ILLUMINATION NETWORKS:
FAST REALISTIC RENDERING WITH
ARBITRARY REFLECTANCE FUNCTIONS

Chris Buckalew and Donald Fussell
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-118R8
TR-89-01 January 1989

ILLUMINATION NETWORKS: FAST REALISTIC RENDERING WITH
ARBITRARY REFLECTANCE FUNCTIONS

Chris Buckalew and Donald Fussell
Depariment of Computer Sciences, The University of Texas at Austin

ABSTRACT

We present a technique for modeling global illumination
which allows a wide variety of reflectance functions. Scene
coherence is exploited in a preprocessing step in which
the geometry is analyzed using iterative techniques. Mem-
ory is traded for speed, in anticipation of the high memory
capacities of workstations of the future. The algorithm oper-
ates well over a wide range of time and image quality con-
straints: realistic results may be produced very quickly
while very accurate results may be produced given more
time and space. The method can be extended for animation
and parallelization.

CR Categories and Subject Descriptors: 1.3.3 [Computer

Graphics]: Picture/lmage Generation—-Display algorithms.
1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism.

General Terms: Algorithms

Additional Key Words and Phrases: global illumination, radi-
osity, ray tracing, memory, specular, diffuse, data structure,
incremental, ray space.

INTRODUCTION

Most techniques used to model global illumination are well-
suited to particular surface reflectance functions. Ray trac-
ing methods such as [14] render specular reflection from
surfaces efficiently and radiosity methods such as [3] and
[10] handle diffuse reflection from surfaces very well. Gen-
eralizations of ray tracing techniques to handle diffuse re-
flectance functions ([1] [4] [8] [13]) and of radiosity tech-
niques to handle specular reflectance functions ([6]) have
been significantly slower. This has led to the development
of hybrid methods which capitalize on the strengths of both
techniques ([12]) to efficiently render scenes containing
both diffuse and specular surfaces.

We have developed a fast algorithm for rendering scenes
containing both diffuse and non-diffuse surfaces. The meth-
od can produce illumination of arbitrary accuracy, with very
realistic results produced in a very short time. Although we
have explicitly traded memory for speed, the memory re-
quirements of this method are much smaller than the virtual
memory capacities of most of today’s workstations and well
within the real memory capacities of tomorrow's machines.
The algorithm can be exiended to allow fast animation that
saves information betwsen frames, and it can be efficiently

parallelized,
ILLUMINATION NETWORKS--THE PATCH-LINK MODEL

In diffuse reflection, a surface element interacts with most of
the other elements that are visible from its front surface. Ra-
diosity techniques solve this problem with virtual frame buff-
ers called hemicubes that represent the scene from each of
the elements’ points of view. Unfortunately, the hemicubes
must be stored at huge memory cost or recalculated fre-
quently, and they contain little directional information. For
non-diffuse reflection, light incident on each surface ele-
ment reflects in a particular direction, so detailed directional
information must be used in modeling this type of reflection.
Ray tracing methods solve this problem by calculating rays
from one surface element to another as they are needed. In
specular environments relatively few rays are needed, so
the high cost of computing them individually is worthwhile.
However, ray tracing diffuse environments requires far
more rays to sample the many elements of the scene provid-
ing diffuse illumination of each element, and the expense of
the ray-object intersection calculations may become signifi-
cant.

We have combined the good features of both techniques
while avoiding some of the drawbacks by using a data struc-
ture called an illumination network. This data structure is
based on a model of light and surface interaction which we
call the patch-link model. Surfaces are broken into small ar-
eas called patches. Associated with each patch is a set of
links. Each link connects the patch to another patch. Light
can travel through the scene only by means of these links.
The reflectance function associated with each patch consists
of a mapping from "incoming” links to “ouigoing” links; that
is, the input to the function is a collection of incoming light
intensities over the set of links, which the function maps to a
collection of outgoing light intensities over the same set of
links.

The set of links associated with each paich connect it to
much of its environment, thus fuifilling the function of hemic-
ubes at more modest storage cost. In addition, the links en-
code the directional relationships of the patches they con-
nect, serving the function of rays in ray tracing methods.
The high cost of computing the large number of links neces-
sary is avoided and scene coherence is exploited by calcu-
lating all the links incrementally in a preprocessing step.

The patch-link model dearly works well in the limit, where
paich size approaches zero and the number of links ap-

proaches infinity, and clearly works poorly where paich
size is very large and number of links very small. The cor-
rect choice for these sizes depends very much on the re-
flectance functions of the objects in the scene and the de-
sired resolution and accuracy of the image. Shiny objects
and sharp shadows, for instance, require smaller patch siz-
es, and greater accuracy requires more links.

AN OVERVIEW OF THE ALGORITHM

The algorithm consisis of three main parts. The first is a pre-
processing step in which the objects in the scene are divid-
ed into patches and the links between patches in the scene
are established. Reflectance functions are set up at this time
as well: reflectance functions are described by an NxN ma-
trix, where the (ij)th element of the matrix gives the fraction
of the light arriving on link i that will leave on link |. The re-
flectance function, then, is determined by the coefficients of
this matrix. For a completely diffuse paich, all the coeffi-
cients of the matrix would be equal, with the sums of each of
the rows equal to one. In reality a surface will absorb some
of the incident radiation, so the sums of each of the rows will
actually be less than one--if this were not the case conver-
gence might not be achievable. For a perfect mirror, each
row would have one coefficient of 1 with the rest 0, be-
cause all the light coming in over link i will leave by the link
associated with the reflectance angle of link i.

The second part of the algorithm is the distribution pro-
cess. Light travels outward over the links associated with
the light-emitting patches and arrives at the paiches on the
other end of these links. For each of these patches, the in-
coming light is passed through the paich’s reflectance func-
tion, and the result is passed outward along the patch's
links to the patches on the other end of the links, some of
which will be the original emitting paiches. This process
continues until there is no more light incoming to any patch,
which occurs when all the light has been reflected out of the
scene or absorbed.

Following convergence, the scene must be rendered; the
algorithm gives view-independent results, so viewing pa-
rameters are set up and light falling on the screen is deter-
mined. The preprocess and the distribution process are
cleanly separated, so that once the illumination network is
set up in the preprocess, it may be reused by multiple pass-
es of the distribution process. Obijects’ reflectance func-
tions and light source strengths may be changed between
passes; the preprocess merely encodes the geometry of
the scene into an illumination network.

LINKS

The collection of links represents a finite subset of all the
light rays which pass through the scene. An exireme ap-
proach Is to select at least one ray which connects each pair
of paiches and add it 1o the collection of links. If there are N

patches this process will result in at least NZ finks. Another

approach is to choose an "svenly distributed” and geomet-
rically uniform set of rays which intersect the scene. Any of
the rays in this set which intersect two objects will become
links. Links are implemented as pointers; if a ray intersects
two patches which face each other, each patch will have a
pointer for that link, pointing to the other patch. The geome-
try thus becomes implicit: the pointer indicates the patch that
is hit if light leaves the patch in a certain direction. In our im-
plementation the direction in 3-space associated with a
pointer is determined by its location in the patch’s array of
such pointers.

Other techniques, such as [2] and [11], have used a finite
set of rays to partition all the rays intersecting the scene into
areas of interest, but our method uses only a predeter-
mined finite set of rays for all light transport throughout the
scene. We would like this set to be uniform so that it lends it-
self to incremental ray-object intersection calculations. To
achieve this end we chose a formulation of ray space similar
in some respects to that of [2].

[2]'s ray space is 5-dimensional; a ray is represented by a
3-D origin and a 2-D direction. We use a different, 4-dimen-
sional formulation. Rays are represented by lines, each de-
scribed by two slopes and a two-dimensional intercept.
The 2-D intercept gives the line’s intersection with an inter-
cept plane (one of x-y, x-z, or y-z planes) and the slope of
the line in each of the intercept plane’s two dimensions.
There is no ray origin or ray direction as with [2]; origins
are built into the data structure (the ray-object intersection
points serve as origins) and the ray’s direction along the
line (plus or minus) is implied by the direction that the ob-
ject faces.

This formulation of ray space may be visualized more easily
by considering the analogous formulation for two-dimen-
sional scenes. In 2-space lines are described by cne inter-
cept (on the x-axis or on the y-axis) and one slope in the
appropriate dimension (dy/dx if intercept is on the y-axis or
dx/dy if the intercept is on the x-axis). Thus this ray space
for 2-D scenes is two-dimensional.

However, some rays cannot be described by a y-intercept
and y-slope, just as some rays cannot be described by an x-
intercept and an x-slope. To solve this problem we parti-
tion ray space into two regions, one for rays whose y-slope
is between -1 and +1, the other for rays whose x-slope is
between -1 and +1. If we restrict our scene to the first quad-
rant of the unit square (in 3-space, the first octant of the unit
cube), then we can put boundaries on the range of the x-
and y-intercepts. If y-slopes must be less than one, then
the lowest possible y-intercept is -1. Similarly i y-siopes
must be greater than -1, the highest possible y-intercept is
2. This is shown in Figure 1.

All the rays passing through the first guadrant of the unit
square are contained in two areas of ray space, one for
each dimension, limited by -1 and +1 on the slope axis
and -1 and +2 on the intercept axis. These areas, and

T

-1
FIGURE 1: slope and intercept bounds on the
unit square

some sample rays, are shown in Figure 2. Our uniform se-
lection of rays that will become links is simply a uniform sam-
pling of points in the ray space we have formulated. We
choose an appropriate interval for each of the slope and in-
tercept axes, set up a grid with these intervals, and select
the grid points.

In 3-space the process is exaclly analogous. We have
three volumes of ray space, one for each intercept plane,
each region bounded by -1 and +1 on the slope axes and -
1 and +2 on the intercept axes. Our finite set of rays is cho-
sen by a uniform point sample in this four-dimensional ray
space, just as in the 2-space case. Two things to note: not
all the rays inside these limits actually pass through the
scene, and the rays are uniform in terms of slopes and inter-
cepts. They are not uniform in other ways; for example, con-

five rays in 2-space

y-intercept x-intercept

' slope

-1 -1
the same rays in ray space
FIGURE 2: scene space and ray space

sider all the rays of this sampling that pass through the ori-
gin: the spatial density of the rays decreases as the slopes
approach zero. This is shown in the 2-dimensional exam-
ple in Figure 3. We correct for this error by associating a
weighting factor with each slope which is applied to all light
traveling along any link having that slope.

In the current implementation, objects are limited to planar
polygons. It is very easy o calculate ray-object intersec-
tions incrementally with this set of rays. Once we calculate
the intersection point of a given ray and a given object, it is
a simple matter to determine the intersection point of the
same object and the "next" ray. The planar geometry of the
object and the geometry of the relationship of one ray to the
next result in very simple incremental calculations, which
are described more fully in a later section.

PATCHES AND THE ILLUMINATION NETWORK

Now that we have selected a uniform set of rays which will
become links, we must divide the scene into patches. If the
paich size is too small, it will not intersect very many rays,
and thus will not have very many links. If a patch is too
large, one ray for each slope must be chosen as a link out of
perhaps many such rays. A bad choice for the link might re-
sult in serious errors. We deal with this problem by dividing
each object into rectangular areas each of which is small
enough that it can intersect no more than one ray for sach
slope. This is accomplished by sizing the rectangular areas
such that when projected onio the intercept planes the
sides of the projected rectangles will be equal to the inter-
cept interval.

The illumination network data structure is simple. FEach
patch has an array of pointers, one for each slope, and with
each pointer is associated a buffer for incoming light called
the in-buffer. Each pointer represents a link, and it points to
the patch on the other end of the link. The in-buffer accumu-
lates unprocessed light that has come in over the link, but
that has not yet been sent through the reflectance function.
The size of the array and the total number of paiches de-
pends on the resolution required.

For paiches that have only a diffuse component to the reflec-

y

0} i

FIGURE 3: spatial density varies with siope

.
....
.00

sl
"
"
et
[
"
o5l
ot
-
.

intercepts
for slope 8

50”

FIGURE 4: intercepts associated with a given slope

tance function, the direction of incoming light is not impor-
tant since it will be evenly distributed. For these patches,
then, a great deal of memory may be saved by eliminating
their in-buffers and substituting a global in-buffer which re-
ceives all the light arriving at the patch, regardless of direc-
tion.

THE PREPROCESSING STEP

This part of the algorithm seis up the illumination network
and fills in the links. The preprocess utilizes the slope-inter-
cept format of rays: a ray will intersect an object if its inter-
cept lies inside a polygon formed by projecting the object
onto the intercept plane along the ray’s slope. This is illus-
trated in a 2-D example in Figure 4. Basically, then, for
each slope S, we project each object onio the intercept
plane along S8 and run a standard scan-conversion algo-
rithm on the resulting polygon. All rays with slope S whose
intercepts lie within the polygon intersect the object and
those intersection points can be calculated incrementally.

The incremental calculation of ray-object intersections is the
key to the speed of the preprocess. Given an object and
two slopes, the intercepts are easily determined by scan-
converting, as described above. However, we must also
determine the coordinates of the ray-object intersections
that project to these intercepts in order to find which patch-
es the ray-object intersections are in. Suppose that the
plane equation of an objectis AXx + By + Cz + D = 0 and we
wish to find the intersection points of all the rays intersect-
ing the y-z plane with slopes yslope and zslope. If the inter-
cept of a particular ray is {yint, zint), then the coordinates of
the point {x, y, z} where the ray inlersects the object are de-
termined as follows:

Ax+By+Cz+D=0
Ax + Blyslope*x + yint) + C{zslope*x + zint) + D = 0
Ax + B¥yslope*x + C*zslope*x = -D - B*yint - C*zint

{-D - B*yint - C*zint)
(A + B*yslope + C#zslope)

This is the result for the x-coordinate; v and z are found sim-
flarly. If the denominator is zero, then the v- and z-slopes

are both parallel to the object's plane, and if there is a solu-
fion, it will not be unique.

This calculation is not at all fast, and it may be made faster by
noticing that the denominator need be calculated only once
for each pair of slopes. it is then combined with the numera-
tor coefficients so that

D'=D /7 (A + B*yslope + C*zslope)
B’ =B / {A + B¥yslope + C*zslope)
C =C / (A + B*yslope + C*zslope)

The calculation is now

= -0~ B*yint - C'*zint

which is certainly faster, but if we take advantage of the fact
that we are using a scan-conversion algorithm to determine
yint and zint, it may be made faster yet. If zint remains con-
stant throughout each scan and if at each step of the scan

conversion yint is incremented by Ay, then

X9 = -D’ - B'#yint - C'*zint at the start of the scan, and
X4 =% B'*Ay thereafter.

Since B'*Ay is fixed throughout the scan conversion,
each step cosis only an addition. The other two coordi-
nates are similarly determined.

These intersection points are stored until all intersections
have been found for 8. At this point each ray with slope S
is examined for intersections; links are set up between any
pair of patches which have consecutive intersections on the
ray and which face each other, as shown in Figure 5.

The regularity of the geometry of the patches and links can
cause notliceable aliasing. To atienuate the effects of this
problem we ray-object intersection points are jittered by a
random fraction of the intercept interval amount. This proce-
dure results in a small perturbation in the slope represented
by each link. This loss of regularity is achieved very cheap-

G 1

FIGURE 5: three objects and four of the
links between them

ly, and the resultant noise reduces the effect of the aliasing
artifacts. The general problem of aliasing due to uniform
point sampling and methods of dealing with it are discussed
in [9].

THE DISTRIBUTION PROCESS

This part of the algorithm distributes the light throughout the
scene until convergence is achieved. Light is first "shot”
from the light sources, which have patches and links like
any other objects. This light is sent into the scene via the
light sources’ links, and is accumulated in the recipient
patches' in-buffers. Following the light sources’ depletion,
each patch in the scene is sequentially examined for any
unprocessed light in the patch’s in-buffers. If any is found,
the contents of all the patch's in-buffers is run through the
reflectance function and the result is sent outward over the
patch's links into other patches’ in-buffers. This process is
continued until no patch has any light in its in-buffers,

The reflectance function calculations consume most of the
time used in this process. As mentioned above, the refiec-
tance function multiplies the array of in-buffers by a matrix of
coefficients and the result is mapped back out to the array of
links. Extremely specular reflectance functions result in
sparse reflectance matrices, while extremely diffuse func-
tions have reflectance matrices that have few non-zerc en-
tries. For the case of a reflectance function having a con-
stant component {a totally diffuse reflectance function would
be constant), the matrix multiplication may be partially or
completely bypassed; the portion of the incoming light con-
ributing to the constant component is summed into a global
accumulator. The contents of the acoumulator are then di-
vided up equally over the links. For example, if a surface
reflects 60% of incoming light in a tight specular pattern and
40% in a diffuse pattern, then 40% of the incoming light will
be summed into the global buffer and distributed evenly
while the remainder will be sent through the reflectance ma-
trix, whose coefficients will indicate only the specular reflec-
tance. This usually results in a sparser matrix, with a result-
ant time savings. When the paich is totally diffuse, the ma-
rix will be zero, and incoming light is processed very swift-

ly.
RENDERING

The algorithm is view-independent; no eyerays need be
calculated prior to rendering. Given the standard viewing
paramelers, eyerays are shot from the eyepoint through
each pixel of the image plane. Each eyeray is maiched o
the “closest” link (in terms of slope and intercept), and the
eyeray's intersection point with the nearest object {(found
with a standard Z-buffer algorithm) determines the paich it
hits. The amount of light that the pixel sees is given by the
total amount of light reflected from that patch over that link,
which has been accumulated in an out-buffer associated
with the link.

This procedure is not sufficient 1o produce good results,

however. Sudden jumps in intensity may occur as the
eyerays move from paich to patch, or the slope that the
eyeray is coerced to changes. To aveoid these problems,
the light assigned 1o an eyeray is interpolated in two
different ways: the light intensities associated with the rays
surrounding the eyeray are interpolated for patches in the
intersected patch’'s 8-neighborhood, and then these
values are themselves interpolated. This process is
illustrated in Figure 6. A given eyeray is associated with
the four siopes that surround it--the x-z slopes immediately
to the left and right of the eyeray's x-z slope, and the x-y
slopes immediately above and below the eyeray's x-y
slope—-these are called the bounding slopes. The out-
buffers associated with these four slopes are evaluated for
each of the patches in the intersected patch’'s 8-
neighborhood. For each of the four patches in each
"corner” of the 8-neighborhood, the value associated with
the eyeray's slope is bilinearly interpolated from the values
of the bounding slopes (a). These four resulting amounts
are averaged to get a value for the center of the corner
areas (b). This procedure results in four values, one at
each comer of the intersected patch. The value for the
intersection point is then bilinearly interpolated from these
four corner points (c).

A great deal of memory may be saved at the cost of view in-
dependence if viewing parameters are determined during
the preprocess and out-buffers allocated for only those
patches and links that are actually utilized in rendering. For
the special case of totally diffuse surfaces, all the out-buffers
for a given patch will contain the same value. In this case
more memory may be saved by substituting a global out-
buffer for each patch, and time may be saved by skipping
the first interpolation step.

ANALYSIS OF RESULTS

The algorithm was implemented in C on a Convex C1 and
an HP2000 series 300. All time figures are given for the

a b c
PEAN AN
,// ”.'. P T,
., "’a‘-' Lt

FIGURE 8: Non-diffuse rendering

Conveyx; the HP workstation time figures were about 4 fimes
slower. Times were measured using the gprof utility in
UNIX. All images are 500x500 pixels.

Figure 7 demonstrates the diffuse reflection performance of
the algorithm. The light source is a large area located be-
hind the eyepoint. Diffuse reflection from the colored side
walls shows on the white back wall. In Figure 8, the light
source is the white area at the top of the scene, and the col-
or stripes on the back wall are reflected by the totally specu-
lar floor. The irregularities of the reflections are the result of
the slight jittering of the ray-object intersections, while the
spread of the reflections is a function of the degree of spec-
ularity of the floor.

Figures 9 and 10 show the obligatory office scene. This
scene was rendered at low resolution, with 2834 patches
and 1201 links at each patch. 1.8 million ray-object intersec-
tions were calculated in the preprocess, which required
160 seconds for each image. Light sources are the pole
lamps, the skylight, the monitor screen, and the tiny lights
on the fronts of the machines.

In Figure 9, all the surfaces are diffuse. Memory for the illu-
mination network was 15 Mbytes. The distribution process
required 35 seconds, and initialization, everay calculation,
and rendering icok 77 seconds. Note the light reflecting
from the desk diffusing onto the wall at low center and onto
the chair pedestal. The green from the carpet also diffuses
onto the lower wall.

In Figure 10, the carpet has been given a heavy coat of
wax. The illumination network took 18.5 Mbytes. The dis-
tribution process jumped to 169 seconds. Initialization, eye-
ray calculation, and rendering took 115 seconds due o the
additional time needed for the non-diffuse rendering. Note
the reflections from the light areas of the back wall on the
floor foreground and the reflections from the side of the
desk on the floor background. The desk front also reflects
on the floor, and on the far left the light wall reflects in the
floor.

EVALUATION OF THE ALGORITHM

While we have only tested diffuse and specular reflectance
functions, the method may be used for less ordinary reflec-
tance functions; one example is the reflectance function of
an anisotropic surface [7]. Another example is very careful
treatment of reflection where different wavelength bands re-
flect in slightly different directions. This would be imple-
mented with a different reflectance matrix for each color
channel.

Different patch and ray-object intersection densifies may be
needed in different parts of the scene. Very small or highly
specular objects will be more accurately rendered if they
have been divided into smaller paiches, whereas very
small patches might result in much unnecessary computation
in the case of, for example, a large streich of blank wall.

Sharp shadow boundaries also may require smaller patch-
es. Object size and specularity are known at preprocess
time, and objects with appropriate characteristics may be di-
vided into more patches than they would otherwise. Sharp
shadows, on the other hand, cannot be easily detected un-
til the distribution process, so this problem would require
that the distribution process be adaptive.

The method will also handle transparent objects with no
modification: instead of a reflectance function, the object's
matrix will be the identity scaled by the object's transmit-
tance coefficient. Translucent objects such as frosted glass
may be modeled by jittering the outgoing light direction
from the incoming direction by an amount determined by
the degree of translucence.

This algorithm may be used on other than planar objects
with no loss of speed in the distribution process, since the
geometry of the scene has been built into the illumination
network at that point. The preprocess depends on the in-
cremental calculation of ray-object intersections for much of
its speed, however, and unless an efficient method of calcu-
lating these intersections is found the advantages of pre-
compiling the illumination network may be lost.

One very nice feature of the algorithm is that the time and
space it requires are determined primarily by the surface ar-
ea of all the objects in the scene and by the desired resolu-
tion, not the number of objecis in the scene. The time re-
quired for the preprocess is mainly a function of the number
of ray-object intersections to be calculated, and the time re-
quired for the distribution process usually depends primari-
ly on the number of patches. There are pathological coun-
terexamples to this generalization—-for instance, two mirrors
facing each other will result in a very long time for the distri-
bution process--but for most scenes it holds true.

FUTURE WORK

Since the geometry of a scene is built into a data structure,
an interesting exiension of this work involves animation. If
for each link an accumulator keeps a total of the amount of
light that has passed over the link (out-buffers correspond-
ing to the in-buffers mentioned previcusly) then we can
save information between frames. When an object moves
between two frames, we determine the links that are affected
and "back" light down the links; that is, light that previously
fraveled over the links will be negated and sent backwards
over the same links. This “negative light” will be run
through the inverses of the reflectance functions at each
patch, and the resuling (smaller) amounts of negative light
are dispatched onto the links. This process continues until
convergence.

At this point the scene is exactly as it would have locked
had the affected links never been there. The links are then
removed and new links are established which reflect the ge-
ometry of the updated scene. Light is then released down
these new links just as before until convergence and the

scene is rendered. Note that if the vast majority of the links
were unaffected by the change, most of the work done for
the first frame will have been saved.

An alternative approach might be to determine objects’ mo-
tion in space-fime and calculate several frames’ worth of
links at a time, in the manner of [5]. This would require pri-
or knowledge of objects’ future motion, which the first pro-
posal avoids.

Another area for exploration is the parallelization potential
of this algorithm. In the preprocess, the incremental ray-ob-
ject intersection calculations are both slope-independent
and object-independent; slope-object pairs may be taken
from a queue by idle processors. In the distribution pro-
cess, each patch can have its own processor which periodi-
cally examines the patch’s in-buffers and processes any
light it finds there and sends the results out over the patch's
links.

To simulate participating media, phantom objects may be in-
serted into links. The reflection direction of the phantom ob-
ject is determined by the scattering properties of the medi-
um. The probability of a phantom object being inserted into
a link is a function of the length of the link, and its location is
a function of the distribution of the medium.

ACKNOWLEDGEMENTS

Our thanks to Emilia Villarreal, A.T. Campbell, and K.R. Sub-
ramanian for many helpful technical discussions and sugges-
tions. We would also like to thank the folks at the Center for
High-Performance Computing of the University of Texas,
in particular Jesse Driver and Dan Reynolds, for their assis-
tance and the use of their machines.

REFERENCES

{11 Arvo, James, "Backward Ray Tracing,” Developments
in Ray Tracing (SIGGRAPH 86 Course Notes),
Vol.12, August 1986.

[2] Arvo, James and David Kirk, *Fast Ray Tracing by Ray
Classification,” Computer Graphics (SIGGRAPH 87
Proceedings), Vol.21, No .4, July 1987, pp.55-84.

[3] Cohen, Michael F., Donald P. Greenberg, "A Radiosity
Solution for Complex Environment,” Computer Graph-
ics (SIGGRAPH ‘85 Proceedings), Vol.19, No.3, July
1985, pp.31-40.

[4] Cook, Robert L., Thomas Porter, Loren Carpenter,
"Distributed Ray Tracing." Compuier Graphics
(SIGGRAPH 85 Proceedings), Vol19, No.3, July
1985, pp.111-120.

[5] Glassner, Andrew S., "Spacstime Ray Tracing for Ani-
mation,” JEEE Computer Graphics and Applications,
Vol4, No.3, March 1988, pp.60-70.

[6] Immel, David 8., Micheal F. Cohen, Donald P. Green-
berg, "A Radiosity Method for Non-Diffuse Environ-
ments,” Compuler Graphics (SIGGRAPH 86 Proceed-
ings}, Vol.20, No .4, August 1986, pp.133-142.

{71 Kajiya, James T, “Anisolropic Reflection Models,®
Computer Graphics (SIGGRAPH ‘85 Proceedings),
Vol.19, No.3, July 1985, pp.15-21.

[8] Kajiya, James T., "The Rendering Equation,” Comput-
er Graphics (SIGGRAPH °'86 Proceedings), Vol.20,
No.4, August 1986, pp.143-150.

[8] Mitchell, Don P., "Generating Antialiased Images at
Low Sampling Densities," Computer Graphics
(SIGGRAPH 87 Proceedings), Vol21, No.4, July
1987, pp.65-72.

[10] Nashita, Tomoyuki and Eihachiro Nakamae,
"Continuous Tone Representation of Three-Dimen-
sional Objects Taking Account of Shadows and Interre-
flection,”, Computer Graphics (SIGGRAPH 85 Pro-
ceedings), Vol.18, No.3, July 1985, pp.22-30.

[11] Ohta, Masataka and Mamoru Maekawa, "Ray Coher-
ence Theorem and Constant Time Ray Tracing Algo-
rithm,” Computer Graphics 1987 (Proceedings of CG
international '87), ed. T L. Kunii, pp.303-314.

[12] Wallace, John R., Michael F Cohen, Donald P. Green-
berg, "A Two-pass Solution to the Rendering Equa-
tion: A Synthesis of Ray Tracing and Radiosity Meth-
ods,” Computer Graphics (SIGGRAPH '87 Proceed-
ings), Vol.21, No.4, July 1987, pp.311-320.

[13] Ward, Gregory J., Frances M. Rubinstein, Robert D.
Clear, "A Ray Tracing Solution for Diffuse Interreflec-
tion,” Computer Graphics (SIGGRAPH ‘88 Proceed-
ings), Vol.22, No.4, August 1988, pp.85-02.

[14] Whitted, Tumer, "An Improved lllumination Model for
Shaded Display,” Communications of the ACM,
Vol.23, No.8, June 1980, pp.343-349.

