A COMPARISON OF
LED-FROM AND LEADS-TO

Edgar Knapp

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-35 October 1988

Abstract

Progress properties of parallel programs are often expressed using the operator leads-to, a
binary relation over predicates on the program state. Informally, p leads-to g means that from a
state satisfying p a state satisfying g is reached eventually. We investigate the notion of the
weakest predicate that leads-to g, for some given g. We formalize this notion by defining a
predicate transformer called led-from and show that led-from maps a predicate ¢ to the weakest
predicate that leads-to q. We also demonstrate that led-from and leads-to are equivalent in
expressive power by showing that each can be defined in terms of the other. The advantages of
basing concurrent program semantics on the predicate transformer led-from rather than the rela-
tion leads-to are similar to those of basing sequential program semantics on the predicate trans-
former wp rather than on the relation of Hoare-Triples {p}S{q}. In particular, questions about
junctivity properties can be raised and answered. Among other things we show that led-from is
monotonic and idempotent, but not or-continuous and neither finitely disjunctive nor finitely
conjunctive.

Contents
Introduction o

1 Definition of leads-io and led-from 1
1.1 Notation 1
1.2 Extreme Solutions of a Set of Equations 2
1.3 Definitionof leads-to L. 2
14 Definition of led-from 5

2 The relationship between leads-io and led-from 6

3 Theorems about led-from 9

3.1 More Properties of led-from 10

3.2 Some Results about led-fromin UNITY 11

3.2.1 A Few More Definitions 12

3.2.2 Junctivity Results for led-from 13

4 Discussion 16

Acknowledgements 16

References 18
Introduction

When specifying concurrent systems it is necessary to formulate requirements
that “something good is going to happen eventually”, where eventually means
“in finite time” or “in a finite number of steps”. These kinds of requirements
are traditionally called progress conditions. Examples of such requirerments are:
a requested resource is granted eventually; a message sent along a channel is
received eventually; deadlock is detected eventually.

In the theory of UNITY [Chandy and Misra 1988], which attempts a unified
approach to the specification and verification of concurrent programs, properties
like the ones above are expressed using the binary operator leads—io (), a
relation over predicates on program states. This operator was first introduced in
[Lamport 1977]. Informally, p — ¢ means that from a state satisfying predicate
p a state satisfying predicate ¢ is reached eventually. For example, the property
true — p specifies that a state satisfying p occurs infinitely often.

In [Chandy and Misra 1988] ~ is defined as the strongest relation that
satisfies a set of axioms. These axioms formalize the requirements that the
-+ relation is a superset of some fixed relation called ensures, and that if is
transitively and disjunctively closed. The ensures relation itself depends only
on the program text and also captures fairness. Our first result formally verifies

that the definition of ~— given in [Chandy and Misra 1988] is sound by showing
that this strongest relation exists and is unique.

The main contribution of this paper is to investigate an alternative way of
defining + using a predicate transformer (i.e. a function from predicates to
predicates) which we call led-from. This predicate transformer, too, can be
defined as an extreme solution of a set of equations. The intuitive meaning of
led-from is that it maps a predicate p to the weakest predicate thai leads-io p.
We show that this alternative definition of + is equivalent to the definition that
appears in [Chandy and Misra 1988].

The advantage of using led-from as the basis for the definition of + is that
led-from is a funciion on predicates. Therefore, questions about monotonicity,
continnity, etc. can be easily posed for led-from. To draw an analogy with
sequential program verification, the advantages of led-from over — are similar
to the advantages of basing program semantics on the predicate transformer
wp rather than on the relation of Hoare-Triples {p} S {g}. It turns out that
led-from lacks many of the nice properties of wp. In particular, we show that
for UNITY logic, led-from is not or-continuous, and neither finitely conjunctive
nor finitely disjunctive.

Our paper is organized as follows. Section 1 introduces our notation and
gives formal definitions of + and led-from as extreme solutions of certain sets
of equations. It is proved that these solutions uniquely define both operators.
Section 2 is devoted to the proof that all information about + is captured within
led-from. More precisely, we show that each concept can be defined in terms of
the other. In Section 3, we study interesting properties of led-from. We derive
negative answers to a number of questions about junctivity properties. The
paper concludes with a discussion of our results.

1 Definition of leads-to and led-from

First we present the notation necessary to express our concepts. We then intro-
duce the notion of an extreme solution to a set of equations in order to define
the operators leads-to and led-from.

1.1 Notation

We will use the following notational conventions: the expresssion

(Qaz:ra:ta),

where @ € {V,3} denotes quantification over all {.z for which z satisfies r.z.
We call # the dummy, r.« the range, and {.2 the term of the quantification.
We adopt the convention that all formulae are universally quantified over all
free variables occuring in them (these are variables that are neither dummies
nor program variables).

We will write f, g, 2 to denote predicate transformers, p, ¢, r to stand for
predicates on program states, and R, S to denote relations on predicates.

Universal quantification over all program variables is denoted by surrounding
a predicate by square brackets ([], read: everywhere). This unary operator has
all the properties of universal quantification over a non-empty range. For a
detailed discussion of this notation the reader is referred to [Dijkstra 1985].

The other operators we use are summarized below, ordered by increasing
binding powers.

=¥

-
ensures,
AV

=7 5<
+,—
“” (function application)

All boolean and arithmetic operators have their usual meanings. We define <«
(read: follows-from) by [p <= ¢ = ¢ = p]. For relations R, S on predicates
we say that R is sironger than S (in formulae R = 5) if and only if {(¥p,¢q =
pRqg = p S q). For predicate transformers f,g we say that f is stronger
than ¢ (in formulae f = ¢) if and only if (Vp :: [f.p = g.p]). Note that for
predicates, relations, and predicate transformers = is a partial order. The
relations ensures and — will be defined later.

1.2 Extreme Solutions of a Set of Equations

Most operators we introduce are defined as extreme solutions of sets of equa-
tions. We write z: F to make explicit that F is a set of equations in the unknown
z. Given a partial order = on the solutions of F, we say that y is the sirongest
solution of F if and only if

(0) y solves E, and
(1) (Vz : z solves E : y = z).

The weakest solution of £ is defined analogously.

1.3 Definition of leads-to

Let ensures be a given binary relation over predicates on program states;
ensures describes the basic progress properties of a program. We assume that
ensures fulfils the following requirements:

(D0) p ensures p
(D1} p ensures false = [-p]
(b2) (p emsures r) Alr = ¢] = pensuresy

The first requirement states that ensures is a reflexive relation. The second
requirement excludes absurd progress properties. D2 states that the right-hand
side of ensures may be weakened. Note that by combining D0 and D2 we get

Lemma 0 [p=¢] = pensuresq

Remark: The relation ensures was first defined in UNITY logic¢[Chandy and
Misra 1988]. It is possible, however, to define this relation for other program-
ming formalisms besides UNITY. Note that in such a case, ensures should also
capture assumptions about fairness. (End of Remark)

Consider now the set A of equations AG-A2 in the unknown relation p:

(AD) pensures g => p b g
(A1) PN (@br) = por
(A2) (Vp:peW:pbgqg) = (Ip:peW:p) by

AQ states that the ensures relation is a subset of the relation . Transitivity of
B> is expressed by Al. AZ means that b is disjunctively closed over W, where
W is any set of predicates.

With “=” as a partial order on relations we now prove the following

Lemma 1 There is a unique sirongest solution of : A.

Proof (of Lemma 1, due to Dijkstra): We show that the conjunction of all
solutions of A is a solution of A. Obviously then, this is the strongest solution
of A, since it implies all solutions.

Now define a relation R as the conjunction of all solutions:

pRq = (VS:SsolvesA:pSq)

Our proof obligation is to show that R solves A0, Al, and A2.
Ad AD:

pRg
= {definition R}
(VS :Ssolves A:p S q)
& {each S solves A0}
(VS : S solves A: p ensures ¢)
< {term does not depend on dummy}
P ensures ¢

Ad Al:

PROAN(gRT)
= {definition R}
(VS :Ssolves A:pSq) A (VS : Ssolves A:¢Sr)
= {predicate calculus}
(VS :Ssolves A: (pSq)A(gSr))
= {each S solves Al}
(VS :Ssolves A:pSr)
= {definition R}
pRr

Ad A2 (we omit the range p € W):

(Vp::p R q)
= {definition R}

(Vp (VS :Ssolves A:p S¢))
= {interchange of quantifications}

(VS : Ssolves A: (¥p:p S q))
= {each S solves A2}

(VS : S solves A: (Ip::p) S q)
= {definition R}

Fpup) Ry

(End of Proof)

We use Lemma 1 as the basis for the following definition®:
Definition 0 The unigue strongest solution of A is called leads-to ().
Using Lemma 0 and A0 we now observe:
Lemma 2 [p=>4q] = prgq
As a Corollary of Lemma 2 we get
Corollary 0 p—p

Remark: In [Chandy and Misra 1988] it was shown that if equation Al is
replaced by the weaker A1’ defined as

(A1) (pensures ¢)A(g—7r) = prr

then the two sets of equations A0, Al, A2 and A0, AV, A2 are equivalent.
In our proofs we will use whichever formulation is more convenient. (End of
Remark)

OExcept for Lemma 1 this is essentially the same definition as in [Chandy and Misra 1988]

rey

1.4 Definition of led-from

We said earlier that the predicate transformer led-from formalizes our notion
of the weakest predicate that leads-fo gq. In the following we define led-from
formally, again by considering the strongest solution of the following set B of
equations B0-B2 in the unknown predicate transformer f:

(BO) pensures ¢ = [p=> f.g]
(B1) p=4q = [fr=fd
(B2) [f(fp)= fpl

B0 states that any predicate that ensures ¢ is stronger than f.q. Monotonicity
of f is expressed in B1. Equation B2 represents one half of the idempotence of
f. Observe that from the reflexivity of ensures we can infer the other half:

p ensures p

= {B0}
p= f.p]
= {BI1}
[fp= f(fp)

Lemma 3 There is a unique strongest solution of f: B.

Proof (of Lemma 3): We again show that the conjunction of all solutions of B
solves B. In the following we abbreviate

lg.p = (Yh:hsolves B: h.p)]
Ad BO:

[p=g.]
= {definition g}
[p= (Vh : h solves B : h.g)]
= {predicate calculus}
[(Vh : i solves B : p = h.g)]
= {interchange of quantifications}
(Vh : h solves B: [p = h.q])
< {each A solves B0}
(Vh : h solves B : p ensures g)
< {term does not depend on dummy}
p ensures g

Ad BL:

l9-p = 9.4]

= {definition g}
lg.p = (Vh : h solves B : h.g)]

= {predicate calculus}
[{vh : h solves B : g.p = h.¢)]

= {interchange of quantifications}
{¥h : h solves B : [g.p = h.q]}

< {[g.p = h.p] and transitivity of =}
{Vh : h solves B : [h.p = h.q])

< {each h solves B1}
{Vh : h solves B : [p = gq])

< {term does not depend on dummy}

[p =4
Ad B2:

g.p
= {definition g}

(Vh : h solves B : h.p)
< {each h solves B2}

(Vh : h solves B : h.(h.p))
< {lg.p = h.p] and B1}

{Yh : h solves B : h.(g.p))
= {definition g}

g-(9-p)

(End of Proof)

Definition 1 The unigue sirongest solution of B is called led-from [or led for
short).

The following Corollary is immediate:

Corollary 1 led is monoionic and idempoient, and [p = led .p].

2 The relationship between leads-to and led-from

We said earlier that led.p formalizes the notion of the weakest predicate that
leads-io p. We will now make this relationship precise in the following

Theorem 0 (0) prrg = [p= led.yg]
(1) For any g, led.q is the weakest soluiion of pip s q.

Proof {of Theorem 0): Abbreviate C = p:p — g. Qur proof proceeds in five
steps. We demonstrate that

(a) For any ¢, C has a unique weakest solution f.qg,
(b) led= f,

() p—gq = [p=led.q],

(d) [p=>led.q] = pry,

(e) f=>led

Ad (a): Observe that [p = false] is a solution of C. We show that the disjunction
of all solutions of U solves C'. Hence, this is the weakest solution, since it follows
from any solution.

Define [f.g = (Ip : p ¢ : p)]. Our proof obligation is to show that for any
q, f.q solves .

fgr—gq
= {definition f}
(Fp:p—q:p)—gq
< {A2}
(Vp:prrq:prq)
= {predicate calculus}
irue

We summarize the following two facts about f.q: it solves C, and any solution
of C' is stronger than f.¢. Formally:

(FO) fargq
(F1) p—q = [p=fdq

Ad (b): We show that f solves B, the defining equations for led. Then, since
{ed is the strongest solution of B, the result follows.
Ad BO:

P ensures ¢
= {A0}
p—yq
= {F1}
p=fd

-3

Ad B1:
p =4

= {Lemma 2}
pPr—yq

= {F0}
(fp—=p)A(pr9)
{A1}
fp—gq

= {F1}
[fp=> f.d]

Ad B2:

[7-(fp) = f.p]
< {F1}
ffp)—rp
& {Al}
(f(fp) = Fp)A(fprp)
= {F0 twice, once with p := f.p}
irue

Ad (c): We show that the relation R defined as p Rg = [p = led.q] solves
A. Then, since s is the strongest solution of A, the result follows.
Ad AO:

pRq

= {definition R}
[p = led.q]

< {B0}
p ensures ¢

(PR A(gRT)
= {definition R}
[p=led.q] Ag = led 7]
{B1}
[p = led .q) Aled .q = led .(led .7)]
= {transitivity of =}
[p = led .(led 7))
= {Corollary 1}
p = led.r]
= {definition R}
pREr

Ad A2 (the range p € W is omitted):

(Vpup Rq)
= {definition R}
(Vp :: [p = led .q])
= {interchange of quantifications}
[{Vp:: p=led.¢)]
= {predicate calculus}
[(3p = p) = led q]
= {definition R}
(Fp:p)Ryg

Ad (d): We observe for any p, ¢:

[p = led.q]
= {part (b) and transitivity of =}
[p=7.q]
= {Lemma 2}
pfq
= {F0}
p=FfoA(fa—q)
= {Al}
g

Ad (e): We observe for any p:

[f-p = led p]
{parts (c) and (d)}
fpr—p

{Fo}

irue

fi

il

{End of Proof)

3 Theorems about led-from

We will now derive a few more properties of led and show that in the UNITY
logic, led does not enjoy a number of junctivity properties such as or-continuity
and finite conjunctivity and disjunctivity.

3.1 More Properties of led-from

As a direct consequence of Theorem 0 we get as our first result the following
Lemma, which allows us to compute led for a special case.

Lemma 4 {ruer—p = [led.p= frue]
Since by Lemma 2 true — {rue we get from the above

Corollary 2 [led .irue = {rue].
Lemma b [p=>ledqg] = [led.p=led.q]

Proof (of Lemma 5):

“=” [p=> led q]
= {Bl1}
[led.p = led .(led .q)]
= {Corollary 1}
[led .p = led .q]

<c<:79 Lp = leéq]
< {by Corollary 1, [p = led .p|}
[led .p = led .q]

(End of Proof)

Next we show that if all ensures properties with respect to some predicate
g are of a certain trivial form, then [¢ = led.q]. More precisely we have
Theorem 1 (Vp:pensuresqg = [p=q]) = [¢=led.q]

Proof (of Theorem 1): We show that ¢ is the weakest solution of the equation
p:p ¢. Then by Theorem 0 part (1), [¢ = led ¢].
So our proof obligation is twofold:

(a) g solves pip g, ie g+ g
(b} qis weakest,ie. (Vpupr—qg = [p=4q])

We note that (a) follows trivially from Lemma 2. We will prove (b) by showing
that, for any p, R defined as

pRqg = [p=4

satisfies equations AG,A1’, and A2. Then we observe for any p

10

prq

= {r~ is the strongest solution of AQ, Al/, and A2}
pRyq

= {definition R}
[p=d

Ad AO:
[p=dq]

<= {antecedent of Theorem}
p ensures ¢

Ad Al
(p ensures r) Afr = ¢]
= {D2}

p ensures g
= {antecedent of Theorem}

lp= 4]
Ad A2 (the range p € W is omitted):

(Vp :: [p = q])

= {interchange of quantifications}
[{vp :p = g}]

= {predicate calculus}

[@Ep:p) =4
(End of Proof)

From D1 we now have the following Corollary of Theorem 1:

Corollary 3 [led .false = false]

3.2 Some Results about led-from in UNITY

‘We show that in UNITY led is not or-continuous, and neither finitely dis-
junctive nor finitely conjunctive. In the following we first define ensures for
UNITY[Chandy and Misra 1988], together with the notions of or-continuity
and finite conjunctivity and disjunctivity, We then give UNITY programs that
show that for UNITY led has none of these properties.

11

3.2.1 A Few More Definitions

We give a very brief and incomplete description of UNITY programs and the
UNITY logic. For our purposes, a UNITY program consists of three parts: a
collection of variable declarations, a set of initial conditions, and a finite set of
multiple assignment statements. We call these parts declare, initially, and
assign, respectively. We define the predicate transformer wp for each multiple
assignment in assign in the usual way. From an operational point of view,
the execution of a UNITY program starts from any state satisfying the initial
conditions and proceeds by repeatedly picking any statement in assign and
executing it. The only fairness constraint we impose is that each statement in
assign is picked infinitely often.

This operational interpretation is the motivation for the definition of ensures
that is given below. However, neither our definitions nor our proofs will mention
program executions or fairness.

Definition 2
pensuresg = (Vs:scassign:[pA—-g = wp.s(pVgA
(Is:s cassign:[pA—-g = wp.s.g])

It is straightforward to verify that this definition of ensures satifies require-
ments D0, D1, and D2 of Section 1.3.

For a multiple assignment statement z := f.z, where z is a list of program
variables and f.z is a list of expressions matching z in number and type, we
define wp in the following standard way:

Definition 3 [wp.%z = f2”’p = (fz =: z)p], where (fx =: z).p
denoies p with every occurrence of replaced by f.x.

Next we define or-continuity, finite conjunctivity and finite disjunctivity:

Definition 4 Let f be a predicate transformer and Y(i>0) a weakening se-
quence of predicaies. We say that fis or-continuous if and only of

[£(Fi:i>0:Y4) = (3i:i20: f.(V9))]

Definition 5 A predicale transformer f is finitely conjunctive if and only if

{(Vpq:[flpAe) = FfpAfd)
It is findtely disjunciive if and only if
(Vpq:[f(pVe) = fpVfd)

12

3.2.2 Junctivity Results for led-from
We now show that with these definitions, led is not or-continuous.

Theorem 2 led is not or-continuous.

Proof (of Theorem 2): Consider the following program, which can be thought
of as adding up a series of random numbers:

declare z,n:integer

initially frue

assign n:=n+10z,n:=2+n0
end

We will show the following:

i

(F2) (Vi:i>0:led . (0<z A z<i) 0<z Ax<i)
Notice that 0<z A z<i(i>0) is a weakening sequence of predicates. Further-
more observe that:

(Fi:i>0: 0<e Ae<i)
= {predicate calculus}

0<eA(Fi:i>0:2<1)
= {arithmetic}

0<z

Calling this result (%), and assuming that F2 has been proved, we can now
calculate

(Fi:i>0: led (0<2 A 2<i))
{F2}

(Fi:i>0:0<z Ae<i)
{(»)}

0<z

Il

il

On the other hand we have {the proof is straightforward, but requires some
more UNITY machinery and is therefore omitted) irue — 0<z. Hence by
Lemma 4 we obtain (%) [led .(0< &) = true], and we observe

led.(Ji:i>0: 0<z Ae<i)

= {()}
led (0<x)

= {(+)}

irue

13

and we see that led is not or-continuous. So we are left with demonstrating F2.
To this end abbreviate 0<z A 2<i by ¢. By Theorem 1 it suffices to show
that

(Vi:i>0:(Vp :pensures ¢ = [p=q]))

Massaging p ensures ¢ we get for any ¢ and p, using the universal part of the
definition of ensures:

pAYg
= {interchange of quantifications}
wp.“n=:n+1".(pVg) Awp.“z,n:=2z+n,0".(pVq)
= {predicate calculus}
wp.“n=:n+1"(pVyq)
= {definition wp; n does not occur in ¢}
(n+l=n)pVyg

Rewriting this slightly yields
p = (n+l=n)pV q]
For the existential part of ensures we get:

[pPA-g = wp.“n=n+1"4¢VpA—~g = wp.“c,n:=2+n,0".q]
= {definition wp; n does not occur in ¢}

[PA-q = q]VIpA-g = (z4+n=:2)4]
= {predicate calculus}

P = dVlp = ¢Vi{z+n=:2)q]
= {predicate calculus}

[p = gvie+n=2)q

Combining both we arrive at
P = evi(n+l=n)pA{z+n=:2)q)]
Now we generalize this result by a straightforward induction (omitted) to:
(Vji:j20:[p = ¢V(n+ji+l=:n)pA(z+n+j=2)q)])
Next we observe, using the above result, that
(Vj:5>0:p = gV((n+j+1l=n)pA(z+n+j=12)9)])
= {predicate calculus}
(Vj:320:]p = gV(z+n+j= 2z)ql)
= {predicate calculus}
p = ¢v{Vj:j20:(z+n+j=2)q)]

We now concentrate on the second disjunct:

14

(Vj:520:(z+n+j=:2)q
= {definition ¢}

(Vj:j>0:0<z+n+j Az+n+j<i
= {j does not have an upper limit}

false

from which [p = ¢] follows. (End of Proof)

Theorem 3 led is not finitely conjunctive.

Proof (of Theorem 3): Consider the program

declare 2z :integer
mitially frue

assign z:=00zm=1
end

Since (without proof) true +— =0 and true — z=1 are properties of this
program we know [led .(z=0) = true] and [led.(x=1) = true]. Hence we have
[led .(z=0) A led (z=1) = true]. On the other hand, however, we observe

led (z=0A2z=1)
= {arithmetic}
led .false
{Corollary 3}
false

(End of Proof)

Il

Theorem 4 led is not finitely disjunciive.
Proof (of Theorem 4): Consider the program

declare =z :integer

initially {rue

assign 2=zt 1z =z4+2
end

By a technique similar to the one employed in the proof of Theorem 2 we can
show

[led (z=0) = x=0]
[led (z=1) z=1]

i

i5

Also since 2=~ 1 + 2=0V z=1 we know that
[led(z=0Ve=1) & z=-1]

As a consequence, led is not finitely disjunctive. (End of Proof)

4 Discussion

We used the technique of defining an operator as an extreme solution of a set of
equations to formalize progress properties of parallel programs. We have shown
that it is possible to formalize the notion of the weakest predicate that leads-to
g, for any ¢, by defining a predicate transformer led-from. We demonstrated
that led-from and leads-to are equivalent in expressive power. We investigated
the properties of led-from in the context of UNITY and discovered that it was
idempotent and monotonic, but neither or-continuous nor finitely junctive.

Future work has to concentrate on finding a fixpoint characterization of led-
from that allows led.¢ to be computed from a given program. Such a definition
should drastically shorten the proofs of Theorems 2, 3, and 4. The usefulness of
led-from will also depend on whether it is possible to prove a number of Meta-
Theorems about leads-to (e.g. PSP-Theorem, Completion Theorem, ¢f. [Chandy
and Misra 1988]), without resorting to induction on the structure of a proof of
leads-to.

Acknowledgements

‘We are indebted to Dr. Jayadev Misra for posing the problem and contributing
valuable ideas. We would also like to thank the members of the Austin Tuesday
Afternoon Club for their comments and suggestions, in particluar Edsger W.
Dijkstra, who helped clean up the proof of Theorem 1. This work was supported
in part by ONR contract N0O0014-87-K-0510.

References

[Chandy and Misra 1988] K. M. Chandy and J. Misra. Parallel Program De-
sign: A Foundation. Addison Wesley, 1988.

[Dijkstra 1985] E. W. Dijkstra. On Structures. EWD 928, University of Texas
at Austin, Nov. 1985.

[Lamport 1977] L. Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Sofiwarve Engineering, 3(2):125-143, March
1977.

16

