BLOCK ACKNOWLEDGEMENT:
REDESIGNING THE WINDOW PROTOCOL

G. M. Brown,! M. G. Gouda,?2 and R. E. Miller3

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-89-02 March 1989

Abstract

We describe a new version of the window protocol where message sequence numbers
are taken from a finite domain and where both message disorder and loss can be toler-
ated. Most existing window protocols achieve only one of these two goals. Our proto-
col is based on a new method of acknowledgement, called block acknowledgement,
where each acknowledgement message has two numbers m and n to acknowledge the
reception of all data messages with sequence numbers ranging from m to n. Using this
method of acknowledgement, the proposed protocol achieves the two goals while
maintaining the same data transmission capability of the traditional window protocol.

1 School of Electrical Engineering, Cornell University.
2 Work supported in part by Office of Naval Research Contract N00014-86-K-0763.
3 School of Information and Computer Science, Georgia Institute of Technology.

1 Introduction

The window protocol is used to "control" the message exchange between two processes
over two imperfect, unidirectional channels; it is characterized by the use of message
sequence numbers to achieve reliable data transfer and the use of a "window" to control the
flow of data. The window protocol has its roots in the alternating-bit protocol that was
designed by Lynch [7], and Bartlett, Scantlebury, and Wilkinson [1], and was later studied
by a host of researchers including Hailpern and Owicki [5], Gouda [4], and Chandy and
Misra [3]. The generalization from the alternating-bit protocol to the window protocol was
first suggested by Cerf and Kahn [2], and Stenning [10], and was later investigated by
many researchers, most notably Knuth [6], and Shankar and Lam [8]. Today, every major
computer network (e.g. the ARPA network, the SNA network, and the ISO network
standard) employs one or more versions of the window protocol.

The purpose of this paper is to develop a version of the window protocol that can
tolerate message disorder (i.e. messages may be delivered out of the order in which they
are sent) in addition to message loss, and where message sequence numbers are bounded
(i.e. taken from a finite domain). Most existing protocols achieve one of these two goals
but not both. For example, the window protocol of Stenning [10] can tolerate both
message disorder and loss but assumes that message sequence numbers are unbounded,
i.e. taken from the infinite domain of natural numbers. On the other hand, the window
protocol of Cerf and Kahn [2] assumes that message sequence numbers are bounded and it
can tolerate message loss, but it cannot tolerate message disorder.

The difficulty of achieving these two goals simultaneously is better explained by
example. Consider the following scenario of a window protocol between two processes,
called sender and receiver. (From this point and until the end of the introduction, the reader
is assumed to be familiar with the go-back-N version of the window protocol as defined for
instance in Stallings [9]. Appreciating the rest of the paper, however, does not require any
prior knowledge of the window protocol.) The sender sends six data messages with
sequence numbers ranging from 0 to 5; the receiver receives the messages 0 to 4 and
acknowledges their reception by one acknowledgement message that has the sequence
number 4. Later, the receiver receives the last data message whose sequence number is 5
and sends another acknowledgement message with the sequence number 5. Because of a
message disorder, the sender receives only the second acknowledgement message, while
the first acknowledgement remains in the channel from the receiver to the sender. Because
the received acknowledgement has the sequence number 5, the sender recognizes that all

the data messages that it has sent have been received by the receiver, and so proceeds to
send new data messages. The unreceived acknowledgement remains in the channel from
the receiver to the sender and can still be received at a later instant. Now, if the sequence
numbers of data messages are bounded, the sender eventually sends new data messages
with sequence numbers 0 to 4. It is possible that these messages are lost but the sender still
receives the old acknowledgement from its input channel and recognizes wrongly that all
these messages have been received correctly by the receiver.

There exist two versions of the window protocol where the two goals of bounded
sequence numbers and tolerating message disorder are achieved [8,10]. In each case,
however, the proposed protocol does not display all the nondeterminacy that is available in
a regular window protocol. For instance, the selective-repeat protocol in [10] requires that
every data message be acknowledged by a distinct acknowledgement message. Itis clear in
this case that the above scenario cannot occur. On the other hand, this is a severe
restriction over the behavior of a regular window protocol, and can greatly reduce the
protocol's performance.

The second protocol is by Lam and Shankar [8]. In it, the sending of a new data
message depends not only on the availability of an "open window,” as in the case of a
regular window protocol, but also on some additional realtime constraint. In particular, a
specified time period should elapse between the sending of two data messages with the
same sequence number. The specified period guarantees that no copy of the first data
message or its acknowledgement is still in transit between the sender and receiver before
the sender sends the next data message with the same sequence number. This additional
constraint may adversely affect the rate of data transfer in the event that a small domain of
sequence numbers is used in the implementation of this protocol.

The window protocol described in this paper achieves the two goals of bounded
sequence numbers and tolerating message disorder, without having a potential degradation
of throughput. The basic idea of the protocol is quite straightforward. Each
acknowledgement message has an associated pair of sequence numbers (m,n), where
m < n, and acknowledges the reception of all data messages with sequence numbers
ranging from m to n inclusive. Thus, the reception of a data message with sequence
number k can be acknowledged by an acknowledgement message that has the pair (k).
In general, however, one acknowledgment message can acknowledge the reception of any
number of outstanding data messages. We refer to this method of acknowledgement as
block acknowledgement.

If block acknowledgement is used in a window protocol, the above scenario will not
lead to message loss as before. This is because the first acknowledgement message will

2

have the pair (0,4) while the second will have the pair (5,5). Even if a message disorder
causes the sender to receive the second acknowledgement before the first, the sender still
has to receive the first acknowledgement before proceeding to send new data messages.
Note that a message is never acknowledged more than once.

In this paper, we define the protocol in some detail and give a proof of its
correctness. This is accomplished in two steps. First, a version of the protocol assuming
unbounded sequence numbers is presented in Section 2, and a proof of its correctness is
given in Section 3. Our proof shows that bounding the sequence numbers by some
specific bound will not affect the protocol's correctness. This observation is utilized in
Section 4 to develop a version of the protocol that uses bounded sequence numbers. We
conclude with some remarks concerning different variations of the protocol in Section 5.

2 A Window Protocol with Block Acknowledgements

The window protocol is used to control the message exchange between two processes over
two unidirectional channels that may lose or reorder messages. One of the processes,
named sender or S for short, sends data messages to the other process, named receiver or
R for short, which then sends back acknowledgements. Each sent data message is stored
in the channel from S to R until it is lost or received by R, and each sent acknowledgement
is stored in the channel from R to § until it is lost or received by S. Each of the two
channels is formally defined as a set of messages whose membership changes as new
messages are sent into it or as old messages are lost or received from it.

In the protocol presented in this section, each new data message is assigned a new
sequence number taken from the natural numbers. (Later we modify this protocol to utilize
sequence numbers from a finite domain.) Because each data message is uniquely
associated with a sequence number, we define a data message to consist solely of its
sequence number. This is a useful abstraction of the protocol since our concern is with the
control issues involved in the data transfer and not with the data actually being transferred.

As a further abstraction, we assume that S has an infinite boolean array ackd[0..] in
which it records those data messages that have been sent and later acknowledged by R and
that R has an infinite boolean array rcvd[0..] in which it records those data messages that
have been received. Assuming that these arrays are infinite greatly simplifies the reasoning
about the protocol. It should be understood, however, that an implementation of the sender
will require only a finite buffer space for storing data messages that have been sent, but not
yet acknowledged, and an implementation of the receiver will require only a finite buffer
space for storing those data messages that have arrived out of sequence.

The code for each process consists of a set of actions with the following syntax
begin action [} . . . [action end. Each action may be enabled or disabled depending upon
the state of the system. An enabled action may be executed at any time with the restriction
that the actions of the system (both R and S) are executed one at a time, i.e. atomically.

Each action has the form guard — command. The guard may be either a boolean
expression or a receive statement of the form rcv x. The commands are constructed from
assignment statements and send statements of the form send x using sequencing,
alternative, and iterative constructs.

An action in the sender's program (receiver's program) is enabled if its guard is a
boolean expression that evaluates to true or its guard is a receive statement and there is a
message in the channel from R to S (or S to R).

Execution of an enabled action of S (R) whose guard is a receive statement consists
of receiving a message chosen at random from those in the channel from R to S (S to R)
and then executing the action's command. Executing a send command in the sender's
program (receiver's program) causes a message to be added to the channel from S to R (R
to S).

The sender maintains a "window" of messages in transit. This window may vary in
size, but at any instant has a maximum size of w. The boundaries of the sender's window
are defined by na, the next message to be acknowledged, and ns, the next message to be
sent. Each message with sequence number m, where na < m < ns, is still outstanding, i.e.
sent, but not yet acknowledged. Thus, whenever na = ns, there are no outstanding
messages, and whenever ns = na + w the window has its maximum size and no further
messages may be sent until some outstanding messages are acknowledged. Whenever the
window is smaller than its maximum size, the sender may send a new data message by
executing the following action.

0 ns<na+w — send ns;

ns:=ns+1

Each acknowledgement message consists of two numbers (m,n) to acknowledge all
data messages with sequence numbers ranging from m to n inclusive. Whenever the
sender receives an acknowledgement message, it records in the array ackd the
acknowledged messages and modifies na to indicate the highest numbered message that has
not yet been acknowledged.

1: rev(iy) — doisj — ackdli] =true;
i=i+1
[l ackdnal —» na:=na+1
od

Because the channels are imperfect, messages may be lost and hence data messages
may have to be retransmitted. The following action retransmits the outstanding data
message with the lowest sequence number (rna) whenever the boolean expression timeout is

rue.

2: timeoutr — send na

We postpone defining the boolean expression timeous until after presenting the receiver's
code. The complete program for the sender can now be written as follows.

process S;
const w: integer val [Fw>0%
var ackd : array [integer] of boolean init false;

na, ns, i, j : integer init O;

0: beginns<na+w — sendns;

ns=ns+1
1: I rev(iy) — doisgj — ackd[i] = true;
' i=i+1
I ackd[nal - na:=na+1
od
2. I timeout — send na

end

The receiver receives the data messages out of order, but only acknowledges them in
order. The receiver maintains the sequence number of the next message to be accepted in
nr, i.e. received and acknowledged. All data messages with sequence numbers less than nr
have been accepted. While other data messages may have been received, no others have
been acknowledged. The receiver accepts data messages in action 3. The reception of data
message v is recorded in revd. If v has been accepted previously, then a duplicate
acknowledgement is sent, otherwise the acknowledgement is postponed until all data

messages with lower sequence numbers have been accepted.

3. revy — ifv<nr— send (v, v)
lvznr— revdlv] :=true
fi

The receiver attempts to acknowledge as many data messages as possible with a
single block acknowledgement message. It uses vr to determine the upper bound of
received data messages, i.e all messages m, nr < m < vr, have been received but not yet
acknowledged. The receiver increments vr if the corresponding data message has been

received.

4: revd[vr] — vri=vr+1

Once the receiver has established that a block of data messages can be acknowledged,
it does so by sending the acknowledgement (nr, vr -1). The receiver then increases ar to

reflect the upper bound of accepted messages
5: nr<vr — send(nr, vr-1); nr:=vr
The complete program for the receiver can now be written as follows.

process R;
var rcvd : arraylinteger] of boolean init false;

nr,vr, v : integer init 0;

3: beginrecvy — ifv<nr— send (v, v)
lvznr— rcevdlv] = true

fi
4: [} revdivr] — vri=vr+1
5 [nr<vr ~> send(nr, vr-1); nr :=vr

end

In the introduction we showed that, for protocols in which messages may arrive out
of order, data messages should not be retransmitted if a copy of the message or a copy of
its acknowledgement still exists in transit. This can be accomplished by defining the

boolean expression timeout in S as follows:

timeout = (na # ns) A (Csg = Crs = {}) A —revd[nr]

where Cgg denotes the set of messages in transit from S to R and Crs denotes the set of
messages in transit from R to S. Informally, the three conjuncts of this expression can be
explained as: there are some outstanding data messages which have been sent by S and
their acknowledgements have not been received by S, there are no data or
acknowledgement messages in transit, and all received data messages have been
acknowledged by R. Although we do not specifically address the implementation of
timeout, a reasonable implementation would require a local timer for the sender and a
mechanism for aging messages in transit, i.e. ensuring that they are eventually discarded if
not received.

The correctness of this protocol is established in the next section. This proof of
correctness will be needed in the following section to make the protocol have finite

sequence numbers.
3 Proof of Correctness

We prove the safety, progress, and fault-tolerance properties of the protocol separately.
First we show that data messages are accepted by the receiver in the order sent (i.e. safety).
We then show that the sender will be enabled continually to send the next data message in
its input sequence and that each sent data message will eventually be received by the
receiver (i.e. progress). Finally, we show that both safety and progress are still achieved
even if sent messages can be lost or reordered (i.e. fault-tolerance).

We verify the safety properties of the protocol by presenting an appropriate invariant.
An invariant is a state predicate that is true in the initial state and remains true after
executing every action of the protocol. The invariant we present implies the following three
properties: only data messages that have been sent are received,

(VY m :revdm] : m < ns),

a data message is accepted only if all prior data messages have been received,
Y m . —revdim] - nr <m).

and only data messages that have been accepted are acknowledged,
(Y m :ackd[m] : m < nr),

To prove infinite progress of the protocol, we show that the sender will send new

data messages infinitely often and that the receiver will accept new data messages infinitely

often. This requires showing that each of the two actions 0 and 5 is executed infinitely
often.
To prove fault-tolerance, we show that our proofs of safety and progress are still

valid if sent messages can be lost or reordered.
3.1 Safety

We verify the three safety properties mentioned in Section 3 by presenting a single
invariant. The invariant consists of three assertions, 6-8, which we present individually
but which are mutually dependent for their invariance.

The variables na, ns, nr, and vr are related by a single assertion. The window of
outstanding messages is bounded from below by na and from above by ns. Furthermore,

at all times the maximum size of the window is w.

nasns A

ns <na+w

The receiver expects to receive data message nr which lies within the window. The
receiver builds up acknowledgement messages with vr, hence all messages between nr and
vr should have been received, but not yet acknowledged.

nasnr A
nrvr A

vr < ns
These requirements are summarized in assertion 6.

6: nasnr A
nr<vr A
vrSas A

ns<na+w

All messages less than na have been acknowledged (i.e. ackd is true), and no
message greater than or equal to nr has been acknowledged. All received messages must
have been sent (i.e. have values less than ns) and no message that has not been received
should be acknowledged (i.e. all messages between nr and vr will be acknowledged).
These réquirements lead to the following assertion

7. (VY m:—ackdim] i m 2z na) A
(VY m :ackd[m] : m <nr) A
(Y m :revdim] :m < ns) A
(VY m:—revdlm] : m=2vr)

Assertions 6 and 7 could be violated if an inappropriate message is received. We use
the following notation to describe the messages in transit:

#srpm = number of messages with sequence number m in Cgp
#rsm = number of messages (x,y) in Cgg where x <m <y holds.

To ensure the correctness of the protocol in Section 2, we require only that no data message
m, m = ns, and no acknowledgement message (i,f), vr <j, be in transit; however, in order
to modify the protocol to use a finite set of sequence numbers, we further require that there
never be two messages in transit with the same sequence number. These requirements are

captured by the following assertion.

8 (Ym: (Hspm +#rsm) < 1) A
(Y m :#spm >0 :m < ns A —ackd[m] A (im < nr v —rcvd[m])) A
(V m :#rsm >0 :m < nr A —ackd[m])

The system invariant consists of the conjunction of assertions 6-8. To prove that the
resulting assertion is indeed an invariant, simply check that each of the actions 0-5
preserves it. For example, consider the first conjunct of assertion 6, na < nr. Actions 0, 1,
3, and 4 alter neither na nor nr and hence preserve the validity of na < nr. In action 2,
message (i,j) is received by the sender. But since i < nr and j < nr (from 8), and ack[na]
implies na < nr (from 7), the loop of action 2 preserves na < nr. Finally, in action 5, nr is

increased and hence na < nr is preserved.

3.2 Progress

To prove indefinite progress of the protocol, we show that process S will send new data
messages infinitely often and that process R will accept new data messages infinitely often.
This is equivalent to showing that actions 0 and 5 are executed infinitely often, or that
variable s is incremented infinitely often. Because the four variables na, ns, nr, and vr are

related by 6, namely

nasSnrvrsns<na+w

and because each of these variables can only be incremented by the processes, it is
sufficient to show that the sum

na-+ns +nr+vr

is incremented infinitely often.

At each reachable state of the system, at least one of the actions is enabled and can be
executed. Moreover, each execution of action 0, 4, or 5 increments the sum. Therefore, it
remains to show that executing actions 1, 2, and 3 will eventually lead to incrementing the
sum.

Assume that actions 1, 2, and 3 start executing at some network state s. There are

two cases to consider.

Case 0. Both channels are empty at s: In this case only action 2 is enabled. Executing this

action causes a data message with sequence number na to be sent into Csg which enables
action 3. Executing action 3 causes an acknowledgement message with the pair (na,na) to
be sent into Cgg ; this enables action 1 which increments na and hence the sum.

Case 1 At least one of the two channels is not emipty at ;. In this case action 2 is not

enabled, and only actions 1 and 3 can be executed. Because each execution of these two
actions causes one message to be received, the network will eventually reach a state in
which both channels are empty (first Cgp is emptied and then Cgg). Starting from this
state, Case 0 can be applied to show that eventually na will be incremented.

3.3 Fault-Tolerance

We have based our proofs of safety and progress on the assumption that Csg and Crg are
both sets rather than sequences. Therefore, these proofs already take into account the
possibility of "message disorder”. The above invariant, namely the conjunction of
assertions 6, 7, and 8, is "insensitive” to message loss. Therefore, our proof of safety still
holds if message loss is allowed. On the other hand, our proof of progress is not valid if
sent messages can be lost frequently. However, by making the reasonable assumption,
that there are long periods of time during which no sent message is lost, our proof of

progress becomes valid and indeed establishes progress during those periods.

10

4 A Window Protocol With Finite Sequence Numbers

As a practical matter we would like to develop a protocol in which a finite set of sequence
numbers is used by the sender and receiver. We show how to modify the window protocol
of Section 2 so that it requires only a finite set of sequence numbers. The basic idea is
quite simple. The sender and receiver continue to generate monotonically increasing
sequence numbers internally, but rather than send the actual sequence number m, they send
(m mod n) where n is a constant and (m mod n) is the remainder obtained when m is
divided by n. Provided that the process receiving (i mod n) has a way to reconstruct m,
no information is lost. We now show how to perform this reconstruction.

The only action of the sender's program that accesses the contents of a received
message is 1. From assertions 6 and 8 we conclude that

9: 0O<na<i<na+w (inl)
10: O0fma <j<na+w (inl)

Similarly, the only action of the receiver's program that accesses the contents of a received
message is 3 and from assertions 6 and 8 we conclude that

11: 0<max(Onr-w)< v < nr+w (in3)

Assertions 9-11 give us the information required to reconstruct i, j, and v from
(i mod n), (j mod n) and (v mod n), respectively, where n is a constant still to be selected.
In particular, for any x and y such that

122 0 <x<y<x+n
we have
13: ((x divn) = divn) = (y mod n) 2 (x mod n))
and
14: (1 + (xdivn)=(dvn) = ((y mod n) < (x mod n))
where (m div n) is the integer resulting from dividing m by n. (Notice the similarity

between 12 and each of the assertions 9—-11.)

11

We will use 13 and 14 to create a function f'such that
fley) =y

and f accesses only x and (y mod n). From 13 and 14, we can derive (y div n) from x and
(y mod n). Therefore we define

fx,y)y= if (ymod n) 2 (x mod n)y — (y mod n) + n(x div n)
[(v mod n) < (xmod n) — (y mod n) +n(1+ (x div n))
fi

If we then define

n=2w
then
fina,iy=1i (in 1)
flnaj)=j (nl)
and

fmax(0,(nr-w)),v)=v (in 3)

Given the definition of f, we can now show that actions I and 3 can be modified so
that they only "examine” the sequence numbers in the received messages modulo n. The
preceding development demonstrates that such a modification can be performed without
altering either the safety or progress properties of the protocol.

1: rev(iy) —» doi<j — ackdli] :=tue;
i=i+1
Il acklnal = na =na+1
od
by

1': rev(iy) — doflna i) <f(na,)) — ackdlf(na,i)] = true;
i=0+1)modn
I ackdnal —> na:=na-+1
od

12

and
3: revy — ifv<nr— send (v, v)

fvznr — revdlv] :=true
fi
by
3% rev v — if flmax(0,(nr-w)),v)< nr — send (v, v)
1 flmax(0,(nr-w)),v)=2 nr — revd[f(max(0,(nr-w)),v)] = true
fi

Since the sender and receiver now only examine messages modulo # (i.e. in f), they need
only transmit messages with sequence numbers modulo n. This leads to the following
programs (note (x mod n) = ((x mod n) mod n)).

const w: integer val; [Fw>0%
n : integer 2w

process S;
var ackd : array [integer] of boolean init false;

na, ns, i, j : integer init 0;

beginns <na+w — send ns mod n;

ns=ns+1
I rev(iy) — do flna i) £flna ,j) — ackd{f(na,i)] :=true;
i=0G+1Dmodn
il ackdina] ~» na=na+1
od
[timeout — send na mod n

end

process K,
var rcvd : array[integer] of boolean init false;
nr,vr, v : integer init 0;

begin

revy — if flmax(0,(nr-w)),v)< nr — send (v, v)
[flmax(0,(nr-w)),v)= nr — revd[fmax(0,((nr-w)),v)] := true
fi

fl revdlvr] — vri=vr+1
| nr<vr — send((nr mod n), (vr-1) mod n)); nr :=vr

end

timeout = (na # ns) A (Csg = Crs = {}) A —revd[nr] A —ackd[nal

Although the preceeding protocol utilizes a finite range of sequence numbers, it still
requires unbounded storage for each process because it uses unbounded integers (na, ns,
nr, and vr) and unbounded arrays (ackd, and rcvd). We can further modify this protocol
so that each process uses bounded storage. First, the unbounded arrays ackd and rcvd are
replaced by finite arrays. Then the comparisons, ns <na +w,i <},
v < nr, and nr < vr are modified to access s, na, nr, and vr modulo n (recall that n = 2w).
Finally, the actions that increment s, na, and vr are are modified so that they increment
modulo n. In the interest of brevity we only sketch the development of these
modifications.

Consider the array ackd which is used to record those messages that have been both
sent and acknowledged. From assertions 6 and 7 of the invariant we see that for all
messages I, I < na (or ns <i), ackl[i] (—ackd[i]) holds. Thus, we only need w storage
locations for the subarray ackd[ra ... ns—1]. Similarly, we need only w storage locations
for the subarray rcvd[vr ... ns—1]. To implement these modifications, each of the actions
1, 3, and 4 should be altered so that arrays ackd and rcvd are accessed modulo w,
ackd[na mod w] is set to false in action 1', and rcvdvr mod w] is set to false in action 4.

As an example of how the comparisons in the protocol are modified, consider the
comparison i < jin action 1. An invariant of the loop in action 1 is

P < j+1

14

therefore
i<j = i#j+1
From 9 and 10 we conclude that
i £ jHl<i+n
is an invariant of the loop. Finally, from 13 we conclude that
i#zj+1= imodn#(+1)modn = imodn# ((jmodn)+1)modn

The other comparisions in the protocol can be modified similarly. Once these modifications
have been performed, ns, na, nr, and vr are only accessed modulo n by the programs.
Hence, all additions in the programs may be performed modulo 7.

5 Concluding Remarks

To the best of our knowledge the concept of block acknowledgement is new for window
protocols. It provides for a more definite form of acknowledgement than that in earlier
window protocols, with the small added expense of needing two sequence numbers in the
acknowledgement rather than one. As we have shown this modification of the
acknowledgment enables us to overcome message loss and message reordering in the
transmission medium while maintaining the throughput advantages of traditional window
protocols.

The window protocol with block acknowledgement combines the desirable features
of two well known versions of the window protocol, namely go-back-N with that of
selective-repeat [10]. In particular, it can tolerate message disorder (selective-repeat) and a
single message can acknowledge a large number of data messages (go-back-N). In fact,
selective-repeat and go-back-N are special cases of block acknowledgement where only
acknowledgments of the form (v,v) and (0,v) are sent, respectively.

The window protocols we have described in Sections 2 and 4 utilize the concept of
block acknowledgement in a very straightforward way. Yet, since block acknowledgement
provides an exact acknowledgement of those messages that have been received, this opens
up the possibility of utilizing any positions that have been acknowledged for transmission
of new messages, even though some earlier messages in different positions have not yet
been acknowledged. For example, suppose message O through 5 were sent, but only
messages 3 through 5 were acknowledged. It would then be possible, through a more

15

complicated protocol design, to reuse positions 3 through 5 for sending more messages
before messages 0, 1, and 2 were received. To realize such a protocol the sender and
receiver would have to remember more information about which messages had been sent
and not yet received, and the protocol designs for the sender and receiver would have to be
more complex. Clearly there is some tradeoff here between the added complexity versus
the potential gain in performance by more aggressive reuse of acknowledgement message

positions.

Acknowledgement: We are grateful to Chris Edmondson for her comments to an earlier
draft of this paper; her suggestions have led to an improvement in the final protocol.

References

[11 K. A. Bartlett, R. A. Scantlebury, and P. Wilkinson, "A Note on Reliable Full
Duplex Transmission over Half-Duplex Links," Communications of the ACM, vol.
12, pp. 260-261, 1969.

[2] V. G. Cerf and R. E. Kahn, "A Protocol for Packet Network Intercommunication,”
IEEE Transactions on Communications, vol. com-22, no. 5, pp. 637-648, 1974.

[3] K.M. Chandy and J. Misra, Parallel Program Design: A Foundation, Chapter 17,
Addison—Wesley Publishing Co., 1988.

[4] M. G. Gouda, "On a Simple Protocol Whose Proof in Not: The State Machine
Approach,"” IEEE Transactions on Communications, vol. com-33, no. 4, pp. 380-
382, 1985.

[5]1 B. Hailpern and S. S. Owicki, "Modular Verification of Computer Communication
Protocols," IEEE Transactions on Communications, vol. com-31, no. 1, pp. 56-68,
1983.

[6] D. E. Knuth, "Verification of Link Level Protocols,” BIT, vol. 21, pp. 31-36,
1981.

[71 W.C.Lynch. "Reliable Full-Duplex File Transmission over Half-Duplex Telephone
Lines," Communications of the ACM, vol. 11, pp. 407-410, 1968.

[8] A. U. Shankar and S. S. Lam, "Time-Dependent Distributed Systems: Proving
Safety, Liveness, and Real-Time Properties,” Distributed Computing, vol. 2, no. 2,
pp. 61-79, 1987.

[9] W. Stallings, Data and Computer Communications, 2nd edition, New York,
Macmillan, 1988.

[10] N. V. Stenning, "A Data Transfer Protocol,” Computer Networks, vol. 1, pp. 99-
110, 1976.

16

