp(T))

A more efficient ve;Crsion is obtained when using Theorem 10. To this purpose we now use the variable

AAt to compute 'UaT (S(@i,n)). Additionally, we introduce a variable s to maintain T(n —1) when
=

computing T7(n +1). The algorithm relies on the following observation.

NoTE 14. For an additive operator T on L, for all n=0

10

ATHn +1) = it; T(S (i,m)) \ Ttn.

ProoF. By Theorem 10. [

Algorithm 3

{n:=0};
5:=0;
t.=0;
At:=g;
A:=0,
repeat {s=T1(n —D)At=TtnNAt=AT1n}
i=1
i—1
while is2k +1 do {AAr= 'L_JIT(S(i,n))}
AAz: =AM U TGV T [i — 1/s]i/At)
ii=i+1 .
od; {AAr = it_JlT(S(i,n))}
5=t
Ar:=AM N\ 1;
i:=tUAs
AAt:=@;
{n:=n+1}
until Ar= &
{t=TtnNATtn=2}
{1=Ifp(1))

To avoid repeated computing of expressions of the form #[1/s]..[i —1/s]{i/At] used in the inner
loop, we introduce a variable u to maintain this expression. This leads to the following improved ver-
sion of the previous algorithm.

Algorithm 4

{n:=0};
§:=9,;
=9,
A:=g;
Adi:=g@;
repeat {s=T7(n —DAt=Ttn ANAt=AT1n}
ii=1;
w:=tli/Ar}; -
i—
while itk +1 do {AAt= _UlT(S(j,n))/\u:S(i,n)}
J:

AAr: =AM U T(u);
w=uli/sli +1/As¢};
i:=i+£

od;(Abr= U T(S(j,m))

}:

SI=1

Ar:=AAEN T

=g U AL

11

A=

{n:=n+1}
until At= &
{t=TtmNATtn=2}
{1=Ip(D))
6. COMPUTING LEAST FIXPOINTS IN DEDUCTIVE DATABASES I
To apply these algorithms to deductive databases consider a logic program P. Let py, .. .,p, be all
relation symbols appearing in P. For a relation symbol r appearing in P denote by [r] the set of all
ground atoms in the Herbrand universe of P whose relation symbol is 7.

Subsets of [r] form a complete lattice L([r]). Denote L([p;]) by L; and, as in Sections 2-4

Ly X..XLy, by L. Clearly L is isomorphic with L(Bp), with an element (I, . . . ,1,) of L mapped to

the element ‘UII,- of L(Bp). Thus the immediate consequence operator Tp can be viewed as an opera-
l _—
toron L.
To compute the least fixpoint of T we would like to use the algorithms developed in the previous
section. Unfortunately, under the above interpretation, T is not additive.
ExampLE 15. Consider a program P consisting of a single clause p,<p;(1), p1(2). Then
L = L(p:)XL(p,) and
Tr({p:()}, @) = 2,
Tr({p:1(2)}, 2) = @
whereas
Tr({p:1(1), p1 (D)}, D) = {p2}.
Thus T is not additive. O

However, under certain natural restriction Tp is additive.

DerFINITION 16. We call a program P normal when no relation symbol occurs twice in a hypothesis of
a clause from P.

THEOREM 17. For a normal program P, Tp is additive.

Proor. Consider a union Ty UT) of two operators 7 and T, on L defined by
T, UT(X) = Ti(X)UT(X).

Note that a union of two additive operators is additive and that for a program P; UP,
Tp,up, = Tp, UTp,.

Moreover when P, U P, is normal, then both P; and P, are normal.

So it suffices to prove that for a normal program P consisting of a single clause, T» is additive.
The proof is straightforward and left to the reader.

Thus for a normal program P we may use the algorithms given in the previous section to compute the
least fixpoint of Tp. However, to consider the general case we have to modify appropriately our
theory. To this purpose we shall need to consider in Section 8 a more complex situation when the
operator of interest is defined as an appropriate composition of additive operators.

12

7. OPTIMIZATIONS AND NON-REDUNDANCY
The algorithms we presented in Section 5 can be somewhat improved when some information about
the form of the operator T is available. We introduce the following notion.

DerINiTION 18. An operator T on L is strict if for all i, I<i<k and X
T(Xi/2) = @.

Thus a strict operator yields the least element when applied to an argument with a component con-
sisting of the least element.

Suppose now that for some additive and strict operator ¥ and an element Z, T =V[Z], i.e.
for all X

T(X) = V(X)UZ

Then we can compute least fixpoint of 7" more efficiently by avoiding the repeated generation of Z
during the computation of the powers of T. Instead Z can be generated once - at the beginning of the
computation. This form of computing amounts to a computation of the cumulative powers of V start-
ing at Z. Formally, this relationship is expressed in Lemma 2 which applies here as by strictness
V(g)y=2.

Assuming the above form of 7, in case of Algorithm 2 we obtain the following improvement:

Algorithm 5

{n:=1;}
t:=2;

At:=Z;

Ai:=2Z;

repeat {t =TtnA\At =AT1n}

1:=1;
i1

while ik +1 do (AAr= U T(T'tn[i/AT1n])
j:

Abt: =AMt UV (t]i/Ae])
ir=i+1
od; {AAt =AAT(n +1)}
At =AM\ 1
t:=rUAs
Abt:=Z;
{n:=n+1}
until Az = &
(t=TMmNATn =92}
{t=Ip(D)

This algorithm can be justified by relying on the correctness of Algorithm 2 and on the form of 7.
Note that by the strictness of ¥ we have T11=Z.

Clearly it is superflous to apply a strict operator to arguments with a component equal &. We now
modify the above algorithm so that such applications of ¥ do not arise. To this purpose it suffices to
replace the assignment

AAr = AAr UV (e[i/Ae))

by |
if V(1 <<j<Sk—s(i[i/ M)} @) then AAs:=AAU V(i[i/Ar]).

13

Some obvious improvements are possible here and left to the reader. They involve computing the
sets of coordinates i for which (¢);= @ and for which (A7), in front of the while loop.

The same modifications can be applied to Algorithms 3 and 4. In case of Algorithm 4 we obtain the
following

Algorithm 6
{n:=1;}
s:=;
i:=Z;
At:=2Z;
Ade:=2Z;

repeat {s =TNn —DAt=Ttn NAt =At1n}
i:=L
u:=tli/At]; -
while i=£k +1 do {AAr = VUIT(S(j,n))/\u =S(@i,n)}
}:
HVj(1<j<k—(u);#2) then AAr:=AAr UV (u);
u:=uli/slfi +1/4s];
ii=i+1; .
od; {AAr= U T(S(,m))
5= !
Ar:=AA\ 1
t:=tUAz
Abt:=Z2
{n:=n+1}
until At =@
{(t=TmNATn =2}
{t=Ifp(T)}

Also here some obvious improvements are possible. For example, during the first iteration through
the repeat loop s = @, so the while loop, can be terminated after the first iteration.

We would like now to show that the last algorithm is in some sense non-repetitive, that is, it leads
to a computation in which the operator V is continuously applied to “new” arguments.

To make this idea more precise we need to assume that each lattice L; is of the form L(4;) for
some finite set 4;. We have the following lemma.

Lemma 19. Suppose an operator T on L is additive and for all i, 1<<i<k, (X);5 2. Then
TX) = U{T{a}): acX}.

PrOOF. Suppose that for some Y and some i, 1<i<k, (Y),={ay,a,}, where m=1. Then by
additivity

TN = YT/}
] =
Using this formula m times we obtain the desired conclusion. [

This lemma shows that an additive operator when applied to arguments with all components different
from @ is determined by its values on singletons.

14

Consider now Algorithm 6. Because of the conditonal assignment introduced within the while loop,
the operator V is applied only to arguments with all components different from @. This means that in
an execution of Algorithm 6 repetitions might arise if ¥ were applied to two elements of L which, in
the sense of Section 2, are not disjoint. Indeed, using the formula stated in Lemma 19, ¥ would be
then applied at least twice to the same singleton arguments.

It is easy to show that such repetitions cannot arise here. To this purpose it suffices to note that in
Algorithm 6. V' is applied exclusively to the arguments of the form S(i,n), each time for a different
pair (i,n). The desired conclusion now follows from Lemma 19.

When trying to apply the above findings to deductive databases we have to exercise some care. It is
easy to see that Tp=Tg[A], where

R={C:Cisarule, CeP}

A = {4: A is a ground instance of a unit clause from P}.
When R is normal, by Theorem 17, Ty is additive. However, Tg does not need to be strict, even for
a normal R.
ExampLE 20. Consider a program P consisting of a single clause p;«p(1). Then P is normal but Tp
is not strict. Indeed, for the element ({p,(1)}, @) of L({p1]) X L({p,]) we have

Tp({p1(D}, 2) = {p2}. O

Thus, even for normal programs P we cannot use Algorithms 5 and 6. It is possible to restrict the
class of considered programs even further to ensure strictness.

DerFNtTION 21. We call a program P rich if in every hypothesis of a clause from P all relation sym-
bols of P occur.

THEOREM 22. For a rich program P, Tp is strict.
Proor. Straightforward. [1

Thus when the set of rules occurring in P is normal and rich, we can apply Algorithms 5 and 6 to
compute the least fixpoint of P. We now consider a more general set up which will allow us to handle
arbitrary programs.

8. COMPUTING POWERS OF COMBINATIONS OF ADDITIVE OPERATORS
Consider now (m=1) operators Ty, . .., T, such that for i =1,...,m

T L,—L, *)
where

L = L X... XLy,

with each L;; being equal to some Ly ;, where 1<f{i,j)<k and k;=0. When k;=0, T; becomes a
constant.

Each T; induces an operator T; on L. To define T; we first associate with each element X from L
an element {X}; from L; by putting

(X} = (X 150 (X))
where (X);; stands for (X)(; ;. We now define
T(X) = T({X}).

15

Suppose now that an operator T on L is defined as a union of the operators Ty, ..., T, Le. suppose
that for all X from L
T(X) = U TiX))

We are interested in computing the least fixpoint of 7" when each operator 7; is additive. (It is clear
how to extend the definition of additivity to the operators of the form of T;). Note that then T is
monotonic.

To this purpose we prove results analogous to Theorems 9 and 10. In what follows we assume that
T is defined by (**) where each operator T; is of the form (*).

THEOREM 23. Suppose that each T; for i =1,...,m is additive. Then for all n=0

m &

TNn+1) = .UI‘UI L({Ttn}lj/{ATn},HUTIn.
i = J =
As the notation becomes by now cryptic let us explain the meaning of the argument
{Tn};[j/{ATn}]
of T;. It is obtained by replacing in the element
((TTn)i,h R ’(TTn)i,k,)
of L; the j-th component by ({AT1n};);. Note that ({AT1n};); equals (AT1n); ;.
Proor. For n =0 both Ttn=© and ATin=g, so

m k
0,9, TT0)0/{ATI0}) U THO

m kK
U U T{{2})
=1

= 0 T(2)
{by(**)}
= T(2)
= T1L
Assume now that n>0. We have
THn+1)
= T(T1n)
{by(**)}
= 0 T

= G T(Tt))
{by Lemma 3 with T:=T;, X:= {T{n}; and Y:={T1(n —1)};}

m k:
= U(U
R !:

T({Ttn}yl[j/{ATtn}:) U T({T1(n — D})

1 i

16

m K m
=Y Y, T(TIm) AT} U U T~ 1)
{by(**)}

m kl
= U YT}/ (ATn)) U Ttn. O

THEOREM 24. Suppose that each T; for i =1,...,m is additive. Then for all n=>0
m kl
T(n+1) = U U T(UGjm) UTn,
1= j -

where for i =1,...,m and j =1,...k;
UG,jin) = (Tt} [V {Tn — DY} = 1/{The = D) /(AT i)

It is helpful to note that U(i,j,n) is obtained from the element {T{n}; of L; by replacing the first
component by (T'1(n —1)); 1, .. ., the(j — Jst component by T/n — 1));j-1 and the j-th component
by (AT1n), ;. Thus, using the notation of Section 3,

UG.jin) = R, {TTn};, {THn —1)})). ***)

Proor. It is straightforward to check that for n =0 the theorem holds as for n =0 U(i,j,n)={2};.
Suppose that n>0 we have

T +1)
= T(T'tn)
By ()
= 0 T(T)

= U T((T1n))
{by Lemma 4 with T:=T;, X:={T1n}; and Y:=T1(n — 1)};}

m kz
(Y, TUGm) U T{THe — D))

{by (**), as in the proof of Theorem 18}

m &

= Y Y TUGm) U T O
i=lj=

We now show that for each i =1,...,m, the arguments of T; used in the computation of the sequence
T1tn, n=0,1,... by means of the method given in Theorem 24 are pairwise disjoint.

Lemma 25. For all i, ji, j2, ny, ny such that 1<i<<m, ny, n320, and 1<j,, jo<k;, if (j1,n1)55(j1,n2)
then U(i,ji,ny) and U(i,j,,n3) are disjoint.

PROOF. Suppose j15%j, and ny=n;. Then by (***) and Note 8 U(i,j;,n;) and U(i,j,,n,) are dis-
joint.

Suppose now that n;%n,, say n;<ln,. Then again by (***) and Note 8, U(i,jz,ny) and
{TN(ny —1)}; are disjoint. But

UGhjimy) € (Tt} € {THn2— D}

17
so U(i,ji,ny) and U(i,j,,n,) are disjoint, as well. O

9. ALGORITHMS II
We now apply the results obtained in the previous section to derive efficient algorithms computing the
least fixpoint of an operator T on L defined by (**).

We assume that the lattice L is finite. The first algorithm is obtained by using Theorem 23. We
introduce a variable ¢ to compute T1n, a variable At to compute ATn, and a variable AA¢ to compute

m K
ille jgl T;({Ttn}lj/{AT1n)]
We use the following observation.
NoTE 26. Suppose that each T; for 1=1,...,m is additive. Then for all n=0

m kl
ATf(n+1) = iL:Jl jg;Ti({TTn L/{AT N\ Tn.
Proor. By Theorem 23. [

Algorithm 7
{n:=0;}
=0,
A=
M. =@,
repeat {t=T1n/\At =ATtn}

ii=1;

i-1 &

while izm +1do (AN = U U T(Ttn}lj/ (ATt}

=1
ivhilej#k,——%—l do
AA:=AA U T; ({(t}lj/{Ar}D);
ji=j+1
i:—‘,:i—H k,-
od; {Aar= 0 U T(Tn){j/ (AT)]
=AM\ 1
t:=tUAlr,
A=,
{n:=n+1}
until Ar= @
{t=TtnN\NATtn=02}
{=1lp(T)}

The next algorithm is obtained by using Theorem 24. We now use the variable AAr to compute

U U T(U (i,j,n)) and introduce a variable s to maintain T1(n —1) while computing T} +1). We
use the following observation.

NoTE 27. Suppose that each T; for i =1,...,m is additive. Then for all n=0

18

m K
ATI(+1) = U U T(UGLm\T1n
= J::
Proor. By Theorem 19. 0O

Algorithm 8

{n:=0};
§:=g;
=g,
A=,
A=,
repeat {s=T1Nn —DAt= Ttn At =AT1n}
ii=1;
i-1k
while is=m +1 do {AA1=IEJUI_._J]T,(U(Z,)}
ji=1
while j%k; +1 do
BA:=AArUT; ({0317 (s}). .G — 1/ {s}:] i/ {Ae}iD);
ji=j+1
ir=i+1 .
od; (AN = U U T(UG,jin))
5=t
At:=AM\ 1,
=tUAr,
A=
{n:=n+1}
until Ar= @
{(t=TmNATtn=2}
{1=Ifp(T))
Analogously as in Section 5, to avoid repeated computing of expressions of the form {e}l17{s};]..
[/ —1/{s}:]lj/{At};] used in the inner loop, we introduce an array variable to maintain in each u[i]
for i =1,...,m the above expression. This leads to the following improvement.

Algorithm 9

{rn:=0};
§i=g;
(=9,
M=g,
A=,
repeat {s=T1(n — DAt= Ttn ANAt=AT1n}
ii=1;
i-1%&
while isém +1 do {AAt=it_JijL_JlT,(U(1, 7))}
ji=1
uli]:={t}lj/{Ar};];
while j52k; +1 do {uli]=U(i,j,n)}
AAr:=AAt U T (uli]);
ulil=uli][j/{s}:1l +1/{At}];

ji=j+1
i:—’“=i +1 .
od; (At = U U T(UG,jm))
i=1j=1
=1,
Ar:=AM N\ 1
t=t UAL
A=,
{n:=n+1}
until At= g
{t=TtNATTn=0}
{t=Ifp(T))
10. COMPUTING LEAST FIXPOINTS IN DEDUCTIVE DATABASES 11

We now show that we can apply the algorithms developed in the previous section to deductive data-
bases. As opposed to Section 6 we consider here an arbitrary case. Assume a program P with relation

symbols pi, . . . ,px and adopt the notation of Section 6. Consider a clause C of P of the form
A(——Al, « e ,A,,.
Let 7y, . . .,r, be the relation symbols appearing in 44, . . . ,4,, respectively; 7y, . . ., 7, do not need

to be pairwise different. Each r; equals some p;, say py ;).
The clause C induces an operator T¢ from Lyqy X... X Ly () into L defined as follows:

Tey, - .. I,) = {B: for some B €I, ... ,B,el,, BB, ...,B, is a ground instance of C}.
The following observation will be crucial in the sequel.

NoTE 28. For each clause C the operator T¢ is additive.

PROOF. Straightforward. [

Given now a program P={C;,...,C,} consider the sequence of operators T¢,...,T¢, from
appropriate product lattices into L. As in Section 7 each operator T¢, induces an operator Tg, on L.
The following lemma relates the immediate consequence operator Tp to the operators T¢,, . . ., T¢,.
LeEMMA 29. For a program P ={C,, ... ,C,}

To(l) = U Te(D
for every Herbrand interpretation I of P.

Proov. It suffices to observe that for i =1,....m

Te(I) = {B: for some B,, ... ,B,€l, B&B;,...,B, is a ground instance of C;}. [J

This means that for a program P we can compute the least fixpoint of Tp using the algorithms given
in the last section.

Algorithm 7 then becomes essentially the algorithm proposed in Rohmer, Lescoeur and Kerisit
[RLK] (see also Ullman [U] (Chapter 3)), whereas Algorithm 8 becomes essentially the algorithm pro-
posed in Balbin and Ramamohanarao [BR].

20

11, OPTIMIZATIONS AND NON-REDUNDANCY 11
As in Section 7 we would like now to consider some specialized versions of the algorithms, this time
of Algorithms 7.8,9. It is clear how to extend the definition of strictness to the operators of the form
of T;.

Suppose now that m =nt +ny, with m; >0 and m, >0, where for i=1,...,m;, ;>0 and T; is

strict, and for i=my, ... ,m;+m;, k;=0. Then each T, for i=m;+1,..., my+my, is a con-
stant.

We can then compute the least fixpoint of the operator T defined by (**) more efficiently by avoid-
ing the repeated generation of Ty 41, - - - s T, +m, during the computation of the powers of T, and

instead generating them only once, at the beginning of the computation.
We consider here only the appropriate modification of Algorithm 9 leaving similar modifications of
Algorithms 7 and 8 to the reader. The following observation will be needed here.

NoTE 30. Assume the notation of Theorem 24. Then for j=2, ...,k the following implication
holds:

WG,jpn)i- = B-Vh(j<h<ki—(U(@,h,n))j-1 = D)

ProOF. By definition for A =j, ... ,k;

(UG,hnY);—1 = (T = 1)yj-1- U
Let

m,+m,
z= U T.
i=m,+1
The following algorithm is obtained by using Note 30 together with the assumption that each opera-
tor T;, fori=1,..., my,isstrct,

Algorithm 10

AA.t:=Z;
repeat {s =T)(n —DAt =Ttn N\t =4T1n}

ir=1;
i-1 K

while i=m; +1 do {L\At=lu1 _U}T;(U(l,j,n})UZ}
ped j:

j=h

ulif={) i/ {ar}i);

if Vi(l<I<k—(u[i])2)then

while jz£k; + 1IN =l\/(u[i])j-1=;‘:§2’) do {uli]=UG,jn)¥
if (u[i]);7 2 then AAs =
AU T(uliDy;
ulil=ulilj/{shlj +1/{At};];
ji=j+1

od;

ir=i+1; .

od; {AAr= 9: U TWm)

21

§I=¢,
Ar:=AAN\ 1;
ti=tUAs,
At =Z;
{n:=n+1}
until Ar = @
{t=TmNATTn =0}
{1=Ifp(T))

As in Section 7 we would like now to show that in some sense Algorithm 10 is non-redundant,
which should be now interpreted as a statement that it leads to a computation in which each of the
operators T, . . . , T, is continuously applied to new singleton arguments. Again, to make this idea
precise, we assume that each lattice L; is of the form L(4;) for some finite set 4;.

Because of the introduced modifications, each operator T; is applied only to the arguments with all
components different from &. Moreover, all these arguments are of the form U(i,j,n), each time for
a different pair (j,n). The desired conclusion now follows by Lemma 25 in conjunction with Lemma
19.

To apply these finding to deductive databases it suffices to note the following.

TueoreM 31.
i) For a unit clause C, T¢ is a constant. In fact,

Tc = {A: A is a ground instance of C}.

il) For a rule C, T is strict.
ProoF. Straightforward. [J

Thus, given a program P (with at least one rule) we can use Algorithm 10 to compute the least
fixpoint of Tp by putting

Z = |J{T¢: C is a unit clause}

and choosing for Ty, . .. , T, the operators T¢ with C ranging over all rules from P.

Admittedly, Algorithms 7-10 are not too easy to grasp because of the (difficult to avoid) notational
problems. However, when applied to logic programs these algorithms are actually quite easy to under-
stand and analyze. Consider the following, well known program computing in a relation # the transi-
tive closure of a relation 7.

P =AU
{tr(x,y) « r(xp),
tr(x,y) « tr(x,z), tr(z,y)},

where A is a finite, non-empty set of ground unit clauses using the relation 7. Then a modification of
Algorithm 7 along the lines suggested at the beginning of this section leads after some obvious
simplifications to the following algorithm.

Algorithm 11
s:=g;
ri=A;
Air:=A4;
AAir:=A4;
repeat

22

AAtr:=AArr UAtr (x,z)pa tr (z,p)Uir (x,2) a Atr (2,p)

si=tr

Aeri=ADrr N\ 11,

o= JAr;

Abtr:=A
until Arr = & _
Here the use of variables together with the join operation o is used to express the appropriate set
operations on relations.

In turn, Algorithm 10 leads to a modification of the above algorithm with the second assignment to

AArr replaced by

AAtr c= AAr Uler(x,z) b tr(z,y)Us (x,2) < Atr (2,p).

This modification is non-repetitive, as we have shown on an abstract level.

ACKNOWLEDGEMENTS
This work was partially supported by MCC at Austin, Texas. We would like to thank Carlo Zaniolo
for helpful and stimulating discussions on the subject of this paper.

REFERENCES

[BaR] I. BaLBIN and K. RAMAMOHANARAO, 4 Generalization of the Differential Approach to Recursive
Query Evaluation, Journal of Logic Programming, Vol. 4, pp. 259-262, 1987.

[BR] C. Beert and R. RAMAKRISHNAN, The Power of Magic, in: Proc. 6th ACM SIGMOD-SIGACT
Symposium on Principles of Database Systems, pp. 269-283, 1987.

[VEK] M. van EMDEN and R. KowaLrski, The Semantics of Predicate Logic as a Programming
Language, Journal of ACM, Vol. 23, No. 4, pp. 733-742, 1976.

[OG] S. Owickr and D. Grigs, Verifying properties of parallel programs: an axiomatic approach, Com-
munications of ACM, Vol. 19, No. 5, pp. 279-285, 1976.

[RLK] J. RouMER, R. LESCOEUR and J.M. KERIsIT, The Alexander Method, a Technique for the Pro-
cessing of Recursive Axioms in Deductive Databases, New Generation Computing, Vol. 4, No. 3, pp.
273-285, 1986.

[U] J. ULLMAN, Principles of Database and Knowledge-Base Systems, Computer Science Press, 1988.

