STORAGE SCHEMES FOR
PARALLEL EIGENVALUE ALGORITHMS

Robert A. van de Geijn

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-34 September 1988

Abstract

In this paper, we examine storage schemes for parallel implementation on distributed memory
MIMD multiprocessors of algorithms for solving the algebraic eigenvalue problem. We show
that a novel storage scheme, which we call block hankel-wrapped storage, allows better utiliza-
tion of the processors than column-wrapped storage when implementing Jacobi's Method or the
nonsymmetric QR algorithm.

1 Introduction

With the advent of parallel processors, much research
has concentrated on the parallel implementation of
algorithms in numerical linear algebra. Recent pa-
pers on parallel eigenvalue algorithms include [4,10]
for symmetric, tridiagonal matrices. For full sym-
metric matrices, Jacobi methods are again of interest
[2,3,8,11,12,16]. Papers examining the implementa-
tion of QR methods for nonsymmetric matrices in-
clude [1,5,14,15].

In this paper, we examine storage schemes for im-
plementation of eigenvalue algorithms on distributed
memory multiprocessors. The column-wrapped stor-
age scheme, which is useful for parallel implemen-
tation of algorithms for solving linear systems [9],
does not seem to allow efficient parallel implemen-
tation of eigenvalue algorithms. An alternate stor-
age scheme, which we call block hankel-wrapped stor-
age, shows promise for parallel implementation of a
wide range of algorithms for solving the eigenvalue
and singular value problems [16]. In §2, the column-
wrapped and block hankel-wrapped storage schemes
are defined. Next, we examine the usefulness of these
schemes for efficient parallel implementation of Ja-
cobi’s method in §3 and the nonsymmetric QR algo-
rithm in §4. Concluding remarks are given in §5.

Throughout this note, we assume all matrices, vec-
tors, scalars, and arithmetic to be real. We fur-
ther assume that the parallel processor has p pro-
cessors, Pg,...,P,_1, and P; is adjacent to Pj if
|t — 71%p = 1, where .%. indicates the modulo op-
erator. In other words, we assume it is possible to
embed a ring within the network of processors.

2 Parallel Storage Schemes

A popular storage scheme for distributed memory
parallel computers is the column-wrapped storage
scheme. It assigns the ith column of given matrix
A to processor P(i_l)%p‘

As an alternative, we define the class of block
hankel-wrapped storage schemes. Given m, for sim-

plicity we assume the dimension of matrix 4 is n =
mhp for some integer h. Partition the matrix so that
A = (4), 1 € 4,7 < n, where 4;; € R, For
general m, the block hankel-wrapped storage scheme
(BHW,,,), assigns Ay to Pi1j_2)/m|%p- The super-
scripts in the following figure indicate the processor
to which the blocks are assigned when m = 1:

0 1 2 -1
488w
o n
Agy Azs Ass A3p

‘—1 '0 .1) :—2
AGTAD AR A

1t should be noted that this storage scheme is an ex-
ample of a skewed storage scheme [7].
For reasons explained in the next section, we prefer

BHW., which assigns submatrices to processors as
illustrated by

0 (0 1 —1)
Agm) A(lz) A(13) A(ﬁgp)'
] Q0
AR Al Al A
i 1 2 0
Aél) Aéz) 44(33) T AB(:)zp)
(p=1) 4(0) (0) (p—1)
Apyt Apapya Ay Alop)(op)

3 Jacobi’s Method
Define a plane rotation in the (¢, j)-plane by
Iy

i

In_j

Given symimetric matrix A, one can choose plane ro-
tation FPj; so that PZ']‘APg has a zero (4,7) element.
Jacobi methods for finding the eigenvalues of A suc-
cessively compute rotations to annihilate off-diagonal
elements of A. The following sequential algorithm is
known as the column-serial Jacobi method [6]:

P,
XXXXXX
XXXXX
X XXX

P,
XBRRXXX
XRRXXX
XRRBRX XX

XKXXXXX
XXXXXX
XXXXXX P,

XKXXXRRXXXXXXXXX
XXXRRBRXXXXXX|X
XXRRIX XXX XXX
XRRXXXIXXXX
CCLLL|ILLLL
L

X

X

-

CLLLILLL
XXXXXX
XXXXX
XX AXIX XX

Figure 1: Jacobi’s method: annihilating (¢,7+ 1)

Algorithm 1
do until convergence
for i=1,...,n-1
for j=i+i,...,n
compute Fj;
update 4 = B APZ}“

One iteration of the outer loop annihilates each off-
diagonal element exactly once and is called a sweep.

To enhance data locality, Algorithm 1 can be re-
formulated as follows [11,13]:

Algorithm 2
do until convergence
for j=1i,...,n/2
for i=i,...,n~1
compute Fi;y1)
update 4 = }:)i(i'*l)Api'?i—i—l)
exchange rows and cols ¢z and i+ 1

Notice that only elements of the first super-diagonal
are annihilated and as a result only adjacent rows
and columns are involved in the application of a plane
rotation.

If A is distributed using column-wrapped storage,
the application of Py from the left results in the

work being distributed among the processors. How-
ever, applying P@% +1) from the right requires columms
i and ¢+ 1 to be brought together, e.g. on the pro-
cessor that holds column . Next, the computation
is performed by one processor, while the other pro-
cessors are idle and hence the work is not balanced
among the processors. Moreover, the time complex-
ities of communication and computation are of the
same order. The former problem can be overcorme by
anuihilating many super-diagonal elements simulta-
necusly [11]. In this case, communication overhead
still stands in the way of efficient utilization of the
Processors.

Assume the upper triangular part of A is instead
distributed using the BHW; storage scheme, as illus-
trated in Figure 1 for p = 3 and 2 = 3. This figure
also indicates the computation required to annihilate
a typical super-diagonal element (7,7 + 1). Here, Xs
are nonzero elements; Cs indicate the elements from
which Pj;41y is computed; and Ls and Rs indicate el-
ements affected by applying Pi(ip1) from the left and
right, respectively. Once the appropriate processor
has computed the rotation and distributed it to all
processors, the computation required to update the
matrix is distributed among the processors. VWhen-
ever a boundary is encountered, a limited amount of
additional communication is required.

We chose BHW, over BHW, since on distributed
memory multiprocessors it is important to store data
that is involved in a given computation on neighbor-
ing processors. The Jacobi method computes plane
rotations from submatrices

(Qg Ai(i+1))
A1y QGi41)(i4+1)

Notice that m = 1 assigns these elements to Pg, Py,
and P2 when i%h = 0. If m = 2, elements involved
in the computation or application of a rotation are
always on neighboring processors.

The storage scheme allows further parallelism, de-
tails of which can be found in [16].

Py Py
XXXXXXXKRRXXXKXXKXX
XXXXXXKRRXXX[XXXXXX

XXXXXXRRXXXIXXXXXX F2
KEEXXXRRXXXXXXKXX
lXXXXRRXXXXXXXXX

XXXRRIX XX XX XX XX

ﬂxaaxxxxxxxxx

CBBLLLLLLLLL
DBBLLLILLLLLL E0
REXXX X X X[KXX
XXX X X X[X X X

X X X X X|X X X
XXX XX X X
hxxxxx

XX XXX Py

XIX XX
XXX

xx Pa

Figure 2: The Implicit QR Algorithm: annihilating
(i+2,%)

4 The QR Algorithm

The QR decomposition of an n X n matrix 4 is given
by A = QR, where J is unitary and R is upper tri-
angular. A typical sequential QR algorithm can be
described by

Algorithm 3
A(O) — QT_AQ
for k=0,1,...
AR g T — QIR
AG+Y . RO 4 5 T,

where {s;} is called the shifting sequence, chosen to
speed up convergence. The first statement of the al-
gorithm reduces A to upper Hessenberg form, that
is A(®) has zeroes below the first subdiagonal. For a
detailed description of QR algorithms, see [6].

Fach iteration of the loop indexed by &k can be im-
plemented by successively computing plane rotations
in the ({ + 1,1)-plane that annihilate the (i + 1,¢)
element of the matrix, as follows:

Algorithm 4
AR = AR g T
for i=1,...,n—1
compute PEiJrl)i so that
Py k) has zero (i+1,1) entry
update A = P(Hl)i‘é(k)
for i=1,...,n-1
update A% = A(k)Pgﬂ)i
AGFY) = 4B) 45 T

The shift is subtracted explicitly from A%*) and added
back to AW+ Notice that if A®) is upper Hesssen-
berg, so is AF+1),

An implicitly shifted alternative computes A*+1)
from A®) as follows:

Algorithm 5
compute P so that
Pgl(ﬁ(k) —syl) has zero (2,1) entry
AE) — pmA(k)pf};
for i=1,...,n~2
compute Fyiio)it11) S0 that
P(i+2)(i+l)44(‘) has zero (i+2,1) entry
update AW = Pyyoyin AP P)00
AGHLD) 4B

Column-wrapped storage again leads to difficulties
in balancing the work during the application of the
rotation from the right, as well as excessive commu-
nication overhead [5].

If A®) is stored using BHW, the computation re-
quired for a given 4 of the inner loop is illustrated by
Figure 2 for p = 3 and h = 3. In this figure, D is
the element to be annihilated; the rotation is com-
puted from C and D; Ls and Rs are elements affected
by applying the rotation from the left and right, re-
spectively; and Bs are elements which are affected
by applying the rotation from both sides. Once the
appropriate processor has computed and distributed
the rotation, all processors are involved in updating
the matrix. In general, each processor must apply the
rotation to 2k pairs of elements, except for the pro-
cessor that computes the rotation, which performs
slightly more work. Some additional communication
is necessary when a boundary is encountered.

The explicitly and double shifted QR algorithms
can be implemented in a similar fashion. Commu-
nication overhead can be reduced by pipelining the
computation and application of rotations. These is-
sues, as well as how to reduce the original matrix
to upper Hessenberg form and how to add deflation
schemes, will be discussed in detail in a future report.

5 Conclusion

In the previous sections, we have shown that block
hankel-wrapped storage is more appropriate than
column-wrapped storage for parallel implementation
of the Jacobi method and the nonsymmetric QR al-
gorithm on distributed memory parallel computers.
Note that the Jacobi method for symmetric matri-
ces presented in §3 can be easily changed to a Ja-
cobi method for finding the Singular Value Decom-
position of an upper triangular matrix. We are cur-
rently studying the use of hankel-wrapped storage for
other algorithms for finding eigenvalue and singular
values, and are pursuing the possibility of developing
a portable EISPACK-like package of parallel routines
that utilize the storage scheme.

The usefulness of hankel-wrapped storage may not
end with eigenvalue algorithms. For example, dur-
ing Gaussian elimination, storage by elements of rows
and columns are distributed among processors, al-
lowing the computation as well as the application of
multipliers to occur in parallel.

References

[1] Boley, D., “Solving the Generalized Eigenvalue
Problem on a Synchronous Linear Processor Ar-

ray,” Parallel Computing, 3, 123-166, 1986

[2] Berry, M. and Sameh, A., “Parallel Algorithms
for the Singular Value and Dense Symmetric
Eigenvalue Problems,” CSRD report No. 761,
1988

[3] Brent, R. and Luk, F., “The Solution of Singu-

lar Value and Symmetric Eigenvalue Problems

[10]

[12]

[13]

on Multi-processor Arrays,” STAM J. Sci. Stai.
Compui., 6, 69-84, 1985.

Dongarra, J.J. and Sorensen, D.C., “A Fully
Parallel Algorithm for the Symmetric Eigenvalue
Problem,” SIAM J. Sci. Stai. Comput., Vol. 8,
No. 2, March 1987

Geist, G.A., Ward, R.C., Davis, G.J., and Fun-
derlic, R.E., “Finding Eigenvalues and Eigenvec-
tors of Unsymmetric Matrices using a Hypercube
Multiprocessor,” unpublished manuscript

Golub, G.H. and Van Loan, C.F., Mairiz Com-
putations, Johns Hopkins Press, 1983

Hockney, R.W. and Jesshope, C.R. Parallel
Computers, Adam Hilger Ltd., Bristol, 1981

Ipsen, I.C.F and Saad, Y. “The Impact of Par-
allel Architectures on the Solution of Eigen-
value Problems,” Large Scale Figenvalue Prob-
lems, J. Cullum and R.A. Willoughby (Ed.),
Elsevier Science Publishers, 1986

Ipsen, I.C.F., Saad, Y., and Schultz, M. H.,
“Complexity of Dense-Linear-System Solution

on a Multiprocessor Ring,” Linear Algebra and
its Applications, 77:205-239, 1986

Lo, S.5., Philippe, B., and Sameh, A., “ Mul-
tiprocessor Algorithm for the Symmetric Tridi-
agonal Eigenvalue Problem,” SIAM J. Sci. Stat.
Compui., Vol. 8, No. 2, March 1987

Luk, F.'T. and Park, H., “On the Equivalence
and Convergence of Parallel Jacobi SVD Algo-
rithms,” Proceedings of SPIE, Advanced Algo-
rithms and Architeciures for Signal Processing
11, Vol. 826, 152-159, 1988

Sameh, A., “On Jacobi and Jacobi-Like Algo-
rithms for a Parallel Computer,” Math. Comp.,
vol. 25, pp. 579-590, 1971

Stewart, G.W., “A Jacobi-like Algorithm for
Computing the Schur Decomposition of a Non-
Hermitian Matrix,” STAM J. Sci. Stat. Comp.,
B 6, pp. 853-64, 1985

(14]

(15]

Stewart, G.W., “A Parallel Implementation of
the QR Algorithm,” Dept. of Comp. Sci., Univ.
of MD, TR-1662, May 1986

Van de Geijn, R.A., “Implementing the QR-
Algorithm on an Array of Processors,” Ph.D.
thesis, Dept. of Comp. Sci., Univ. of MD, TR-
1897, 1987

Van de Geijn, R. A., “A Novel Storage Scheme
for Parallel Jacobi Methods,” The University of
Texas at Austin, Dept. of Computer Sclences,

TR-88-26

Wt

