DELIVERY AND DISCRIMINATION:
THE SEINE PROTOCOL!

M. G. Gouda?, N. F. Maxemchuk3,
U. Mukherji®, and K. Sabnani3

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-41 November 1988
Revision: December 1989

Abstract

We present a family of protocols for data transmission from multiple identical
senders to a single receiver. At each instant, every sender sends one bit, and the sent
bits are or-ed together into one bit before being received by the receiver. If a sender
has a data message to send, it sends the message bits one by one; otherwise it sends
zero bits. Clearly, if the sending of two messages by two senders overlap in time,
then the resulting “collision” can cause the receiver to receive a corrupted message,
i.e., one that was not sent by either sender. The function of the protocol is to allow
the receiver to detect and deliver those and only those messages that are not cor-
rupted by collision. (In other words, the receiver acts as a discriminating seine that
catches and delivers only uncorrupted messages; hence the title.) The seine protocol
has been implemented in a class of fiber-optic local-area networks.

Keywords: balanced coding, communication protocol, collision, local area network,
protocol verification.

1An early version of this paper has been presented at the ACM SIGCOMM 1988 conference.

2Work was supported in part by Office of Naval Research Contract N00014-86-K-0763, and in part by a
contract with AT&T Bell Labs.

3AT&T Bell Laboratories, Murray Hill, NJ.

1. Introduction

In this paper, we present a family of protocols that can be used for data transmis-
sion in some fiber-optic networks, for example those described in [4] and [5]. In these
networks, the bit streams from multiple senders are or-ed together on a bit-wise ba-
sis, into one stream. This stream is then delivered to every receiver in the network.
The function of the protocol is to allow each receiver to recognize and extract from
its incoming bit stream those and only those data messages that are not corrupted by
collision with concurrently sent messages.

The protocols we discuss in this paper provide a delicate balance between deliv-
ery and discrimination. On one hand, they allow all those messages that are not
corrupted by collision to be accepted and delivered. On the other hand, they are dis-
criminate enough not to accept any message that is corrupted by collision.

The rest of this paper is organized as follows. In Section 2, we formally define
the problem. Then in Section 3, we describe the rationale that we have applied to
solve the problem. Our first solution, called the Seine protocol, is presented in
Section 4, and a proof of its correctness is given in Section 5. A generalization of the
Seine protocol along with a proof of its correctness are discussed in Sections 6 and 7,
respectively. We end with some concluding remarks in Section 8.

2. The Problem

It is required to design a communication protocol between identical senders and
one receiver. At every instant, each sender sends one bit and the receiver receives
one bit. The bit received by the receiver at any instant equals

bo+b1+ ...+ b1
where each b; is the bit sent by the ith sender at that same instant, k is the number of

senders, and “+” is the boolean “inclusive or” operator. An outline of this ar-
rangement is shown in Figure 1.

SENDER

. OR-BOX RECEIVER

SENDER

Figure 1. Block diagram of the System.

Most of the time a sender has no siring of data bits to send, in which case it con-
tinues to send zero bits. At arbitrary instants, a sender gets an arbitrary, but finite,
string x of data bits to send. At such instants, the sender first encodes the string x in
some appropriate form called the message of x, then sends the bits of the message,
one by one. At the end, the sender returns to sending zero bits, until it gets the next
string of data bits to send, and the cycle repeats. Henceforth, the message of x is de-
noted msglx].

The receiver receives the bits of the incoming stream one at a time. When the
receiver recognizes a contiguous block of received bits as msglx] for some bit string x,
it accepts x.

The protocol between the senders and the receiver is required to satisfy the fol-
lowing two properties:

1. Delivery: If a sender sends the bits of some message msg[x] while the other
senders send zero bits, then the receiver will accept x.

2. Discrimination: If the receiver accepts a string x, then one of the senders
must have sent msg[x].

A design of the required protocol should define: the encoding of sent messages
(i.e., define msg[x] for any bit string x), and the programs for one sender and for the
receiver. But before we present our design of the protocol in Section 4, we discuss in
the next section some of the ideas that led us to that design.

3. Search for a Solution

In considering a solution for the above problem, it is reasonable to assume that
each message msglx] has the following structure:

head . codelx] . tail

14 7

where : is the concatenation operator,
head : is a fixed bit pattern that declares the start of the message,
code[x] : is an encoding of the data string x using an appropriate coding
procedure, and

tail : is a fixed bit pattern that declares the end of the message.

In order to explain our choices for “head,” “codelx],” and “tail,” we discuss a
number of scenarios. In each scenario, the receiver could be fooled into accepting a
data string that was not sent by any sender (thus violating the discrimination re-
quirement), unless “head,” “code[x],” and “tail” are chosen in a certain way.

A word of warning is now in order. The fact that some violations of particular
scenarios can be avoided by certain choices of “head,” “codelx],” and “tail” does not,
in its own right, establish the correctness of these choices. The exercise merely sug-
gests the choices. However, in order to establish the correctness of these choices, one
has to prove that they always satisfy the delivery and discrimination requirements
discussed earlier. A proof of the correctness of these choices is given in Section 5.

3.1 codelx]

Assume that two senders send two messages msglx] and msglyl, where x #y, over
the same time period. In this case, the receiver receives the bit-wise or-ing of the
two messages during the same period. This scenario is illustrated as follows.

sender -~ head —r~— code[x] [tail ' msg[x]
sender ~—— head —~— code[y] i tail , msgly]
receiver -~— head w : tail !
i §

i
{
i

time

The heads of the two messages coincide in the same time period, and the receiver
receives a head in that period. Similarly, the two tails coincide in the same period,
and the receiver receives a tail in that period. Thus, the receiver ends up receiving:

head . w . tail

where w is the bit-wise or-ing of code[x] and codely]. If w = code[z] for some z, then
the receiver will accept z, possibly violating the discrimination requirement.
(Notice that the discrimination requirement is not violated if z=xorz =y.) In
order to prevent this possibility, we require that the bit-wise or-ing of code[x] and
codely] does not generate code[z] for any z.

This can be accomplished by requiring that the code of each data string be bal-
anced [1], i.e. have equal numbers of 0's and 1’s. In this case, if code[x] # code[y], then
the or-ing w of codelx] and codely] will have more 1’s than 0’s. In other words, w is
not balanced and so cannot equal code[z], for any z.

The simplest way to achieve a balanced code is to adopt Manchester coding [1]. In
this coding, each code [x] is constructed from its data string x as follows: replace each
0 bit in x by a combination 1.0 and each 1 bit in x by a combination 0.1. Thus,

1.0.code[x’] ifx=0x
0.1.code[x’] ifx=1x
< >, the empty string ifx=<>

codelx]

il

il

The fact that Manchester coding has been adopted in many local area networks,
e.g. Ethernets [5], makes this coding attractive for our protocol.

3.2 Head

To show that nonempty heads are needed, consider the following scenario in
which one sender sends code[y] immediately after another sender finishes sending
codelx].

sender - code[x] -——-—:GO e 00,
sender 00 ... 00 ~— codely]l —=
receiver codelx.y] : ;

i

Hime

The receiver ends up receiving codelx.y] and so accepts the data string x.y which was
not sent by either sender, violating the discrimination requirement. Therefore, a
nonempty head should be provided for each message.

The head of a message should be a bit pattern that (i) does not appear in code[x]
for any x, and (ii) cannot be created due to message collision. The simplest such pat-
tern is “0.0.0”. To show that this pattern is not enough as a head, consider the fol-
lowing scenario in which one sender sends msg[1.0.0] and another sender sends
msg[1].

sender 000011010, . msgl1.0.0]

senqer ! 00001, msg[1]

receiver 00001101001 msgl1.0.0.1]
I H

Hme

In this case, the receiver ends up receiving msg[1.0.0.1] which was not sent by either
sender, violating the discrimination requirement. Even if one or two 1's would pre-
cede the three 0’s in the message’s head, the same scenario still violates the discrim-
ination condition. Fortunately, if three 1’s precede the three 0’s in the message’s
head, this scenario no longer violates the discrimination requirement. Thus, let us
consider for now that the head of each message is the bit pattern 1.1.1.0.0.0.

To show that the pattern 1.1.1.0.0.0 is not enough as a head, consider the follow-
ing scenario in which one sender sends msgl[1.1] and another sender sends msg[0].

sender 1110000101 msg[1.1]
sender 11100010 msg[0]
recetver 1110001010 msg[0.0]

time

In this case, the receiver receives msg[0.0] and accepts the data string 0.0 which was
not sent by either sender, violating the discrimination requirement. If more 1's are

7

added to the left of the head, then the same scenario still violates the discrimination
requirement. However, by adding only one 1 to the right of the head to become:

head = 1.1.1.0.0.0.1
then this scenario no longer violates the discrimination requirement.
3.3 Tail
To show that a nonempty bit pattern is needed as a tail for each message, con-

sider the following scenario in which one sender sends msg[1.1] and another sender
sends msg[0] as follows:

sender 117100011010 msg[0.0]
sender 111000110 msg[0]
receiver 111000110111000110 msg[0]l.msg[0]

fime

In this case, the receiver receives msg[0].msg[0] and accepts two 0 strings, violating
the discrimination requirement. This problem is solved by requiring that each mes-
sage has the following tail

tail = 0.0

4., The Seine Protocol

We start our presentation of the Seine protocol by defining msglx] for any bit
string x. We then define a typical sender and the receiver of the protocol.

4.1 Messages

Letx = x0.x1 - X1 be a string of n bits. Define msg[x] to be a string of 2n + 9 bits
of the form:
msglx] =1.1.1.0.0.0.1. yo.y1 - ¥24-1.0.0

where each bit x; in string x is represented by two bits yp; and y2;41 in string v = yg.y1.
... .Yan-1. Bityp; is the inverse of x; and bit yp;41 is the same as x;. String y is usually
referred to as the Manchester code of string x. Henceforth, we refer to string y as
code[x] and to string 0.1.x as code[1.x]; in particular,

8

msglx] =1.1.1.0.0.0.1.code[x].0.0
=1.1.1.0.0.code[1.x].0.0

4.2 Sender

As specified by the problem, when the sender has no string of data bits to send, it
sends zero bits. On the other hand, when the sender has a string x of data bits to
send, it sends msg[x] one bit at a time, starting with the three ones at the beginning
of msglx].
4.3 Receiver

The program for the receiver is as follows.

process receiver;

var st : (sg, s1, S, 53, S4) init sq, {* see below *}
revd : string of (0,1) init < >, {* < > denotes the empty string *}
b:(0,1), {* b is the received bit *}
do forever
receive b;
if st=s0”"b=1 — sti=gp
0 st=sg”b=0 — st:=3s1
0 st=s1"b=1 — st:=5p
0 st=s51"b=0 — st:i=sp;revd :=< >
0 st=s3"b=1 — sti=s3
0 st=s2"b=0 — sti=s4
0 st=s3”"b=1 — sti=5p
0 st=s3”b=0 — st:=sp; revd :=rcvd.0
0 st=s4”™b=1 — st:=sy rcvd :=rcvd.1
0 st=s4”b=0 — st:=sg;
if left-most bit in “rcvd” is 1
then remove this bit from “rcvd”
and accept the remaining string
fi
fi
od

end receiver;

This program has five states: s to s4. It is convenient to attach some, rather in-
formal, meaning to each of these states.

sp: no 0 bit in the current message has been received.

s1: the first 0 bit in the current message has just been received.

sp: the first 0.0 bits in the current message have been received, and the receiver
is ready to receive one of the combinations 1.0, 0.1, or 0.0.

s3: bit 1 in the next combination of 1.0 in code[1x] of the current message has
just been received.

s4: bit O in the next combination of 0.1 in code[1x] of the current message has
just been received, or the first 0 bit of the combination 0.0 at the end of the
current message has just been received.

5. Protocol Correctness

Correctness of the above protocol is established by showing that the protocol sat-
isfies the two properties of delivery and discrimination stated in Section 2.

Theorem 1: (Delivery) If a sender sends the bits of some message msglx] while the
other senders send zero bits, then the receiver will accept x.

Proof: Assume that a sender sends the bits of msg[x] for some string x while other
senders send zero bits. Then the receiver will receive the bits of msgl[x] unaltered.
Since the bits of msg[x] constitute a string in the form 1.1.1.0.0.code[1x].0.0, it is suffi-
cient to show that if the receiver is at any state of its five states, and receives a string
1.1.1.0.0.code[1.x].0.0, it will accept x. The proof is divided into three parts, each of
them can be checked from the above receiver program. First, if the receiver is at any
state and receives a string 1.1.1.0.0, it will reach state sy with rcvd = < >. Second, if
the receiver is at sp with rcvd = <> and receives a string code[1.x], it will reach s;
with rcod = 1.x. Finally, if the receiver is at sp with rcod = 1.x and receives a string
0.0, it will reach state sg after accepting x. .

This proof of Theorem 1 reveals an interesting, and somewhat unexpected,
property of the protocol. Reception of the head bit pattern 1.1.1.0.0.0.1 starting from
any state, is guaranteed to drive the receiver into a state sp with rcod = 1. This indi-
cates that the receiver will accept a valid message starting from any state. Thus, the
proper initialization of the receiver is not critical to the correctness of the protocol in

10

the long run. (In the short term, however, the receiver may accept at most one in-
valid message, or may reject at most one valid message due to its improper initial-
ization.) This property of the protocol is usually referred to as self-stabilization; see
for instance [2], [3], and [8].

Theorem 2: (Discrimination) If the receiver accepts a string x, then one of the
senders must have sent msg[x].

Proof: We divide the proof into the following two parts.

a. If the receiver accepts a string x, then it must have received a string 0.0
code[1x] 0.0.

b. If the receiver receives a string 0.0.code[1x].0.0, then one of the senders must
have sent msg[x].

Part a: Assume that the receiver accepts a string x. Then it must have reached state
sg with rcvd = 1.x, or equivalently, it must have received a string 0.0 after reaching
state sp with rcod = 1.x. This means that the receiver has received a string
code[1.x].0.0 after reaching state sp with rcvd = <>. This in turn means that the re-
ceiver has received a string 0.0.code[1.x].0.0 (after reaching sp).

Part b: Assume that the receiver receives a string 0.0.code[1.x].0.0. Since the first two
bits in this string are 0’s, each sender must have sent two 0’s in these positions.
(Recall that the bits sent in the same position are or-ed into one bit before delivery to
the receiver.) Similarly, since the last two bits are 0’s, each sender must have sent
two 0’s in these positions.

Now what could a sender have sent in the remaining positions? Clearly, no
sender could have started a new message in these positions since this would require
sending 1.1.1 which would have to be received unaltered by the receiver, and this
violates the fact that the receiver has received in these positions code[1.x] which
cannot have the string 1.1.1. Therefore, in these positions, each sender must have
sent either a string 0.0...0 or a string code[1.y].0.0...0, for some string .

Without loss of generality, assume that code[1.x] has 2n bits for some n =2 1. Now
if each code[1.y] sent by a sender in these positions has less than 2n bits, then the bits
sent in the last two positions are 0.0, contradicting the fact that the last two bits in

11

codel[1.x] are either 0.1 or 1.0. Therefore, at least one of the senders must have sent in
these positions some code[l.z] that has 2n bits.

It remains now to show that this code[1.z] is identical to code[1.x]. This proof is by
contradiction. Assume that this code[1.z] is different from code[1.x]. This means
that code[1.z] while being sent has collided with at least one concurrently sent
code[1.w], and the result was code[1.x] different from code[1.z]. However, collision
can only increase the number of ones in the received bits. Since code[1.z] is bal-
anced, i.e., has equal numbers of zeroes and ones, then code[1.x] must be unbalanced
which is a contradiction. Therefore, code[1.z] must be identical to code[1.x].

So far, we have established that at least one sender must have sent a string 00
code[1.x] 00. Then, this sender must have sent 1.1.1 previously, i.e., it must have
sent msglx]. m

6. The Seine Protocol Generalized

In the Seine protocol, each message msg[x] has 2n + 9 bits, where n is the number
of bits in the data string x. The dominant term of 27 is due to the fact that x is en-
coded using Manchester coding. In order to reduce this term, the data strings could
be encoded in some other balanced code (i.e., one where each code word has equal
numbers of zeroes and ones) that is more efficient than the Manchester code (i.e.,
one in which each data string with n bits can be encoded in less than 2n bits). Note
that the Manchester code is a special instance of a balanced code.

Assume that the number of bits in every data string to be sent by a sender is a
multiple of m, for some m. (This is not a restriction in case m = 1.) Therefore,
code[x] for every data string x can be constructed as follows. First, partition x into
words of m bits each; then replace each word with a corresponding code word from
some balanced code C. If each code word in C has p bits, then each code[x] will have
p(n/m) bits, where n is the number of bits in string x. The efficiency of this coding
scheme is m/p. In the case of Manchester coding, m =1, p = 2, and the efficiency =
1/2. Next, we show that m = 4 is both necessary and sufficient for achieving a code
that is more efficient than the Manchester code.

Because each code word is balanced, i.e., has equal numbers of 0’s and 1’s, p must
be even. If m =1 then C has two code words, and so each code word, being balanced,

12

has at least two bits. In this case, the resulting code is the Manchester code. If m =2
then C has four (balanced) code words. Thus, each code word has at least four bits,
and the resulting code has the same efficiency as the Manchester code. If m = 3 then
C has eight (balanced) code words. Because there are only six balanced code words if
we choose p = 4, and because p must be even, p is at least 6, and the resulting code
again has the same efficiency as the Manchester code. However, if m = 4 then C has
16 balanced code words. Many balanced code words can be found by choosing p = 6.
For example, the following set of 16 balanced code words is a possible C.

C={ 0.0.1.0.1.1, 0.0.1.1.0.1, 0.1.0.0.1.1, 0.1.0.1.0.1,
0.1.0.1.1.0, 0.1.1.0.0.1, 0.1.1.0.1.0, 0.1.1.1.0.0,
1.1.0.1.0.0, 1.0.0.1.1.0, 1.0.1.1.0.0, 1.0.1.0.1.0,
1.0.1.0.0.1, 1.0.0.1.1.0, 1.0.0.1.0.1, 1.0.0.0.1.1 }

In this case, the efficiency of C is 4/6 much higher than the efficiency of the Manch-
ester code. If m is larger than 4, the efficiency of the resulting code C can be higher
than 4/6.

In the remainder of this section, we present a generalization of the Seine proto-
col for the case in which the data strings are encoded using any balanced code C.

6.1 Messages

From the given set C of code words, define the following three quantities:

i = the maximum of two numbers: the maximum number of successive
ones in two adjacent code words in C, and the maximum number of
successive ones at the beginning of any code word in C plus one.

j = the maximum number of successive zeroes in two adjacent code words
inC,

k = the maximum number of successive zeroes at the beginning of a code
word in C.

For instance, i =4, j = 4, and k = 2 for the set C defined earlier.

The three quantities, i, j, and k, are used in defining msg[x] as follows.

msglx] = (DHL0Y+1.1.code[x].(0)k+1

13

where codelx] is the encoding of string x using the code words in set C as discussed
earlier. Notice that if C is a Manchester code, then i =2,j =2, and k = 1, and msg[x]
reduces to the form given in Section 4.1.
6.2 Sender

As before, when the sender has a string x of data bits to send, it sends msg[x] one
bit at a time starting with the (1)i+1 bits at the beginning of msg[x]. Otherwise, it
sends zero bits.

6.3 Receiver

The program for the receiver depends on the chosen code C and its three quanti-
ties, i, j, and k. It is as follows.

process receiver (C, i, j, k);

var st:0,1,...,j+21init 0,
rcvd,w : string of (0,1) init <>, {* < > denotes the empty string *}
b:(0,1), {* b is the received bit *}
do forever
receive b;

if st<j"b=1 — st:=0

0 st<j"b=0 — st:=st+l

0 st=j+1"b=1 — st=j+2recvdi=<>w:i=<>

0 st=j+1"b=0 — st:=0

U st=j+2 —>
w=w.b;
if w = proper prefix of a code word in C — skip
Uw = code word in C — rcvd := revd.word(w); w = < >
0w = 0k*+1 — st == 0; accept rcvd
Uelse — st:=0
fi

fi

od
end receiver

14

This program has j+3 states, named 0 to j+2. It uses the function word(w) which
returns the word that corresponds to any given code word w in C.

7. Correctness of the General Protocol

The next two theorems establish that the general protocol satisfies the delivery
and discrimination properties stated in Section 2.

Theorem 3: (Delivery of the General Protocol) If a sender sends the bits of some
msglx] while the other senders send zero bits, then the receiver will accept x.

Proof: It is sufficient to prove the following two assertions:

a. If the receiver is at any state of its j+3 states, and receives a string (1)i+1, it will
reach a state 0.

b. If the receiver is at a state 0 and receives a string (0)/+1.1.code[x].(0)k+1, it will
accept x.

Part b follows from the receiver’s program. We concentrate on Part a.

If the receiver is at any of the states 0, ..., j, and receives a nonempty string of 1’s,
then it will reach state 0. It remains now to show the same when the receiver is at
state j+1 or j+2.

Case 0: Assume that the receiver is at state j+1 and receives a string (1)i+1. After
receiving the first 1, the receiver will reach state j+2 with w = < >. Then, after re-
ceiving the remaining 1’s, w will become different from any prefix of any code word
in C, and different from (0)k+1. Therefore, the receiver will reach state 0.

Case 1: Assume that the receiver is at state j+2 and receives a string (1)i+1. Then,
regardless of the current value of w, concatenating as many 1’s to the tail of w will
make w different from any prefix of any code word in C and different from (0)k+1.
Therefore, the receiver will reach state 0. i

15

It follows from the proof of Theorem 3 that the receiver can accept a valid mes-
sage starting from any state. Hence, the general seine protocol is self-stabilizing in
the same way as the original protocol.

Theorem 4: (Discrimination of the General Protocol) If the receiver accepts x, then
one of the senders must have sent msglx].

Proof: Similar to the proof of Theorem 2, we divide the proof into the following
two parts.

a. If the receiver accepts a string x, then it must have received a string (0)/+1 1
code[x] (0)k+1.

b. If the receiver receives a string (0)j+1 1 code[x] (0)k+1, then one of the senders
must have sent msg[x].

The proof of each part is similar to that of the corresponding part in the proof of
Theorem 2. For convenience, we state the proof for Part b.

Assume that the receiver receives the string (0)/+1 1 code[x] (0)k+1. Since the first
(j+1) bits in this string are zeroes, each sender must have sent zeroes in these posi-
tions. Similarly, since the last (k+1) bits are zeroes, each sender must have sent ze-
roes in these positions. Also, no sender could have started a new message in the
remaining positions, since this would require sending (1)"*! which have to be re-
ceived unaltered by the receiver, and this violates the fact that the receiver has re-
ceived in these positions 1 code[x] which cannot have (1)i+1, Therefore, in the re-
maining positions, each sender must have sent either a string 00...0 or a string 1
codely] 00...0, for some string y.

Without loss of generality, assume that the received code[x] has k code words.
Now, if every code[y] 00...0 sent by a sender in these positions has less than k code
words, then the positions of the last code word in code[x] must be all zeroes, contra-
dicting the fact that a code word is balanced, i.e., has an equal number of zeroes and
ones. Therefore, at least one of the senders must have sent in these positions code[z]
where the number of code words in code[z] equals that in code[x].

It remains now to show that this codelz] is identical to code[x]. The proof is by
contradiction. Assume that code[z] is different from code[x]. This means that

16

code[z] while being sent has collided with at least one concurrently sent code[w], and
the result was code[x] different from code[z]. However, collision can only increase
the number of ones in the received bits, but since codelz] is balanced, then codelx]
must be unbalanced, and we have a contradiction.

So far, we have established that at least one sender must have sent a string (0)j+1
1 codelx] (0)k+1. Thus, this sender must have sent (1)i*+1 previously, i.e., it must have
sent msglx]. 0

8. Concluding Remarks

We have presented a family of protocols for data transmission from multiple
identical senders to a single receiver. One protocol from this family has been im-
plemented on a local area network called the D-network, Figure 2. In this network,
all stations are connected by a unidirectional fiber link. Each station has a sender
and a receiver. Transmissions from all the senders are or-ed together into one bit
stream traveling on the fiber link and is received by all receivers at different in-
stants. The details of this implementation are described in [7].

Fiber Optic Link
4 4
[[
SENDER SENDER
STATION 1 STATION 2 e o s e
RECEIVER RECEIVER
t %

\

Figure 2. The D-Network.

(1]

2]

3l

4

51

(el

[7]

8l

17

References

E. E. Bergmann, A. M. Odlyzko, and S. H. Sangani, “Half-Weight Block Codes
for Optical Communications,” AT&T Technical Journal, Vol. 65, No. 3, May-
June 1986, pp. 85-90.

G. M. Brown, M. G. Gouda, and C. L. Wu, “Token Systems that Self-Stabilize,”
IEEE Trans. on Computers, Vol. 38, No. 36, 1989, pp. 845-852.

M. G. Gouda and N. Multari, “Stabilizing Communication Protocols,” in
preparation, 1989.

N. F. Maxemchuk, “Random Access Strategies for Fiber-Optic Networks,”
Proceedings of the INFOCOM ’87, pp. 307-311.

N. F. Maxemchuk, “Twelve Random Access Strategies for Fiber-Optic Net-
works,” IEEE Trans. on Communications, Vol. 36, No. 8, 1988, pp. 942-950.

R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed Packet Switching for
Local Computer Networks,” Commun. ACM, Vol. 19, July 1976, pp. 395-404.

U. Mukherji, N. F. Maxemchuk, C. W. Wu, and J. C. Swartzwelder,
“Transmission Format and Receiver Logic for Random Access Strategies in a
Fiber-Optic Network,” presented at IEEE Computer Networking Symposium
1988, Washington, DC, April 11-13, 1988.

N. Multari, “Toward a Theory for Self-Stabilizing Protocols,” Ph.D. Disserta-
tion, Dept. of Computer Sciences, Univ. of Texas at Austin, July 1989.

