TOWARDS SYSTOLIZING COMPILATION:
AN OVERVIEW

Christian Lengauer

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-1188, U.5.A.
Net: chris@cs.utexas.edun

TR-88-37 October 1988

Abstract

A scheme for the compilation of imperative programs into systolic programs is demonstrated on
matrix composition and decomposition. The same scheme can be applied if the input is a functional
rather than an imperative program. Using this scheme, programs for the processor network Warp
and for an Inmos Transputer network have been generated.

This research was supported in part by the following funding agencies: through Carnegie-Mellon
University by the Defense Advanced Research Projects Agency monitored by the Space and Naval
Warfare Systems Command under Contract N00039-87-C-0251 and by the Office of Naval Research
under Contracts N00014-87-K-0385 and N00014-87-K-0533; through Oxford University by the
Science and Engineering Research Council under Contract GR/E 63902; through the University of
Texas at Austin by the Office of Naval Research under Contracts N0G014-86-K-0763, and by the
National Science Foundation under Contract DCR-8610427.

1 Introduction

The concept of a systolic array [13] has received a lot of attention in the past decade. Systolic
arrays are distributed networks of sequential processors that are linked together by chanmnels in
a particularly regular structure. Such networks can process large amounts of data quickly by
accepting streams of inputs and producing streams of outputs. Many highly repetitive algorithms
are candidates for a systolic implementation. Typical applications are image or signal processing.

More recently, mechanical methods for the design of systolic arrays have been developed (see
[8,25] for bibliographies). The starting point is, essentially, either an imperative program [8] or a
functional program [25]. The result is a formal description of a systolic array that can be pictorially
represented. The description is then usually refined for an implementation in hardware — for the
production of a systolic chip.

Just as one can realize systolic arrays in hardware, one can also realize them in software. Pro-
grammable processor networks that can emulate systolic arrays are becoming increasingly available.
Examples are the Ametek [1] and the Transputer [12]. A distributed computer emulates a systolic
array by running a systolic program. The program is in a distributed programming language that
provides constructs for process definition and communication. For example, Transputer networks
are programmed in occam [11]. The process and channel structure of the program must match the
processor and communication structure of the systolic array.

There are also more sophisticated processor networks that provide features additional to the ones
prescribed by the systolic paradigm. One example is Warp [14] which provides, e.g., for arithmetic
pipelining in each processor (i.e., processors are not strictly sequential). Such networks need more
specialized methods of compilation than we are offering here [15]. Our techniques can be applied
to Warp and its programming language W2 [5], but they are not particularly well-suited for it.

We propose a compilation scheme by which imperative or functional programs can be transformed
mechanically into systolic programs. Essentially, the transformation adds a process and commnu-
nication structure. The source program does not refer to concurrency or communication. We
illustrate our compilation scheme with the example of matrix composition/decomposition.

Let us be more precise about the format of the programs that we shall accept:

for zg from by by sty to rbg do
for zy from b1 by st; to rby do

for 2,1 from b, by st,_y to rb,_; do
Tl Tp—1

1The occam programming environment permits the specification of 2 mapping from software processes to hardware
processors. We require this mapping to be the identity in order o avoid inefficiencies caused by the software simulation
of channel communication.

with a basic operation of the form:

Tl =Tp—1 ifB@(xg,xi,-u,:c%_g) - 50
B Bl(x(),xl’"'axn—i) -+ SI

fi Bm—-l{x()axla"Wgzn-—l) - Sm—l

fi

The bounds rb; and [b; are integer expressions in the loop indices zg to ;-1 (0 < ¢ < n); the steps
st; are constants. The conditions B; (0 < j < m) must be side-effect-free. The §; (0 < 7 < m) are
functional or imperative programs, possibly, with composition, alternation, or iteration but without
non-local references. Of a subscripted variable in 5;, each subscript must be a distinct argument
of the basic operation, and there must be either n — 1 or n subscripts.?

A systolizing compilation consists of two phases. First there is the design of a systolic array, e.g.,
by one of the methods mentioned previously. Then there is the generation of a distributed program
from the description of the systolic array. The latter step shall be the focus of this exposition.

Today’s mechanical systolic design methods describe a systolic array by two functions. Let I denote
the integers, and let Op be the set of basic operations of the imperative or functional program:3

step : Op — I specifies a temporal distribution of the program’s operations. Operations that are
performed in parallel are mapped to the same step number.

place : Op — I? specifies a spatial distribution of the program’s operations. The dimension d of
the layout space is one less than the maximum number of arguments of the operations.

The systolic design is successful if step and place are linear. One can pose additional restrictions
on the program format that ensure the linearity of step and place and a constant flow direction
and speed for each data item [24,27].% At present, there is no comprehensive method of systolic
arrays that fall outside this class — although there are examples, e.g., dynamic programming [26]
and Gauss-Jordan elimination [9,27].

When step and place are linear, all other information about the systolic array can be determined,
notably the flow direction and layout of the data. Let V' be the set of variables of the program:

flow : V — I specifies the direction and distance that variables travel at each step. It is defined
as follows: if variable v is accessed by distinct basic operations sy and s; and by no basic
operations in the steps between sg and s;, then

flow(v) = (place(s1) — place(sg))/((step(s1) — step(se))

Flow is only well-defined if the choice of the pair (sg,s;) is immaterial. In other words,
the variable may not change its flow direction or speed during the computation. Flow(v) is
well-defined if the subscripts of v comprise n — 1 of the basic operation’s n arguments [8].

“The proofs of some theorems become more complex if the format of subscripted variables is relaxed as follows:
the subscripts of variables in the §; must be linear expressions in the z; {0 < ¢ < n), and their coefficient matrix
must be of rank n — 1 or n [7]. This extended format covers, for example, convolution [24].

®In a functional program, Op is a set of assignments; in an imperative program Up may contain re-assignments.

*Formulated in [24,27] in the functional style, these restrictions are easily translated to the imperative style.

b

patiern : V — I¢ specifies the location of variables in the layout space at the first step. It is
defined as follows: if variable v is accessed by basic operation s and fs is the number of the
first step, then
pattern(v) = place(s) — (step(s) — fs) * flow(v)

If flow is well-defined, so is pattern [8]. Note that pattern is a linear combination of linear
functions and, therefore, also linear.

To shorten our exposition, we shall add one more requirement: the coefficients of place must be
from the set {—1,0,+1}. That is, we consider systolic arrays in which only neighbouring processors
may communicate. Data streams have nine possible flow directions: right or left, up or down, along
the two diagonals in both directions, and not at all.

2 The Specification

We are given three matrices: A, B, and C. To be able to derive a systolic solution, we must assume
that the matrices are distinct program objects, i.e., they do not share elements. Our goal is to
establish the relation:

n-~1
Vi,] € {0, ceey T — 1} DG T Z i bk,j
k=0

That is, C is the matrix product of 4 and B.

We may establish this relation in two different ways.

2.1 Matrix Composition

A and B are input and C'is output. 4 and B uniquely determine C.

2.2 Matrix Decomposition

C is input and A and B are output. To determine A and B uniquely, we require them to be
triangular matrices: A must be zero in the upper triangle and one on the diagonal, B must be zero
on the lower triangle.

3 The Input Program

The following program scheme satisfies either of the two alternative specifications:

for ifrom0ton—1do
for jfrom 0 ton~1do
for k from 0 ton —1do
ik

The imperative looking for-loop syntax can also be used with the functional programming paradigm
(see, for example, SISAL [21]). The definition of the basic operation i:j:k and he initialization of
the result matrices differ for matrix composition and decomposition.

3.1 Matrix Composition

For matrix composition, the basic operation i:5:k is refined as follows:
Functional Style Imperative Style
Cijk = Cijk—1 + Qi * b, j Cirj = Cijj + Qi * b j

Matrix elements a;r and by ; are initialized with the input data. Matrix elements ¢; ;o in the
functional and ¢;; in the imperative style are initialized to zero.

3.2 Matrix Decomposition

For matrix decomposition, the basic operation 7:5:k is refined as follows:

Functional Style Imperative Style
ifi<jAi=k — br; = ¢ijr-1 ife<jAi=k — b, =cy;
fi>jing==%k Ha{,k:cg',j,k._l*b;,? De>jAj=k —aj,:= Ci,j*b]:’]j'-
fi>kAj> k— Cijk = Ci k-1 ™ Qi * bk’j li>kAj>k— Ci5 1= G4 Gk ¥ bk,j
i fi

Matrix elements a;; and by ; are initialized to the identity and the zero matrix, respectively. Matrix
elements ¢; ;¢ in the functional and ¢; ; in the imperative style are initialized with the input data.

3.3 The Independence Criterion

We would like to derive a fully pipelined systolic array, i.e., an array in which no shared access
occurs: every individual matrix element is accessed strictly in sequence. We forbid shared reading
as well as shared writing.

In the functional style, so-called “dependence vectors” make the dependences in the equations
explicit [23,27,28]. In order to enforce full pipelining, the basic operation must be enriched with
additional equations that add dependences for variables ¢ and b in a third index. Then, indexing
a, b and c each by 7, j and k, consecutively, a has a dependence in the second, b in the first and ¢
in the third parameter.®

In the imperative style, so-called “independence relations” are proved and declared with the pro-
gram. In this style, we enforce full pipelining by not declaring the weakest independence relation
that is provable for the program but adding exclusion requirements for variables a and b [8].

Functional Style Imperative Style
(0,1,0) pipelining of a-elements (lo# 1 Vke# k) A
(1,0,0) pipelining of b-elements (Jo#F A1 Vko# k) A
(0,0,1) pipelining of c-elements (lo#41V jo# 1)

®We do not reproduce the modified basic operations here. See, for example, [25] for matrix composition and [3]
for matrix decomposition.

4 The Systolic Array

Remember that the systolic array is completely described by functions step and place. The challenge
is the determination of optimal parallelism, i.e., of a step function with the fewest number of steps
possible. Here, the functional and the imperative method proceed completely differently. In the
functional method, one employs techniques of integer programming [28]; in the imperative method
one uses techniques of program transformation [8]. Both derivations are completely mechanical.
After the derivation of step, the distribution in time, one chooses a compatible distribution in space
by a search. The combination of step and place is consistent if step and every dimension of place are
linearly independent [8]. In particular, neither step nor any dimension of place may be constant.

Since this is not the focus of our paper, we simply present the step function derived for our example:
step(i:jk)y =i+ j+k

That is, basic operation i:j:k is performed at execution step ¢+ j+ k. The first execution step is 0.
As place function, we select:

place(i:5:k) = (4, 7)

That is, basic operation 45k is performed by the processor at the coordinates (7,j) in the two-
dimensional systolic array.

The combination of our step and place leads to the systolic array depicted in Figure 1 for a 4 x 4
input. The array consists of 16 processors that are connected by horizontal and vertical channels
(as a consequence of the data flow). The elements of matrix A move up, i.e., have flow (0,1), those
of matrix B move to the right, i.e., have flow (1,0), and the elements of matrix C remain stationary,
each with one processor, i.e., they have flow (0,0). We call the collection of elements of one matrix
a stream. A and B are moving streams; C is a stationary stream. Figure 1, generated by our
implementation of the imperative method, depicts the data layout at the first step.

This completes the first phase of systolizing compilation: the derivation of a systolic array. The
data structures on which Figure 1 is based — they encode the functions step, place, flow and
pattern — are the starting point of the second phase: the code generation. The expansion of step
is given in Table 1.

5 From Synchrony to Asynchrony

Step specifies a synchronous execution. We may imagine that each parallel step is initiated by a
global clock tick. The assumption of synchrony permits the concept and mechanical derivation of
a step function. It is also a standard requirement of systolic circuits.

However, when it comes to programming distributed computers, synchrony is a considerable hin-
derance. High parallelism is obtained much more easily by synchronization at run time than by
sorting operations into steps before run time. For example, Warp [14], was made asynchronous
after experience with a synchronous prototype [20].

Let us propose a transformation of the synchronous parallel execution to an asynchronous dis-
tributed program. As a programming language, we aim at something imperative like CSP [6];
actual languages that we have used are occam [11] and W2 [14]. That is, from now on, take
the basic operations as imperatively refined. A conversion from the functional to the imperative
representation is straight-forward.

O 00 =1 O Uk D B e D

Design: natriz-nultiplication, Refinement call: {an 4}, Current step: 8
Current parailel conmand: ((BRSIC-OP 8 8 8))
b 5 5 ‘.5 ‘L3 2,3 %3
5,37 Fa, 308, 445, @ [® @
‘.2 2 %2 %2
By ol b b o 8 @ @ ®
b 5 5 b ‘et 1 %, %31
31492411-}.’4 & @ @]
c e 5
5 5 5.8 1,86 2,8 3,8
2,87 "2, 07 ta"bao“? @ @ hd
%. e
+ g
a
5.1 e
' ' s
%.2 % e
. + + 1
%.2 %2 %1 %
* ki $
%o %nz %
4 +
%9 %2
af
3,3

M: Chooseé meniu,

L: Backward one step, R: Forward one step = .. ek

{Tue 16 Feb 18:57:17] chris CL-USER: User lmput

Figure 1: 4 x 4 Matrix Composition/Decomposition — The Two-Dimensional Systolic Array

0:0:0
0:0:1 0:1:0 1:0:0
0:0:2 0:1:1 0:2:0 1:0:1 1:1:0 2:0:0
0:0:3 0:1:2 0:2:1 0:3:0 1:0:2 1:1:1 1:2:0 2:0:1 2:1:0 3:0:0
0:1:3 0:2:2 0:3:1 1:0:3 1:1:2 1:2:1 1:3:0 2:0:2 2:1:1 2:2:0 3:0:1 3:1:0
0:2:3 0:3:2 1:1:3 1:2:2 1:3:1 2:0:3 2:1:2 2:2:1 2:3:0 3:0:2 3:1:1 3:2:0
0:3:3 1:2:3 1:3:2 2:1:3 2:2:2 2:3:1 3:0:3 3:1:2 3:2:1
1:3:3 2:2:3 2:3:2 3:1:3 3:2:2
2:3:3 3:2:3

Table 1: 4 x 4 Matrix Composition/Decomposition — The Synchronous Parallel Execution

3:3:0
3:3:1
3:3:2
3:3:3

Consider Table 1. Each column specifies, from top to bottom, the execution sequence of one process.
There is one process per processor, or cell, of the array. In Figure 1, we count rows up and columns
to the left. The z-coordinate of a cell specifies the column, the y-coordinate the row to which the
cell belongs. The process for the cell at point (col, row) is:

cell(col,row) : colirow:0 ; col:row:l ; colirow:2 ; col:rou:3

The flow directions of the streams tell us how cells must be connected and how processes must
communicate. For the purpose of the following theorem, we shall think of stationary flows as
implemented by looping channels. We shall actually implement them later as assignments. If we
know that only neighbouring cells may communicate, only the border cells must be connected by
channels to the i/o units of the systolic array. Otherwise, special arrangements have to be made
~ either in hardware or in software. Figure 1 does not display the i/o units. We shall define their
processes in the following section. For now, let us assume that the moving streams are properly
injected and extracted by the i/o units and that the systolic array is properly initialized with the
stationary stream, and let us deal only with the computation.

Consider a basic operation that is part of process cell(col, row) and that accesses a variable v with
flow (a, #). We prefix and suffix the basic operation with the following communications:

Prefiz: Input v from cell(col — a, row —).
Suffiz: Output v to cell(col + o, row + B).

If there are multiple inputs or outputs, they must be combined in parallel.

To support this augmentation, we add the following channels: if there is a variable with flow (e, 3),
then there is a channel from cell(col — @, row ~) to cell(col, row) and a channel from cell(col, row)
to cell(col + o, row + B), for every point (col, row) that is occupied by a cell.

Code Generation Theorem (Proof in Appendix A):

Let siep be linear and place be linear with coefficients in {—1,0,+1}. Let the basic operation
have n arguments: zg:---2,_1. Let the independence criterion be “no shared access of variables”
(i.e., full pipelining). Then the synchronous parallel execution specifies the same partial order of
basic operations as the asynchronous process and communication structure derived from it with
the previous augmentation.

6 The Generation of Loops

The code generation scheme requires the description of the systolic array (by step, place, flow,
and patiern) in an expanded form. We prefer the systolic program to contain loops — just as the
input program does. We need to rediscover loops, expansion or not, since the definitions of step,
place, flow, and patiern are not recursive. We represent loops by repeaters.

A repeater is a triple {fst, ent, inc}, where fst is the first element in the sequence, cnt is the
number of elements in the sequence, and inc is the increment by which an element is derived from

its predecessor. Repeater {fst, cnt, inc} is easily translated into a target language, e.g.,

occam W2

SEQ i = [0 FOR cnt] for i:=0 to cnt~1 do
£st+(ixinc) fst+ixine

Take the sequence of pairs {(0,6),(1,4),(2,2),(3,0)). Its repeater is {(0,6) 4 (+1,~2)}. Its re-
spective occam and W2 loops are:

occam W2
SEQ i = [0 FOR 4] for i:=0 to 3 do
(i,6-(2%1i)) (i,6-2%i)

Just as for-loops can be nested, so can repeaters [18]. However, we shall not need nested repeaters
in this paper.

Any finite sequence can be represented by a sequence of repeaters. Let us require that this
representation contain only maximal repeaters. A sequence of repeaters is mazimal if it does
not contain successive repeaters with an identical increment. For example, ({(0,6) 2 (+1,—2)},
{(2,2) 2 (+1,-2)}) is a non-maximal repeater representation of ((0,6),(1,4),(2,2),(3,0)). Se-
quences without non-nested recurrences have a unique maximal repeater representation. For se-
quences with non-nested recurrences, several maximal repeater representations exist. For instance,
the sequence {(0,6),(1,4),(2,2),(3,0),(3,1),(3,2)) is equally represented by ({(0,6) 4 (+1,—2)},
{(3,1) 2 (0,4+1)}) and by ({(0,6) 3 (+1,-2)}, {(3,0) 3 (0,+1)}). A maximal repeater represen-
tation can be generated with a single traversal of the sequence.

The unique maximal repeaters for 4 X 4 matrix composition/decomposition are displayed in Table
9. We must deal with three separate cases: the computation, the injection and extraction of the
moving streams, and the loading and recovery of the stationary stream. The layout of the repeaters
matches the layout of cells in Figure 1. For example, the lower left computation repeater in Table
2 is for the lower left cell in Figure 1.

The computation repeaters are derived from Table 1.

The repeaters for the injection and extraction of moving streams are derived from the data layout
in Figure 1: for each channel, trace along the stream that it propagates, starting at the array
boundary and moving away from the array. In systolic arrays, elements retain their relative position
in the stream on their way through the array. Therefore, the injection and extraction repeaters are
identical.

A stationary stream needs to be loaded into the array before the computation begins and recovered
from the array after the computation finishes. Both of these phases require the cooperation of
the i/o processes and the computation processes. Let us agree — arbitrarily — to load and recover
stationary streams along the horizontal channels; we load from the left and recover from the right.
On loading, a computation cell first accepts a stationary element and then passes on successive
elements; on recovery it first passes on elements and then ejects its own element.® The repeaters

8With the appropriate convention, we can minimize either the number of channels or the number of repeaters.
We have chosen to minimize the number of channels.

Computation:

£0:3:0 4 (0,0,+1)} {1:3:0 4 (0,0,+1)}
{0:2:0 4 (0,0,+1)} {1:2:0 4 (0,0,+1)}
{0:1:0 4 (0,0,41)} {1:1:0 4 (0,0,+1)}
{0:0:0 4 (0,0

Stream A (up):
{aco 4 (0,+1)} {a10 4 (0,+1)}
Stream B (right):

{bg’g 4 (+1,0)}
{bo2 4 (+1,0)}
{bo1 4 (+1,0)}
{bo,g 4 (+1,0)}

Stream C (stationary):

Loading:

{co3 4 (+1,0)} | {co,3, prop 3} {ec1,3, prop 2}
{co2 4 (+1,0)} | {co,2, prop 3} {c1,2, prop 2}
{coq 4 (+1,0)} | {co1, prop 3} {e11, prop 2}
{coo0 4 (+1,0)} | {co,0, prop 3} {c1,0, prop 2}

Recovery:

{prop 0, co3} {prop 1, c1,3}
{prop 0, co2} {prop1, ci12}
{prop 0, co1} {prop1, c1,1}
{prop 0, cop} {prop1, cio}

{2:3:0 4 (0,0,+1)} {3:3:0 4 (0,0,

{2:2:0 4 (0,0,+1)} {3:2:0 4 (0,0,+1)}

{2:1:0 4 (0,0,+1)} {3:1:0 4 (0,0,
(0,0

{az0 4 (0,+1)}

{c2,3, prop 1}
{62,27 prop 1}
{c2,1, prop 1}
{e2,0, prop 1}

{prop 2, co3}
{prop 2, ¢33}
{prop 2, ¢34}
{prop 2, ca0}

+1)}

2

,0,+1)}
,0,+1)}

{as0 4 (0,+1)}

{c3,3, prop 0}
{63,2, prop 0}
{c3,1, prop 0}
{es,0, prop 0}

{prop 3,
{prop 3,
{prop 3,
{prop 3,

e33} | {cos 4 (+1,0)}
cs2) | {co2 4 (+1,0)}
03,1} {60)1 4 (+1,0)}
cso) | {co0 4 (+1,0)}

Table 2: 4 x 4 Matrix Composition/Decomposition — The Repeaters

for the i/o cells are derived by tracing through the array along the horizontal channels — right to
left for loading and left to right for recovery. For the computation cells, two pieces of information
are derived:

1. the identity of the element that the cell must accept on loading and eject on recovery, and

2. a number, prop, that specifies how many elements the cell must propagate to the cells on its
right on loading and from cells on their left on recovery.

It is possible that a stationary stream does not cover the entire systolic array.” A cell that does not
hold an element will not be represented in the cell table for loading or recovery. Its prop number
is the same as that of the cell to its left on loading and to its right on recovery. The following
theorem states that a cell cannot hold several values of a stationary stream.

Data Distribution Theorem (Proof in Appendix A):

Assume that step and place are linear and that flow is well-defined, that is, for any particular
stream, flow is constant. Then, for any particular stream, the data layout function pattern is
injective. That is, no two elements within a stream are laid out at the same point.

7 Homogenization

We have derived heterogeneous systolic program code: there is a separate process definition for
each cell. The size of the program and the effort of compiling it grow if we increase the size of the
systolic array that the program emulates. If the process definitions follow a regular pattern, we
can eliminate this growth by homogenizing the program. A homogeneous systolic program is one
in which there is only one process definition — one that is parameterized with the cell identifiers.

We achieve homogenization by generating and solving a system of equations for every component of
the program. Let us demonstrate with the propagation information for the loading of the stationary
stream:

{cos, prop 3} {cis, prop 2} {ca3, prop1} {css, prop 0}

{coz2, prop 3} {ci2, prop 2} {ezz, prop1} {csz, prop 0}

{cos, prop 3} {c1a, prop 2} {21, prop1} {css, prop 0}

{co,0, prop 3} {e1,0, prop 2} {cz0, prop1} {czo, prop 0}
In order to decide how many equations to lay down, we must put a bound on the degree of the
progression. A linear progression requires two equations, a quadratic progression three, and so on.
With a linear temporal distribution of operations (step), spatial distribution of operations (place),
and spatial distribution of data (pattern), the progressions we are considering can be at most linear.
Hence, if we name the progression of the prop numbers for loading count, for the moment, we know
for columaus, say:

count(col) = o - col + 3

For every row, we now obtain two linear equations by filling in the information for two distinct
columns, and solve for o and 3, e.g.:

" An example is a more efficient dedicated array for matrix decomposition in which only the non-zero triangles of
matrices A and B are processed [8]: with place function {i, k), the triangle of A4 is the stationary stream; the processor
layout includes the diagonal, whereas the triangle of A does not.

10

count(0) = = 3 -
count(ly=a + f= 2 = count(col) = 3 — col
o = -1

Remember that the identified pattern of a stationary stream may be broken by cells that do not
hold an element. To make sure that we can homogenize all the way, we must check that the
progression we have derived is adhered to in every instance. If it is not, the array is heterogeneous.
Partial homogenization may still be possible, though.

We have collected prop horizontally, across columns, and have derived one expression for each row.
Next, we collect vertically, across rows. In this case, the expression remains constant across rows,
and we obtain:

count(col,row) = 3 — col

8 Generalization to an Arbitrary Problem Size

We can employ the same trick for a generalization from the 4x4 to the nxn problem. This procedure
works best, if we can be sure that step remains the same linear function in the parameters of the
basic operation with varying problem size n. If that is so, each dimension of place must be linear
and the same for all n as well — or it would not be consistent with step — and then, if flow is
well-defined, pattern is linear and the same for all n, too. We can ensure that step is linear and
the same for all n by enforcing additional restrictions on the format of the input program [24].

Let us continue to demonstrate with the propagation information for the loading of the stationary
stream. Because of the linearity of the layout of the operations in time and space and the data in
space, all components of the repeater representation (indices, ¢nt numbers, increments, and prop
numbers) can change at most linearly. That is, we may assume:

count(n) =a-n+f
We solve, again, a system of two equations — say, for sizes 4 and 5:

count(d) = a4+ =3—-col -
count(8) = a-5 4+ f =4 - col == count(n) =n— 1 — col
o? =1

When building this system of equations, we must be careful in the selection of values for n. We
must pick a succession that captures the recurrence. Any choice will do for a direct recurrence with
one base case. Multiple base cases or an indirect recurrence require some care. If step is the same
linear function for all n, the recurrence is direct with one base case.

We employed this technique successfully to derive mechanically other simple expressions in the
input size — for example, the number of processors of a two-dimensional systolic array [9]. In this
case, we had to solve three equations because the growth of processors in a two-dimensional systolic
array is quadratic.

The mathematically most satisfying way of generalizing is by induction, but our overriding concern
is mechanical autonomy. At present, the techniques for solving systems of equations are more
autonomous than those for recognizing and proving induction schemes.

11

Computation:

cell(col,row) = {colirow:0 n (0,0,+1)}
Stream A (up):

i/o-unit(col) = {acuo n (0,+1)}
Stream B (right):

ifo-unit(row) = {browo n (+1,0)}

Stream C (stationary):

Loading:
iunit(row) = {corow n (+1,0)}
cell(col,row) = {ccoirow, 7 — 1 — col}
Recovery: &
cell(col,row) = {col, cool row}

I

o-unit(row) {corow m (+1,0)}

Table 3: n X n Matrix Composition/Decomposition — The Repeaters

9 Translation to a Target Language

This completes the derivation of machine-independent program code (repeaters) from step and
place. Table 3 displays the final result. We have gone on and produced concrete distributed pro-
grams in W2 for the processor array Warp and in occam for several different Transputer networks.
The W2 program was derived from a different set of repeaters: we projected the two-dimensional ar-
ray (Fig. 1) to one dimension before we generated the repeaters [18]. (Warp has a one-dimensional
processor layout.) occam programs for a two- and a one-dimensional Transputer network were
derived from the the repeaters in Table 3. The two-dimensional program can be found in Appendix
B; for the one-dimensional program see [19]. Here we performed the projection after the generation
of repeaters: the one-dimensional program was derived from the two-dimensional one by techniques
of program transformation.

The mechanical translation of repeaters to W2 or occam for-loops is trivial. The rest — mainly
variable declarations — has been coded by hand. We do not anticipate any problems with its
mechanization.

12

10 Other Systems

There are a number of systems that implement the functional method of systolic design [2,23,25];
at present, none of them incorporates a mechanical code generation.

We know of only one other system, SDEF [4], that performs code generation. SDEF is a program-
ming system that serves as a back-end for the functional method of systolic design. Beside an
automatic generation of C code augmented with communication directives it provides simulation,
tracing and debugging facilities. The code, generated by a “translator”, may be tested with a “sim-
ulator” and is ultimately executed on a programmable processor array that provides a run-time
system for C programs with communication. SDEF requires the use of a rectangular processor grid
of sufficient size; streams that are not horizontal or vertical are appropriately rerouted.®

Our work has a different focus. We consider only the translation step but make it more independent
than it is in SDEF. Our translation scheme applies to both the functional and the imperative method
of systolic design (in our own work, we emphasize the imperative method). Our goal is a set of
simple, precise and generally applicable techniques for the generation of systolic programs in any
distributed programming language.® To that end we have defined a machine-independent code form
(repeaters) and have addressed issues like homogenization and generalization in terms of it. It will
be interesting to compare the quality and nature of the C code generated by SDEF’s translator
with equivalent C code generated from repeaters.

11 Conclusions

We have also generated repeaters for other systolic arrays that perform, e.g., matrix composition,
matrix decomposition, convolution, polynomial evaluation, and Gauss-Jordan elimination. We do
not offer a systolizing compiler at this stage. But we offer a view of how a systolizing compiler
would function after some further development.

The programs that the compiler would accept are of the nested loop format that we specified in the
introduction. In the imperative style, an optimal step function can be found for any program of
this form [8], but only if step is linear may the systolizing compilation proceed. Siep is gnaranteed
to be optimal and linear if additional restrictions on the input program are made [24]. The place
function can either be supplied externally or chosen by the compiler after a search. Ill-defined flows
can be dealt with by a technique of adding variables and providing reflection operations [9]. Omnce
a systolic array has been identified, heterogeneous fixed-size repeaters can always be generated.
“Soaking” or “draining”, i.e., the case where the first or last use of a moving stream element is not
at the border of the systolic array can also be dealt with [18]. Complete homogenization may not
be possible but, with the additional restrictions on the input program, the generalization of the
repeaters to an arbitrary problem size is automatic.

We are working on extending the scope of the compilation scheme to piecewise linearity as in the
case of the algebraic path problem [9]. Then, the compiler would accept non-nested compositions
of the previous input format. We have already obtained mechanically generated repeaters and an
occam program for the algebraic path problem [10]. For piecewise linearity, the instantiation of the
problem size helps considerably in the development of a systolic array. The challenge lies in the
mechanical generalization to an arbitrary problem size.

In our work, we have addressed a different hardware adaptation technigue: projection [18,19].
°SDET goes straight to C.

13

A systolizing compiler will also have to address the problem of how to cope with the physical
limitations of a systolic computer. For example:

e Given a dimension, the range (i.e., the number of processors) of the systolic array exceeds
that of the systolic computer. This problem can be addressed by partitioning the design or
converting it into a ring or toroid (e.g., [16,22]).

e The number of channel connections per processor in the optimal systolic design exceeds that
of the systolic computer. This problem can be addressed by rerouting techniques (e.g., [4]).

e The number of dimensions (of the processor layout) of the systolic array exceeds that of
the systolic computer. This problem can be addressed by projecting the systolic array (e.g.,
[16,18,19]). Essentially, a projection takes one dimension away from the place function and
adds it to the step function.

Already our present implementation has been a big help in the derivation of systolic programs
— although it does not include homogenization and generalization, and performs only a partial
translation (namely that of repeaters) into the target language. With it, we developed one of the
largest Warp programs at the time of its conception. This program performs matrix decomposition
with triangular streams A and B. It is heterogeneous and its coding by hand would have been
extremely difficult [18].

12 Acknowledgements

This work took shape during consecutive visits at Carnegie-Mellon and Oxford University. I am
grateful to H. T. Kung and C. A. R. Hoare for their invitations. I would also like to thank G.
Jones, C.-H. Huang, W. Luk, P. Quinton, H. Ribas, and J. Sanders for discussions.

13 References

[1] Ametek Computer Research Division, “Series 2010 System, General Description”, Issue 3,
Ametek, Inc., Apr. 1988,

[2] M. C. Chen, “A Parallel Language and Its Compilation to Multiprocessor Machines”, J. Par-
allel and Distributed Computing 3, 4 (Dec. 1986), 461-491.

[3] M. C. Chen, “Placement and Interconnection of Systolic Processing Elements: A New LU-
Decomposition Algorithm”, Research Report YALEU/DCS/RR-498, Department of Computer
Science, Yale University, Oct. 1986.

[4] B. R. Engstrom and P. R. Cappello, “The SDEF Systolic Programming System”, Proc. 1987
Int. Conf. on Parallel Processing, The Pennsylvania State University Press, 1987, 645-652; full
paper: TRCS587-15, Department of Computer Science, UC Santa Barbara, Aug. 1987.

[5] T. Gross, M. Lam and J. Reinders, “Programming Warp in W2”, Department of Computer
Science, Carnegie-Mellon University.

[6] C. A. R. Hoare, “Communicating Sequential Processes” Comm. ACM 21, 8 (Aug. 1978), 666~
677.

14

[7] C.-H. Huang, “The Mechanically Certified Derivation of Concurrency and its Application to
Systolic Design”, Ph. D. Thesis, Department of Computer Sciences, The University of Texas
at Austin, Aug. 1987.

[8] C.-H. Huang and C. Lengauer, “The Derivation of Systolic Implementations of Programs”,
Acta Informatica 24, 6 (Nov. 1987), 595-632.

[9] C.-H. Huang and C. Lengauer, “Mechanically Derived Systolic Solutions to the Algebraic Path
Problem”, in VLSI and Computers (CompEuro 87), W. E. Proebster and H. Reiner (eds.),
IEEE Computer Society Press, 1987, 307-310; full paper: TR-86-28, Department of Computer
Sciences, The University of Texas at Austin, Dec. 1986.

[10] D. G. Hudson III, Graduate Class Project, Fall 1988. A tech. report is forth-coming,.

[11] Inmos, Ltd., occam Programming Manual, Prentice/Hall Int., Series in Computer Science,
1984.

[12] Inmos, Ltd., Transputer Reference Manual, Prentice Hall, 1988.

[13] H. T. Kung and C. E. Leiserson, “Algorithms for VLSI Processor Arrays”, in Introduction to
VLSI Systems, C. Mead and L. Conway (eds.), Addison-Wesley, 1980, Sect. 8.3.

[14] H. T. Kung et al., “The Warp Computer: Architecture, Implementation, and Performance”,
IEEE Trans. on Computers C-36, 12 (Dec. 1987), 1523-1538.

[15] M. Lam, “A Systolic Array Optimizing Compiler”, Ph. D. Thesis, Department of Computer
Science, Carnegie-Mellon University, May 1987.

[16] P. Lee, Z. Kedem, “Synthesizing Linear Array Algorithms from Nested for Loop Algorithms”,
Tech. Report 355, Department of Computer Science, Courant Institute of Mathematical Sci-
ences, New York University, Mar. 1988

[17] C. Lengauer, “A Methodology for Programming with Concurrency: The Formalism”, Science
of Computer Programming 2, 1 (Oct. 1982), 19-52.

[18] C. Lengauer, “On the Projection Problem in Systolic Design”, Tech. Report CMU-CS-88-102,
Computer Science Department, Carnegie-Mellon University, Feb. 1988.

[19] C. Lengauer and J. Sanders, “The Projection of Systolic Programs”, Extended Abstract, Dec.
1988. A tech. report is forth-coming.

[20] P. J. Lieu, Personal communication, Department of Computer Science, Carnegie-Mellon Uni-
versity, Nov. 1987.

[21] J. R. McGraw et al, “SISAL Language Reference Manual, Version 1.2”, Manual M-1486,
Lawrence Livermore National Laboratory, University of California at Davis, Mar. 1985.

[22] D. I. Moldovan and J. A. B. Fortes, “Partitioning and Mapping Algorithms into Fixed-Size
Systolic Arrays”, IEEE Trans. on Computers C-35, 1 (Jan. 1986), 1-12.

[23] D.I. Moldovan, “ADVIS: A Software Package for the Design of Systolic Arrays”, IEEE Trans.
on Computer-Aided Design CAD-6, 1 (Jan. 1987), 33—-40.

15

[24] P. Quinton, “The Systematic Design of Systolic Arrays”, Tech. Report 193, Publication Interne
IRISA, Apr. 1983; also: TR84-11, The Microelectronics Center of North Carolina, May 1984.

[25] P. Quinton et al., “Designing Systolic Arrays with DIASTOL”, in VLSI Signal Processing 11,
S.-Y. Kung, R. E. Owen, and J. G. Nash (eds.), IEEE Press, 1986, 93-105.

[26] P. Quinton et al., “Synthesizing Systolic Arrays Using DIASTOL”, in Systolic Arrays, W.
Moore, A. McCabe, and R. Urquart (eds.), Adam Hilger, 1987, 25-36.

[27] P. Quinton, “Mapping Recurrences on Parallel Architectures”, in Supercomputing ’88 (ICS 88),
Vol. III: Supercomputer Design: Hardware & Software, L. P. Kartashev and S. I. Kartashev
(eds.), Int. Supercomputing Institute, Inc., 1988, 1-8.

[28] S. K. Rao, “Regular Iterative Algorithms and their Implementations on Processor Arrays”,
Ph. D. Thesis, Department of Electrical Engineering, Stanford University, Oct. 1985.

A Proofs

Code Generation Theorem:

Let step be linear and place be linear with coefficients in {—1,0,+1}. Let the basic operation
have n arguments: Zo:--%,—1. Let the independence criterion be “no shared access of variables”.
Then the synchronous parallel execution specifies the same partial order of basic operations as the
asynchronous process and communication structure derived from it with the previous augmentation.

Proof.
We construct the two partial orders and show that they are equal.

(a) The synchronous partial order is derived from the independence of basic operations and from
the step function. Let us denote the independence of zg:- - =z, and yo:- - yp-1 by

Zoi - Tp—1 I Yol Ypet
We write zgi- - %n_1 <s Yoi** “¥n—1 and say zg:- - %,.1 synchronously precedes yg:- - y,_1 i

=(zgi - Tp—1 ind yor--iyn_1) A step(zo:--Tn_1) < step(yo: - Yn-1)

Following our program format, a variable’s subscripts must comprise at least n — 1 out of the
n arguments of the basic operation. For the purpose of this proof, the order of the subscripts
in the subscript list is irrelevant. Let us assume it matches their order in the argument list
of the basic operation. A variable that is subscripted by all n arguments is accessed only
once during the computation and, therefore, cannot be the cause of a dependence. We need
not consider it. Let Vars be the set of the names of all variables that are accessed by n — 1
arguments. Denote the position of the argument that does not appear in the index list of the
variable by i,. Our criterion for independence is “no shared access of variables”:

(V'{] € Vars: <$07 veoy Liy—1y Lhy+1y "’7xn-—1> :fé <y0? ooy Yipe Ty Yiyddg voey yn—-}))

=
ol Zp-1 ind Yolo U1

16

Applying de Morgan’s laws and plugging in the independence criterion, we obtain:

(37—7 € Vars: <m09 cnoy Liymo Ly b1y ey $n-—1> = (yﬂs eeey Y1y Yiyt1s ooy yn—l)
A Step(xﬂz' ' ':xn—l) < step(yoz- : ':yn—1>)

(b) We construct the asynchronous partial order by disjunctively composing the sequencing con-
straints that are enforced by the semantics of our asynchronous program — one disjunct per
variable. Pick any variable v that is communicated from zg:- - 2,1 to yo:- - “yn—1. According
to our construction, v must be accessed by both basic operations. Thus, there must be some ¢,
such that (2o, .., Tiy—1, Tiy+15 -er Tne1) = (Y05 eees Yipm1s Yigt1s o Yno1). Also, x5, # y;,, since
the programs we accept may not contain identical calls of the basic operation. For all pairs
of basic operations of which the first communicates v to the second, z;, and y;, must be in
the same order — let us denote it by z;, <, y;,. To understand that, note the following. Our
augmentation of basic operations with communications guarantees

T, <y Yi, <> step(zor - Zp-1) < step(yoir - “Yn-1)

But the order imposed by step on the basic operations that access v is the same for each pair,
since step is monotone as a non-constant linear function.

We write zg:** 1 Zp-1 <a Yoi* - “Yn—1 and say zo!- - 1,1 asynchronously precedes yo:- - yn_1
iff
(37} € Vars: (xO: oy Tiymdy Tigbly ooey xn—l} - <y0>"" Yip—1sYiy+15 005 yn——1> Az <y ?h)

Now observe that the relations <, and <, are both disjunctions over the same range, and that the
mutual equations in the disjuncts match. And we have just defined the order z; <, y; to match
the order step(zg:- - Zn_1) < step(Yo:- * *Yn—1)-

(End of Proof)

Data Distribution Theorem:

Assume that step and place are linear and that flow is well-defined, that is, for any particular
stream, flow is constant. Then, for any particular stream, the data layout function patiern is
injective. That is, no two elements within a stream are laid out at the same point.

Proof:

Pattern is linear. A linear function is either constant (then all multiplicative coeflicients are zero)
or injective (then at least one multiplicative coefficient is not zero). We show that pattern cannot
be constant. Pick any one of its dimensions arbitrarily:

(a) Flow is zero in this dimension. Then pattern equals place in this dimension. But place
cannot be constant in any dimension and be consistent.

(b) Flow is not zero in this dimension. For pattern to be constant, place in this dimension and
step must be linearly dependent, i.e., inconsistent.

(End of Proof)

B Systolic n x n Matrix Composition/Decomposition

The pre- and postprocessing phases are omitted. Other than that, the program is executable. Note
the limitations of the original version of occam [11]: only one-dimensional arrays, no floating point
arithmetic (we use a software floating point package)'®, full parenthesization of expressions.

B.1 The occam Program

VAR AIn[n*n], BInln*n], CIn[n*nl, -~ input matrices
AQut[n*n], BOut[n#n], COut[n*n]: -~ output matrices
CHAN Right[nx(n+1)]: == horizontal channels
CHAN Up[(n+1)#*n]: -- vertical channels

SEQ
-- PREPROCESSING

“read in input matrices"
“initialize output matrices"

PAR
~-- INPUT CELLS
-- yertical input: inject stream &
PAR col = [0 FOR n]
SEQ row = [0 FOR n]
Up[((n+1)*col)+0] ¢ AIn[(n*col)+row]

-~ horizontal input: load stream C and inject stream B

PAR row = [0 FOR n]
SEQ

SEQ col = [0 FOR nl
Right[(n*0)+row] ! CIn[(n*col)+row]

SEQ col = [0 FOR n]
Right[(n*0)+row] ! BIn[(n*col)+row]

®Read Reallp(z,x,0p,y)asz := x Op ¥

18

-~ COMPUTATION CELLS

PAR col = [C FOR nl
PAR row = [0 FOR n]

VAR AFlement, BElement, CElement:
SEQ
-~ load stream C
Right[(n*col)+row] 7 CElement
SEQ unused = [0 FOR (n-1)-col]
VAR tmp:
SEQ
Right[(n*col)+row] ? tmp
Right[(n*(col+1))+row] ! tmp

-- do the computation

SEQ k = [0 FOR nl
SEQ

PAR
Up[((n+1)*col)+row] ? AElement
Right[(n*col)+row] 7 BElement

BasicOp{col, row, %k, AElement, BElement, CElement)

PAR
Up[((n+i)*col)+row+l] ! AElement
Right[(n*(col+1))+row] ! BElement

-~ recover stream C
SEQ k = [0 FOR col]
VAR tmp:
SEQ
Right[(n*col)+row] 7 tmp
Right[(n*(col+1))+row] ! tmp

Right[(n*(col+1))+row] ! CElement

19

-- QUTPUT CELLS
-- horizontal output: extract stream B and recover stream C

PAR row = [0 FOR n]
SEQ

SEQ col = [0 FOR n]
Right[{n*n)+row] ? BOut[(n*col)+row]

SEQ col = [0 FOR n]
Right[(n¥n)+row] 7 COut[(n*col)+row]

-- vertical output: extract stream A4
PAR col = [0 FOR n]
SEQ row = [0 FOR n]
UpL({n+1)*col)+n] 7 AOut[(n*col)+row]

-~ POSTPROCESSING

“read out output matrices”

B.2 The Basic Operation for Matrix Composition in occam

PROC BasicOp{(VALUE i, j, k, AElement, BElement, VAR CElement) =
VAR tmp:
SEQ

RealOp(tmp, ProjElement, Mul, MoveElement)
RealOp(StatElement, StatElement, Add, tmp)

B.3 The Basic Operation for Matrix Decomposition in occam

PROC BasgicOp(VALUE i, j, k, VAR AElement, BElement, CElement) =
VAR tmp:
SEQ
IF

(i<=j) AND (i=k)
BElement := CElement

20

(i>3j) AND (j=k)
SEQ
RealOp{tmp, One, Div, BElement)
RealOp(AElement, CElement, Mul, tmp)

(i>k) AND (j>k)
SEQ
RealOp{(tmp, AElement, Mul, BElement)
Reale(CElement, CElement, Sub, tmp)

TRUE
SKIP :

21

