TOPOLOGICAL TESTING™

Miroslaw Malek, Antoine Mourad,
and Mihir Pandya™

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-89-03 March 1989

* This research was supported in part by AT&T and by the Office of Naval Research under Grants N0O0014-86-K-0554
and N00014-88-K-0543.

** A1 of the authors are affiliated with: The Department of Elecirical and Computer Engineering, The University of
Texas at Austin, Austin, Texas 78712. Telephone: 512-471-5704, ARPANET: malek@emx.utexas.edu

Abstract

A new concept, topological testing, which uses graph optimization methods
applicable to each level of system hierarchy is presented. Examples demon-
strating orders of magnitude improvement in testing time are given.

Brief summary

A concept of topological testing is introduced and its applications are pre-
sented. Topological testing uses graph theoretic optimization methods such
as the Traveling Salesman Problem, the Chinese Postman Problem, path
covering and partitioning to minimize the test time. The topological testing
techniques can be applied to each level of system hierarchy, namely, cir-
cuit, logic, register transfer, instruction and processor-memory-switch levels.
Specifically, the topological testing approach is demonstrated by developing
tests for the multistage interconnection network and the hypercube network.
Time optimization for the testing of these networks gives very promising
results by taking advantage of inherent parallelism and removing test re-
dundancy. Three orders of magnitude improvement is achieved by applying
topological testing techniques to the testing of an existing multistage inter-
connection network.

Key Words : Testing, graph theory, optimization methods, multistage
interconnection networks, hypercube.

1 Introduction

As digital systems become more and more complex, testing becomes even
more time consuming process during manufacturing and maintenance. An
exhaustive approach putting the system in every state and applying all pos-
sible inputs to it, leads to an exponential growth in the number of tests as the
system complexity increases and hence the testing time becomes prohibitive.
In this paper, we introduce a new approach called fopological testing which
applies primarily at the system integration level. The approach uses the
“topology” of the system to minimize test time. By topology we mean a
graph representation of the system reflecting either its physical layout or a
logical description in the form of a Finite State Machine (FSM).

The approach is based on defining the objectives of the test and then
trying to find an optimal way to perform the test in order to achieve the
specified objectives. For example, if the nodes in the graph representation
of the system are to be tested, then the optimal way of performing the
test is by sending a testing packet along a shortest Hamiltonian cycle which
traverses every node exactly once. If the graph does not have a Hamiltonian
cycle then a shortest closed walk traversing every edge at least once should
be found.

The target systems include multiprocessor architectures, microproces-
sors, distributed systems, communication networks as well as protocols.

The next section presents the system models and the domains of appli-
cation of topological testing. Section 3 introduces the optimization methods
that are typically used in this approach. Section 4 details an example where
topological testing is applied to generate tests for the multistage intercon-
nection network (MIN) and Section 5 provides another example in which
the method is used to test the communication capabilities of a hypercube.
Finally, Section 6 presents some conclusions.

2 System models

Three system models, where topological testing is applicable are identified :

e Behavior: the approach can be used to test the behavior of a system
modeled by a finite state machine. Testing protocol conformance [1, 2]
is one example in this area.

s Organization: the organization or topology of a system will be taken
into account in the test generation process in order to minimize the

number of tests or the distance traveled by the testing packets. Sec-
tion 4 provides a detailed illustration of this approach through the
testing of the multistage interconnection network.

e Hierarchy: the objective here is to partition the system into subsets
that can be tested concurrently. In both homogeneous and heteroge-
neous environments, a hierarchical approach can be used to parallelize
the testing procedure, hence reducing the test time. Section 5 shows
how partitioning can be effectively used in generating tests for the
hypercube network.

Topological testing can be applied at different levels in a computer sys-
tem. It can be used at the circuit, logic, register transfer, instruction and
processor-memory-switch (PMS) levels. However, it is most useful at the
system integration level, when different components are put together and a
test has to be conducted to ensure that the system is operational. In Sec-
tions 4 and 5, we detail two examples of application of topological testing at
the PMS level. The application of the method at the register transfer level
(RTL) can be illustrated by the model developed by Thatte and Abraham
in [4] for microprocessor testing where the system is described by a graph
in which nodes are registers and arcs represent dataflow between registers.
In this case, the test generation process involves traversing every arc in the
graph using a minimal number of tests. This problem can be solved using
the path-covering technique discussed in the next section. In the paper,
we will be concerned only with finding an “optimal” way for traversing the
graph modeling the system. We will not discuss what instruction or se-
quence of instructions will produce the transition from a given node to the
other or the traversal of a given edge. This particular problem is discussed
in [4] for microprocessor testing and in [1] for protocol conformance testing.
Examples of applications of topological testing at the logic level are mainly
in the area of parallel testing of VLSI circuits [5]. The Euclidian test method
for semiconductor random access memories [6] also falls in the category of
topological testing.

The fault models will be specific to each system and the level of testing
to be achieved.

a) b)
Figure 1: a) graph with Euclidian costs b) graph with non Euclidian costs

3 Methods of topological testing

Topological testing makes use of optimization methods to find a minimal
test sequence and eliminate redundancy in testing. As shown previously,
Hamiltonian circuits can be used to send a packet to test every node in the
system. When the distance between the nodes or the cost of traversing an
edge is not uniform, then the Traveling Salesman Problem (TSP) [7] can be
used to find the Hamiltonian cycle with the minimal cost. In the case where
no Hamiltonian exists in the system graph or when the cost on the edges is
not equal to the Euclidian distance, a variation of the TSP, called Traveling
Salesman Problem with Repetition of Cities [7], can be used. It replaces
the graph by another complete graph with the same nodes but the cost on
the edges is the length of the shortest path in the original graph between
the nodes on which that edge is incident. Figure 1 gives two examples of
graphs where the nodes are to be tested. In a) the costs satisfy the Euclidian
property and hence the shortest Hamiltonian (ABCDA) cycle is the least
cost tour. In b) the costs do not satisfy the Euclidian property and the least
cost tour (ABDCDBA) is not a Hamiltonian cycle.

In the case where both links and nodes in the graph have to be tested,
an Eulerian circuit can be used to traverse all edges of the graph exactly
once. Also in the case of behavioral models, such as Finite State Machines,
an FEulerian can be used to perform all transitions without repetition if
the graph is symmetric. In the case where no Eulerian exists, the Chinese
Postman Problem (CPP) [1, 2, 3] can be used to find a minimal cost cycle
that traverses every edge at least once.

The above methods assume that the system graph is strongly connected
but that is not always the case. Some models use digraphs with one or more
source nodes and one or more sink nodes with unidirectional links connecting
the source nodes to the internal nodes, the internal nodes to each other and
the internal nodes to the sink nodes. The flow graph of a program is an

example of such graphs. In this case, the problem of traversing all arcs
and nodes is solved by finding a path-covering of the graph, i.e., a minimal
number of paths from source nodes to sink nodes that cover every arc in the
graph. This number of paths was also proposed as a measure of program
complexity in [8].

Partitioning may also be successfully applied in cases where parallel test-
ing is possible. This is also one of the most powerful ways to reduce test
time. Different types of parallel testing can be used. In a multiprocessor
system, the interconnection network can be tested by having the processors
send testing packets in parallel through different paths in the network. In
a distributed system or a large communication network, the graph can be
partitioned and a hierarchical test can be performed where the partitions
are tested concurrently using one of the methods mentioned above. Figure 2
provides a graphical illustration of the different aspects of topological testing
in the form of a Rubik’s cube. The three dimensions are the level at which
the system is tested (logic, RTL, PMS, ...), the type of representation of
the system (behavior, organization, hierarchy) and the graph methods that
are used in the test generation (Eulerian, Hamiltonian, partitioning, ...).
Almost any combination of these concepts can be used in practice to model
a system and generate tests for it.

4 An example using behavior and organization:
testing of multistage interconnection networks

4.1 Motivation

In this section, we propose to apply the concepts of topological testing to
reduce the test time of multistage interconnection networks. The approach
uses the behavior of the switches and the organizaiion of the network in the
test generation process.

Multistage interconnection networks became popular with the advent of
multiprocessor systems. But testing these networks, especially in the case
of packet switching, remains a problem. For example, the testing of the
multistage interconnection network of the Sigma I dataflow computer being
developed at Electrotechnical Laboratories in Japan takes over twenty-two
hours, [9].

The multiprocessor system is assumed to be synchronous and packet-
switching is used. The objective of the test will be to detect stuck-at faults

Partitioning+Path Covering / / /
Hamiltonian+TSP / / /

Fulerian+CPP

PMS

RTL

logic

/

¥
/

/

behavior organization hierarchy

level

graph concepts

/

NN

Figure 2: The Rubik’s cube of topological testing.

and bridge faults in the data, routing and control lines of the network.

Some work has already been done in this direction in [11] where test
techniques for detecting and locating faults in the data paths have been
developed. In this study, we concentrate on testing routing, control and
priority. We will use the rectangular SW-banyan, [10], to demonstrate our
methods. Most of the results can be extended to other networks.

4.2 Description and properties of the network

The number of stages in the network is denoted by L. Each switch has
f inputs and f outputs. The number of computers is N = fE. FEach
connection between a computer and a switch or between two switches in the
network includes a number of data lines, usually 8, a parity line, a data-valid
(DV) line and a clear-to-send (CTS) line. Figure 3 shows the architecture
of the network.

The graph representation of a rectangular SW-banyan contains a Hamil-
tonian circuit and an efficient way for constructing such a circuit was shown
in [12]. Also since every node in the graph representation has an even de-
gree, an Eulerian circuit can be constructed. These circuits can be used to
implement serial on-line tests for detection of stuck-at faults.

It was also shown in [11] that f pairwise edge-disjoint test graphs, each
with f¥ disjoint paths between pairs of computers can be constructed. These
test graphs contain every edge of the graph exactly once and can be used to
apply N tests in parallel. Figure 4 shows the edge-disjoint test graphs that
can be constructed in the network of Figure 3.

4.3 Testing the data paths

Using the above result, it was shown that two parallel tests are sufficient to
detect any number of stuck-at-a {@ = 0,1) faults in the nodes of the graph
and that 2f parallel tests are sufficient to detect any number of stuck-at-«
faults in the edges of the graph. Also fault location was studied and efficient
methods were developed for fault location.

4.4 Testing the routing capabilities

Fach switch uses part of the incoming address, exactly log, f bits, to route
the incoming packet to the correct output. Therefore only f patterns need
to be applied to each input of the switch to test the routing capabilities.
This can be done in parallel for all the inputs of the switch using a sequence

PO| | P1 P2| | P3 P4| | P5 P6]| | P7

53 5 50§
|

Figure 3: Example of banyan network with 2 x 2 switches and 3 levels.

000 010 100 110 001 011 101 11l
¢)

SR - MY = SO - MY - S O IS IR
™~ . P O P R P -
I R el PR e
I R I Rt R R
’—/ ’—w’ ’—v"‘\»"‘-'s~ - — _.5
GRS 6T Tl Tt T T8
\\ \A/ // ~. \’./ ,/,
Sol-7 Ny P ~d.” <l
P) - -~ P
// \\// ~ // ~ - \\
P PRSI S . >< - >
@ ® Q "9 & J X N §
\\ // ~ // ~ s ~ 7
N2 N . S
N » PN >\
VAN s N ~ e
o O S D! an
© O (0] ® 1G] O

000 001 010 011 100 101 110 111

““““““ test graph 1

test graph 2
Figure 4: Graph model of the network and the f edge-disjoint test graphs.

of tests where the outputs corresponding to the inputs 1...f would be
successively 12...£,23...f1,..., f1...f—1. In other words, we perform
all circular permutations of the outputs.

To test the whole network, the f edge-disjoint test graphs, mentioned
above, can be used. It turns out that the intersection of each one of these test
graphs with a switch corresponds to one of the above f patterns. Therefore,
applying parallel tests successively along each of the f graphs would test
routing on the whole network. A computer will decide that a routing fault
has occurred if the address in the received packet is different from its own
address or if it does not receive a total of f packets.

Theorem 4.1 Only f tests are needed to detect any number of routing faults
in the network.

The proof of the theorem follows from the above.

4.5 Testing priority and control

The objective here is to test the correct behavior of each switch under any
type of input pattern. The above tests for data and routing do not test the
behavior of the switches under contention on one or more of their outputs.
Also some stuck-at-1 faults and bridge faults on the control lines inside the
switch would not be detected by the above tests. The priority scheme used
in case of contention should also be tested. Both fixed priority and round-
robin priority schemes will be considered in the proposed testing methods.

These methods make extensive use of the synchrony of the system especially
for testing the behavior of the switches under contention.

4.5.1 Number of tests per switch

If an exhaustive approach applying all possible patterns is used, the number
of tests to be applied to each switch would be:

/
m=Y ICf =1+ f) -1

=1

In the above formula 7 is the number of active input lines in the switch and
fC; is the number of different combinations of ¢ active inputs out of the f
inputs, f*is the number of different choices of outputs for ¢ active inputs. By
active input, we mean an input with an active data valid (DV) line. Also, in
the case of round-robin priority, each of the above tests should be repeated
for every state of the arbitration units used to resolve the contentions that
appear in the test. The above number of tests grows superexponentially
with the number of inputs f. For a 4 x 4 switch, m = 624, for an 8 x 8
switch, m = 43, 046, 720.

In order to minimize the number of tests we need to consider the internal
structure of the switch. As described in [13], the control part of an f X f
switch comprises usually one routing and storage block at each input, called
RSB, and one arbitration logic block (ALB) at each output. Every RSB is
connected to every ALB with one SELECT line and one DESELECT line.
The RSB is completely tested by the tests for data paths and routing. The
SELECT and DESELECT lines and the ALB’s remain to be tested. The
SELECT line signals to the ALB that the corresponding RSB has a packet
to send on tho output of the ALB. The DESELECT line signals to the RSB
that the transmission is completed and it can receive another packet. Fig-
ure 5 shows the design of the switch.

Step 1. Testing of SELECT and DESELECT lines

The presence of stuck-at-1 faults of SELECT lines will produce the activation
of the DV line at the output even if there are no messages in the switch. The
DV signal will propagate through the network and produce a DV signal at
one of the computers with an empty message, and therefore will be detected
by the computer. The presence of stuck-at-0 faults of SELECT lines will be
detected by a sequence of tests similar to the one used for testing stuck-at-a

crsh | v cts} | py cts} | py crs] | pv
RSB RSB RSB RSB
| i gL] A A
DESELECT < | <~ N
TS oS
SELECT < = \4\"\\\ e
1 VLYl Gy | Vi yl vl Vi V|
ALB ALB ALB ALB
cTS | Y DV CTS| Y DV CTSI YDV CTS| YDV

Figure 5: Design of the control part of a 4 x 4 switch.

edges in the data part. Basically, every input to output connection inside
the switch should be requested. The only difference will be that in this
case, faults will be detected if messages are not received at the other end
of the network. Exactly f parallel tests will be needed to test the whole
network for these types of faults. Stuck-at-0 faults of DESELECT lines will
produce the blocking of all incoming messages and can be tested by the
same tests as those for stuck-at-1 faults of SELECT lines. Stuck-at-1 faults
of DESELECT lines will cause the RSB to accept new messages even when
those stored in the switch have not been relayed yet. These faults can be
tested by sending two consecutive packets, one with all 0’s and one with all
one’s along every edge-disjoint test graph in the network. In all, 2f tests
will be needed to completely test the network for these types of faults.
Bridge faults on SELECT lines can be tested by activating each line sep-
arately and then attempting to detect any activation of other lines through
the propagation of DV signals with empty messages. The number of tests
needed in this case is f2. For bridge faults on DESELECT lines 2 tests are
needed for each line, as in the stuck-at-1 case, but since the lines cannot be
tested in parallel in this case, the total number of tests will be 2f%. Note
that faults on DESELECT lines will not be handled by exhaustive testing

10

of all patterns because they involve interaction between stages.

Step 2. Testing the ALB’s

In the case of fixed priority, the Arbitration Logic Block is simply a priority
encoder. It can be tested with f tests. Assuming the priority decreases from
input 1 to input f, the tests are: 11...1, 01...1, ..., 00...01. The
f ALB’s have to be tested serially. Therefore the total number of tests per
switch would be f2.

In the case of round-robin priority, the design of the ALB is more com-
plex. A possible design is shown in [13]. The ALB implements a finite state
machine with f states, each state corresponding to a particular setting of
the relative priority of the inputs. From each state, 27 possible transition
arcs exist. Some of these transitions do not change the state. The finite
state machine in question is completely symmetric and, therefore, has an
Eulerian. The Eulerian can be used to generate an optimal sequence of
tests for the ALB and the number of tests required is equal to the number
of transition arcs in the finite state machine which is f2/. This optimization
can be carried a step further by applying some of the tests not involving all
inputs of the switch, in parallel, to all or some of the ALB’s. In any case,
the number of tests needed for the f ALB’s will be bounded by f?27. This
number is still exponential with respect to the number of inputs, but it is
several orders of magnitudes smaller than the number of tests required in
the exhaustive method. For an 8 X 8 switch, f?2/ = 16384 while, in the
exhaustive method, more than 43 million tests are needed. Figure 6 shows
the finite state machine representation of the ALB.

Adding together the number of tests for the SELECT /DESELECT lines
and the number of tests for the ALB’s, we get the following result:

Theorem 4.1 412 + 3f tests are sufficient to test the control part of a
switch, in the fizved priority case, and, 225 4+ 3f2? + 3f are sufficient in the
round-robin priorily case.

4.5.2 Network testing

Optimizing the number of tests for the entire network is more complex in
the case of testing control than in the case of testing data paths because,
when contention occurs at one level, it becomes difficult to use the same
tests at the next level. However we were able to develop a scheme that
makes it possible to test all levels at the same time. The approach applies
to the fixed priority case. The method is as follows:

11

0XXX

X0XX
1111

XX0X
1111
Figure 6: Finite state machine of the ALB for a 4 x 4 switch.

12

BN

TANNY
PAQaANAN

o N o Pl
1 2 3 4

Figure 7: Routing of a test involving contention in the fixed priority case.

1. If a test does not involve contention, then it will activate as many
outputs as inputs and these outputs in combination with the outputs
of the other switches at the same level will be used to apply the same
test to the next level,

2. If the test involves contention, then the packets that will go through in
the first cycle are known since fixed priority is used, and the addresses
of these packets can be chosen so that the same test will be applied to
some of the switches at the next level, in the next cycle, another set
of outputs will go through and can be used to apply the same test at
some switches at the next level. Ultimately all testing packets will go
through and will be used to apply the test to all the switches of the
next level.

Figure 7 shows an example of the above scheme. The implementation of this
method requires also adjusting the length of the testing packet to ensure that
the desired pattern will occur at the input of the switch.

This approach can also be used in the round-robin priority case if the
ALB’s are in the same state at the beginning of the test. The ALB’s can
be in the state after powering up the system and the test can be applied
at that time. This approach should be used if the number of stages in the
network is high. Otherwise testing the switches, stage by stage, is better
since it multiplies the number of tests only by a factor of L and it is much
safer.

4.6 Estimation of testing time

Here, we consider the network used in the Sigma I computer, which has two
stages and uses, for fault-tolerance purposes, 10 x 10 switches configured as
8 x 8's. The network is duplicated and one side is used to write into memory
and the other to read from it. We make an estimate of the testing time using
first the exhaustive method and then our approach. We assume the time
taken for traversing the network and accessing the memory to be ¢ = 120ns,
and the average contention factor F, is taken to be 2 in both methods. The
number of different possible settings of a switch is s = (1008)2 = 2025 and
f is equal to 8.
The testing time in the exhaustive approach would be:

T = 2sLtF,((1+ f)f — 1) = 23.2hours
The testing time in our approach is:
T = 2sLtF, (%20 +2f2 +7f +2) = 32s.

In the above number, we include the number of tests for data paths, routing
and control. This represents over three orders of magnitude improvement!
The testing time for the network is about 2610 times shorter!

In this section, we demonstrated how to apply the methods of topo-
logical testing to test the multistage interconnection networks. The three
domains of application of topological testing have been illustrated: behavior
testing has been used in the Arbitration Logic Blocks, the organization of
the network has been extensively used to minimize the number of tests, also
hierarchy and partitioning have been exploited in the parallel testing of the
network.

The results obtained for testing control and priority are especially en-
couraging since they lead to reducing the test time of complex networks by
several orders of magnitude. In the following section, the method will be ap-
plied for testing the communication capabilities of the hypercube computer.

1001

1011 1010

HO}‘ 11

0110 0111 1111 1110

Figure 8: A hypercube of dimension four.

5 An example of hierarchical testing: testing a
hypercube

5.1 The hypercube topology

A hypercube is a multiprocessor with N = 2" nodes where n is called the
dimension of the hypercube. It is also referred to as n-cube or J,,. These
N processors are placed at the vertices of an n-dimensional cube. Each
processor is addressed by a unique binary integer from 0 to 2" — 1. Each
address has n bits and there is a link between two processors if their binary
address differs by exactly 1 bit. Hence the degree of each vertex is n, the
dimension of the cube.

The hypercube is a homogeneous machine meaning that all processors
are alike. It has distributed memory and communication takes place by
message-passing. Taking two cubes of a given dimension and connecting the
nodes with the same addresses yields a cube of the next higher dimension.
A very important and useful property of a hypercube is that it can be easily
partitioned into smaller sub-cubes. A hypercube of dimension four (4-cube)
is shown in Figure 8. Further details on the hypercube graphs are presented
in [14].

5.2 Communication in a hypercube

There is no shared memory in a hypercube and all processors communicate
by passing messages. If a message has to be sent to a processor that is not
adjacent to the sender, the message is routed through intermediate proces-
sors until it reaches it’s ultimate destination. A store-and-forward function
is implemented at each node. The receiving processor checks the address of
the message and re-routes the message if not intended for it.

5.3 Routing on a hypercube

There exists a very simple and efficient algorithm for routing on a hyper-
cube. At each stage, the address of the destination is scanned from left and
compared with the address of the current node. When we encounter a bit
that is different in the addresses of the destination node and the current
node, the message is sent to Alternatively,
S0UTCE = S5, 8p_1...5281
destination = dyd,_1...dady
Bit — wise EXOR = 2,251...22%1
where ;, = 5, 9 d; fori=1,..,n

The values of i for which z; = 1 indicate the dimension that must be
traversed to transfer a message from source to destination. There are d
disjoint paths between two processors that are separated by a distance d.

5.4 Test Technique

Topological testing may be, in this case, applied to test the topology of the
network. We would like to test all processors, all links and possibly all routes
from each processor to all other processors. The latter would imply testing
switching of messages from one link to another at a node. A simplistic
approach would be to test a Hamiltonian linking all nodes and an Eulerian.
Since all the links in the hypercube are bidirectional, there always exists an
Eulerian in the graph. But this would test only the processors and the links
whereas we would like to test the routing too. Besides the topology of the
hypercube presents us with an excellent opportunity to exploit parallelism
to reduce testing time and increase coverage. Hence an alternate technique
taking advantage of ease of partitioning and parallelism in hypercube is
presented next.

First partition the hypercube into node and edge disjoint rings of size
fouri.e. Qo’sor Cy’s. A Qo or a Cyis a cycle with four nodes and four edges.

16

Figure 9: A partition of the hypercube.

There are 27~% such cycles in the partition such that they have no nodes
and edges in common. One such partition is shown in Figure 9 and another
partition in Figure 10. Now for each cycle of four processors, perform a test
which is a slight variation of 'Ring Test’. In the ring test, the processors
are configured in the form of a ring and all processors simultaneously pass
messages to their neighbors. Instead, in our case, each processor passes a
message to the processor that lies at the diagonal end through its neighbor.
All messages are passed in one direction, either clockwise or anti-clockwise.
An example is shown in Figure 11. In the figure, processor routes the mes-
sage from D to B, processor B routes message from A to C, processor C
routes message from B to D and processor D routes message from processor
C to A. After the messages have been received, the direction of transmission
is reversed. The message that is passed may also be used to test the parity
of the links. This test is carried out in parallel on all disjoint rings in the
partition.

After the particular configuration is tested, another partition is formed
and the test is repeated. This is done till all possible partitions are ex-
hausted. There are ", possible partitions and hence all these "’ are
tested in sequence one after another. Hence the total time to test the hy-
percube is of the order of O(n?) where n = log N. Hence the time to test

17

Figure 10: Another partition of the hypercube.

A B

-
b

D C

Figure 11: Routing messages on a ring.

18

the hypercube increases sublinearly with n and so it seems quite acceptable.
Intuitively this seems to be the minimal test time though we do not have a
proof for that.

5.5 Test Coverage

The above test procedure confirms whether all processors are working. To
obtain more thorough testing of processors, the routing processor might be
required to perform a set of operations on the data that it is routing. All
links are also tested. The test also determines whether a processor can route
a message from edge ¢ to edge j for all incident edges ¢ and j. Since during
routing, a processor just reads in a message from one link and sends it to
other, hence we can see that all paths between any pair of processors on the
hypercube are tested.

5.6 Testing for Contention

Contention may occur if two messages arrive simultaneously at a processor.
We would like test that the processor can handle such cases properly and ac-
cording to specifications. Hence during testing, more than one messages are
sent simultaneously to the processor under test. Since a processor is linked
to n neighbors in an n-dimensional cube, for complete test, we successively
test for contention of two to n messages arriving simultaneously. Note that
this test may be extremely difficult, if not impossible, to execute on the
current generation of systems that are asynchronous. For the case where
no advantage of partitioning and parallelism is taken and all processors are
tested serially, all 2" processors are tested successively for contention of i
messages where 2 < 7 < n. Hence the time required to test all processors is
2m ¢ S o "Cit = n(2" 1 —1)i where t is the time required for one message.

However, if we partition the cube into subcubes of dimension i where
2 < i < n, within each partition, we can test at least two processors si-
multaneously for contention of i messages and all the 27~ subcubes can be
tested in parallel. There are "C; different ways of partitioning a hypercube
into subcubes of dimension i. Hence the upper bound on the time required to
test for contention is [8 "Cqy + S0 4 "C;207 L]t = (8 "Ca+n(3""1 —2n+1))t.
The second term appears because in partitions of subcubes of dimension two,
only one processor may be tested at a time.

Based on the data in [15], we observe that the time to test contention
in the hypercube without topological test techniques would be in the range

19

001

011

101

110

Figure 12: Testing for contention on the three dimensional hypercube.

from 392 seconds (approximately 7 minutes) to 31186 seconds (approxi-
mately 8 hours 40 minutes) for a hypercube of dimension ten. The test time
reduces to the range from 15 seconds to 1192 seconds (approximately 20 min-
utes) when topological test technique is applied. topological test techniques
are applied.

6 Conclusions

A new, powerful testing method, called topological testing was presented.
Topological testing can be applied to the entire spectrum of a system hi-
erarchy from a circuit to a multiprocessor level and to all forms of graph
system descriptions that represent behavior, organization or hierarchy of the
system. Once appropriate model is developed, basic graph theory concepts
such as Hamiltonian, Fulerian, Traveling Salesman Problem, Chinese Post-
man Problem, partitioning and path covering can be used. The potential of
the topological testing techniques has been demonstrated on practical exam-
ples where orders of magnitude testing time reductions have been achieved.
The universality and power of the proposed approach may have a lasting
effect on forthcoming generations of testing algorithms and system integra-

20

tion.

References

[1] Aho, A. V., A. T. Dahbura, D. Lee and M. U. Uyar, “An optimization
technique for protocol conformance test generation based on UIO se-
quences and Rural Chinese Postman tours,” Proceedings of IFIP WG
6.1 8% International Symposium on Protocol Specification, Testing, and
Verification, Atlantic City, June 1988.

[2] Uyar, M. U. and A. T. Dahbura, “Optimal test sequence generation for
protocols: the Chinese Postman algorithm applied to Q.931,” Proc. of
Globecom, 86.

[3] Opper, E., Fault diagnosis of banyan networks, Ph.D. dissertation, De-
partment of Electrical and Computer Engineering, the University of
Texas at Austin, 1984.

[4] Thatte, S. M. and J. A. Abraham, “Test generation for multiproces-
sors,” IEEE Transactions on Computers, Jun. 1980.

[5] Jone, W.-B., M. Pereira and C. A. Papachristou, “A new test scheduling
method and its hardware support,” VLSI Technical Bulletin, Dec. 1988,
pp. 85-103.

[6] Hayes, J. P., “Testing memories for single-cell pattern-sensitive faults,”
IEEFE Transactions on Computers, Mar. 1980, pp. 249-254.

[7] Lawler, E. L., J. K. Lenstra, and A. H. G. Rimnooy Kan, eds., The
Traveling Salesman Problem, North-Holland, 1985.

[8] Nejmeh, B. A., “NPATH: A measure of execution path complexity and
its applications,” Communications of the ACM, Feb. 1988, pp. 188-200.

[9] Hiraki, K., Private communication, Tokyo, July 1988.

[10] Goke L. R., and G. J. Lipovski, “Banyan networks for partitioning mul-
tiprocessor systems,” Proc. of the First Annual Computer Architecture
Conference, 1973, pp. 21-28.

[11] Malek, M. and E. Opper, “Multiple fault diagnosis of SW-banyan net-
works,” Proc. of the 13" Annual Int. Symp. on Fault Tolerant Com-
puting, Jun. 1983, pp. 446-449.

21

[12] Opper, E. and M. Malek, “Real-time diagnosis of banyan networks,”
Proc. of the Real-Time Systems Symp., Los Angeles, Dec. 1982, pp.
27-36.

[13] Hung, A. C. and M. Malek, “A 4 x 4 modular crossbar design for the
multistage interconnection networks,” Proc. of the Real-Time Systems
Symp., Dec. 1981, pp. 3-12.

[14] Harary F., J. P. Hayes and H.-J. Wu, “A survey of the theory of hyper-
cube graphs,” Comp. Math. Applic. Vol. 15, No. 4, pp 277-289, 1988.

[15] Kolawa, A. and S. W. Otto “Performance of the Mark II and Intel
Hypercubes,” Proceedings of the First Conference on Hypercube Multi-
processors, August 1985, pp. 272-275.

[16] Heath, M. T. (ed.), Hypercube Muliiprocessors 1987, Proceedings of the
First Conference on Hypercube Multiprocessors, Sept. 1986.

22

