CONVERGENCE/RESPONSE TRADEOFFES IN
CONCURRENT SYSTEMS

Mohamed G. Gouda! and Michael Evangelist?

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-39 October 1988

Abstract

A self-stabilizing system is one which if started at any unsafe state, is guaranteed to
converge to a safe state within a finite number of state transitions. The convergence
span of such a system is defined as the maximum number of critical transitions that
can be executed before the system reaches a safe state. In this paper, we discuss the
tradeoff between the convergence span of a self-stabilizing system and its response
span. In particular, we argue that the convergence span can be reduced by some fac-
tor by increasing the response span by the same factor, and vice versa. Our discus-
sion is centered on a class of self-stabilizing systems for detecting termination on a
uni-directional ring. The discussion leads to a family of systems whose convergence
span is O(n/k), and whose response span is O(nk), where n is the number of pro-
cesses in the system, and k is a parameter whose value can be chosen arbitrarily
from the domain 1 ... n.

IDepartment of Computer Sciences, University of Texas at Austin, TX 78712-1188. This work was supported in
part by Office of Naval Research Contract N00014-86-K-0763, and in part by a contract with MCC.
2 MCC, 3500 W. Balcones Center Dr., Austin, TX 78759.

[

1. Introduction

A system is called self-stabilizing iff starting at any unsafe state, the system is
guaranteed to reach a “safe” state within a finite number of “critical” state transi-
tions. Thus, to check whether a given system is self-stabilizing, one needs first to
identify which system states are safe and which state transitions are critical. This
identification depends on the intended functionality of the system. Consider for ex-
ample a mutual exclusion system. A safe state for this system can be defined as any
state s where at most one process is in its critical section at any state reachable from s.
In other words, a safe state is one whose descendent states satisfy the safety require-
ment of mutual exclusion. The critical transitions for the system can be defined as
those in which some process enters its critical section.

This definition of self-stabilizing systems is a generalization over the previous
definition in which all state transitions are implicitly assumed critical [3]. The gen-
eralization allows a self-stabilizing system to remain within unsafe states indefi-
nitely, provided that none of its critical transitions is executed infinitely often. For
example, if none of the processes in the above mutual exclusion system ever at-
tempts to enter its critical section, then the system can remain within unsafe states
indefinitely. On one hand, this is unavoidable: a system converges to a safe state
only if it is executed and so the mutual exclusion system can converge to a safe state
only if its processes attempt to enter their critical sections. On the other hand, this is
harmless: if no process attempts to enter its critical section (infinitely often), then
the possibility of error occurrence, i.e. two processes being in their critical sections
simultaneously, will not arise (infinitely often).

The maximum number of critical transitions that can be executed by a system be-
fore reaching a safe state is called the system’s convergence span. A finite (infinite)
convergence span for a system indicates that the system is (is not) self-stabilizing. A
small (large) convergence span for a self-stabilizing system indicates that the system
can commit a small (large) number of errors during its convergence, an error is de-
fined in this context as an execution of a critical transition at an unsafe state.

The convergence span of a system is related (as shown shortly) to another quan-
tity called the system’s response span. The response span of a system is defined as
the maximum number of transitions that can be executed by the system starting
from some initial state and ending in some target state. The choice of initial and
target states for defining the response span of a given system depends on the

particular system. For instance, an initial state for a mutual exclusion system can be
any state in which no process is in its critical section and at least one process is trying
to enter its critical section; a target state for the system can be any state in which at
least one process is in its critical section.

The objective of this paper is to illustrate that the convergence span of a self-sta-
bilizing system can be inversely-proportional to the system’s response span. Thus, a
price for reducing the convergence span of a system is a proportional increase in its
response span. An inverse relationship between the convergence and response of a
self-stabilizing system may not be very surprising. Indeed, if delaying the system’s
response can be tolerated, then more “checks” can be added into the system to re-
duce the maximum number of errors that it can commit as it converges from unsafe
to safe states. What may be surprising is that the relationship is proportional, i.e.
reducing the convergence span by some factor increases the response span by the
same factor.

In order to make these concepts concrete, we discuss in this paper the conver-
gence/response tradeoffs in a class of self-stabilizing systems for detecting termina-
tion. Each system has n processes Py, ..., Pn-1 that execute an infinite stream of jobs,
one after another. When the processes finish executing one job, Py detects the ter-
mination of execution and starts the execution of the next job, and the cycle repeats.
The processes in each system are arranged on a uni-directional ring, where every
process Pj reads the state of its left neighbor Pi-1 mod n, and uses these readings to
update its own state. (Having the processes arranged on such a ring makes the task
of achieving self-stabilization nontrivial and interesting.)

The rest of the paper is organized as follows. In Section 2, we discuss a simple
termination-detection system that uses a binary-valued token. A version of this
system was introduced earlier by Dijkstra, Feijen, and van Gastern [4], and indepen-
dently by Gouda [6]. Our objective of presenting this system here is two-fold. First,
we use the system as a vehicle to introduce our notation and to set the stage for sub-
sequent discussions. Second, we show that this system, like most early termination-
detection systems, e.g. [2, 5], is not self stabilizing. Two self-stabilizing variations of
this system are discussed in Sections 3 and 4. The first variation, in Section 3, uses
an n-valued token; it exhibits slow convergence and fast response. The second vari-
ation, in Section 4, uses a binary-valued token, and an n-valued counter in process
Pyg; it exhibits fast convergence and slow response. In Section 5, we discuss how to
combine these two systems into one that exhibits flexible convergence and response.

4

Specifically, the convergence (response) span of the system can be reduced by any
factor provided that its response (convergence) span increases by the same factor.
Concluding remarks are in Section 6.

2. The Original System: Unstable

The basic idea of the original system is straightforward. The system consists of n
processes Py, ..., Pn_1 arranged on a uni-directional ring. Whenever process Py be-
comes idle, it sends a token to its right neighbor P;. Whenever a process Pj, i # 0,
becomes idle, then receives a token from its left neighbor Pi_1 mod n, it propagates the
token to its right neighbor Pi;1 mod n. If the token returns to Pg and Py is still idle, Py
detects termination. If the token returns to Pg and Py is busy, termination is not de-
tected at this time, but the procedure is repeated when Py becomes idle at a later
time. Notice that after an idle Py sends a token, it can become busy before it receives
the token back; but if this happens, Py cannot become idle again until after it receives
the token.

Formally, a state of a process Pj is a pair (s;, vi), where s; € {idle, busy} and v; € {0, 1}.

A system state is a string of n pairs (sg, vo) (s1, V1) ... (Sn-1, Vn-1), where each (sj, vy
is a state of process P;.

The possible activities of each process P; are defined by a number of state fransi-
tions; each of which has the form:

(present state of Pi_1 mod n) {present state of P;) — (next state of Py)
This form suggests that the processes are arranged on uni-directional ring, where
each process can read its own state and the state of its left neighbor, and use the in-
formation to update its state.
The state transitions of Pg are as follows.
tg. Start termination detection of current job: (s, v) (busy, v) — (idle, v+1 mod 2)

t1. If no termination, continue current job: (busy, w) (idle, v) — (busy, v)
tp. If termination, start a new job: (s, v) (idle, v) — (busy, v)

The state transitions of P, 1 =1, ..., n—1, are as follows.

t3. Finish anytime: (s, w (busy, v — (idle, w)
t4. Help neighbor: (busy, w) (idle, v) — (busy, v)
ts. Propagate token: (s, u) (idle, v) — (dle, u)

provided u=v

These transitions can be explained informally as follows. In transition tg, process
Pg starts the termination detection when its state (sg, vp) satisfies the condition sg =
busy A vg = vn-1. (In fact, all the vy's are guaranteed to be equal at this instant, as
shown shortly.) The termination detection is started by making s¢ = idle and vg =
vn-1 + 1 mod 2. This “new” value of vg is propagated to the vi’s of other processes
(transition ts), after each of them finishes execution and becomes idle (transition t3).
Note that the propagation of this new value simulates the circulation of a token. If
the new value of vg reaches vy_1 while sg remains idle, process Py detects the termi-
nation of the current job and starts the next job (transition tp). If, on the other hand,
the new value reaches vq_1 after sy becomes busy (transition t1), termination is not
detected at this time, and another termination detection is tried at some later time.

Formally, the system has the usual interleaving semantics where exactly one
state transition, selected arbitrarily from those that are currently being enabled, is
executed at a time.

We are now ready to define the concept of a safe system state, then use this con-
cept to state and verify three useful properties of the system: liveness, safety, and
integrity. Informally, liveness means that at each system state, safe or not, at least
one state transition is enabled and can be executed. Safety means that any system
state that is reachable from a safe state is safe. In other words, once the system is in a
safe state, its progress can only be through safe states. Integrity means that as the
system progresses through safe states, it will detect termination when and only
when termination does occur. Later in the section, we show that the system is un-
stable, i.e. if it starts at some unsafe state, it can progress indefinitely through unsafe
states.

A system state (sg, vg) ... (Sn-1, Vn-1) is called safe iff it satisfies the following two
conditions:

0. (sg=idle) =
m:0<m<n:Wi:0<i<m:si=idleavi=vgppa(Vim<i<n:vi=
vo—~1 mod 2))

1. (sg=busy) =
Gm:0<m<n:Vi:0<i<m:vi=vpa(Vi:m<i<n:v;=vg-1mod?2))

Theorem 1: (Liveness of Original System) At least one state transition is enabled at
each system state, whether safe or not.

Proof: Let (sp, vp) ... (Sn-1, Vn-1) be any system state. If there is somei,i=1, ..., n~1,
such that s; = busy, then transition t3 of P; is enabled at that state. Moreover, if there
is some i,i = 1, ..., n=1, such that s; = idle and v; # vi-1 then transition t5 of P; is en-
abled at that state. Therefore, we need only to consider states that satisfy

(Vi:1<i<n:sj=idle A vi=vp).

For any such state, if sg = idle then transition t is enabled at that state. Otherwise, sg
= busy and transition fg is enabled at that state. J

Theorem 2: (Safety of Original System) Any system state that is reachable from a
safe state is safe.

Proof: It is sufficient to show that if S is a safe state of the system, and if a state S
follows S over some state transition t, then S' is safe. The proof is by considering the
six casest=1tg, ..., t =15. 0

Theorem 3: (ntegrity of Original System) Starting at any safe state,

a. transition tp is executed, only when current job is completed, and
b. when current job is completed, t7 is eventually executed.

Proof:

(Part a) If tp is executed at a safe state, then at that state: sg = idle and vg = vn_1.
Therefore, this state, being safe, is in the form: (idle, vp)... (idle, vg), i.e. current job is
completed at that state.

7

(Part b) If current job is completed at a safe state (sg, vg) ... (Sn-1, Vn-1), then (Vi: 0 <i
<n:s; = idle). Since this state is safe, it satisfies the following condition.

Em:0<m<n:(Vi:0<i<m:vi=vp) A(Vi:m<i<n:v;=vg1mod 2))

The only transition that can be executed starting at this state is t5. This transition
can be executed at most n-m~1 times yielding at the end a state in the form (idle, vg)
... (idle, vp) at which only t; can be executed. L

From Theorem 1, the system is guaranteed to progress indefinitely regardless of
whether its starting state is safe. From Theorems 2 and 3, if the system starts at a safe
state, it will progress indefinitely through safe states, and will continue to detect
termination when and only when termination does occur. Unfortunately, as we
show next, if the system starts at an unsafe state, it can progress indefinitely through
unsafe states while executing the critical transition tp infinitely many times. (Notice
that we have identified tp as the critical transition of the system because it is the
transition that performs the system’s main function, namely detecting the termina-
tion of the current job and starting the next job.)

To show this instability, assume that a system with four processes is at the unsafe
state

(idle, 0) (busy, 1) (idle, 0) (idle, 0).

Starting from this state, the following scenario keeps the system within unsafe states
indefinitely:

After executing tp, the state becomes: (busy, 0) (busy, 1) (idle, 0) (idle, 0).
After executing ts, the state becomes: (busy, 0) (busy, 1) (idle, 1) (idle, 0).
After executing t3, the state becomes: (busy, 0) (idle, 0) (idle, 1) (idle, 0).
After executing tg, the state becomes: (busy, 0) (busy, 0) (idle, 1) (idle, 0).
After executing ty, the state becomes: (idle, 1) (busy, 0) (idle, 1) (idle, 0).
After executing t5, the state becomes: (idle, 1) (busy, 0) (idle, 1) (idle, 1).

This last state is the “mirror” of the initial state with each “0” being replaced by “17,
and vice versa. By repeating the same sequence of transitions over and over, the
system detects termination infinitely many times, even though termination never
occurs.

In the next section, we present a self-stabilizing version of this system, i.e. one
that if started at any unsafe state is guaranteed to converge to a safe state within a fi-
nite number of its critical transitions.

3. A Slow Convergence/Fast Response System

The system we consider in this section is identical to the previous system except
that the value of each v; ranges from 0 to n-1 instead of from 0 to 1. (Recall that n is
the number of processes in the system.) The system transitions remain the same as

before except for tg. For convenience, we list here all the state transitions of the system.

The state transitions of process Py are as follows:

tg. Start termination detection: (s, v) (busy, v) - (idle, v+1 mod n)
t1. Continue current job: (busy, w) (idle, v) — (busy, v)
to. Start new job: (s, v) (idle, v) — (busy, v)

The state transitions of each Py, 1 =1, ..., n—1, are as follows:

t3. Finish anytime: (s, w) (busy, v) — (idle, u)k
ts. Help neighbor: (busy, w) (idle, v) — (busy, v)
ts. Propagate token: (s, v) (idle, v) — (idle, u) provided u=v

A system state (sg, vg) ... (5n-1, Vn-1) is called safe iff it satisfies the following two
conditions:

0. (sg=idle) =
m:0<m<n:(Vi:0<i<m:sj=idleavi=vga(Viim<i<n:vi=vg-1
mod n))

1. (sg=busy) =
Em:0<m<n:Vi:0<ism:vi=vga(Vi:m<i<n:vi=vg-1modn))

Based on this definition, the properties of liveness, safety, and integrity can be
stated and verified for this system in the same way that these properties have been
stated and verified for the original system. (See Theorems 1, 2, and 3.) We now
concentrate on establishing that the current system is self-stabilizing and that its
convergence span is O(n). But first we need to identify the critical transition(s) of

the system. The function of the system is to detect termination of the current job
before starting the execution of the next job. Thus, because t; is the transition where
termination of the current job is detected and execution of the next job is started, it is
reasonable to identify t; as the system’s critical transition. Based on this identifica-
tion, we can now state and verify two theorems concerning self-stabilization and
convergence span of the system.

Theorem 4: (Self-Stabilization of Second System) Starting at any unsafe state, the
system will reach a safe state before executing tp for the (n+1)th time.

Proof: Assume that the system starts at an unsafe state
(s0, vO) ... (5n-1, Vn-1)
There are two cases to consider:

Case O (for each i, 1<i < n, v; #vp): In this case, neither tg nor tp can be executed at
the starting state. Executing any of the other transitions yields states in the form:

(rg, vo) ... =1, v0) 'my Vir) -.. (tn1, V1)

where (i) foreachi, m<i<n,v;=#vg and
(ii) ifrg=idlethenrg=r1=... =rm.1 =idle.

So long as m < n, neither transition tg nor tp can be executed. If t is eventually exe-
cuted for the first time, then prior to its execution, the system must have reached a
state in the following form (this is the same as the previous form except that m =n
and rg = idle):

(idle, vo) (idle, vg) ... (idle, vg)

Such a state is safe. In other words, the system will reach a safe state before the first
execution of t.

Case 1 (for some i, 1 <i < n, v; = vp): Because each of the n vi’s has a value from 0 to
n-1, and because at least two of them have equal values, there is some integer m, 0 <
m < n, such that for each i, 0 £i < n, vi # m. Of all the state transitions, only tp can
increase the set of values of the vi’s. Because each execution of tg increments vg by

10

one, and because each two successive executions of t) must be separated by one exe-
cution of tg, then before n executions of ty, the system will reach a state where vg =
m, and for every i, 1 £i <m, v; # m. The argument of Case 0 (above) can now be ap-
plied to show that the system will reach a safe state before the next execution of tp. U

Theorem 5: (Convergence Span of Second System) The convergence span of the
system is O(n).

Proof: From Theorem 4, the convergence span is at most O(n); thus it remains to
show that the convergence span of the system is at least O(n). This is done by ex-
hibiting a computation of the system along which the critical transition t; is exe-
cuted (n-1) times before the system reaches a safe state. Assume that the system
starts at an unsafe state:

(so, vo) (81, V1) ... (5n-1, Vn-1)

where s1=busy,
foreachi,i= 1, s; =idle,
V-1 = Vg, and
foreachi, 2 <i<n-1, vpi = (i~1) + vp1

At that state, the sequence of transitions t2.tg.t5 can be executed leading the system to
the unsafe state:

s1 = busy,

foreachi,i#1,s; =idle,

Vn = Vn-1 = Vg, and

foreachi, 3 <i<n-1, vpy = (i-2) + vp1

At that state, the sequence of fransitions tp.tp.t5.t5 can be executed leading the system
to the unsafe state:

s1 = busy,

foreach i,i# 1, s; = idle,

Vn-3 = Vp-2 = Vp-1 = Vg, and

foreachi, 4 £i<n-1, vpi = (i-3) + vp1

11

This can be repeated a total of n-2 times leading the system to the unsafe state:

s1 = busy,
for eachi, i #1,s; = idle, and
V] =V2=...=Vnp]=V.

At that state, to can be executed for the (n-1)th time. This computation establishes
that the convergence span is at least O(n), and the theorem follows. i

The responsiveness of this system can be measured by the maximum number of
transitions which can be executed from the time a job is terminated until the time
its termination is detected. Formally, the response span of the system can be defined
as the maximum number of state transitions in a computation that (i) starts from a
safe state where each s; = idle, (ii) ends with a safe state of the form (idle, v) ... (idle,
v), and (iii) does not reach a state of the form (idle, v) ... (idle, v) in the middle.
Based on this definition, the response span for the system is O(n), similar to its con-
vergence span.

In the next section, we present another termination-detection system whose
convergence span is O(1), and whose response span is O(n2). The existence of these
two systems demonstrates the potential tradeoff between convergence and response
in self-stabilizing systems.

4. A Fast Convergence/Slow Response System

The idea for the third system is simple. Process Py circulates a binary token to
detect termination, as in the original system. However, unlike the original system,
Pg sends the binary token and receives it n successive times before termination is fi-
nally detected. To keep track of the number of times the token has been circulated
so far, Py is provided with a local n-valued counter named z. Therefore, a state of Py
is a triple (s, v, z), and a state of each other P; is a pair (s, v), where s ¢ {idle, busy}, v e
{0,1}, and ze {0, 1, ..., n-1}. A system state is a string

(sg,vo,2) (51, v1) ... (5n-1, Vn-1)

where (sg, v, z) is a state of Py, and for each i,i=1, ..., n-1, the pair (s;, vj) is a state of P;.

12

The state transitions of Py are as follows:

tg. Start detection: (s, v) (busy, v, 2) — (idle, v+1 mod 2, 0)

tpa. Continue detection: (s, v) (idle, v, z) - (idle, v+1mod 2, z+1
mod n) provided z< n-1

t1. Continue current job: (busy,u) (idle, v,z) — (busy, v, z)

to. Start new job: (s, v) (idle, v, n-1) — (busy, v, n-1)

The state transitions of each Pj, 1 =1, ..., n—1, are as follows:

t3. Finish anytime: (s, w) (busy, v) — (dle, u)
ts. Help neighbor: (busy, w) (idle, v) — (busy, V)
ts. Propagate token: (s, w) (idle, v) — (idle, w) provided uzv

Notice that process P1 needs only to read the first two components “s” and “v” of
the state of process Pg. The third component “z” is read and written by Pp only.

In order to verify the correctness of this system, we first define the concept of a
safe state of the system. This concept can then be used in stating and verifying the
five system properties: liveness, safety, integrity, self-stabilization, and convergence
span. Proofs for the first three properties are similar to our proofs of similar proper-
ties in the original system; see Theorems 1, 2, and 3 above. We concentrate on
proving self-stabilization and convergence span.

A system state (sg, vg,) (51, v1) ... (8n-1, Vn-1) is called safe iff it satisfies the
following condition:

(sg =idle) =

m:0<m<n:

(Vi:0<i<m:s;=idle) A

(m #n = s, = busy) A

(m#nAvg#vn1) = (number of K's where m<k<nand vk 2 vi-1) Sn—-z - 1A
(m#£n A vg=vp1) = (number of K's where m<k<nand vk #vk-1)<n-z-1)

)

Some explanation of this definition is in order. Any system state where sg = busy
is trivially safe. When sg is changed from busy to idle, by transition tg, the resulting

13

system state is still safe because tg makes sp = idle and z = 0, and so the resulting sys-
tem state satisfies

Em:0<m<n: (Vi:0<i<m:s;=idle) A
(m #n = s, = busy) A
((number of ks wherem<k<n)<n-z-1)

which indicates that the state is safe. Notice that when a safe state satisfies the con-
dition sp =idle A vg=vp-1 AZz=n-1, then

(Vi:0<i<n:s; =idle)

at that state. Therefore, the condition sg = idle A vg = vpn-1 A Z =n — 1 can be used to
detect termination: it is in fact the “guard” for the termination detection transition tp.

Based on this definition of safe states, and assuming that transition t; is the only
critical transition in the system, the system properties of self-stabilization and con-
vergence span can be stated and verified as follows.

Theorem 6: (Self-Stabilization of Third System) Starting at any unsafe state, the
system will reach a safe state before executing ty for the second time.

Proof: The state of process Py following the first execution of transition ty is in the
form (busy, v, n—1). This state will persist until transition tg is executed, and so long

as this state persists, no further execution of t; is possible. An execution of tg will
lead the system to a state in the form:

(idle, vo, 0) (s1, V1) ... (Sn-1, Vn-1).
It is straightforward to show that this state is safe. .

Theorem 7: (Convergence Span of Third System) The convergence span of the sys-
tem is O(1).

Proof: From Theorem 6, the convergence span is at most one; this is sufficient to
establish the theorem. O

14

The response span for this system can be defined as the maximum number of
state transitions in a computation that (i) starts with a safe state where each s; = idle,
(ii) ends with a safe state (idle, v, n—1) (idle, v) ... (idle, v), and (iii) does not reach a
state (idle, v, n—1) (idle, v) ... (idle, v) in the middle. Based on this definition, the re-
sponse span for the system is O(n?).

5. The As-You-Like-It System

The convergence span for our second system is O(n), the same as its response
span, while the convergence span for our third system is O(1) and its response span
is O(n2). Thus, in going from the second system to the third, the convergence span
was reduced by some factor, n, and the response span was increased by the same fac-
tor. These observations suggest the existence of a family of termination-detection
systems: the convergence span for each member in the family is O(n/k), and its re-
sponse span is O(nk), where k = 1, ..., n. If such a family exists, our second and third
systems represent the two extreme members in the family with k = 1 and k = n,
respectively. In this section, we show that such a family of systems does exist; in
particular we define and prove the correctness of a typical, i.e., the kth, member in
one such family.

This system is a combination of our second and third systems. Like the second
system, it circulates an n-valued token; and like the third system, the token is circu-
lated a number of times (specifically k times) before termination can be detected.
Thus if k = 1, the system becomes very similar to the second system, and if k = n, the
system becomes very similar to the third system.

As before, we consider a system of n processes Py, ..., Pn-1. A state of Py is a triple
(s, v, z), and a state of every other P; is a pair (s, v), where s ¢ {idle, busy}, ve {0, 1, ...,

n-1},z € {0, 1, ..., k-1}, and k is an integer whose value is at least one, and at most n.

The state transitions of Py are as follows:

tg. Start detection: (s, v) (busy, v, z) — (idle, v+1 mod n, 0)

toa. Continue detection: (s, v) (idle, v, z) — (idle,v+1modn,z + 1
mod k) provided z< k-1

t1. Continue current job: (busy,) (idle, v,z) — (busy, vV, z)

t2. Start new job: (s, v) (idle, v, k-1) — (busy, v, k-1)

15

The state transitions of each P;, i =1, ..., n—1, are as follows:

t3. Finish anytime: (s, w) (busy, v) — (idle, u)
tg. Help neighbor: (busy, w) (idle, v) — (busy, v)
ts. Propagate token: (s, w) (idle, v) — (idle, v) provided uzv

Notice that as in the third system, process P does not need to read the third
component of the state of Py.

A system state (sg, vo, 2) (51, V1) ... (Sn-1, Vn-1) is called safe iff it satisfies the same
two conditions for a safe state in the second system. Thus, whether a system state is
safe does not depend on the value of z.

Based on this definition, the system properties of liveness, safety, and integrity
can be stated and verified in the same way they have been stated and verified for the
original system. Next, we state and verify the system properties of self-stabilization
and convergence span under the assumption that t; is the only critical transition in
the system.

Theorem 8: (Self-Stabilization of Fourth System) Starting at any unsafe state, the
system will reach a safe state before executing tp for the ((n/k) + Dth time.

Proof: Assume that the system starts at an unsafe state (sg, vg, z) (s1, v1) ... (8n=1, Vn-1)-
There are two cases to consider.

Case 0 (for each i, 1 <i < n, v; #vp): In this case, none of the transitions tg, tpa, and t2
can be executed at the starting state. Executing any of the other transitions yields
states in the form:

(ro, vo, 2) (r1, vo) ... (tm=1, VO) Om, Vo) -+ (Tn=1, V1)

where (a) foreachi, m <i<n,v;=vg and
(by ifrg=idlethenrg=r1=... =rm-1 = idle.

So long as m < n, then none of the transitions ty, tpa, and tp can be executed. If tp is
eventually executed for the first time, then prior to its execution the system must

16

have reached a state in the form (this form is the same as the previous one except
that m = n):

(idle, vg, k=1) (idle, vg) ... (idle, vg)

such a state is safe. Therefore, the system will reach a safe state before the first
execution of .

Case 1 (for some i, 1 <i <n, v; =vp): In this case, there is some integer m, 0 <m < n,
such that for each i, 0 €i < n, m # vij. Because each execution of tg or gy increments
v(by one, and because each two successive executions of to must be separated by at
least one execution of tg and (k-1) executions of tga, then before (n/k) executions of
tp, the system will reach a state where (a) vo = m, and (b) for each i, 1 <i<n, vi zm.
The argument of Case 0 can now be applied to show that the system will reach a safe
state before the next execution of i. o

The following theorem can be proved using an argument similar to that of The-
orem 5.

Theorem 9: (Convergence Span of Fourth System) The convergence span of the
system is O(n/k).

The response span for this system can be defined as the maximum number of
state transitions in a system computation that (i) starts with a safe state where each s;
= idle, (ii) ends with a safe state of the form (idle, v, k-1) (idle, v) ... (idle, v), and
(iii) does not have a state of the form (idle, v, k-1) (idle, v) ... (idle, v) in the middle.
Based on this definition, the response span for the system is O(nk].

6. Concluding Remarks

The objective of this paper is to point out the tradeoffs between the convergence
span of a self-stabilizing system and its response span: either span can be reduced by
some factor on the expense that the other span is increased by the same factor. We
have demonstrated these tradeoffs in a class of termination-detection systems, but
we firmly believe that similar tradeoffs are available in many other classes of sys-
tems.

17

The tradeoffs between the convergence and response spans can be roughly ex-
plained as follows: Assume that at most m transitions, for some m, can be executed
before a self-stabilizing system reaches a safe state. Also assume that at least r non-
critical transitions are to be executed between every pair of successive executions of
critical transitions. Thus the convergence span of the system is at most m/r, and its
response span is at least r (assuming that at least one critical transition is executed in
going from the initial state to the target state of the response span). Now, if r can be
increased by some factor k while m remains unchanged, the convergence span of
the system is reduced by a factor k, and the response span is increased by the same
factor. This is the basic idea that we have used in developing the as-you-like-it sys-

tem: for that system m = n?, r = nk where k is a parameter that can take any value
from 1 to n.

Our generalization of the notion of self-stabilization is noteworthy. Indeed,
without this generalization, none of the systems that we have discussed in this pa-
per would have been regarded as self-stabilizing, as they should be. This generaliza-
tion suggests the following condition on the critical transitions of a self-stabilizing
system. Starting from every state of the system, there is a computation where some
critical transition is executed. This condition prevents the undesirable situation of a
self-stabilizing system being within its unsafe states indefinitely, but as it cannot
execute any critical transitions, it does not have to converge to a safe state to be self-
stabilizing. It is straightforward to show that in each of our self-stabilizing systems,
the critical transition t satisfies this condition.

The class of termination-detection systems that we have discussed in this paper

is interesting in its own right. The important features of these systems can be sum-
marized by the following table:

18

Method of
System Convergence Response Termination-
Span Span Detection
original oo n two-valued token
second n n n-valued token

two-valued token +
third 1 n2 n-valued counter
in Pg

n-valued token +
as-you-like-it n/k nk k-valued counter
in Py, k can take any
value from 1 ton

Finally, we observe that the original system, which is not self-stabilizing, is com-
parable in many ways with each of the other systems which are self-stabilizing. This
observation suggests that systems can usually be made self-stabilizing without com-
plicating them in a major way. This conclusion is in complete agreement with our
previous experience with self-stabilization [1, 7].

Acknowledgements: We have discussed this work with Fred Schneider at some
point; his encouraging comments have convinced us to strive for the as-you-like-it
system. We would also like to thank Jim Anderson and Paul Attie for reading an
earlier version of the paper and suggesting a number of improvements in the pre-
sentation.

19

7. References

1. G. M. Brown, M. G. Gouda, and C. L. Wu, “Token Systems that Self-Stabilize,”
IEEE Trans. on Computers, to appear, 1988.

2. K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-
Wesley Publishing, 1988.

3. E. W. Dijkstra, “Self-Stabilizing Systems om Spite of Distributed Control,”
CACM, Vol. 17, No. 11, Nov. 1974, pp. 643-644.

4. E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gastern, “Derivation of a
Termination Detection Algorithm for Distributed Computations,”
Information Processing Letters, Vol. 16, 1983, pp. 217-219.

5. N. Francez, “Distributed Termination, ACM TOPLAS, Vol. 2, No. 1, 1980, pp.
42-55.

6. M. G. Gouda, “Distributed State Exploration for Protocol Validation,” Tech.
Report 185, Dept. of Computer Sciences, Univ. of Texas at Austin, 1981.

7. M. G. Gouda, “The Stabilizing Philosopher: Asymmetry by Memory and by
Action,” Tech. Report 87-12, Dept. of Computer Sciences, Univ. of Texas at
Austin, 1987. Also, Science of Computer Programming, to appear.

