SFL: A PARALLEL SIMULATION PROGRAM
FOR BANYAN NETWORKS

Dong W. Kim, G. Jack Lipovski, and R. Jenevein

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-43 December 1988

Abstract

We evalnate the performance of double- and single-ended regular CC- and SW-banyan networks by
simulation. First, we give concrete system level switch models for double- and single-ended banyan networks.
Next, we introduce a powerful simulation program called SFL. SFL (Spread, Fanout, and Level) is a parallel
time-driven simulation program for packet-switching synchronous banyan networks. SFL provides users with
a three dimensional design space. The first dimension provides a choice of either a CC- or an SW-banyan
network. The second dimension provides a choice of tuples (spread, fanout, level). The last dimension
provides a choice of three communication protocols: DES (Double-Ended Simplex), SEFD (Single-Ended
Full Duplex), or SEHD (Single-Ended Half Duplex). Finally, our simulation results show that single-ended
CC-banyan networks can be excellent interconnection networks for multiprocessor systems.

SFL: A Parallel Simulation Program for
Banyan Networks

Dong W. Kim, G. Jack Lipovski, & R. Jenevein

The University of Texas at Austin
Austin, TX 78712

1 Introduction

Two approaches to evaluating the performance of packet-switching inter-
connection networks are analytic performance modeling and simulation per-
formance modeling [21]. For analytic performance modeling, there are three
widely accepted assumptions to make the analysis tractable: 1) output
buffers for incoming packets are infinite, 2) networks are under a uniform
traffic pattern, and 3) k packets on input ports of a k& by k switch can enter
into the same output buffer each network cycle. Many analytic performance
models with similar assumptions have been reported during the past decade
[3,5,7,11,16,26,39]. However, in this work, we developed simulation perfor-
mance models which relax these assumptions and significantly extend the
logical design space.

SFL (Spread, Fanout, and Level) is a parallel time-driven (TD) sim-
ulation program for packet-switching synchronous banyan networks. It is
written in PPL* (Parallel Programming Language based on C) [47] and

runs on the Sequent Balance 8000. The input parameters to SFL are as
follows:

1. Choice of target network: CC- or SW-banyan.
2. Spread, Fanout, and Level.

©Microelectronics and Computer Technology Corporation, 1985

3. Choice of network communication protocol: DES (Double-Ended
Simplex), SEFD (Single-Ended Full Duplex), or SEHD (Single-
Ended Half Duplex).

4. Buffer size: the amount of storage allocated in each switch for
incoming packets (the unit is the number of packets).

5. Birth rate: the probability that a packet is generated per source
(or processor) per network cycle.

6. Reference matrix whose (7,)" element is the probability that
the ** source will send a packet to the j*8 sink, and is a function
of time.

The three network communication protocols will be further explained in
later sections.

The output parameters from SFL are as follows:

1. Maximum and average response time for packets to travel from
their sources to their sinks.

2. Maximum and average buffer length for each level.

The primary goal of SFL is to ease the decision-making process of de-
signing interconnection networks by providing performance estimates of the
following design alternatives:

CC-banyan networks vs. corresponding SW-banyan networks
rectangular networks vs. nonrectangular networks

double-ended networks vs. single-ended networks

Ll e

full duplex networks vs. half duplex networks

Since the reference matrix is arbitrary, we can also investigate the per-
formance of the networks under uniform, hot spot, local, and any other
realistic traffic patterns.

Section 2 introduces switch models for DES, SEFD, and SEHD proto-
cols. Section 3 presents our simulation method in depth. Section 4 gives
simulation results and draws conclusions on which networks perform better
under what conditions. Finally, Section 5 gives conclusions.

2 SWITCH MODELS 3

2 Switch Models

We begin with a switch model for DES networks, then extend it for SEFD
and SEHD networks. The switch model for DES networks is based on
the TRACs packet switch [44]. Many researchers have proposed similar
switches for their analysis and simulation [7,11,16,26,32,39,41,49]. Recently,
switches with a message combining unit have been proposed for the NYU
Ultracomputer project [19] and the IBM RP3 project [42].

2.1 DES Networks

In DES networks, there are input ports for processors on one side, and
output ports for memories on the opposite side. Packets are unidirectionally
delivered from the input ports to the output ports. The processors have
their own local momories or caches, and interfaces to the network. Similarly,
the memories have interfaces to the network, the global memories, and
possibly mass storage. The processors send packets to the memories to
read or update global variables through one DES network. The memories
send packets to the processors to return contents of the requested memory
locations for read cycles or acknowledge signals for write cycles through
another DES network. SFL explicitly represents and simulates only the
input and output interface to the network and switches, because our only
concern is the performance of the network.

2.1.1 Input and Output Interface

One active hardware component in a processor board is a communication
channel which has an input interface to the network. Figure 1 (a) shows
the interface which consists of an output queue and a control unit. The
reason why the output queue exists is that 1) bursty arrival of packets
may temporarily overload the channel, 2) a few processors may share the
channel, and 3) there may be a mismatch betweeen a processor cycle and
a network cycle. The control unit exchanges handshaking signals with
the corresponding switch to ask for the next available space. The two
handshaking signals are a request signal and a grant signal. The request
signal 1s sent from the interface to the switch to tell that there is a packet

2 SWITCH MODELS 4

to be sent to the switch. The grant signal is sent from the switch to the
interface to tell whether the packet can be relayed or not. The interface
is synchronized with the network cycle. We assume that a new packet can
join the queue at the end of each cycle.

In a memory unit, there is an output interface from the nework. Figure 1
(b) shows the interface which consists of an input queue and a control unit.
The queue exists here for similar reasons. The control unit accepts a request
signal from the corresponding switch and sends a grant signal to it according

to the state of its queue. The interface is synchronized with the network
cycle.

2.1.2 Switch Model for DES Networks

A k by k switch for DES networks consists of a control unit, a crossbar
switch, and k output queues. Figure 2 shows a 2 by 2 DES switch.

The control unit exchanges an input request signal (REQI) and an out-
put grant signal (GRANTO) with each of its predecessors (P’s). It also
exchanges an output request signal (REQO) and receives an input grant
signal (GRANTI) with each of its successors (S’s). The control unit is a

state machine which handles the signals in the following sequence during a
network cycle:

1. Extracts destination tag fields from packets on the front of its
queues.

2. To each S, sends REQO with the destination tag field.
3. Receives REQI from each P and GRANTI from each S.

4. Determines which packets can be sent or received according to

the REQIs, the GRANTIs, vacancies of its queues, and a given

conflict resolution scheme 2.

5. Sends proper GRANTO to each P.
6. Sets the crossbar properly.

2Three conflict resolution schemes are random, fixed priority, and round robin.

2 SWITCH MODELS

From Processor

C (control) Unit | j€———o

Network Clock
Queue T
i v
To Network Request Grant
(@
From Network Grant Request
l A
Queue Network Clock
C (control) Unit I ——
v
To Memory

(®

Figure 1: (a) Input, and (b) output interface to the network

2 SWITCH MODELS 6
From Predecessors RO R1 GO GI
‘ 4 4
v vy
Crossbar 4——-—A
. b e
C Unit
L Netwaork
Clock
Queue 0 Queue 1
v Vv
RO R1 GO G1

v

To Successors

Figure 2: A 2 by 2 DES switch

2 SWITCH MODELS 7

A packet consists of fixed length bytes or words and is called a packet
train [34]. The first byte or word of the packet train contains control in-
formation and is called the header. The rest of the packet train is data.
Once input and output signals of the control units are settled, each packet
train, granted by the control unit, can be sent to the next stage during a
network cycle. In this way, the current packet’s data can be sent while the
next packet’s headers are being processed, and this increases the degree of
pipelining. However, this prevents more than one packet train from enter-
ing the same queue each network cycle. A queue is supposed to be able
to accept an incoming packet ® and send an outgoing packet each network
cycle. Note that the grant signals are propagated from the memory units
through the network to the processor units like a ripple carry. Therefore,
this propagation delay is proportional to the number of stages in the net-
work and affects the length of the network cycle (it is also affected by the
length of the packet train).

States of the crossbar switch are set by the control unit. Since only
one packet can enter into a queue each network cycle, there are only seven

possible states in a 2 by 2 switch as shown in Figure 3. Figure 4 shows a
(2,2,2) DES CC-banyan network.

phnni

2.2 Switch Model for SEFD Networks

In single-ended networks, the input and output ports of the network are
on the same side (say on the base level). Each processor has its own local
memory which can be globally accessed by other processors and an input
and an output interface to the network. Packets are generated by the
processors, sent up to the network, reflected in the minimum level, and
eventually absorbed by other processors. Therefore, switches in the single-
ended network are designed to transmit up, reflect, and transmit down
packets.

Figure 5 shows a 2 by 2 SEFD switch. Each port of the SEFD switch
consists of two logical simplex lines; one for upgoing packets and the other
for downgoing packets. There is a queue on each output port. A queue
can accept an incoming packet and send an outgoing packet each network

3We use a term “packet” to represent a packet train.

2 SWITCH MODELS

Figure 3: States of DES crossbar switch

2 SWITCH MODELS

PP PP P

Z

v v v v ¥
DES [Switches
/
v

: v v v/

50 56 EE &S

Memories

Figure 4: A (2,2,2) DES CC-banyan network

2 SWITCH MODELS 10

cycle. Queues on the top of a switch are called T-queues and those on the
bottom B-queues. A 4 by 4 crossbar switch is in the middle. Input ports
are connected to rows of the crossbar switch and output ports to columns.
The check pattern in the (3, 7)*® element of the crossbar switch indicates
that the 7*® row is disconnected from the 7% column. Figure 6 shows states
of the crossbar switch.

Figure 5 also shows a control unit. The control unit exchanges an in-
put request signal (REQI), an output grant signal (GRANTO), an output
request signal (REQO), and an input grant signal (GRANTI) with each
corresponding switch. Given a switch S in level &, let SL be a switch or
a processor in level k — 1 which corresponds with switch S, and let SH be
a switch in level k + 1 which corresponds with switch S. The control unit
in switch S handles the signals in the following sequence during a network
cycle:

1. Extracts destination tag fields from packets on the front of its
queues.

2. To each SL and SH, sends REQO with the destination tag field.

3. Receives REQI from each SH for SH’s downgoing packets, REQI
from each SL for SL’s reflecting packets, and GRANTI from each
SL for S’s downgoing packets.

4. Determines which downgoing or reflecting packets can be sent
or received according to the REQIs, the GRANTIs, vacancies of
S’ B-queues, and a given conflict resolution scheme.

5. Sends proper GRANTO to each SH and SL.

6. Receives REQI from each SL for SL’s upgoing packets and GRANTI
from each SH for S’s upgoing packets.

7. Determines which upgoing packets can be sent or received ac-
cording to the REQIs, the GRANTIs, vacancies of §’s T-queues,
and a given conflict resolution scheme.

8. Sends GRANTO to each SL.

9. Sets the crossbar properly.

2 SWITCH MODELS 11

To &From SHs
Input Output
Rs & G's R's &G's
FYVVY
v \
4 R A A A 4
g T
L
it C Unit
— oo Network
[_ ! L‘E Clock
! v
Y
4 &
A\ \AAJ
Cutput Input

To & From SLs Rs & Gs R's &G's

Figure 5: A 2 by 2 SEFD switch

2 SWITCH MODELS

o

‘v

Note:

<& means either — or <€é—, but not both.

Figure 6: States of SEFD crossbar switch

12

2 SWITCH MODELS 13

Grant signals are initially generated from the output interfaces of the
processor units. Then, switches in the base level determine the future va-
cancies of their B-queues and can generate proper grant signals for switches
in level 1 or processors which have packets heading for them. Similarly,
once the grant signals arrive at switches in level 1, the switches determine
the future vacancies of their B-queues and send proper grant signals to
switches in level 2 or 1 which have packets heading for them. In this way,
grant signals for B-queues are propagated up to switches in the apex level.
Then, switches in the apex level determine the future vacancies of their
B-queues and can generate grant signals for switches one level below whose
T-queues have packets heading for them. Then, grant signals for T-queues
are similarly propagated down to the input interfaces of the processor units.
Therefore, overall propagation delay is proportional to two times the num-
ber of stages in the network. Figure 7 shows a (2,2,2) SEFD CC-banyan
network.

2.3 Switch Model for SEHD Networks

There are two logical simplex lines for each port of a SEFD switch. Sup-
posing that each simplex line provides 8 bits of data path, at least 64 pins
for data paths are required in a 2 by 2 SEFD switch. To reduce the number
of pins (the most valuable resource), the two logical simplex lines can be
replaced by a single logical half duplex line.

Figure 8 shows a 2 by 2 SEHD switch. Each port of the SEHD switch
has a single logical half duplex line; each line can transmit an upgoing or
a downgoing packet at a time, but not both at the same time. There are
two T-queues and no B-queues in the switch. Each queue can store both
upgoing and downgoing packets. During each network cycle, it can either
accept an upgoing packet and send an upgoing (or reflecting) packet, or it
can accept a downgoing packet and send a downgoing packet. However, it
cannot accept an upgoing and a downgoing packet or send an upgoing and
a downgoing packet in a single network cycle. The same 4 by 4 crossbar
switch as that shown for a 2 by 2 SEFD switch is in the middle. Reflecting
packets are not buffered by the switch which reflects them.

A queue for a SEHD switch can store both upgoing and downgoing
packets. Let Qo and Q; be two corresponding queues in the network as

2 SWITCH MODELS 14

A7 % T AN T
//v /i %/v //v//p(
) e
58 55656 686

Processors

\

Figure 7: A (2,2,2) SEFD CC-banyan network

2 SWITCH MODELS

To & From SHs

15

A Input Cutput
Rs &Gs Rs & G's
VYV
v v
Qo Qtl
\AAAL
[::1:1:33515:5:5:' —
I.I'I.I.I.l-l.l.l. C U i
-_—-—’h.'.l.!-l.l.l.l'l.: it Network
mE 8 8 CIOCK
i k:::::-.
VYN
To & From SLs \AAA
Output Input
Rs & G's R's & G's

Figure 8 A 2 by 2 SEHD switch

2 SWITCH MODELS 16

shown in Figure 9 (2). Since a single logical half duplex line is shared by
the queues, a deadlock state occurs under the following conditions:

1. Both queues are full of upgoing and downgoing packets.

2. A packet on the front of Qg heads for Q; and a packet on the
front of Q; heads for Q.

This condition can be modeled by a directed graph in which each node
represents a subset of a queue and each directed arc represents permitted
packet flow between nodes [12,17,36,37]. See Figure 9 (b). The deadlock
state can be avoided by designing a special queue unit which prevents the
packet flow from forming a cycle in the directed graph.

As shown in Figure 10, the queue unit has a storage pool. The pool
is divided into three lists; one for upgoing packets (ULIST), another for
downgoing packets (DLIST), and the other for free space (FREE). FREE

has space for at least two packets. A packet can enter into a proper list if:

1. FREE has space for more than one packet.

2. FREE has space for only one packet and ULIST and DLIST are
not empty.

3. FREE has space for only one packet, ULIST is empty, and the
packet is upgoing,.

4. FREE has space for only one packet, DLIST is empty, and the
packet is downgoing,

The queue unit is now represented by two nodes (UNODE and DNODE)
in a directed graph; UNODE represents ULIST and DNODE represents
DLIST. In the directed graph, there are arcs from UNODEs to UNODEs
(representing upgoing packet flow), from UNODEs to DNODEs (represent-
ing reflecting packet flow), and from DNODEs to DNODEs (representing
downgoing packet flow). Since there is no arc from a DNODE to an UN-
ODE, the directed graph is acyclic. Therefore, the queue unit prevents
deadlock at the cost of space for at most one packet. See Figure 11.

The control unit as shown in Figure 8§ handles the signals in the following
sequence during a network cycle:

b

SWITCH MODELS 17

Note: U is a upgoing packet, D is a downgoing packet,
and R is a reflecting packet

()

N

(®)

Figure 9: (a) A deadlock state, and (b) its directed graph of two corre-
sponding SEHD queues

2 SWITCH MODELS 18

ULIST ¥

D
DLIST r !

FREE

L
T

Figure 10: A special SEHD queue unit for preventing deadlock

2 SWITCH MODELS 19

level k+1 U

level k U

U: ULIST

D: DLIST

Figure 11: An acyclic directed graph which guarantees deadlock free routing

3 SIMULATION METHOD 20

1. Extracts a destination tag field from a packet on the front of
each list in its queues.

2. To each SL and SH, sends REQO with the destination tag field.

3. Receives REQI from each SL for SL’s reflecting packets and
GRAN-TI from each SL for S’s downgoing packets or SL’s re-
flecting packets.

4. Determines which downgoing or reflecting packets can be sent
or received according to the REQIs, the GRANTIs, availability
of S’s half duplex lines, vacancies of SL’s queues, and a given
conflict resolution scheme.

5. Sends GRANTO to each SL for its reflecting packets.

6. Receives REQI from each SH for SH’s downgoing packets or
S’s siblings reflecting packets, determines which downgoing or
reflecting packets can be received, and sends GRANTO to each
SH.

7. Receives REQI from each SL for SL’s upgoing packets and GRANTI
from each SH for S’s reflecting or upgoing packets.

8. Determines which upgoing or reflecting packets can be received

and sends GRANTO to each SL.
9. Sets the crossbar properly.

Like the SEFD network, grant signals are generated from processor units
for DLISTs, and propagated up to switches in the apex level. Then, grant
signals for ULISTs are propagated from the switches in the apex level to
the processor units. Overall propagation delay is proportional to two times

the number of stages in the network. Figure 12 shows a (2,2,2) SEHD
CC-banyan network.

3 Simulation Method

The variable in a simulation program which gives the current value of
simulated time is called the simulation clock. Two principal approaches

3 SIMULATION METHOD

A 3 A/LA

&
——
v v v v
SEHID Swiiches

/ 4

v

¥

4

56 &b

Processors

Figure 12: A (2,2,2) SEHD CC-banyan network

3 SIMULATION METHOD 22

for advancing the simulation clock are nezt-event time advance and fized-
increment time advance [29]. With the next-event time advance approach,
the simulation clock is advanced to the time of the most imminent event.
Simulation with this approach is called event-driven (ED) simulation. With
the fixed-increment time advance approach, the simulation clock is ad-
vanced in increments of exactly 6t time units for some appropriate choice of
0t. 6t i1s usually chosen to be the smallest time interval between two events
in which the earlier event affects the later event. However, this approach
may become inefficient if events occur irregularly, and therfore, many use-
less computational cycles are involved. Simulation with this approach is
called time-driven (TD) simulation. ’

SFL is a parallel time-driven (TD) simulation program. We choose a
TD simulation for the following reasons:

1. One may write a parallel ED simulation program with a process-
oriented approach [29]. In the program, one usually defines a
process which describes the entire experience of a packet as it
flows through a target network. A process is created whenever
a packet arrives at the network. This approach is taken in many
simulation programs for queueing networks. The first problem
of this approach is that there is no efficient way to detect and
resolve conflicts among packets because some process needs to
know the destination tags which are local variables to processes
representing packets. This problem can be alleviated on the as-
sumption that k packets on input ports of a k by k switch can
enter into the same output buffer in a single network cycle. The
second problem is that the average number of concurrent pro-
cesses can easily exceed tens of thousands for a moderately large
network. Therefore, more simulation time will be spent for cre-
ating and terminating processes and swapping pages. Besides,
it may exceed the process limit provided by the available multi-
processor system. The last problem is that not only is a parallel
algorithm for handling the shared event list efficiently hard to
devise, but also it is possible that the algorithm can perform
poorly for synchronous network simulation because most events
are scheduled in the time slot in the event list which stores events

3 SIMULATION METHOD 23

occuring at the next network cycle. See [35] for discussions about
the difficulties of parallel ED simulation.

2. For our TD simulation program for synchronous banyan net-
works, we define processes which describe how active compo-
nents such as processors and switches operate during a network
cycle. Packets are represented by a data structure instead of
a process. They are updated by the switch processes as they
flow through the network. By doing this, we can alleviate the
aforementioned problems. For the first problem, to each pro-
cess, we assign a pointer to each queue having incoming packets.
Then, the switch process can easily access the destination tag
of each incoming packet and resolve any conflicts. For the sec-
ond problem, since the processes simulate switches or processors,
the number of processes cannot exceed the sum of the number
of switches and the number of processors. Moreover, the pro-
cesses are static. Once they are created, they do not terminate
until the simulation is over. However, even this number may be
excessive for a large network, and also the simulation may be-
come ineflicient due to the small granularity of the process and
its context switch overhead. Instead, since the network is syn-
chronous, a process can simulate a set of switches in the same
level or a set of processors because components in the same set
do the same operations * during a network cycle. Therefore, the
number of processes and hence the process granularity can be
varied by changing the number of components in the set. In TD
simulation, during every network cycle, every possible event is
checked and system states are updated according to the events
that actually occur. Therefore, no event list is maintained by
the simulation. This solves the last problem.

3. Many concurrent events that occur in a heavily loaded network
make the parallel TD simulation efficient. If a target network is
lightly loaded, TD simulation is less efficient than ED simulation
because many blank cycles may be involved. In this case, how-

“This is the property of the synchronous network that makes a parallel execution of
simulation possible.

3 SIMULATION METHOD 24

ever, we can save total simulation time by reducing the batch
size [29] because the network will reach steady state faster than
with a heavily loaded network.

If we limit the number of outstanding requests from each processor,
there will be a fixed number of packets circulated in the network. We refer
to this network model as a closed model [30]. Meanwhile, we refer to an
open model as a network model with an infinite stream of arriving packets
from each processor. While real networks are more likely to be modeled
as closed networks, the open networks are better for comparing the max-
imum throughput (or capacity) of the proposed networks. Therefore, we
model the networks as open networks. We will present simulation methods
for all three protocols in the following subsections. We introduce inter-
nal representations of the components with PASCAL-like pseudo code, and
component processes.

3.1 Simulation Method for DES networks

PPL [47] allows users to define concurrent processes. These processes com-
municate via shared access to common memory and via PPL communica-
tion facilities like events, locks, mailbozes, and synchronization points. We
assume that the facilities are also available in our pseudo language [20].

3.1.1 Representations
Packets are represented by the following data structure:

TYPE ptr.des_packet = " des_packet;
TYPE des_packet = RECORD
destination : integer;
time_of_birth : integer;
routing tag : array[0. MAXSTAGE] of integer;
next : ptr.des_packet;
end;
SHARED VAR pool.of_packets : array[0. MAXPOOLSIZE] of des_packet;

3 SIMULATION METHOD 25

The first attribute stores the location of the target memory. It is used for
checking whether the packet correctly arrives at its destination memory.
The second attribute is set to the simulation clock when the packet is
generated. It is used for collecting statistics about packet delays. The
attribute routing_tag is filled by the routing algorithm and accelerates the
simulation run by providing each switch with its destination queue number.
A pool of packets is statically allocated in shared memory.

Each DES switch has output FIFO queues which are represented as
follows:

TYPE ptr.des_.queue : ~ des_queue;

TYPE des_queue = RECORD
head, tail : ptr.des_packet;
numpackets : integer;
received : boolean;

end;

The queue is implemented as a singly linked list. The attribute received is
a dirty bit that prevents more than one packet from entering into the same
queue during a network cycle.

Each DES switch is represented as follows:

TYPE desswitch = RECORD
output_queues : array[0. MAXFANOUT] of des_queue;
ptr_predecessor_queues : array[0. MAXSPREAD] of ptr.des_queue;
end;
SHARED VAR des_switches : array[0. MAXSWITCHES] of des_switch;

The first attribute represents the output queues of each DES switch. They
can accept packets up to maz_buffer_size which is an input parameter. The
second attribute is a set of pointers to the predecessor output queues and
plays the following roles:

1. It reflects topological differences among networks with different
parameters. For example, its values for an SW-banyan are dif-
ferent from those for a CC-banyan. These values are initialized
by the construction algorithms.

3 SIMULATION METHOD 26

2. It separates the simulation code for processes from the construc-
tion algorithms. Specifically, the code stays the same regardless
of the network choice.

3. A packet hop can be easily simulated by deleting the packet from
a predecessor output queue and inserting it into its destination
output queue.

Each processor is represented as follows:

TYPE des_processor = RECORD
output._queue : des_queue;
end;
SHARED VAR des_processors : array[0. MAXPROCESSORS] of des_processor;

We assume that the size of the processor queue is infinite. Otherwise,
we cannot measure the maximum throughput of the network. A newly
generated packet is entered into the queue at the end of each cycle.

Each memory is represented as follows:

TYPE des.memory = RECORD
ptr.predecessor_queue : ptr.des_queue;
end;
SHARED VAR des_memories : array[0..MAXMEMORY] of des.memory;

We assume that a packet can be absorbed by a memory in a single network
cycle. A packet which arrives at a memory is returned to the pool.

3.1.2 Processes

At the beginning of a simulation run, a main process holds control. It
accepts the input parameters and initialize system variables like the system
clock, statistical counters, and process communication facilities. Then, it
builds the user specified network by calling the construction algorithm.
Next, it creates clock_manager, memory, des_switch, and processor processes
and passes control to the clock.manager process. The main process also
sends a proper index to each component process so that it can access the

3 SIMULATION METHOD 27

data structure allocated for it. For example, the des_.switch process with
index ¢ may access only the attributes in des_switches]i].

The clock.manager increases the simulation clock at the end of each
simulation cycle and checks the termination condition. If it should ter-
minate the current simulation run, it passes control to the main process.
Otherwise, it passes control to the memory processes. Each component
process simulates a set of components in the same level. Also, component
processes in the same level can run in parallel. For simplicity, we assume
that a component process simulates a single component. Each memory
process pulls and frees a packet from its corresponding switch in the base
level, and collects statistics about packet delays. Then, it passes the control
to the des_switch processes in the base level. Each des_switch process ex-
amines the routing_tag of the packet on the front of each predecessor queue
in some order determined by the user-specified conflict resolution scheme.
It moves the packets from its predecessors to its internal queues if there is
space, and passes control to its predecessors. In this way, the control prop-
agates from the des_switch processes in the base level to those in the apex
level. Then, the processor processes gain control. Each processor process
generates a packet according to the birth rate and puts it into its queue.
The destination tag of the packet is determined by the reference matrix and
the routing algorithm. Finally, control is passed back to the clock_manager
and the current simulation cycle ends.

3.2 Simulation Method for SEFD networks
3.2.1 Representations

Packets are represented by the following data structure:

TYPE ptr.sefd_packet = " sefd_packet;

TYPE sefd_packet = RECORD
destination : integer;
time_of_birth : integer;
gdist : integer;
upgoing.-tag : array[0.. MAXSTAGE] of integer;
downgoing_tag : array[0..MAXSTAGE] of integer;
next : ptr_sefd_packet;

3 SIMULATION METHOD 28

end:

SHARED VAR pool.of_packets : array[0. MAXPOOLSIZE] of sefd_packet;

The attribute gdist stores the minimum level number in which the reflec-
tion switch exists. The attribute upgoing_tag is the routing tag for upgoing
packets and the attribute downgoing_tag is for downgoing packets. Packets
with gdist greater than 0 are transmitted up. Otherwise, they are either
reflected or transmitted down. Switches decrease gdist by one as they trans-
mit packets up. A pool of packets is statically allocated in shared memory.

Each SEFD switch has output FIFO queues which are represented as
follows:

TYPE ptr_sefd_queue : ~ sefd_queue;
TYPE sefd_queue = RECORD
head, tail : ptr_sefd_packet;
numpackets : integer;
received : boolean;
sent : boolean;
end;

The queue is implemented as a singly linked list. The attribute received is
a dirty bit that prevents more than one packet from entering into the same
queue in a single network cycle. Similarly the attribute sent is a dirty bit
that prevents more than one packet from leaving the same queue in a single
network cycle.

Each SEFD switch is represented as follows:

TYPE sefd_switch = RECORD
T_queues : array[0.. MAXSPREAD] of sefd_queue;
B_queues : array[0. MAXFANQOUT] of sefd_queue;
ptr_SH_queues : array[0..MAXSPREAD)] of ptr.sefd.queue;
ptr.SL_queues : array[0. MAXFANQOUT] of ptr.sefd_queue;
end;

SHARED VAR sefd_switches : array[0..MAXSWITCHES] of sefd_switch;

3 SIMULATION METHOD 29

The first two attributes represent the output queues of each SEFD switch.
The attribute T_queues stores upgoing packets and B_gueues stores down-
going packets. Both can accept packets up to maz_buffer_size which is
an input parameter. The attribute ptr.SH_queues is a set of pointers to
B_queues in switch SHs and is used for receiving downgoing packets. The
attribute pir_SL_queues is a set of pointers to T_queues in switch SLs and
is used for receiving upgoing and reflecting packets.
Each processor is represented as follows:

TYPE sefd_processor = RECORD
output_queue : sefd_queue;
ptr.B_queue : ptr_sefd_queue;
end;
SHARED VAR sefd_processors : array[0..MAXPROCESSORS] of sefd_processor;

Each processor has its internal queue whose size is infinite and a pointer to
a B_queue in the corresponding switch. We assume that a packet can be
absorbed by a processor in a single network cycle.

3.2.2 Processes

A main process creates clock.manager, processor, and sefd.switch processes
with proper indices and passes control to the clock.manager process. The
clock.manager checks the termination condition and passes control to the
processor processes. Each processor process frees a packet from its corre-
sponding switch in the base level, and collects statistics about packet delays.
While control propagates from the sefd_switch processes in the base level to
those in the apex level, downgoing and reflecting packets are transmitted.
Then, control propagates from the sefd_switch processes in the apex level
to those in the base level. During this period, each sefd switch process
transmits upgoing packets. Then, the processor processes gain control. Fi-
nally, each processor process generates a packet and passes control to the
clock.manager and the current simulation cycle ends.

3 SIMULATION METHOD 30

3.3 Simulation Method for SEHD networks
3.3.1 Representations

Packets are represented by the same data structure for SEFD networks.

TYPE ptr_sehd_packet = " sefd_packet;
TYPE sehd_packet : sefd_packet;
SHARED VAR pool.of_packets : array[0. MAXPOOLSIZE] of sehd_packet:

Each SEHD switch has special queues which are represented as follows:

TYPE ptrsehd_queue : ~ sehd_queue;

TYPE sehd_queue = RECORD
ULIST head, ULIST tail : ptr.sehd_packet;
ULIST numpackets : integer;
DLIST head, DLIST tail : ptr.sehd_packet;
DLIST numpackets : integer;
received : integer;
sent : integer;

end;

There are two FIFO queue structures; one for ULIST and the other for
DLIST. The total number of packets in both lists cannot exceed maz_buffer_size
which is an input parameter. The attribute received and sent are dirty bits.
Together they prevent the special queue from accepting or sending two
packets in a single network cycle.

Each SEHD switch is represented as follows:

TYPE sehd _switch = RECORD
T _queues : array[0..MAXSPREAD)] of sehd_queue;
ptrSL_queues : array[0..MAXFANQUT] of ptr.sehd_queue;
end;

SHARED VAR sehd._switches : array[0. MAXSWITCHES] of sehd_switch;

4 SIMULATION RESULTS 31

The attribute pir_SL_queues is a set of pointers to T_gqueues in switch SLs
and is used for receiving upgoing and reflecting packets.
Each processor is represented as follows:

TYPE sehd_processor = RECORD
output.queue : sehd_queue;
end;
SHARED VAR sefd_processors : array[0..MAXPROCESSORS] of sefd_processor;

Each processor has its internal queue whose ULIST has infinite capacity.
We assume that a packet can be absorbed by a processor in a single network
cycle. Thus, its DLIST is always empty.

3.3.2 Processes

There are main, clock-manager, processor, and sehd_switch processes. They
do the similar operations to those for the SEFD protocol.

4 Simulation Results

Two widely used techniques for analyzing the performance of packet-switching
interconnection networks are queueing network models [3,30,19] and dis-
crete Markov chains [3,7,24,26]. Baskett, Chandy, Muntz, and Palacios-
Gomez [1] greatly extended the class of queueing networks that can be
solved by computationally tractable numerical algorithms. However, their
stochastic assumptions such as exponential arrival and service rates and no
conflicts among customers heading for the same service center at the same
time make it hard to apply their algorithms to our networks directly. Mean-
while, Markov chains often possess too many states to be solved efficiently;
the number of states grows exponentially with respect to the number of
queues. Therefore, some assumptions are usually made to isolate a queue
from its correspondents. In this work, we give the simulation results with
intuitive explanation because we did not make such assumptions.

Figure 13 shows performance of the three protocols on a (2,2,7) rectan-
gular CC-banyan network with infinite buffer size. Unless otherwise stated,
a uniform traffic pattern is used in our simulations. The performance of the

4 SIMULATION RESULTS 32

DES protocol is slightly better than that of the SEFD protocol for the case
of low birth rate. That is because the average path length that a packet
must travel in the DES network is shorter than that in the SEFD network.
The SEHD network shows poor performance because packets compete not
only for queue space on their paths, but also for the links between two
corresponding queues. In the worst case, there may be three packets com-
peting for a single link. However, the SEFD network costs twice as much
as the SEHD network. In Figure 14, we normalized the performance of
the SEHD network by a factor of two. The graph shows that the SEFD
network still performs better than the SEHD network.

Figures 15, 16, and 17 show how the performance of the three protocols
varies as a function of buffer size. Networks with buffer size 8 or 16 show
acceptable performance compared to the case of infinite buffer size. Prac-
tically speaking, there is little additional overhead in having more memory
space, so we choose 16 as a proper buffer size. From this point, we set the
default buffer size to 16.

Figure 18 compares the performance of a (2,2,7) DES CC-banyan net-
work with that of a (2,2,7) DES SW-banyan network under a uniform traf-
fic pattern. There is little difference between their performance because in
both networks there is a unique fixed-length (8 in this case) path between
a processor and a memory. But as shown in Figures 19 and 20, a (2,2,7)
single-ended CC-banyan network shows better performance than its coun-
terpart SW-banyan network. This is because, for a given level, there are
about two times more reachable base nodes from a given base node in the
CC-banyan network than in the comparable SW-banyan network.

Figure 21 and 22 show the performance of a (2,2,7) single-ended CC-
banyan network under a local traffic pattern. The local traffic pattern is
caused by localizing program modules into a set of processors which are
closely located to each other. Here, we assume that the local traffic pattern
is represented by the reference matrix whose (z,7)** element is the proba-
bility that a source ¢ accesses a sink j, which is inversely proportional to
the minimum level number in which at least one reflection node for ¢ and j
exists. The figures show that the localized traffic improves performance of
the networks. That is because under local traffic, the average path length
that a packet must travel becomes shorter than that under uniform traffic.
However, as shown in Figure 23, the same traffic pattern can degrade per-

4 SIMULATION RESULTS

33

Average Response Time {cycles)

50

{2,2,7) DES, SEFD, asnd SEHD CC-Banyan networks
Cldes Oseld Asshd

454
40.
35
30
25-
204
18-
104

¥ o 3 ¥ L1 T

.2 .3 4 .5 .6
Birth Rate (packets/cycla/processor)

Figure 13: Performance of the three protocols

4 SIMULATION RESULTS

Normalized pertormance of the three protocols

) Odes Cseid H.sehd
50

454
40
35.
304
254
20.
15

Normalized Average Respose Time

10- o I, S

0 A 2 3 4 5 .6
Birth Rate (packets/cycle/processsor)

Figure 14: Normalized performance of the SEHD protocols

4 SIMULATION RESULTS

35

(2,2,7) DES CC-Banyen networks with 4, 8, and 16 butfer sizes
0 Obutier = 4 Dibuffer = 8 Abuifer = 16

3 3s

(53

g

o 304

£

's 25

L3 *

2

(=]

& 20

[+:]

T

S 15

o

g

< 104 & T o

5 & v L4 L A L ¥
o . .2 .3 .4 .5 .6 .7
Birth Rate (packets/cycle/processor)

Figure 15: Performance of a DES network as a function of buffer size

4 SIMULATION RESULTS 36

{2,2,7) SEFD CC-Banyan networks with 4, 8, and 16 buffer sizes
5o Obufler = 4 Cibuffer = 8 Abuffer = 16
g 45 1
s
£ 404 .
g
= 354 .
2
& 304 L
2
g 2sl !
&
E ?.Qq -
@
>
< 15, _ :
= 2, (A B
| & i £ %)
1n L] b 1 L ¥ € 1]
0 .1 .2 .3 4 .8 .6 .7
Birth Rals (packeis/cycle/processor)

Figure 16: Performance of a SEFD network as a function of buffer size

4 SIMULATION RESULTS 37

(2,2,7) SEHD CC-Banyan networks with 4, 8, and 16 buffer sizes

55 Obuffer = 4 Dbufier = 8 bLbufler = 16
@ 50 L
2
[%3
T 45, .
g 40, !
=
2 35 X
[~
2 30l A
4
o 25 3
g
§ 204 L
< 15l

1n 1) L] & s & 1] A

.08 .1 .12 .14 .18 .18 .2 .22 .24 .26 .28

Birth Rate {packeis/cycle/processor)

Figure 17: Performance of a SEHDnetwork as a function of buffer size

4 SIMULATION RESULTS 38

formance of a (2,2,7) DES CC-banyan network. Under this traffic pattern,
the i** processor is most busy sending packets to the 7*® memory for each
i, where 0 < ¢ < 256. This permutation is not allowed in CC-banyan net-
works, therefore, programmers must be careful to place data into memory
so that the memory is uniformly accessed by the processors at run time.

In this work, we consider three conflict resolution schemes: random
(RAND), fixed priority (FP), and round robin (RR). Figure 24 shows that
the performance of RAND is as good as that of RR, and that both are better
than that of FP. While switches with RR must maintain a state variable to
keep information about the order of processing grant and request signals,
switches with RAND can process grant and request signals on FCFS basis.
Therefore, RAND is the best strategy in terms of performance and hardware
cost among the three.

Figure 25 shows the performance of SEFD CC-banyan networks as a
function of the number of stages. As expected, the performance of the net-
works degrades as the number of stages increases because packets experi-
ence more conflicts while they are transmitted through the larger networks.

Figure 26 shows how SEFD CC-banyan networks perform as a func-
tion of switch size. For the case of birth rate being less than 0.5 pack-
ets/cycle/processor, networks with larger switch sizes show better response
time because they have fewer levels for a fixed number of processors. How-
ever, as the birth rate increases over 0.5 packets/cycle/processor, the larger
the switch size is, the more contentions are expected. For example, for a
f by f switch, there may be 2 * f — 1 packets heading for the same queue
at the same time in the worst case (this is not true for an » by n SEFD
crossbar switch, where n is the number of processors). This can degrade
the performance of networks with larger switch sizes.

Figures 27 and 28 show the performance of nonrectangular SEFD CC-
banyan networks. It degrades as the ratio (R) of the number of apex nodes
to the number of base nodes decreases. This is because the number of
reflection nodes decreases as R decreases. In Figures 29 and 30, we normal-
ized the performance of nonrectangular networks by comparing their costs
with their rectangular counterparts. The cost of each network is calculated
by using the following cost function:
cost = the number of swiiches x spread * fanout

Figures 31 and 32 show the performance of (2,2,7) DES and SEFD CC-

5 CONCLUSIONS 39

banyan networks under a 2% hot spot traffic to memory 0 or a uniformly
selected destination for infinite, 50, and 100 network cycles. They show
that as the duration of accessing a hot spot lasts longer, the performance
of the networks degrades more even if all memories are evenly accessed in
the steady state. Both networks suffer equally from hot spot traffic.
Finally, Figure 33 shows the performance of a (2,2,7) SEFD CC-banyan
network under a bursty traffic. In this traffic pattern, processors generate
32 contiguous packets once they commence to generate packets. The idea
behind this is that the lengths of messages used by packet-switching tele-
phone networks or some message-passing computer systems range from a
few hundred bits to 10,000 bits. If we assume that our networks are used
for those applications, that we choose 1,024 bits as the message length, and
that our networks can transmit 32 bits a network cycle, then the processors
need to generate 32 contiguous packets per a message. The figure shows
that the performance mildly degrades (especially the average response time)
because the bursty traffic introduces more contention among packets.

5 Conclusions

Two approaches to evaluating performance of packet-switching intercon-
nection networks are analytic performance modeling and simulation per-
formance modeling. For analytic performance modeling, assumptions are
required to make the analysis tractable. However, some of these assump-
tions are not realistic. In this work, we developed simulation performance
models which relax these assumptions and significantly extend the logical
design space.

SFL (Spread, Fanout, and Level) is a parallel time-driven simulation
program for packet-switching synchronous banyan networks. It is written
in PPL and runs on the Sequent Balance 8000. SFL provides users with a
three dimensional design space. The first dimemsion provides a choice of
either a CC- or an SW-banyan network. The second dimemsion provides a
choice of tuples (spread, fanout, level). The last dimension provides a choice
of three communication protocols: DES, SEFD, or SEHD. The primary goal
of SFL is to ease the decision-making process of designing interconnection
networks by providing performance estimates of various design alternatives.

5 CONCLUSIONS 40

We introduced switch models for DES, SEFD and SEHD protocols. We
also presented our simulation method in depth.
We itemize our results as follows:

The performance of SEFD networks is as good as that of DES net-
works under a uniform traffic pattern.

SEHD networks perform worse than SEFD and DES networks, but
cost half as much.

Networks with buffer size 16 show acceptable performance compared
to the case of infinite buffer size.

The performance of DES CC-banyan networks is as good as that of
DES SW-banyan networks.

The performance of single-ended CC-banyan networks is better than
that of single-ended SW-banyan networks.

Under a local traffic pattern, the performance of single-ended net-
works improves.

Under a local traffic pattern, the performance of DES networks may
suffer from load unbalance.

The random conflict resolution scheme is the best strategy among the
three schemes in terms of performance and hardware cost.

While networks with small switches show better throughput, networks
with large switches show better response time.

The performance of nonrectangular single-ended networks degrades
as the ratio of the number of apex nodes to the number of base nodes
decreases.

The performance of both DES and SEFD networks suffers equally
from hot spot traffic pattern.

Under bursty traffic pattern, SEFD networks show mild degradation
of performance. Thus, these computer networks may be appropriate
for telephone networks.

5 CONCLUSIONS 41

In summary, we recommend SEFD CC-banyan networks as excellent
interconnection networks for highly parallel multiprocessor systems.

o

2

CONCLUSIONS

42

(2,2,7) DES CC-Banyan vs. (2,2,7) DES SW-Banyan
Dece-banyan Osw-banyan

40
2 3s.
[>]

Z

s 304

E

[

e 25,

el

& 20l

R

o

& 15

o

g

£ 10
5
]

7 i T (1 ki

.2 .3 .4 .5 .6
Birth Rate (packets/cycle/processor)

Figure 18: Performance of a DES CC- and SW-banyan network

5 CONCLUSIONS

(2,2,7) SEFD CC-Banyan vs. (2,2,7) SEFD SW-Banyan

40 O cc-banyan Csw-banyan

2 3s

“

g

P 30

£

=S

2 254

o

[~]

g 204

€&

=

& 15,

%

g

< 104
s v L L] L i L L 3 H] 1] i L) L
o .05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .68 .85

Birth Rate (packets/cycle/processor)

Figure 19: Performance of a SEFD CC- and SW-banyan network

5 CONCLUSIONS

44
(2,2,7) SEHD CC-Banyan vs. (2,2,7) SEHD Sw-Banyan

50 Occ-banyan D sw-banyan
T 45, !
3,
2 40 .
g
iz 354 -
2
S 30, !
0y
e 25 !
5
] 20. L
@
>
< 154 A

Tn M L] L & £ i E 1] &

.08 .1 .12 14 .16 .18 .2 .22 .24 .28

Birth Rate (packeis/cycle/processor)

Figure 20: Performance of a SEHD CC- and SW-banyan network

5 CONCLUSIONS 45

(2,2,7) SEFD CC-Banyan neilwork under a local ftrafflc
Ouniform Olocal

32
- 30. L
&>
S 284 L
3 .
@ 26
£ 24 .
g 22
a 20 .
& 18] A
4]
g 164 -
g 14. 5
<

12, L

1n ki E] L L] L] € tH 11 L] L Ly £

o 05 .1 .15 .2 .28 .3 .35 .4 .45 .§ .85 .8 .65 .7
Birth Rale (packets/cycle/processor)

Figure 21: Performance of a SEFD CC-banyan network under a local traffic

5 CONCLUSIONS 46

{2,2,7) SEHD CC-Banyan neiwork under a local traftic
Quniform Dlocal

5&: 4 2 &
% 504 .
2
Q
g 45 .
g 40 !
=
2 35 .
ol
g 30 i
4
5 25 -
&
s 204 .
<

154 L

10 L] L ¥ 1 ¥] ¥

.08 .1 .12 .14 .18 .18 .2 .22 .24 .28 .28

Birth Rate (packsis/cycle/processor)

Figure 22: Performance of a SEHD CC-banyan network under a local traffic

5 CONCLUSIONS 47

{2,2,7) DES CC-Banyan network under a local trafiic
Duniform QOlocal
40

2 3s]
[*]
g .
o 304 L
£
oo
@ 254 .
s
g 20 X
@
s
% 18 5
Il
g
< 104 L

5 % L] L1 1 4 5

0 .1 .2 .3 .4 .5 .6 .7

Birth Rate (packeis/cycls/processor)

Figure 23: Performance of a DES CC-banyan network under a local traffic

5 CONCLUSIONS

48

(2,2,7) SEFD CC-Banyan networks with ihree conflict resolution schemes
56 Cirandom Oround robin Afixed priority
- 34
g 32
2 .
& 30
g 28
= 26
g 24
§ 224
2 20
§ 184
5 164
& 144
125
1n * 5 v & 1] ¥ 1 ¥ L] 3 & L] E]
6 ©5 .1 .18 .2 .25 .3 .35 .4 .45 .5 .55 .8 .85
Birth Rate (packets/cycle/processor)

Figure 24: Performance of a SEFD CC-banyan network with three conflict
resolution schemes

5 CONCLUSIONS

(2,2,1) SEFD CC-Banyan networks
50 0(2,2,6) 0(2.2,7) a(2,2,8)
z 45.
2
[%3
& 404
2 35,
[
g 30,
a 25
&
s 204
g N
g 184 é_:, S]
104 O g
5 L4 4 L] L) ¥ L]
o A .2 .3 4 - .8
Birth Rate (packets/cycle/processor)

Figure 25: Performance of (2,2,]) SEFD CC-banyan networks

5 CONCLUSIONS

Average Response Time (cycles)

Reclangular SEFD CC-Banyan Netwerks
0(2,2,7) 0(3.,3,4)
©(8,8.2) %(16,16,1})

A{4,4.3)

50
45,
40,
35.
304
254
204
154

A 2 3 4 5
Birth Rate (packels/cycie/processor)

o

Figure 26: Performance of SEFD CC-banyan networks with various switch

sizes

5 CONCLUSIONS

51

40

{s,4,3) Regular CC-Banyan networks

0(4,4.3) 0(3,4,3)

A(2,4,3)

35.

30“

25,

204

15,

Average Response Time {cycles)

104

.08

¥

.15

2 .25 .3 .35 .4 .45
Birth Rate [packets/cycle/processor)

Figure 27: Performance of (s,4,3) regular SEFD CC-banyan networks

5 CONCLUSIONS 52

(2,3,1) Nonrectangular SEFD CC-Banyan networks
35 ©(2.3,2) 0(2.3.3) £(2.3,4)
2 30 I
£
A
o 254 .
E
o
@ 20. .
L4]
ford
o
g 15 5
@&
[t
& 104 !
o
g
< 54 e} e e s
0 E) 14 ¥ LY I3 £}
.05 .1 .15 .2 .25 .3 .38 .4 .45 .5
Birth Rate (packeis/cycle/processor)

Figure 28: Performance of (2,3,]) nonrectangular SEFD CC-banyan net-
works

5 CONCLUSIONS 53

{s,4,3) Regular SEFD CC-Banyan Networks
40 0(4,4,3) 0(3.4,3) £(2.,4.3)

@
£
= 35
2
o
g 30 5
8 ‘
o 254 .
g
2 20.
el
N 15, .
g
5 10 X
Z

5 " T T ¥ T v v () v] T

Y 1 .2 .3 .4 .5 .8 .7 .8

Birth Rate {packets/cycie/processor)

Figure 29: Normalized performance of (s,4,3) regular SEFD CC-banyan
networks

5 CONCLUSIONS 54

(2,3,4) SEFD CC-Banyan vs. {3,3,4) SEFD CC-Banyan
40 ©(3,3.4) 0(2,3,4) ANormalized (2,3,4)
% 3sl !
S
£ 30
g
= 254 .
@
g
5 204 .
a
173
& 154
S
& 104 L
g
< 5. .
0 L] & A ¥ A ¥ L} v & L] 1] L L 14
g .05 .1 .18 2 .25 .3 .35 .4 45 5 .85 .8 .65 .7
Birth Rate (packets/cycle/processor)

Figure 30: Normalized performance of a (2,3,4) nonrectangular SEFD
CC-banyan network

5 CONCLUSIONS 55

(2,2,7) DES CC-Banyan network under a hot spot traffic

Oinfinite cycles 150 cycles A 100 cycles

© uniform

45 .
73
2 404 .
5
e 354 .
g
= 304 .
[+2]
2
5 254 .
Q.
3
£ 204 5
@
g’ 15. .
kM
g 104 3
5 L ¥ € 1] & & Ly L
0 A .2 .3 4 .5 .6 7
Birth Rate (packeis/cycle/processor)

Figure 31: Performance of a (2,2,7) DES CC-banyan network under 2% hot
spot traflic pattern

5 CONCLUSIONS 56

{2,2,7) SEFD CC-Banyan network under a hot spot trafflc
Oinfinite cycles {150 cycles A 100 cycles
& uniform
50

z

-% 45

by 40

g .

= 35

]

2

5 30

3

& 254

@

g 20

@

Z 15, .

10 r : v - : v ¢ v :
] .1 .2 .3 4 .5 .6 7
Birth Rate (packets/cyclie/processor}

Figure 32: Performance of a (2,2,7) SEFD CC-banyan network under 2%
hot spot traffic pattern

5 CONCLUSIONS 57

(2,2,7) SEFD CC-Banyan network under a bursty trattic
45 ©a bursty traffic Cla normal traffic
2 40 i
@
z .
o 354 .
£
o
® 30. .
2
]
g 25 !
3
s
& 20 5
@
g
< 154 .
1(‘ ¥ 1] L] & ¥
4] 1 .2 .3 4 .5 .8 .7
Birth Rate (packeis/cycle/processor)

Figure 33: Performance of a (2,2,7) SEFD CC-banyan network under bursty
traffic pattern

REFERENCES 58

References

[1] Baskett, F., Chandy, K.M., Muntz, R.R., and Palacios-Gomez, F.,

“Open, closed, and mixed networks of queues with different classes of
customers,” J. Assoc. Comput., vol. 22, pp. 248-260, March 1975.

[2] Ben-Ari, M., Principles of Concurrent Programming, Prentice-Hall

Inc., Englewood Cliffs, N.J. 1982.

[3] Bhandarkar, D.P., “Analysis of memory interference in multiproces-

sors,” IEEE Trans. on Computers, Vol. C-24, No. 9, Sept. 1975.

[4] Bruell, S.C. and Balbo, G., Computational Algorithms for Closed

[5]

Queuveing Networks, Elsevier North Holland, Inc., 1980.

Chang, D.Y., Kuck, D.J., and Lawrie, D.H., “On the effective band-
width of parallel memories,” IEEE Trans. on Computers, Vol. C-26,
No. 5, May 1977.

Cheemalavagu, S. and Malek, M., “Analysis and simulation in banyan
networks with 2x2, 4x4, and 8x8 switching elements,” Proc. of Real-
Time Syst. Symp., Dec. 1982, pp. 83-89.

Chen, Pin-Yee, Multiprocessor Systems: Interconnection Networks,
Memory Hierarchy, Modeling and Simulations, Ph.D. Diss., De-
partment of Computer Science, University of Illinois at Urbana-
Champaign, Dec. 1981.

Cherkassky, V., Performance and Reliability Evaluation of Banyan
Networks, Ph.D. Diss., University of Texas at Austin, 1985.

REFERENCES 59

[9] Cherkassky, V. and Malek, M., “Analysis of CC-banyan networks,”
Proc. of 1986 ICPP, Aug. 1986, pp. 115-117.

10} Chin, C.-Y., and Hwang, K., “Connection principles for multipath
g
packet switching networks,” Proc. of 11th Annual Symposium on Com-
puter Architecture, May 1984, pp. 99-107.

[11] Christos, B., John, G., Paul, S., Vassilis, T., “Queueing delays in
buffered multistage interconnection networks,” Proc. of 1987 ACM
SIGMETRICS, Vol. 15, No. 1, May 1987.

[12] Dally, W.J., A VLSI Architecture for Concurrent Data Structures,
Ph.D. Diss., California Institute of Technology, 1986.

[13] DeMelo, J. and Jenevein, R., “SK-banyans: a unified class of banyan
networks,” Proc. of 1986 ICPP, Aug. 1986.

[14] Denning, P.J., “The working set model for program behavior,” Com-
mum. of the ACM, May 1968, pp.323-333.

[15] Deshpande, S.R., Jenevein, R., and Lipovski, G.J., “TRAC: an expe-
rience with a novel architectural prototype,” AFIPS Conf. Proc. 1985
NCC, pp. 247-258.

[16] Dias, D.M. and Jump, J.R., “Analysis and simulation of buffered delta
networks,” JEEE Trans. on Computers, Vol. C-30, No. 4, April 1981.

[17] Gelernter, D., “A dag-based algorithm for prevention of store-and-
forward deadlock in packet networks,” IEEE Trans. on Computers,
Vol. C-30, No. 10, Oct. 1981, pp. 709-715.

REFERENCES 60

[18] Goke, L.R. and Lipovski, G.J., “Banyan networks for partitioning mul-
tiprocessor system,” Proc. of First Annual Symposium on Computer
Architecture, Dec. 1973, pp. 21-28.

[19] Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, K.P., Rudolph,
L., and Snir, M., “The NYU Ultracomputer—Designing an MIMD
shared memory parallel computer,” IEEE Trans. on Computers, Vol.

C-32, No. 2, Feb. 1983, pp. 175-189.

[20] Hansen, P.B., “The programming language concurrent Pascal,” IEEE
Trans. on Software Engineering, Vol. SE-1, No. 2, June 1975.

[21] Heidelberger, P. and Lavenberg, S.S., “Computer performance evalu-
ation methodology,” IEEE Trans. on Computers, Vol. C-33, No. 12,
Dec. 1984.

[22] Hoogendoorn, C.H., “A general model for memory interference in mul-

tiprocessors,” IEEE Trans. on Computers, Vol. C-26, No. 10, Oct.
1977.

[23] Karp, AH., “Programming for parallelism,” IEEE Computer, May
1987, pp. 43-57.

[24] Kleinrock, L., Queueing Systems, Volume 1: Theory, John Wiley &
Sons, Inc., 1975.

[25] Kleinrock, L., Queueing Systems, Volume 2: Computer Applications,
John Wiley & Sons, Inc., 1976.

[26] Kruskal, C.P. and Snir, M., “The performance of multistage intercon-
nection networks for multiprocessors,” IEEE Trans. on Computers,

REFERENCES 61

Vol. C-32, No. 12, Dec. 1983.

[27] Kumar, M. and Pfister, G.F., “The onset of hot spot contention,” Proc.
of 1986 ICPP, Aug. 1986, pp. 28-34.

[28] Lam, S.S., Tutorial: Principles of Communication and Networking
Protocols, IEEE Computer Society Press, Los Angeles, 1984.

[29] Law, A.M. and Kelton, W.D., Simulation Modeling and Analysis,
McGraw-Hill, Inc., 1982.

[30] Lazowska, E.D., Zahorjan, J., Graham, G.S., and Sevcik, K.C., Quan-
titative System Performance, Computer System Analysis Using Queue-
ing Network Models, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1984.

[31] Lea, C.A., “The load-sharing banyan network,” IEEE Trans. on Com-
puters, Vol. C-35, No. 12, Dec. 1986, pp. 1025-1034.

[32] Lee, G., Kruskal, C.P., and Kuck, D.J., “The effectiveness of combin-
ing in shared memory parallel computers in the presence of hot spots,”
Proc. of 1986 ICPP, Aug. 1986, pp. 35-41.

[33] Lee, M. and Wu, C.L., “Performance analysis of circuit switching
baseline interconnection networks,” Proc. of 11th Annual International
Symposium of Computer Architecture, 1984, pp. 82-90.

[34] Lipovski, G.J., and Malek, M., Parallel Computing: Theory and Com-
parisons, John Wiley & Sons, Inc., New York, 1987.

