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1 INTRODUCTION

What is Automated Deduction?

It includes many things. A part of it involves proving theorems by com-
puter, theorems like the Pythagorean theorem from Plane Geometry (Fig-
ure 1) or the theorem: If an equilateral triangle is inscribed in a circle, and
lines are drawn from its corners to a point on the circumference, then the

length of the longest such line is equal to the sum of the lengths of the
others. (Figure 1.)

Figure 1 near here.

Or theorems from algebra such as:

A group for which 2? = ¢ for each of its elements z, is commu-
tative.
A ring for which z® = z is commutative.

Or theorems from analysis such as the mazimum value theorem and the

intermediate value theorems, depicted in Figure 2:

!Figure 2 near here.l

A Continuous Function f defined on a closed interval [a, b],

attains its Maximum (and Minimum) on that interval.

Andif f(a) < 0 and f(b) > 0, then f(z) = 0 for some z in [a, b].

Also puzzles such as the truthtellers and liars one, can be solved by

theorem proving. See [LO85].

On a certain island the inhabitants are partitioned into those

who always tell the truth and those who always lie. Ilanded on
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EXAMPLE THEOREMS FROM GEOMETRY

Pythagorean Theorem:

Figure 1



EXAMPLES FROM ANALYSIS

ZaRG

Maximum Value Theorem and Intermediate Value Theorem,
for continuous functions.

Figure 2



the island and met three inhabitants A, B, and C. I asked A,
‘Are you a truthteller or a liar?” He mumbled something which
I couldn’t make out. I asked B what A had said. B replied, ‘A
said he was a liar’. C then volunteered, ‘Don’t believe B, he’s
lying!.

What can you tell about A, B, and C?

The halting problem theorem (figure 3) shows how complicated these the-

orems can get, and others more so.

[Figure 3 near here.l

1.1 Facets of Automated Deduction

What is Automated Deduction? It is a number of things. But in all cases
one is making deductions by computer. It is often called Automated Theo-
rem Proving (ATP), or Automatic Reasoning (AR). We will use these terms
interchangeably.

Let me list some of the facets and applications of Automated Deduction.

See Figure 4.

Figure 4 near here.

We consider proof discovery to be the major component of ATP, because
every application of ATP uses some amount of automatic proof discovery.
We will tend to concentrate on it in this talk, since we are personally
interested in it, and will discuss the others only briefly, if at all. There
are a number of review papers and references for each of these areas. One
might add to this list: all non-numeric programming, since some form of
inferencing is involved in all of it. '

Automatic proof checking is a very important part of AR (see, for exam-
ple, [BM82, Con85, Hun85, We77]) but will be discussed only briefly here.
The reader is referred to [MS84] for a report on using ATP in CAL
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HALTING PROBLEM IS UNSOLVABLE
(Burkholder)

(1) (EX)Gx & (Ay)(Py — (Az)Dxyz)] —(Ew)[Pw & (Ay)(Py — (Az)Dwy2)]

@) (Aw)([Pw & (Ay)(Py — (A2)Dwyz)]—> (Ay) (A2)([Py & Hpyz) — (Hpwyz & Owg)]
& [(Py & — Hy y2) — (H3 wyz & Owb)]))

(3) (Ew)[PW & (ay)([Py & Hoyy) — (Hawyy & Owg)] & [Py &— H yy)
—>(Hawyy & Owb)])]— (EV)[Pv & (Ay)([Py & Hzyy) — (H2 vy & Ovg)]
& [(Py & — Hp yy) — (Ha vy & OVD)])]

(4) (EV)Pv & (Ay)(IPy & H, yy) —(H vy & Ovg)] & [(Py &—Hpyy) — (H,vy & OvD)])]
—>(EU)[Pu & (Ay)([(Py & Hpyy) — —Houy] — — Hauy] & [Py & —Hayy)
—(H yy) — (Hpuy & Oub)])].

5
»

(5) —EX) [Gx & (Ay) (Py —{A2) DxyZ)]

Figure 3



APPLICATIONS OF ATP
Proof Discovery

Proof Checking: Including Computer-Aided Instruction
Interactive Provers (Man-machine)

Logic Programming & Programming Languages
Deductive Data Bases

Program Verification & Automatic Programming

Expert-Systems Inferencing

Algebraic Manipulation (such as Macsyma)

Proof Representation & Manipulation

Figure 4



We will also not discuss interactive provers, but consider this to be one
of the most important areas of ATP. See [BBr73, BM79, ].

We will discuss logic programming shortly. Many efforts are underway
to combine logic and functional programming languages such as PROLOG
and LISP, and to join this with rapid type inheritance, to make it easier to
write Al applications, and attain greater speed. See, for example, [AN85].

In the near future we expect to see an increased research effort on de-
ductive data bases, especially for very large collections of facts and rules,
written in logic, and requiring a great deal of inferencing to answer a query.
See [GMT8] for a review and also [HN84] for an example of éompiling DB
queries, to speed up retrieval.

Such a DB might contain the facts about a corporation and its oper-
ating “rules”. Similarly for a political situation, such as the Middle East
(will country X cut off the oil or go to war), and for military situations.
We believe that a structured knowledge base of general (common-sense)
knowledge, such as [LeS6)], will play a big role in these efforts.

Program verification (e.g., [Good85, BM79]) and automatic program-
ming [MW85] continue to be significant application areas for ATP. Alge-
braic manipulation [Buch83], as represented by MACSYMA [MAC] and
other systems, has grown to be a sizable part of AR.

Of most interest to the Al community is automatic inference associated
with Expert Systems and related “intelligent” programs. In this conference
alone there were 46 papers (out of 150) related to automatic reasoning. We
expect that trend to continue, especially as Al programs are being based
more on traditional logic and extensions of it. Here we could include non-
monotonic reasoning (e.g., circumscription) [McC80] Truth Maintenance
[Do79, delK84], common-sense reasoning [McC, Le86], qualitative reasoning,
(see, for example, [delX84, Fo84, Ku86)), meta Reasoning [GGS83, GN81).



1.2 Proof Representation & Manipulation

Another branch of automated deduction studies methods of representing
and transforming proofs. Human mathematicians seem to be able to un-
derstand a proof as a whole, wheras automated deduction systems tend to
have a very narrow view, centered around a single clause or a small group
of clauses at any one time.

One reason for wanting to be able to manipulate proofs is to facilitate
higher-level strategies for proof discovery. The method of proof by anal-
ogy is an area which needs the ability to transform proofs, to extract the
abstract content of a proof, and to annotate proofs with additional infor-
mation such as the "motivation” for a given step. (See Section 5.2.1).

The internal representations used in automated deduction are often not
very easy for people to understand. Many theorem provers use clausal reso-
lution. But putting a theorem into clauses often introduces redundancy and
obscures the logical structure of the theorem and its proof. Observing that
it is often much easier to understand a proof in natural deduction format,
Peter Andrews and Dale Miller have developed algorithms for transform-
ing resolution proofs into an intermediate form called an "expansion tree”
and then into a natural deduction proof [An81]. Amy Felty, a student of
Miller, has recently developed a system to translate proofs into natural En-
glish. These systems use “higher order logic” (see section 3.3 ) and have
automatically proven Cantor’s theorem and a version of Russell’s paradox.

A group of Systems [GMW82, Ne80, Card86, CoH85, Cons86, deB80]
have been developed for representing and checking mathematical proofs
using a higher order logic based on the Curry-Howard isomorphism between
propositions and lambda-types (see section 3.4) These systems have also
been used for verifying software and hardware [G087]. Proofs often can
be written in a form much closer to that used by a human mathematician

than by employing first-order predicate calculus and resolution. So far,



little work has been done on proof-discovery in these systems.

McAllester (MIT) has developed a theorem prover with set theory ?built-
in” and with a novel concept for proof guidance: the user specifies a ”focus
object” and the prover tries to forward chain from est ablished facts to prove
everything it can about the selected object. The prover can then search
using patterns to see if anything useful has been proved. This seems po-
tentially useful as a representation for motivation in proofs. His ONTIC
has been used to proof-check the Stone Representation Theorem as well as
others [McAS8T].

Weyrauch [We77, We82] has developed a system called FOL in which
the syntax and reasoning rules of a deductive system can be formalized
in First Order Logic. In paricular, FOL can formalize its own logic. It
can conduct reasoning about proofs and about its own rules of inference.
New rules can be verified using the deductive capabilities of FOL and can
be added declaratively to the set of meta-theorems representing facts FOL

knows about itself.

2 REFERENCES

There have been a number of excellent review papers of ATP during the last
few years. Perhaps the review by Loveland [lo84] or [Bhe85] (in the first
issue of the Journal of Automated Reasoning, 1985) would be the best for
the beginner. In that same issue of JAR is an extended review of AR. Those
interested in the prehistory and early history of ATP should see Martin
Davis’ [Da83]. Also see [WH83]. Bill Pase, of LP. Sharp Associates, has
recently revised his 70 page bibliography of Automated Deduction, which
is very useful for those serious about this subject. [Pa87]

There are a number of books and collections of important papers which
are introductory to the subject. For example, [CL73, Lo78, Bi82-87, Wo84,
GNS87, Ko79, Bu83, An86, IEEE-C25, Wo87, BMT79, Sw83, BL84]. Also



there are chapters on ATP in various books on Al such as [Nil80, Rich83],
and various Journals and Conference Proceedings (JAR, AAR Newsletter,
CADE Reports, Al Journal, MI Series, AAAI, IJCAIL IEEE Transactions
PAMI and SSC, etc.).

Other books of related interest include Konolige [Kon80] on representing
the capabilities of intelligent agents with imperfect reason; and Smullyan’s
books of logic puzzles, especially [Smu83], a good source of challenge prob-

lems for ATP systems.

3 BRIEF HISTORY OF AUTOMATED DE-
DUCTION

Modern ATP was born in the middle 1950’s with the “Logic Machine”
of Newell, Simon, and Shaw [NSS56 ]. Gelernter’s “Geometry Machine”
[Ge59] followed in the late 50s, as well as other interesting work by Hao
Wang [WaHG0], Davis and Putnam [DP60] and many others (see [Da83)).
But it was the advent of J. A. Robinson’s RESOLUTION paper [RoG5] in
1965 that forever changed this field.

Also note that Maslov’s inverse method [MasG8] stems from the mid
60’s. (Vladimir Lifschitz has recently completed an excellent paper [Li87]
simplifying the presentation of this powerful method.)

Other proof procedures, such as the so called “Natural Deduction”
Provers [Wah60, B175, Lo78, B177, P182], Model Elimination, Connection
and Mating Methods [An81, Bi82], Interconnectivity graphs [Ko75, Si76),
Semantic Tableaux [Opl, Smu68], and the earlier “inverse Methods” of
Maslow [Mas 68, have much in common with Resolution and also suffer
many of its shortcomings. -

Still, we believe that the introduction of resolution represents the single

most important event in ATP so far. What is it?



3.1 Resolution

The basic idea of Resolution is simple and is very easy to learn. See, for
example, the presentation in [CL73]. It is based upon the modes ponens
rule, or more generally the chain rule. Referring to Figure 5, if the chain
rule is converted to clausal form (by replacing an expression * — y by
(=z V y) then the rule is effected by cancelling the ¢ and - ¢ in the upper
clauses. Shown at the bottom of Figure 5, is the Resolvent Rule for first
order logic, where unification is required; here the variable z is bound to

the term a.

Figure 5 near here.

Figure 6 shows a resolution proof of a simple theorem. Note that the
hypotheses are converted to clausal form and the conclusion is negated.

Then clauses are resolved until a contraction, O, is reached.

Figure 6 near here.

For Propositional Logic (where no variables are to be bound) Resolution

is quite simple:

RESOLUTION RULE

1. Negate Theorem
2. Put in “Clausal Form™’ (i.e., Conjunctive Normal Form, CNF)

3. Resolve until a contradiction, O, is obtained

Now let us look at Resolution for First Order Logic (FOL). Figure 7
shows some expressions in FOL and a theorem. One is dealing here with
quantifiers and variables. In order to prove this by resolution we must
convert it to clausal form. (Figure 8) First each hypothesis is skolemized

by removing the quantifiers.
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RESOLVENT RULE

OD
MODES PONENS CHAIN RULE RESOLVENT RULE
P, P—Q p—qg, g—r —pvVvyg -4gvVvr
g p—r —p VT
—p(X) V a(X), —qgfa) v r
—p(@) vr

Figure 5



EXAMPLE Resolution Proof

Theorem: [(p—q) &p] — @
Use CONTRADICTION. (Clauses)

1. -pvag 4. q 1,2
2. p 5. 3,4
3. —q “box”
‘Actualy: | (p Vv Q (p V Q)
p mdl L
\ —=q > ) —q
q q
\ } \

Figure 6



{Figure 7 and 8 near here.

In the first hypothesis, the expression is true for all z and y, so we
discard the quantifiers, and remember that we can replace x and y by any
term we please in the proof. We also convert the implication as before.
Similarly in the next hypothesis, except that we require a skolem function.
For each p, there exist a z such that Mother(z, p). It is clear that z depends
on p, so we show that dependence by replacing z my the expression m(p).
The conclusion is negated (since resolution uses Contradiction). The z
remains a variable that also might be replaced with a term. Figure 9 shows
the corresponding clauses and the derivation of O by resolution. There,
z, y, p, and z are variables, and John and m are constants. The proof
goes as before except that some of the variables are bound in the process.
These bindings are called a substitution. The process of determining the
substitution is called unification. Two formulas are UNIFIED (made one)

in the process.

[Figure 9 near here.]

For example, the pair
P(g(z),x)
P(y,=0)

are unified by the substitution [z « 20, y « g(20)] (where z and y are
variables and ¢ and z0 are function symbols)
But the pair

P(g(z),z)
P(y,h(y))

has no unifier. Why?
The first step in trying to unify

P(g(z),=)

11



FIRST ORDER LOGIC

Girl (x), Female (x), Person (p)

—— — — i— — Ao— — —— — — — S — o

THEOREM:

Vx Vy [Mother (xy)—> Female (x)] &

Yp [Person (p) —> 3 z Mother (z,p)] &
Person (John)

—> 14 z Female ’(z)

Figure 7



CLAUSES

Vx Vy [Mother (x,y) —> Female (x)] &
— Mother (x,y) v Female (x)

¥ p [Person (p) —> 3 z Mother (z,p)]
— Person (p) v Mother (m(p), p)

Note: m(p) is a “skolem” expression

—— . Ml MM ST——— S — — —  ——— S————  —

Person (John)
Person (John)

—> df Female (2)
- — Female (2)

Figure 8



PROOF

—Mother (x,y) v Female (x)

2. —Person (p) Vv Mother (m(p), p)
3. Person (John)
4, —Female (2)
5. Mother (m(John), John) 3,2, p <+ John
6. Female (m(John)) 5,1, y < John,
X «— m(John)
7. 4,6 z <— m(John)

Figure 9



P(y, h(y))

yields

P(g(z), =z )

P(g(I)» h(g(l‘)))

But we cannot finish, because z occurs in h(g(z)). If we tried to continue by
substituting [z « h (g(z))] we would get into an infinite loop. We prevent
this kind of error by what is called the “occurs check” in the unification
algorithm. If we don’t use such occurs check, we could prove non-theorems,

such as

Vz 3y P(y,z) — 3y Vz P(y,z)

We will see more on the occurs check problem when we discuss logic
programmang.

Resolution is complete for first order logic; i.e., any theorem expressed
in FOL can be proved by resolution. This is an important result since FOL
includes much of mathematics (indeed, can include all of mathematics).

However, resolution is not a decision procedure for FOL, there is no
guarantee that it will detect non-theorems in finite time; in fact FOL has
no decision procedure. Higher Order Logic, which we will discuss shortly,

has no complete proof procedure, let alone a decision procedure.

3.2 Completeness

Completeness is a desirable property of a proof procedure such as resolu-
tion; we want to know what it can and cannot do before we employ it.
But completeness alone is not enough. We also need speed as well. But
Resolution — as well as other proof procedure for FOL - tend to be slow

when attempting the discovery of proofs of hard theorems.

12



We are faced with the classic combinatorial ezplosion problem when we
automatically search a proof tree, such as the one depicted in Figure 10.
The prover searches down along the branches looking for the goal nodes,

depicted by the asterisks. Finding such a goal finishes the proof.

[Figure 10 near here.

Actually, in standard resolution, the search space is not really a tree,
since branches often rejoin other branches. Linear formats for organizing
resolution search (such as SL-resolution, model elimination, pioblem reduc-
tion) make the search more tree-like. In any case, the “tree” metaphor in
the following discussion is useful for intuition.

The number of branches in the tree increases at least exponentially
with depth. When the solution nodes lie even moderately deep, brute-force
search methods quickly exhaust available resources.

Professional mathematicians have an uncanny way of excluding much
of the “brush” of the tree by heading directly toward one of these solution
nodes. But the computer - though a million times faster - tends to hope-
lessly thrash around through all the branches (using depth first or breadth
first search methods). The challenge of this age for this field is to shorten

the search time. Attempts to do so can be classified into two categories.

1. Methods that speed up the inherent reasoning process by

(a) Using faster hardware, or by

(b) Clever programming tricks, such as clause compiling

2. Those that prune the search tree.

The effect of the first category is to push down a few layers in the
search tree. See Figure 10A. The swath indicates how a faster prover might

push farther down in the tree. This may or may not help, depending, of
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PROOF SEARCH TREE

Figure 10




course, on the positions of the goal nodes in the tree. For many applications
in Al and related fields, it does help. A speed up of one or two orders
of magnitude, that seems to be attainable by the new clause-compiling
techniques coming from the PROLOG community has made possible the
proofs of many theorems previously unattainable by automatic methods.
This is good news for many workers in Al who are beginning to use logic
more extensively for representing rules for expert systems and for entries in

logic data bases, etc.

Figure 10A near here.J

This extended use of logic is placing a greater load on the “inference
engine” of these systems, and these new compiling technigues will help
greatly with that load. But it is through the second category, the pruning
strategies, that we can expect satisfactory solutions for the long run. speed
alone cannot replace the judicial use of knowledge. (See our recent paper,
Some Thoughts on Proof Discovery [BI86], for a further articulation of this
argument.) There were many early attempts to prune the search tree. Most
of these are syntactic in nature, applying equally well from one subfield to

another. Some refinements of Resolution to speed up proof discovery are:

e Set-of-Support Resolution

Hyper-resolution

SL-resolution (=Model Elimination)

e Connection Method, Matings

Interconnectivity Graphs

Locking
¢ Dozens more.

14



PROOF SEARCH TREE

4,
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One such method, an important one, is the set of support strategy
[We70], whereby the program works back from the desired goal, and avoids
generating unmotivated lemmas that may or may not contribute to the
final solution.

Another important one is called hyperresolution [RoG5A] wherein a num-
ber of resolution steps are combined into one larger step, with the program
keeping only the final resolvent and discarding the intermediate resolvents
("fragments”). (See Section 5 below). This method has been especially
powerful in the hands of the Argonne Group headed by Larry Wos. Many
other pruning strategies have been tried, but these will not be reviewed
here [KoT1, Lo68, An84, Bi82, Ko75, Si76, . . .].

It should be noted the ground proofs (proofs in which no binding of
variables takes place) are hardly ever difficult. It is only when we allow
the binding of variables (i.e., the replacement of variables by other terms),
through the wunification process, that we encounter the combinatorial ez-
plosions that so hamper our provers. There have been developed ground
provers which are enormously fast, and it is questionable whether further
progress in this area is necessary.

We will return to the problem of speeding-up proof discovery shortly,

but we first briefly discuss other logics and equality.

3.3 Higher Order Logic

In first order logic we do not quantify function symbols, predicate symbols,

or symbols representing higher order objects. For example, the formula
Va [Vz P(z) — P(a)) (1)

is from the first order logic because only the a and x are quantified. But
the formula

Va 3Q[vz P(z) — Q(a)] (2)

15



is not, because the predicate symbol Q has been quantified. 2

Actually (2) is an easy theorem for people or machines: we simply re-
place “Q” by “P”, and “x” by “a”, but it is part of Higher Order Logic
(HOL), which is not even complete, let alone decidable. Inherently, HOL
is harder than FOL. However, the methods of Unification and Resolution
have been extended HOL [Hu73, An84] with a certain amount of success.
For example, Andrew’s Prover, based on the Huet Unification Algorithm

has proved

Cantor’s Theorem: If N is the set of integers, and SN is the

set of subsets of N, then there is no one-to-one function from
N to SN.

More difficult theorems, such as

Intermediate Value Theorem: If f is a continuous function
on a non-empty closed interval [a,b], f(a) < 0, and f(b) > 0,
then f(z) = O for some z in [a,b]. (Using the Least Bound
Axiom.)

have been proved by special purpose provers such as the one described in
[BI79], but that Prover has limited generality. General Purpose Provers
tend to be SLOW, especially for HOL.

3.3.1 Propositions as Types

An interesting approach to HOL has been developed from the so-called
Curry-Howard isomorphism. This is an elegant relationship between the
typed lambda-calculus and intuitionistic logic. It has been championed,

primarily by Martin-Lof [Ma84], as a basis for abstract computer science.

2The predicate symbol P is also universally quantifies (implicitly) in (1) and (2), it is
only when “existential’ type quantifiers are used, where the quantified predicate symbol
is to be replaced (bound) in the proof process, that we enter true higher order logic.

16



Basically, the idea is that if a proposition is viewed as a type and the
proof of a proposition is viewed as an object having that type, lambda con-
version is formally the same as modus ponens. If A and B are propositions

(types) and f is a term of type B, the expression

(A(z:4)f)

is a function mapping the type A into the type B. The type of this function
is symbolized as A — B, which can be thought of as expressing the impli-
cation A — B, with the meaning that given a proof p of A. we can get a
proof (A\(z) f) (p) for B. To prove A — B means to demonstrate an object
of type A — B, i.e., an effective procedure for obtaining a proof of B from
a proof of A.

This calculus is a sufficient starting point to do mathematics. It is
possible to construct definitions of all the usual logical connectives (and,
or, not), quantifiers, and equality (using Leibniz’ definition of substitutivity
of equals). See [CoH83] for an example of how this is done in one system.

The resulting logic is intuitionistic; all objects purported to exist must
be constructed, and there is no law of excluded middle. However, if desired,
logical connectives and quantifiers obeying the usual non-intuitionistic rules
can be constructed from the intuitionistic ones.

A branch of category theory, the theory of Topoi [Top79] leads naturally
to the same intuitionistic logic and is a convenient abstract setting for
foundational questions in this kind of logic.

Potential advantages of Curry-Howard systems for ATP include: higher
order quantifiers are naturally available; we can get a lot of security in the
logic from the strong typing; and there is a natural mapping between proofs
and programs for constructing objects. So far the only provers using such

representations are proof checkers, having very limited search capabilities.

17



3.4 Other Logics

Many sorted logic brings the idea of typed variables and terms into first-
order logic. Walther [Wa83] (see section 6.9) has developed a complete
many sorted extension of resolution. Mathematical problems can often
be expressed more compactly in many-sorted logic than in standard FOL.
There is a significant gain in efficiency of search for proofs, since the types
attached to the terms place restrictions on permissible unifications.

An example which has been widely used as an ATP benchmark is “Schu-
bert’s Steamroller”. (See below.) Fig. 11 shows how many sorted logic can
improve the proof length and input sizes for this problem, and also includes
data on further improvements which are possible using Cohn’s LLAMA
logic [Coh87].

Figure 11 near here.

Schubert’s Steamroller Problem

Wolves, foxes, birds, caterpillars, and snails are animals, and
there are some of each of them. Also there are some grains, and
grains are plants. Every animal either likes to eat all plants or
all animals much smaller than itself that like to eat some plants.
Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which in turn are much smaller than
wolves. Wolves do not like to eat foxes or grains, while birds
like to eat caterpillars but not snails. Caterpillars and snails
like to eat some plants. Therefore there is an animal that likes

to eat a grain eating animal.

For reasoning about the common-sense world, for planning actions, and
for communicating with agents (including people), it is necessary to express

and reason about ideas like possiblity, belief, knowledge, successiveness
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STEAMROLLER PROBLEM
STATISTICS

FOL Walter’s logic LLAMA

No. of clauses initially 27 12 3
No. of possible inferences 102 12 7
33 | 10 5

Length of proof

F\ f\\)YC H




(in time), etc. Modal logics and temporal logics have been developed for
this purpose. Proof procedures based on connection methods [Wal86] and
semantic tableaux [Smu68) have been developed. See [Tur84] for a review.

Others, particularly Kowalski [[Ko79], have argued that modal and tem-
poral logics are unnecessary and that the corresponding reasoning can
be formulated and carried out entirely in FOL. The Situation Calculus
[McC63, McC69] formulates actions and there effects on states in FOL.
Green [Gr69] developed a large working system based on resolution for
performing such reasoning.

For recent work in applications of these methods, see [Ko86, KoS86a,
Ko86b, Ap82, Moo85]. An excellent textbook covering this area is [GN8T].

3.5 Equality

An early problem, a persistent one, is that involving equality, the “substi-

tution of equals”. For example, the theorem
(a=b A P(a)) — P(b)

is rather easy, one simply substitutes a for b, or vice versa (assuming of
course that “=" has its traditional meaning). But in more complex exam-

ples, like the following theorems,
A group for which z? = e, is commutative, (Hard)
A ring for which z® = z, is commutative, (Very Hard)

the proof discovery process is difficult for a computer program, because

there are so many ways in which one term can be replaced by another.
The problem arises because, if a = b is hypothesized, then we can re-

place either a by b, or b by a. This branching factor of 2, when invoked

many times, leads to a serious combinatorial explosion. Paramodulation
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[Wo70] and E-Resolution [Mo69], provided complete solutions to the equal-
ity problem, but brought very little to prevent the inherent explosion. Some
ATP researchers have greatly tamed the problem by the use of rewrite rules.
Called demodulators by Wos [WoG7] and reductions by Bledsoe [B171], these
procedures rewrite a formula using a set of reducers or rewrite rules. For

example, if we have the rewrite rules
z +0— 2z

te(ANB) - teAd & teB

we would rewrite the formula
f(t) e (A(z) N B(z +0))

as

f(t) € Az) & f(t) € B().
The great advantage here is that the substitution on one-way only. We
replace “z + 0” by “z”, but do not replace “z” by “z + 07, as might be
possible by paramodulation and E-resolution. Thus a branching factor of
2 is replaced by 1! However, the disadvantage is that such procedures are

incomplete, some theorems cannot be proved by rewriting alone.

3.5.1 Term Rewriting Systems

An exciting advancement in this area was an attempt to enlarge these sets
of rewrite rules to complete sets, the so called complete sets of reductions. A
signal paper in this subarea was [KB70] by Knuth and Bendix that provided
a set of ten rewrite rules which constitute a complete set of reductions for
(non-commutative) group theory. See figure 12. These can be used, by.

rewriting alone, to prove a variety of theorems in group theory.
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Figure 12 near here.J

Knuth and Bendix also offered a procedure for completing an incomplete
set, where that is possible.

This is part of a rapidly growing subfield of ATP called Term Rewriting
Systems, which includes work on narrowing [S174] and wunification algo-
rithms with built-in theories [Fay79].

The first studies concerning the use of complete sets of reductions in res-
olution was conducted by Dallas Lankford [La75]. It brought together the
notion of complete sets of reductions with that of “narrowing” introduced
by Slagle [S174].

The connection between CSOR’s and the study of unification algorithms
became closer when independently, Peterson and Stickel [Pe81] and Lank-
ford and Ballantyne [LB77] used the commutative associative unification al-
gorithm [St81] to extend the Knuth-Bendix completion algorithm to handle
commutative associative functions. Conversly, Fay [Fay79] used the narrow-
ing algorithm to generate unification algorithms for theories which could be
represented by CSORs. Fay’s work was extended by Hullot [Hul80]. The
study of unification algorithms is now being actively pursued by several
research groups, at SRI [Sm87] and Kirchner [Kir86] in particular. See also
[CREASST].

A good survey of the field up to 1980 is found in [HO80]. A more up-
to-date survey on completion can be found in [Der§7A}, and an equally
recent survey on the termination of systems of reductions can be found in
[Der87b).
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KB1
KB2
KB3
KB4
KBS
KB6
KB8
KB9

COMPLETE SET OF REDUCTIONS
For a Group
X+0—x

0+x— X

X+ (-x)—0

(-x) +x—0
X+Yy)+Zz> X+ (y+2
—(-X) — X

-(x +y) — () + (%)
X+ ((-X)+Y) Y

KB10 (-X) + (X +y)—Y

Figure 12



4 LOGICPROGRAMMING AND CLAUSE-
COMPILING

Another giant subarea of ATP is represented by the PROLOG community,
or more correctly Logic Programming. During the early 1970’s Kowalski,
Colmereauer, Roussel and others [Ko74, Rou75], discovered that one could
use a theorem proving system as a programming language. This 1s in the
spirit of earlier work by Green [Gr69], where an answer-clause was used
to return the list of bindings of variables, resulting from the proof of a

theorem. For example, if one asserts the facts

Father(Frank,Mary)
Mother(Mary,Ted)
Grandfather(z,z) « father(z,y) & Mother(y, z),

and proves the theorem
3z Grandfather(z, Ted),
he can obtain the binding
z +« Frank,

which gives an answer to the question, “Who is Ted’s Grandfather?”.
PROLOG is widely used as a programming language, especially in Al,
and there are a number of implementations of it. The “standard” version

employs ordinary resolution, but

1. allows only horn clauses®

2. does not do the “occurs check” during unification.

3A clause is horn if it has at most one positive literal. e.g., = P(z) V Q(z) V - R(z,y)
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By restricting use to horn clauses, the implementation can employ a
depth-first search, which greatly simplifies the storage allocation problem,
and enables high performance via clause-compiling (which we will discuss
shortly).

There is no apparent difficulty with ignoring the occurs check when
PROLOG is used as programming language. But it is unsound as a Theo-

rem Prover, because it would allow the unification of formulas such as

P(g(z),z) and P(y, h(y)),

thereby (as we saw earlier), “proving” non-theorems such as

Vz 3y P(y,z) — 3y Vz P(y,7)

It is also incomplete for FOL, because it employs a depth first search,
and is restricted to horn clauses.? So why are we interested in PROLOG
as a reasoning mechanism, since it is unsound and incomplete? The reason
is that during the last few years David Warren (for DEC10 PROLOG)
and others have used some compiling techniques (clause-compiling, or rule-
compiling) to greatly speed up the process — by orders of magnitude.

Shortly we will (very) briefly describe how clause-compiling is done for
PROLOG, and how that is extended to speed up proofs in full first order
logic.

Our interest is in Automatic Deduction more than Programming, so
we will not report on the enormous literature on Logic-Programming and
PROLOG. Those with further interest should consult review papers such
as those found in [CT82].

40f course PROLOG, like any other programming language, can be used to implement
a sound and complete theorem prover. What is more, Plaisted’s SPRF [P187] (see Section
6.11) gains much of the speed of PROLOG for ATP.
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4.1 Clause Compiling in PROLOG

Clause compiling is like ordinary compiling (of say LISP), in that it involves:
structure sharing, clever use of the stack, open coding of unification, and
much more. See papers by Warren [War87] and Stickel [St80].

A key to clause-compiling is to have an unchanging set of (original)
clauses which will not be enlarged during the proof. So that these can be
compiled once and for all at the beginning, in a way that makes their use
extremely fast. Additionally, there will be one goal literal which continually
changes (during the proof search). These original clauses are compiled
by anticipating how unification might be accomplished with each of their
literals, and constructing a computer program to carry out that unification
and other tasks.

This program can be written in some computer language such as C,
LISP, or an Abstract Machine Language such as Warren’s [War87], and
then compiled (ordinary compiling) into machine code. See [War87, St86)
for details.

Suppose we have the following input clauses (and others)
1. (Pz1)«(Qz2z2)(S2)

2. (P (fz)y) « (Ry2)

3. ..

The clause compiler will compile each of the predicates P, Q, S, R, ...,
by constructing a LISP® Function for each of them, and other supporting
functions (not shown here).

Shown here is the function, FUN-P, which has been constructed for the

predicate P.

Sor a C program, etc. We have used LISP here to simplify the presentation.
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(DE FUN-P (uv CONTINUATION) (GOAL)
(PROG (z)
(COND ((UNBOUND-VARIABLE v) (ASSIGN V 1))
((NOT (= V 1)) (GO OUT)))

(... Allocate, etc . . .)
(... Alter CONTINUATION to include the further goal(S z))
(Q u z CONTINUATION)

OUT
(COND ((=(FCN-SYM u) 'f) (SETQ Z (ARG1 u)))
(T (go OUT2)))
(R v z CONTINUATION).
oUT2 .... )

Much has been left out, but the main idea is that when a goal literal of
the form (P u v) is encountered, to determine whether clause 1. will apply
to it (i.e., whether (P x 1) will unify with (P u v)), we can ignore u since
x is a variable and hence can be bound to any term; we need only check
whether v is 1 or is a variable, and then accomplish the further goal (Q u
z).

The continuation parameter refers to any additional goals that were
carried over from a previous call; we must add to it the subgoal (S z)
before proceeding to the goal (Q u z). If (Q u z continuation’) succeeds,
i.e., the goal (Q u z) is accomplished plus the goals of continuation’, then
the proof is finished; if not, then it attempts to apply clause 2. to the goal
literal (P u v). This is done at the point OUT in the program.

Similar LISP functions are constructed by the clause-compiler for the
other predicates Q, R, S, and any others that appear in the original clause
set. All of these LISP functions are then compiled (traditional compiling)
to C code or machine code. Of course, as mentioned earlier, the clause-
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compiler could avoid LISP altogether. But LISP offers a convenient tool
for the clause-compiler and a convenience to us for explaining how this part

of clause-compiling works.

4.2 Clause-Compiling for First Order Logic

The phenomenal speeds gotten by clause-compiling in PROLOG were not
lost on the rest of the ATP community — they wanted this performance too,
but could not use the results from PROLOG unless three major difficulties

with it were overcome:
1. the horn clause restriction

2. the depth-first search problem

3. the occurs-check problem

Work on these problems, to bring clause-compiling (and its inherent
speeds) to all of first order logic, represents some of the most exciting work
in ATP right now. Some systems which extend the PROLOG compiling

techniques as follows:
e Stickel’s “Prolog Technology Prover” [St86]
o Plaisted’s “Simplified Problem Reduction Format” [P187]
e Loveland’s “Near Prolog” [Lo87]
e Overbeek and Lusk’s New Argonne Prover”
¢ Munich Group’s “PROTHEQ” [BAYS86]

There are probably a number of others. How do these systems overcome

the restriction, 1-3? Let us consider them in order.
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The horn clause restriction (1) was used in PROLOG to allow a lin-
ear search mechanism: once a proof-search is started it can proceed to
success or failure without having to backtrack, as is necessary when using
ordinary-clauses resolution. This linear format greatly simplifies the search
mechanism; one only needs a “stack” and no auxiliary clause storage; only
the original clauses are retained, and they can be compiled before the proof
search starts.

The way that Stickel [St8G] avoids the horn clause restriction for full
resolution is to employ a variation of resolution called model-elimination
(which is essentially SL-resolution)®, which uses chains instead of clauses.

These chains act like clauses, with extra data in them which code the
history of how they were constructed in the proof process. This allows a
linear format similar to that used in PROLOG, but requires the addition
of many contrapositives’ of input clauses.

Plaisted avoids the horn-clause restriction by using a form of “Case-
Splitting”, which does not require contrapositives[P187].

Loveland uses “multiple-head horn clauses” e.g. P, @ « R, with no
contrapositives needed. His technique is similar to Model Elimination but -
it greatly reduces the amount of extra “history information” recorded with
clauses [Lo87].

The depth-first search problem (2), is avoided by “iterative deepening”,
i.e., by repetitively searching to deeper and deeper levels of the search tree.
The added cost for recomputing the top parts of the tree is minimal when
the search tree is branchy, which is usually the case.

There have been two ways used for avoiding the occurs check problem
(3): |

6Model Elimination was discovered by Loveland [Lo68, Lo69]; it is equivalent to SL-
Resolution, developed independently by Kowalski and Kuener [KoT71].

7e.g., for the clause P — Q A R, we would add the contrapositives ~Q «— (=P A R)
and =R — (=P A Q) .
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(i) by detecting at compile time which literals can possibly have an
occurs-check problem e.g., P(z, f(z)), tagging them, and handling

only them during the proof.

(ii) by examining the substitution resulting from any successful unifica-

tion to determine if there was a problem, and rejecting substitutions
with “cyclic” terms, like z « h(g(z)). (Plaisted, Overbeek and Lusk)

Both methods cause a loss of speed, but not a severe one because such
problems rarely occur. (e.g., it is necessary for a variable to occur twice in
such a literal for it to present an occurs check problem.)

We believe that clause-compiling will be very important for the future
of ATP. These great speeds cannot be ignored. Granted that the ultimate
solution is not in speed, but in the better use of knowledge to prune the
search tree. Nevertheless, fast reasoning components will be important
parts of future technology.

Also, compiling methods of the kind that we have described, are useful
for other components of the reasoning process. For example, similar im-
provements in performance have been obtained for forward chaining [Fo80],
rewriting or demodulation [BoS0), inheritance [AN85], and data-base index-
ing [But86).

5 OVERVIEW OF PROOF DISCOVERY

Now let us give an overview of (our version) of Automated Proof Discovery.

How do we classify the research that is being done and should be done?
We feel that building a program for discovering proofs is like designing

an autonomous vehicle to cross the USA, say from Atlantic City to Fresno.

See Figure 13.

Figure 13 near here.
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To do so one needs:

1. Fast cars;

[V

. Tactics: For getting from city to city;
3. Strategy: An overall plan of action.

And one needs a map.

But note that speed alone is not enough; dashing off in more less the
right direction will not lead to a distant goal without some guidance, no
matter how fast the car.

One could liken this to the way that automated proof discovery is being
attacked. See Figure 14. Here again we have “fast cars” (fast inference

vehicles), tactics and strategy. Let us break this down into more detail.

Figure 14 near here.

Category 1 is easy to define, it consists of those efforts which produce
speed of inferencing. They are essential to the success of ATP. Whatever
else we do to prune the tree, it is absolutely necessary that we have great
speeds for the “vehicle.”

Examples of parallel processing in ATP, are the efforts of Overbeek et
al, at Argonne National Lab [REF], the Munich Group [REF], and Waltz
and Stanfield at Thinking Machines [REF].

But speed alone is not enough. Again we need overall guidance that
comes from tactics and strategy.

It is not so clear what to put in Category 2, tactics, but we feel that
those methods which employ “large inference” steps tend to have the “city
to city” flavor, as do the special purpose provers. We will discuss these in
more detail shortly.

But what do we put in Category 3, strategy? Is there any method being

used, that takes an overall,global view, that provides and uses an overall
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OVERVIEW OF AUTOMATED PROOF DISCOVERY

1. Fast Inference Vehicles:
Faster Hardware, Parallel Processing
Clause-Compiling (and Compiling Rewrite-rules, etc.)

2. Tactics:

Large Inference Steps
Semantic Methods
Special Purpose Provers

3. Strategy:

~ Analogy, Abstraction, etc.
“People” Methods

(and a “MAP”:  Knowledge Base)

Figure 14



strategy? Probably not. Perhaps analogy comes the closest to it; whereby,
the (complete) proof of one theorem acts as an overall guide to finding the
proof of another. Abstraction is surely another. All such methods that
are used or appear to be helpful, can be classified under the heading of
“people methods”, methods routinely used by practicing mathematicians,
but hardly used at all by existing programs. And it is quite clear that there
is an absolute requirement for a structural knowledge base of mathematical

knowledge (a “map” if you will), if we are to attain substantial success at

this field.

5.1 Tactics
5.1.1 Large Inference Steps

Under tactics, we have listed large inference steps (or multi-steps), where
the prover tries to accomplish its goal (discover the proof) by a few large
steps rather than a whole bunch of small ones.

The key here is to discard the intermediate results. Many current provers
“choke” from retaining unneeded proof fragments, such as intermediate
clauses.

Another key point is to identify for each such large step, the objective
of that step. The prover then sets out to achieve that objective, and if it
succeeds it retains only the objective and discards all intermediate results.
In fact it discards the intermediate results even if it fails to achieve the
desired objective. Thus it keeps only a few powerful results for further use.
These results act as a kind of subsummers to those discarded.

Some examples of systems using large inference steps are:

e Hyper-Resolution (J. A. Robinson})
e Linked-UR-Resolution (Wos, et al)

e Terminator (Antoniou & Ohlbach, Kaiserslautern, Germany)
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Variable Elimination (Bledsoe & Hines)

Hyper-chaining (Hines)

Theory Resolution (Stickel)

Complete Sets of Resolutions [KB70, etc., See Section 3]

Hyper-Resolution [Ro65A]

As mentioned earlier, hyper-resolution has been extensively used for a
number of years. Figure 15 gives an example of its use, showing also the
objective, and the discarded intermediate clause. The example shown 1is
from propositional logic, but the method works equally well for full FOL,

using unification.

Figure 15 near here.

Linked-UR-Resolution [Wo84]

Linked-UR-Resolution is somewhat like hyper resolution. The idea is
depicted in Figure 15A, where a nucleus is given which contains a goal
literal. The objective is to obtain a unit clause by a set of resolutions, which
eliminates all literals except (possibly) one, the goal literal. A variation
allows the goal literal to occur in one of the satellite clauses. Also an
initiating satellite (a unit clause) might be used to start the process. The
goal literal can also be required to satisfy a given predicate P. ”"This allows

the use of semantic criteria for guiding the proof discovery.”

Figure 15A near here.

Terminator [A088]
The objective is to try for a unit proof of O, at various points in the

proof.

Variable Elimination [BH80]
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HYPER-RESOLUTION
Example

Nucleus Clause:
-A -B -C E

Satelite Clauses:

AF
B G
CH

Hyper-Resolvent:
FGHE

Three Resolution steps in one.
Discard intermediate Resolvents

F-B -CE F G -CE

OBJECTIVE: Remove all negative literals from a clause

Figure 15



'LINKED UR-RESOLUTION [Wo7]

Initiating Satelite:

Unit
Nucleusi Goal
e S A1
E - =
Satelite—s-:— ~~~~~~~~~~~~~~~~~~~~~ B
— 1 (- I"} ! Fi """"" It
I = —————— ' b = -1]__ - |
— 1 [C l
= =

OBJECTIVE: A unit clause

Allows the use of Semantic Criteria for guiding proof discovery.

It is related to other Connection Methods.

Figure 15a



This procedure is designed for the field of real analysis, where the in-
equality predicates < and < are used.

Figure 16 shows an example where the variable « is eliminated from the
target clause 1. to obtain the VE-Resolvent 2. The objective is to remove

an eligible® variable from a target clause.

Figure 16 near here.

In this example, the one large step is equivalent to six resolution steps.
The method implicitly uses the axioms of real inequality theory, including
those for transitivity and interpolation.

This method has greatly helped with proofs in intermediate analysis.
For exambple, the proof of lim+, a limit theorem for sums,

lim f(z) = £ & lim g(z} = k — lim [f(z)+g(z)] = £+k

I (L

took only 13 steps instead of an estimated 100,000 or more by resolution.
Hyper-Chaining [Hi87]

Hyper-Chaining is an extension of variable elimination, wherein the
variable z being removed does not need to be eligible in the target clause.
The hyper-chain rule works to make the variable eligible (using other hyper-
rules) and then eliminates it.

Figure 17 shows hyper-chaining on a simple example. A much harder
example, the limit of a sum theorem, lt, shown above, is proved in three
steps. See Figure 18. The objective is to remove the variable é from the
target clause 10, which is done in one step to obtain Clause 11. This large
step also utilizes Clauses 2, 3, 5, 6, 8, 9, and is equivalent to at least 22
resolution steps. Two more uses of Hyper-chaining yields O. Figure 19

shows a few of the intermediate steps which were discarded.

8A variable clause z is eligible in a clause C if it does not occur within the scope of any
uninterrupted function of predicate symbol.
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VARIABLE ELIMINATION
Target Clause:

1. a<x x<b Q
X is a variable not occurring in Q

VE-Resolvent:
2. a<b Q 1, VE X

Six Resolution steps in one.

Implicitly uses the axioms of Real Inequality theory, including:
Transivity: X<YAYy<zZ-—>» X<z elc.

Interpolation: u<v—>dw (u<w<V)

OBJECTIVE: Remove a variable from a clause (if eligible)

Figure 16



lFigure 17, 18 and 19 near here.

Theory Resolution [St85]

Stickel’s Theory Resolution encompasses many of the ideas from the
other large inference steps methods discussed above. It incorporates a
theory (or theories) into a Resolution Theorem Prover, thereby making
it unnecessary to resolve directly upon the axioms of that theory. Two or
more clauses are resolved with respect to that theory. Intermediate results
are discarded.

Figure 20 shows two simple examples from taxonomic theory and in-
equality theory. See [ST83] for other examples, especially for useful appli-
cations in Al Figure 21 lists some of the other work that resembles theory

resolution.

Figure 20 and 21 near here.

Complete Sets of Reductions [KB70, etc]
See Section 3. The objective is to reduce a target formula (e.g., clause)

as far as possible by applying to it a (complete) set of rewrite rules.

5.1.2 Semantic Methods

One of the most characteristic methods employed by people is to use se-
mantics to guide proof; a mathematician knows what his symbols mean (for
example, he knows that z is a real number when doing analysis). He also
knows many examples of predicatively defined structures. (such as groups,
continuous function, etc.) He uses this knowledge in at least two ways: 1)
by extending known examples (closely related to analogy; see section 5.2.1
below); and 2) by not attempting to prove intermediate goals for which he
has a counterexample.

Method 2, checking for reasonableness seems to be extremely powerful—

it probably accounts for a major portion of the mental effort used by human
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HYPER-CHAINING
Example
Target Clause:

1. a<x x<b f(x<c
X is a variable, not occuringina, b, orc

Supporting Clauses:
2. d<f(y)

Hyper-Chain Resolvent:
8. a<b dx<c 1,2 X

OBJECTIVE: Remove a variable from a clause.

USES: Variable Elimination, Chaining, . ..

Figure 17
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Proving Sum-of—Limi:s Theorem

‘ 1A /.L/ :

1. 0< 6l ¢ <0

2. 842 <z bptTo <z (fz)s(f2)+¢€ e <0

3. 6L +z <z btz <z ([2)S(fz)+e <0

4. 0 < 6 <0 |

5. 6h42"<zg EutTo< 2 (g2") < (9%0) + ¢ €' <0

6. bu+ 2" <o Sut+zo<z” (9 o) < (g 2") + € " <0

7. 0< &

8. zp<zs+6 6 <0 ;

9. zs<zo+6 & <0 .

10. e+ (f z0) +(9.30) < (f =) + (921 Tongel Lot
(f z5) + (9 26) + €0 < (f T0) + (9 o) C o o M2
6§ <0 »
(Hyper-Chain 10 [6): 3,2,6,5,9, 98, 8)

1. <€ +€  8a <0 ¢ <0 84<0 <0
(Hyper-Chain 11 [€]: 1)

12. &g < €' 84 <0 & <0
(Hyper-Chain 12 [€"): 4)

13. 0.
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discarded

11.

e+ 24 < T0 6+30< T € <0
(Chaining...2)

Sut i <%0 5+ 20 < T e <0

(Chaining...ﬁ)

(gzo) +e0<(928)+E €< € +E
6::+35<Io 5;:-!-10(15 5'50 6:;:“"3‘(30
(Chaining - .- 9)

Eo(t“l‘f"

6+ 25 <%0 6L+ 20 < T g€ <0 bt zs<To0
(Chaining...Q)

<€ +e

vt ZTe <o 6;:(6 € <0 &t zi <To
(Chaining...Q)

g<eE+e

S+ 2 <%0 6.<6 g€ <0 bh+zs<ZTo
(Chaining...B)

Eo<£'+£“

6L.<6 € <0 butzi <
(Chaining ... 8) [before variable elimination of 8]
Eo<£'+6" 6 S_O

L&'(& g€ <0 bu<b
e+e o <0 g <0 6. <0

(g 7o) +€0 < (g T8) +€ (yzs)+£o<(gxo)+f‘

(930)“'50((9-"6)“’5' (fzs)+ (gas) FEO S U 20Ty =wr = =~

6 <0

6 <0
6w+ T0< T8 ¢ <0
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THEORY RESOLUTION EXAMPLES

Taxonomic Theory:

1. Boy(x)— Person(x)
6. NoDaughter(x) & Child(x,y) —>Boy(y)

Resolve: 11. Child(Chris, sk2) with
10. NoDaughter(Chris) to get

13. Boy(sk2) in one step.
Inequality Theory:

1. (X < X)
2. X <y &y<z— X<1Z

Resolve: 6. a <b, 7.b<¢c & 8 (a < ¢
to get 9.

Figure 20



OTHER WORK RESEMBLING THEORY RESOLUTION

Hyperresolution  (J. A. Robinson) [Ro65A]
Z-resolution  (Dixon) [Dix73]

U-generalized resolution (Harrison and Rubin) [HR ]
E-resoluton  (J. Morris) [Mo69]

Linked inference Principle  (Wos, et al) [Wo84]

General Inequality Prover  (Bledsoe and Hines) [BH80]

Variable Elimination
Shielding Term Removal
Attached ground Prover

Figure 21



mathematicians. Several researchers have attempted to apply this princi-
ple with varying success (Gelernter [Ge39], Bledsoe [BBS2], BI83], Wang
[Wan85 and Section 6.3 below]).

It appears to be quite challenging both to represent and to access the

large variety of examples the human has available.

5.1.3 Special Purpose Provers

We list here areas for which a few special purpose provers have been devel-

oped, and which are classified under "tactics.”

e Inequalities

— Ground [NO78?, Sho77, Sho79, Bu83, 7AAAI paper?]
— General [Bh80, BIXS83, Hod72]

o Geometry (Wu and Chou) (See Section 6)

o Non-standard Analysis (Ballantyne) [BBSS]

Algebraic Manipulation (Macsyma, etc.)

Equality Subsystems (Richard ?)

5.2 Strategy
5.2.1 Analogy

Analogy is the heart and soul of intelligent behavior. We do very little
that is absolutely new. Somehow intelligent machines (including reasoners)
must make use of analogy, but success with it has been limited, so far. It
is closely related to the field of Machine Learning [ML1, ML2].

There have been a number of Al researchers working on Analogy, in-

cluding Winston, Carbonell, Greiner, Russell, and others. I will not review
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all of that literature here. Much of it is reviewed by Dedre Gentner’s sur-
vey paper in this conference. (There are also a number of other papers
in this conference on analogy). Another review, with an extensive set of
references, is given by Hall [Ha83].

There are many aspects to analogy, but we are concerned here only
with the situation where the solution of one problem is used as guide to the
solution of another, or the proof of one theorem the guide to the proof of
another.

A signal paper of this sort, is that of Bob Kling [K1i71], wherein he
used the proof of a theorem in Group Theory to guide the search for an
analogous proof in Ring Theory.

Figure 22 depicts this idea.: The guiding proof proposes actions to the
prover. If the proposed action fails, then the prover must somehow recover,
to get the process back on track. Also a fetching mechanism is needed to
automatically select, from a database, proofs that might be used as a guide

to the current endeavor.

[Figure 22 near here.

As an example of this, three University of Texas graduate students
working at MCC have developed an analogy prover based on Resolution
and Chaining [BCP86], which has used the proof of lim+ as a guide for
proving lim*. See Figure 23. Since the proof of limx makes some major
detours from that of lim+, it was necessary to rely on its "expert system”
component for recovery from failed actions, and to also rely on its stand-
alone proving capability. See [BCP86] for details. This same prover handled
other pairs of theorems, including those depicted in Figure 24, and has been
extended and converted to a natural deduction format [BCP87], which we
feel will be better able to handle more complex proofs, especially where

parts of proofs are needed as guides.

Figure 23 and 24 near here.
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ANALOGY FORMAT

Statement Statement
of the of the
Guiding Theorem Analogous Theorem
e
- | Analogous Proof
Guiding Proof | (Derived
| Automatically)

Figure 22



AN EXAMPLE

LIM +

jm_ £ (x) =1 Alimg () =k —>Jim_ [f () +gK]=1+Kk

X—>a

LIM*

jim f(x) =1 Alimg () =k —> Jim[f () - g(]=1-k

Xx—a X—>a

Figure 23



LIM + seq«< >LIM +
A A

LIM » seq< > LIM «

Figure 2



As was pointed out by Carbonell [Car83}, the derivational history of a
problem solution is very important when that solution is used as a guide
to solving an analogous problem. The reason for this is that when an
analogous action fails, the problem solver needs to "know” what was the
intended goal of the action, so that it can try to attain that goal by another
action (through analogy, or by stand-alone methods). Such a derivations
history provides for annotating a proof, with motivational information.

Another reason for the natural deduction format, is that subgoals of the
proof can be treated in a hierarchical way. Thus, in Figure 25, suppose the
hierarchical structure represents the proposed proof of a new theorem (as
proposed by a guiding proof). Now if, for example, goal G23 fails, then the

prover can execute the following strategy:
1. Fetch another guiding proof and try to apply it to G23.
2. If step 1 fails, try to prove G23 by a stand-alone prover.

3. If step 2 fails, fail the goal, backtrack and try steps 1-2 on goal G2.

Figure 25 near here.

Such a hierarchical structure helps make use of the derivational history
(annotated proof) that is needed. (Other useful information could also be
included in the derivational history.)

A problem with this is that one must collect and store this additional
information (i.e., not just proofs, but annotated proofs) if it is to be used
" to guide new proof searches.

Some possible mechanisms for these annotated proofs are:

e Expansion Trees (Andrews, Miller) (Section 1)

e Proof Parsers (Simon) (Section 6.9.2)
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A HIERARCHICAL PROOF

G2

L

| G23

Figure 25



e Requirement Graphs (Bledsoe) [BI80)
e Multi-Step Rules (Hines) (Section 5.1.1)

e Other formal representations (Section 1)

We believe that in the long term a large structured knowledge base will
be needed, such as CYC, the commonsense knowledge base being built by
Doug Lenat and his team at MCC [LeS86, LF87]. See also [Hob83, Bor?].

Indeed, analogy plays a central role in the building and use of CYC.

5.2.2 Abstraction

The idea here is to prove an abstraction of a theorem, as a subgoal, and
use that proof as a guide for proving the theorem itself. For example, one
could abstract a formula P(z,y) by suppressing the second argument and
retaining only P(z).

Such an idea was first introduced by Newell, Simon, and Show [NSS56].
But the best work in this area is by Plaisted [P181, P182], wherein he
suggests and uses a number of kinds of abstraction, and uses a number of

layers of abstraction.

5.2.3 Other “People” Methods

We list here some other methods in addition to analogy and abstraction,
that are extensively used by professional mathematicians, with some refer-

ence to machine implementation:
e Generating and using Examples in proof discovery [BB82, BI83]

e Using Counter-examples to prune search trees [Ge59, BB82] (See Sec-
tion 5.1.2)

¢ Automatic Conjecturing of lemmas and subgoals [Le76, Le82]
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e Automatic Fetching of useful lemmas and definitions from a large

Knowledge Base

¢ Agenda mechanisms for controlling the proof search [Ty81]

o Higher-level reasoning, meta-reasoning [Ges83], higher-order logic [An84]

6 CONTEMPORY PROVERS, CENTERS,
PEOPLE

We describe here the work of a few groups and individuals conducting ATP
research. Some of the efforts of others are described in other parts of this
survey. This list is by no means complete, nor is it ordered by importance.
For example, much of the work in Expert Systems is not included as well

as the work in PROLOG and common-sense reasoning. See also [Pas87].

6.1 Argonne Laboratory Theorem Provers, L. Wos,
E. Lusk, R. Overbeek, et al. [Wo84, Wo87]

Argonne is one of the most prolific center for ATP research in the world.
They have implemented a series of systems including AURA [Wo81] and
ITP [Lu84]. Currently, [But86] they are implementing a new system aimed
largely at getting an increase of speed ( > 100 times) compared to ITP. This
system will use implementation techniques from Prolog (e.g. clause com-
piling), multiprocessors, associative-commutative unification, and database
indexing techniques (for clause retrieval). McCune also has implemented
an interactive resolution proof checker. With Boyer, this system was used
to prove some basic mathematical theorems from Godel’s axiomatization
of set theory[Bo8Ga).

The Argonne group has used ITP extensively in ATP research, proving

many theorems, verifying software and hardware, solving word problems
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using ATP methods [AAR newsletter often reports examples of this work],
and solving open questions in mathematics. They have distributed ITP to
over 200 sites (it is written in Pascal for portability).

The basic technique is clausal resolution with set-of-support, paramod-
ulation, demodulation, and subsumption (all optional). Elaborate data
structures are used to permit full structure-sharing for terms and literals
(only one copy of each unique object is kept). Indexing techniques allow
efficient access to terms which might unify with a given term. A complex
evaluation function is used for prioritizing the next resolution step. A “user

friendly” interface is provided for interactive or batch use.

6.2 KLAUS Automated Deduction System (originally
called CG5): Mark Stickel (SRI) [St85, St86,
St86a)

This large system implements a number of techniques of ATP. The basis is
a connection graph encoding possible resolution steps between non-clausal

first-order formulae. Special techniques include:

1. Control of inference direction (a formula may be restricted to forward

or backward chaining);

2. Theory resolution [St83] which increases efficiency by allowing a single
resolution step to incorporate a whole “theory” such as rewriting (de-
modulation), associative-commutative unification, many-sorted unifi-

cation, taxonomic hierarchies, etc. (See Section 5.11);

3. A Knuth-Bendix algorithm is provided for completion of sets of rewrite

rules;

4. a Priority control mechanism employing evaluation function;
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5. A Prolog Technology Theorem Prover (PTTP) component. Using
Loveland’s Model Elimination style of Prolog-like linear search, PTTP
compiles each clause into LISP functions which carry out the search
corresponding to that clause. Iterative deepening is the search strat-
egy. Occurs check is used except in cases where it can be determined

that it is necessary. (See Section 4.2)

Stickel has proved a good collection of standard ATP test theorems and

theorems from mathematicians.

6.3 Kaiserslautern: N. Eisenger, H. J. Ohlbach, J.
Siekmann, Universitat Kaiserslautern

The Margraf Karl Refutation Prover (MKRP) [Karl84]is a powerful system
developed over many years at Kaiserslautern and Karlsruhe. It uses con-
nection graphs, due originally to Kowalski [Ko75]. Each possible inference
step (resolution, paramodulation, factoring) in the clause set is represented
as a link in a graph. After performing a chain of inference steps, it is often
possible to “reduce” the graph, removing irrelevant and redundant links
[Oh187]. This is the source of efficiency of the algorithm, but it is also the
source of a problem: there is no completeness theorem for connection-graph
resolution with inference restriction strategies typically used (In practice,
this does not seem to be a problem).

Unification in MKRP is many-sorted [Wa83] (see section 3.4). Further
research on unification theory promises to add the capabilities for handling
equational theories and structured sorts.

An important technique in MKRP is the “terminator module” [AO83]
which quickly detects situations where the refutation of a set of clauses can
be completed immediately.

Extensive input and output translation facilities are provided.

The Kaiserslautern group is currently working on a successor system
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called HADES (Highly Automated Deduction System). Among other fea-
tures, it attempts to incorporate higher level links as atomic inference steps
in the connection graph.

They aim to encode and prove all theorems in a standard textbook on

semigroups and automata.

6.4 Munich: W. Bibel’, S. Bayer, et al.

The Munich group has implemented as a project within ESPRIT, a PROLOG-
like theorem prover called PROTHEO based on Bibel’s connection method
[BiS3]. Special hardware including associative memory for accessing con-
nections and highly parallel multiprocessing is under development.

Available input preprocessing includes translation to clausal form. Lem-
mas are generated and retained. Depth bound search is used. The system
is complete for first order logic.

Special reductions of the clause set [Bi87] are used for efficiency; for

example, Schubert’s steamroller is proved in T steps.

6.5 University of North Carolina: David Plaisted

Plaisted’s Simplified Problem Reduction Format prover (SPRF) [P182, P187]
is written in PROLOG and obtains efficiency by encoding first-order for-
mulae as PROLOG clauses. A special splitting rule is used for non-Horn
clauses for completeness. Contrapositives of the input clauses are not re-
quired, but help in some cases. Rewrite rules can also be given and Knuth-
Bendix completion is available.

The search strategy is depth-limited with iterative deepening. Solutions
to subgoals are cached.

The code is noteworthy for its conciseness, about 15 pages of PROLOG.

Speed is competitive with major resolution based provers such as ITP,

Snow at Univ. British Columbia
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Stickel, etc.

6.5.1 Greenbaum

The Illinois Prover was written by S. Greenbaum [Grb86, GP8(] as a test-
bed for Plaisted’s abstraction methods [P181]. It became a general purpose
prover of considerable power, employing many interesting implementation
techniques.

A special refinement of locking resolution and unit preference is used
which simulates backwards and forward chaining. Complex data structures
are used for structure sharing and indexing speed.

The aim in uniformly good performance with minimal user guidance.

Schubert’s Steamroller is obtained in about 1 minute on a VAX.

6.6 Edinburgh: A. J. Milner, M. J. Gordan, et al.

Logic for Computable Functions (LCF) [GMW82] is a large system for ver-
ifying properties of computable functions defined in typed lambda calculus.
It is efficiently implemented in ML [Card82].

LCF has been used to verify thousands of standard mathematical the-
orems. It has recently been enhanced by Larry Paulson to include higher-
order deduction [Pau86].

6.7 Boyer-Moore Prover: University of Texas [BM79]

This is a large system for verifying properties of recursive functions defined
by lambda expressions in “pure LISP”. Structural Induction on the size of
the input is used, with many heuristics available.

The prover has been implemented in several dialects of LISP and is
widely distributed, referenced and used by others. Applications, some of
commercial importance, have included program verification [BM81], hard-

ware verification [Hun86, Borr87), verification of compilers, and verification
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of the proofs of many theorems in mathematics and metamathematics in-
cluding the uniqueness of prime factorization for natural numbers, Wilson’s
Theorem [Ru85], The Church-Rosser theorem for pure lambda calculus, and
Goedel’s Incompleteness Theorem [Sh8G, Sh8T].

One of the commendable features of this Prover is its ability to automat-
ically carry out the proof of a theorem when given the necessary lemmas
by the user. Another is its ability to automatically construct a generalized
induction hypothesis when the obvious one does not suffice.

Boyer has also done important work on compiling rewrite_rules [Bo8G).

6.8 The Wu-Chou Geometry Provers

An interesting Proof Procedure for Theorems in Geometry has been given
by the Chinese mathematician, Wen-Tsun Wu [Wu78, 84]. Shang-Ching
Chou (University of Texas) has extended and refined that work and used his
implementation to prove a number of difficult theorems in Plane Geometry
(about 2000 Theorems), some of which are new. [Cho85, Cho86, Cho87,
CS86)

The procedure is as follows:

Transform the Hypotheses and Conclusion of a theorem in Ge-
ometry to sets of Algebraic equations. Show that the conclusion
follow from the hypotheses by performing a series of “divisions”
(somewhat like Matrix operations). This requires factoring of
polynomials over algebraic extensions of fields of rational func-

tions (very difficult in some cases).

The method does not apply to all parts of Plane Geometry (only cases
where hypotheses and conclusions can be expressed as equalities, not in-
equalities). The general method can be applied to other areas, such as
Differential Geometry. Figure 26 shows drawings from two examples from

[Cho87], the first of which was given in Section 1 of this survey.
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E‘igure 26 near here;l

6.9 Bledsoe, et al (University of Texas & MCC)

Figure 27 shows some provers from this group. See also [B184, BI&6).

[Figure 27 near here.}

6.9.1 Wang’s SHD (Semantically-guided Hierarchical Prover)
[WaT85, WaT87]

An interesting aspect of SHD is the hierarchical format. This is similar to
SL-resolution, recording extra information along with each clause to record
the history of subgoals which led to the clause. Wang has implemented
a number of completeness-preserving refinements (restrictions on resolu-
tion) allowed by this annotation. For example, redundant subgoals can be
avoided, certain forms of subsumption can be checked quickly, etc.

A number of heuristic methods for assigning priority to subgoals are
available, and a user interface allows control of parameters affecting these
heuristics.

Another goal of Wang’s prover was to provide a base for semantic guid-
ance to the proof process. A partial model of the axioms of the input
theorem may be provided by the user. The user specifies a finite set of
(ground) terms from the Herbrand universe and provides effective proce-
dures for evaluating predicates built on these terms. Candidate subgoals
are only attempted if they are acceptable in the model.

Several difficult theorems have been proved, such as IMV (a first-order

form of the intermediate value theorem).
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EXAMPLES USING THE WU-CHOU PROVER

E

Figure A30-29 Figure A32-49

Figure 26



BLEDSOE, etal (UTexas and MCC)

IMPLY - Natural Deduction Style Prover [BI79]
- Regular and Interactive Versions

General Inequality Prover  [BI84]
— Proofs in Analysis

Wang's Hierarchical Prover  [WaT87]
Building-in Multistep Axiom Rules - Larry Hines

Gazing - Plummer (U. Edinburgh)
Proof Checking in Number Theory - Don Simon

Analogy Prover - Brock, Cooper, and Pierce

Figure 27



6.9.2 Proof Checking Number Theéry: Don Simon

This system accepts a proof in its Natural Language form (Figure 28) ex-
actly as it is written by the mathematician.!®. The proof is then parsed:
first the sentences are parsed, then the whole proof (See Figure 29, 30),
using a proof grammar. This enables the deduction component to verify
the statements in the proof. A powerful reducer for number theory [Sim84]

is used.

Figure 28, 29 and 30 near here.J

All proofs in Chapter’s 1 and 2 of LeVeque’s book were proof checked
[Sim8&8].

6.9.3 Building-In Multistep Axiom Rules: Hines [Hi&6, Hi87]

This system compiles multistep actions into a single rule, thereby attaining
higher-level objectives. Interim results are discarded.

Examples of these are the VE rule and Hyper-Chaining rules described
in 5.1 above. Each rules has restricted entry points, and other restrictions
on their use. Most rules will not apply, but when one does, it can give sizable
results. They are somewhat like expert systems rules in that respect.

The rules are built up in a hierarchical way, some rules are subparts of

others.

6.9.4 GAZING: Dave Plummer [Plu87]

His system, VOYER, is a natural-deduction style prover, which uses the

concept of gazing to control the use of rewrite rules. Abstractions of rules

10The system is currently working on proofs from LeVeque’s book on Numbered Theory
[LeV62)
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ELEMENTARY THEORY OF NUMBERS - W. J. Leveque

THEOREM 1-1. If a is positive and b is arbitrary, there is exactly one
pair of integers g, r such that the conditions

b=ga+r, 0 <r < a (6)
hold.
Proof: First, we show that (6) has at least one solution.
OMITTED

To show the uniqueness of q and r, assumethat g’ and r
also are integers such that

b=qa +r, 0 < r < a
Thenif @ < g, we have

b—gqa=r >b-@-1a=r+a 2> 3a
and this contradicts the inequality ' < a. Hence q° > q.

Similarly, we show thatq > ¢’. Therefore q = q’, and
consequently r =r'. A

Figure 28



I-TO
|-SHOW
I-UNIQUENESS
I-IMPLICITLY-SUPPOSE (B = Q*A+R & 0 <=R & R < A)
|-SUPPOSE (B = Q1*A+R1 & 0 <= R1 & R1 < A)
| |-ASSUME
| |-THAT
| |-(FORMULA (B = Q1*A+R1 & 0 <= R1 & R1 < A))
| |-BREAK
|-PROVE (Q = Q1 & R = R1)
|-PROVE Q = Q1
| |-PROVE (Q1 >= Q & Q >= Q1)
|| |-PROVE Q1 >=Q
|-SUPPOSE Q1 < Q
|-THEN
I-IF
I-(FORMULA (Q1 < Q)
—CONTRADICTION
PROVE R1 >= A

|11
|11
|11
1T
|11 1=
L=
[T =W
IIHHHAVE

|11 |-(FORMULA (B-Q1*A = R1 & R1 >= B-(Q-1)*A -
111111 &B-(Q-1)*A = R+A & R+A >= A))

||| |-DEDUCE B-Q1*A = Rt

|11 |-DEDUCE B-Q1*A >= B-(Q-1)*A

Figure 29



|-DEDUCE R+A >= A

-AND

-THIS
-CONTRADICTS
-(FORMULA (R1 < A))

-DEDUCE R1 < A
-DEDUCE R1 >= A <=> NOT(R1 < A)
-BREAK
-HENCE
-(FORMULA (Q1 >=Q))
|-DEDUCE Q1 < Q <=> NOT(Q1 >= Q)
|-BREAK
|-PROVE Q >= Q1
|| |-SIMILARLY

|l |-WE

|| |-SHOW

|| |-(FORMULA (Q >= Q1))

|

|

——— —— — ——— ———  ——— S— o———

|
|
|
I
|
|
l
|
|
l

~BREAK
—THEREFORE

| |-(FORMULA (Q = Q1))

| |-DEDUCE (Q1 >= Q & Q >= Q1) => Q = Q1

|-AND

|~CONSEQUENTLY

|-(FORMULA (R = R1))

|-BREAK

|-DEDUCE Q = Q1 => R = R1

Figure 30



are used, stored in a concept hierarchy graph, to facilitate the proper acqui-
sition and use. (Plummer, a visitor at the University of Texas, is finishing

his PhD Thesis under Bundy at Edinburgh).

7 CONCLUDING REMARKS

Logic is emerging as a foundation for Al and all of Computer Science.
The consequence of this is that some form of automatic reasoning is a
requirement for most Al programs. Much of the research in ATP over the
last thirty years is applicable to this need.

As these programs grow more complex, the corresponding inference
problems will become more difficult, comparable in difficulty to the proof
substantial theorems in mathematics.

We have reviewed the current research on automated reasoning and
given a proposed classification of that work.

\We note that some research areas, such as clause-compiling and parallel
processing, are very exciting, and this is rightly so. But we wonder whether
these efforts on fast implementation, which are very important in their own
right, might divert us from the even more important areas (in the long run)
of tactics and strategy.

Under tactics, we are especially hopeful about the work on larger-
inference-steps, and the work on special purpose systems such as those
for the use of rewrite rules.

We believe that more large scale ezperiments are needed, wherein re-
searchers exercise their provers on worthwhile examples, rather than play
with toy problems and/or a couple of harder problems (such as the Steam-
roller problem or the Intermediate Value Theorem).

What about Strategy? Are we to soon attain “over all” strategies for our
provers? There has been some promising work on Analogy and Machine

Learning; a little on Conjecturing, Abstractions, and using Examples to
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guide proof discovery, but not much else.

We feel that fundamental progress will require advances in representing
and accessing the knowledge used by human mathematicians. This knowl-
edge includes examples, rules, heuristics, and motivations, in addition to
the more commonly recognized declarative facts represented by axioms and
lemmas. The experiments we have reported on demonstrate simplified ap-
proaches to representing one or more forms of mathematical knowledge,
but the realization of an integrated truly powerful system remains for the

future.
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