DISTRIBUTED FILE SYSTEMS:
CONCEPTS AND EXAMPLES

Eliezer Levy and Abraham Silberschatz
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-89-04 March 1989

Distributed File Systems: Concepts and Examples
ELIEZER LEVY and ABRAHAM SILBERSCHATZ

Department of Computer Sciences, The University of Texas at Austin, Austin, Texas 78712

Distributed File Systems are essential for sharing of data and storage space in a disuributed system. A
viewpoint that emphasizes the dispersed structure and decentralization of both data and control in the
design of such systems is established. The concepts of location transparency. fault tolerance and scalabil-
ity arc defined and discussed in the context of Distributed File Systems. It is claimed that the principle
of distributed operation is fundamental for a fault tolerant and scalable Distributed file System. Alterna-
tives for the semantics of sharing and methods for providing access to remote files are also presented.

A survey of current systems, namely Unix United, Locus, Sprite, Sun’s Network File System, and
ITC’s Andrew, illustrates the discussed concepts and demonstrates various implementations and design
alternatives. Based on the assessment of these systems, a point is made that a departure from the ap-
proach of extending centralized file systems over the network is necessary to accomplish sound Distrib-
uted File System design.

INTRODUCTION

The need to share resources in a computer sysiem arises either due {0 economical reasons, or due to the nature
of some applications. In particular, it is necessary to facilitate sharing of storage space and data. This paper in-
vestigates Distributed File Systems (DFSs), viewed as a means for sharing space and data.

A distributed system is a collection of loosely coupled machines interconnected by communication net-
work. We use the term machine to denote either a mainframe or a workstation. Unless specified otherwise,
the nenvork is a Local Area Network (LAN). From a point of view of a specific machine in a distributed sys-
tem, the rest of the machines and their respective resources are remore, whereas ils own resources are referred
10 as local.

In order to explain the strocture of a DFS we need to define the terms service, server and client!. A ser-
vice is a software enfity running on one or more machines and providing a particular type of service to a prion
unknown clients. A server is the service software running on a single machine. A clienr is a process that can
invoke and control the service using a set of opcrations that form the client inierface. Sometimes, a lower lev-
el interface is defined for the actual cross-machine interaction. When the need arises, we refer 10 this interface
as the inter-machine interface. Clients implement interfaces more suitable for higher level applications or di-
rect access by human users.

The task of a file system is to provide file services o clients. A clent interface for a file service iy
formed by a set of file operations. The most primitive operations are: Create a file, Delete a file, Read from a
file, and Write to a file. A primary hardware component that a file server controls is a secondary storage de-
vice {i.e., a magnetic disk), where files are stored, and from where they are retrieved according 1o the clients
requests. We often say that a server, or a machine store a file, and we mean that the file resides on the at-
tached device. We refer to the file service system offered by a uni-processor, time-sharing operating sysiem
(e.g., Unix 4.2 BSD) as a conventional file system.

A DFS is a file service system, whose clients, servers and storage devices are dispersed among the ma-

! Part of these definitions follow [Mitchell 821

Contents
INTRODUCTION 7. UNIX UNITED
1. TRENDS AND TEﬁMINOLOGY 8. LOCUS
2. NAMING AND TRANSPARENCY 9. SPRITE
2.1 Naming Siructures 10. NFS
2.2 Naming Schemes 11. ANDREW
2.3 Implementation Techniques 12. RELATED WORK
3. CONSISTENCY SEMANTICS 13. CONCLUSIONS
4. REMOTE ACCESS METHODS ACKNOWLEDGMENTS
4.1 Designing a Caching Scheme REFERENCES

4.2 Cache Consistency

4.3 A comparison of Caching and Remote
Service

5. FAULT TOLERANCE ISSUES
5.1 Stateful versus Stateless Service
5.2 Improving Availability
5.3 File Replication
6. SCALABILITY ISSUES
6.1 Guidelines by Negative Examples

chines of a distributed system. Accordingly, service activity has to be carried out across the network, and in-
stead of a single centralized data repository there are multiple and independent storage devices.

Fundamental to our view is the principle of distributed operation of the system. This principle lays the
foundation for a scalable and fault-tolerant systermn. Yet, for a distributed system 10 be conveniendy used, iis
underlying dispersed structure and activity should be made transpareni (invisible) to users. We confine our-
selves to discussing DFS designs mainly in the context of transparency, fault tolerance, and scalability. The
aim of this paper is to develop an understanding of these three concepts on the basis of the experience gained
with current systems.

The paper is logically divided into two parts. In the first part, which includes Sections 1 1o 6, the basic
concepts underlying the design of a DFS are discussed. In particular, alternatives and trade-off’s regarding the
design of a DFS are pointed out. The second part surveys five DFSs: Unix United [Brownbridge et al. 1982,
Randell 19831, Locus [Walker et al. 1983; Popek and Walker 1985], Sprite [Nelson et al. 1986; Ousterhout et
al. 1988; Nelson et al. 1988}, Sun’s Network File System (NFS) [Sandberg et al. 1985; Sun 1988], and An-
drew [Satyanarayanan et al. 1985; Morris et al. 1986; Howard et al. 1988]. These systems exemplify the con-
cepts and observations mentioned in the first part and demonsirate various implementations. Ofien, an observa-
tion is made in the first part with direct mentioning of the sysiem that demonstrates it.

Section 1 establishes useful terminology and presents the concepts of transparency, fauli-tolerance, and
scalability, Section 2 discusses the concept of transparency in greater detail and how it is expressed in naming

schemes. Section 3 introduces consistency notions that are important for the semantics of sharing files. The
methods of Caching and Remote Service are contrasted in Section 4. Section 5 and 6 discuss issues related to
fault-tolerance and scalability respectively. There is no intention to exhaust these two broad issues. The inten-
tion is to point out some observations based on the designs of the surveyed systems.

Sections 7 to 11 are descriptions of each of the five systems mentioned above. Occasionally, distinctive
features of a system that are not related to the points presenied in the first part are mentioned too, in that sys-
tem’s description. Each description is followed by a short summary that emphasizes the prominent features of
the corresponding system. A compact table, Table 1, that compares the five systems concludes this survey.
Many important aspects of DFSs and many systems are omitted from this paper. Section 12 reviews related
work that was not emphasized in our discussion. Finally, Section 13 sums up the paper with conclusions.

1 TRENDS AND TERMINOLOGY

It has been the challenge of many designs 10 make the multiplicity of servers and storage devices rransparen
to clients. Ideally, a DFS should look to its clients like a conventional, centralized file system. The client in-
terface of transparent DFS should not distinguish between local and remote files. That is, clients should be
able 1o access remote files as if they were local, and il is up to the DFS 10 locate the files and arrange for the
transport of the data.

Another aspect of transparency is user mobiliry. 1t would be convenient to allow users to log in any ma-
chine in the system, and not to force them to use a specific machine. A transparent DFS facilitates user mobili-
ty by bringing over the user’s environment {e.g., home directory) 1o wherever he, or she logs in.

We uvse the term fauli-tolerance in a very broad sense. Communication faults, machine failures (of type
fail-stop), storage device crashes and decays of storage media are all considered as faults that should be toler-
ated to some extent. A fauli-tolerant systemn should continue functioning, perhaps in a degraded form, facing
these failures. The degradation can be in performance, functionality, or both. It should be. however, propor-
tional, in some sense, to the causing failures. A system that grinds to a halt when only part of its components
fails is certainly not faolt-tolerant.

The capabilities of a system to adapt to increased service load are termed scalability. Systems have
bounded resources and can become completely saturated under increased load. Regarding 2 file system, satura-
tion occurs either when a server’s CPU runs at very high utilization rate, or when disks are almost full. Scal-
ability is a relative property, but it can be accurately measured. A scalable system should react more gracetul-
Iy to increased load than a non-scalable one. First, its performance should degrade more moderately than that
of a non-scalable system. Second, its resources should reach a saturated state later, when compared with a non-
scalable system. Even perfect design cannot accommodate ever-growing load. Adding new resources might
solve the problem, but it might generate additional indirect load on other resources (e.g., adding machines to a
distributed system can clog the network and increase service loads). Even worse, expanding the system can in-
cur expensive design modifications. A scalable system should have the potential to grow without the above
problems. In a distributed system, the ability to scale up gracefully is of special importance, since expanding
the network by adding new machines or interconnecting two networks together iy commonplace. In short, a
scalable design should withstand high service load, accommodate growth of the user community, and enable
simple integration of added resources.

Fault tolerance and scalability are mutually relaied to each other. A heavily loaded component can be-
come paralyzed and behave like a faulty component. Also, shifting load from a faulty component 1o its back-
up can saturate the latter. Generally, having spare resources is essential for reliability concerns as well as for
handling peak loads gracefully.

An inherent advantage that a distributed system bas is a potential for fauli-tolerance and scalability be-
cause of the multiplicity of resources. However, inappropriaie design c¢an obscurc this potential. Fauit-toler-
ance and scalability considerations call for a design demonstrating distribution of control and data. Any cen-

tralized entity, be it a ceniral controller, or central data repository, introduces both a severe point of failure
and a performance bottleneck. Therefore, a scalable and fault-tolerant DFS should strive for a model alluded
above. A model where there are multiple and independent servers controlling multiple and independent stor-
age devices. !

The problem of dispersed storage devices is a key distinguishing feature of a DFS. The overall storage
space managed by a DFS is composed out of different, and remotely located, smaller storage spaces. Usually
there is correspondence between these constituent storage spaces and sets of files. We use the term component
unil 10 denote the smallest set of files that can be stored on a storage device, independently from other units.
All files belonging to the same component unit must be Jocated on the same device. In Unix for instance, an
entire removable file system [Ritchie and Thompson 1974] is a component unil since a file system must fit
within a single disk partition. In all of the five covered systems, a component unit is a partial subtree of the
Unix hierarchy.

2 Naming and Transparency

Naming is a mapping between logical and physical objects. Users deal with logical data objects represented by
file names, whereas the system manipulates physical blocks of data, stored on disk tracks. Usually, a user re-
fers to a file by a textual name. The latter is mapped 10 a lower-level numerical identifier, that in tum, is
mapped to disk blocks. This multilevel mapping provides users with an abstraction of a file that hides the de-
tails of how and where on the disk the file is actually stored.

In a transparent DFS, a new dimension is added to the abstraction: that of hiding where in the network
the file is located. In a conventional file system the range of the naming mapping is an address within a disk;
in a DFS it is augmented to include the specific machine on whose disk the file is stored. Going further with
the concept of treating files as abstractions, leads to the notion of file replicarion. Given a file name, the map-
ping returns a set of the locations of this file's replicas [Ellis and Floyd 83]. In this abstraction, both the ex-
istence of multiple copies and their location, are hidden.

2.1 Naming Structures
There are two related notions regarding name mappings in a DFS that need to be differentiated:

* Location Transparency. A name of a file does not reveal any hint, as of the file’s physical storage loca-
ton.

« Location Independence. A name of a file need not be changed when the file’s physical storage location
changes.

Both definitions are relative to the discussed level of naming, since files have different names at differ
ent levels (ie., user-level textual names, and system-level numerical identifiers). A location independent
naming scheme is 2 dynamic mapping, since it can map the same file name to different locations at two differ-
ent instances of time. Therefore. location independence is a stronger property than location transparency.

In practice, most of the current file systems (e.g. Locus, NFS, Sprite) provide a static. location trans-
parent mapping for user-level names. These systems, however, do not support file migration, that is, automat-
ic changing the location of a file is impossible. Hence, the notion of location independence is quite irrelevant
for these systems. Files are permanently associated with a specific set of disk blocks. Disks can be manually
moved between machines, but we do not consider this manual and cumbersome action as an action that can be
considered as file migration. Only Andrew and some experimental file systems (e.g., Eden [Jessop et al. 1982;
Almes et al. 1983] support location independence and file mobility. Andrew supports file mobility mainly
for administrative purposes. A protocol provides migration of Andrew’s component units upon explicit re-
quest, without changing neither the user-level names, nor the low-level names of the corresponding files (See
Section 11.2 for details).

There are few aspects, that can further differentiate and contrast location independence, and static loca-

tion transparency:

= Divorcing data from location, as exhibited by location independence, provides better abstraction for
files. A file name should denote the file's most significant attributes — its contents, and not its loca-
tion. Location independent files can be viewed as logical data containers that are not attached to a specif-
ic storage location. Whereas, if only static location transparcncy i$ supported, the file name still de-
notes a specific, though hidden, set of physical disk blocks.

« Static location transparency provides users with a convenient way to share data. Users may share remote
files by simply naming them in a location transparent manner, as if they were local. Nevertheless, shar-
ing the storage space is cumbersome, since logical names are still statically attached 1o physical storage
devices. Location ndependence promotes sharing the storage space itself, as well as the data objects.
When files can be mobilized, the overall, system-wide storage space looks like a single, virtnal re-
source. A possible benefit of such a view is the ability to balance the utilization of disks across the sys-
tem.

= Location independence separates the naming hierarchy from the storage devices hierarchy and the inter-
server structure. By contrast, if static location transparency is used (though names are transparent) one
can easily expose the correspondence between componeni units and machines. The machines are config-
ured in 2 pattern Similar to the naming structure. This may restrict the architecture of the system unnec-
essarily and conflict with other considerations, A server in charge of a root directory is an example for
a structure that is dictated by the naming hierarchy and contradicts decentralization guidelines. An ex-
cellent example of separation of the service structure from the naming hierarchy can be found in the de-
sign of the Grapevine system [Birrel et al. 1982; Schroeder et al. 1984].

The concept of file mobility deserves more attention and research. We envision future DFS that sup-
ports location independence completely, and exploits the possibilities that this property entails.

2.2 Naming Schemes

There are three main approaches to naming schemes in a DFS [Barak et al. 1986]. In the simplest approach files
are named by some combination of their host name and local name which guarantees a unique system-wide
name. In Ibis [Tichy and Ruan 1984] for instance, a file is uniquely identified by the name hosi:local-name,
where local name 1s a4 Unix-like path. This naming scheme is neither Jocation transparent nor location indepen-
dent. Nevertheless, the same file operations can be used for both local and remote files. The structure of the
DFS is a collection of isolated component units which are entire conventional file systems. In this first ap-
proach component units remained isolated, though means are provided to refer to a remote file. We do not con-
sider this scheme any further in this paper.

The second approach, popularized by Sun’s NFS, provides means to attach remote directories to local di-
rectories, thus giving the appearance of a coherent directory tree. Only the attached, remote directories can be
accessed transparently. There is some integration between the components to support transparent sharing. This
integration, however, is limited and not uniform since each machine may attach different remote directories to
its tree. The resulting stucture is versatile. Usually it is a forest of Unix trees with shared subtrees.

Total integration between the component file systems is achieved using the third approach. A single glo-
bal name structure spans all the files in the system. Ideally, the composed file system structure should be iso-
morphic to the structure of a conventional file system. However, in practice, there are many special files
(e.g., Unix device files and binary directories) that makes the ideal goal very hard to attain. Different varia-
tions of this approach are examined in the sections on Unix United, Locus, Sprite and Andrew.

An important criterion for evaluation of the above naming structures is their administrative complexi-
ty. The most complex structure and the hardest to maintain is the NFS structure. Since any remote directory
can be attached anywhere onto the local directory tree, the resulting hierarchy can be very unstructured. The ef-
fects of a failed machine, or taking a machine off-line, are that some arbitrary set of direciories on different

6

machines becomes unavailable. In addition, a separate accreditation mechanism had 10 be devised for control-
ting which machine 15 allowed 1o attach which directory 1o its tree.

2.3 implementation Techniques

Implementing transparent naming requires the provision of the mapping of a file name 1o its location. Keeping
this mapping manageable calls for aggregating sets of files into component units, and providing the mapping
on a component unit basis rather than on a single file basis. This aggregation serves administrative purposes as
well. Unix-like systems, use the hierarchical directory tree to provide name-to-localion mapping, and aggre-
gate files recursively into directories.

In order to enhance the availability of the crucial mapping information, methods such as replicating it,
caching it locally, or both, are used. As was already noted, location independence means that the mapping
changes in time, and hence, replicating the mapping renders a simple yet consistent update of this information
impossible. A technique to overcome this obstacle is to introduce low-level, location-independeni file identi-
fiers. Textual file names are mapped to lower-level file identifiers that indicate which component unit the
file belongs to, but are still location independent. These identifiers can be replicated and cached freely with-
out being invalidated by migration of component unils. A second level of mapping, thal maps componeni
units 1o locations and necds a simple yet consistent update mechanism, is the inevitable price. Implementing
Unix-like directory trees using these low-level, location-independent identifiers makes the whole hierarchy in-
variant under component unit migration. The only thing that does change is the component unit-location map-
ping.

A common way to implement these low-level identifiers 15 with srruciured names. These are bit
strings, that have usually two parts. The first part identifies the component unit that the file belongs to, and
the second identifies the particular file within the unit. Variants with more parts are possible. The invariant
of structured names is, however, that individual parts of the name are unique for all times only within the
context of the rest of the parts. Unigueness at all times can be obtained by either taking care not 1o reuse a
name that is still used, or adding sufficiently more bits (this method is used in Andrew), or using a time
stamp as one of the parts of the name (as done in Apollo Domain [Leach et al. 1982]).

The usage of the techniques of aggregation of files into component units, and lower level, location inde-
pendent file identifiers is exemplified in Andrew (Section 11) and Locus (section 8).

3 CONSISTENCY SEMANTICS

Consistency Semaniics is an important criterion for evaluation of any file system that supports sharing of
files. It is a characterization of the system that specifies the semantics of multiple clients accessing a shared
file simultaneously. In particular, these semantics should specify when modifications of data by a client are
observable by other clients. Borrowing from the Database jargon, consistency semantics are the effects of a
concurrency control policy.

For the following discussion we need to assume that a series of file accesses (ie., Read’s and Write's)
attempted by a chient 10 the same file, are always enclosed between the Open and Close operations. After an
Open operation has been performed the file is said to be open. Similarly, after a Close operation we say that a
file is closed. We denote such a series of accesses as a file session.

A session is akin {o the database transaction, but there are major differences. A transaction can involve
more than one file, and more importanily transactions have the additional aspect of atomic update. This aspect
is orthogonal to the current discussion, where we assume that all file accesses are completed nommally.

To illustrate the concept, we sketch several prominent examples of consisiency sernantics that are men-
tioned in this paper. We outline the gist of the semantics and not the whole detail:

Unix Semantics

. Writes 10 an open file by a client are visible immedialely by other clients that have this file open at the

same me.

. There is a mode of sharing where clients share the pointer of current location into the file. Thus, the ad-
vancing of the pointer by one client affects all sharing clients.

Here, a file has a single image that interleaves all accesses, regardless of their origin. These semantics lend

themselves to an implementation where a file is associated with a single physical image that is accessed as

an exclusive resource. Contention for this single image results in clients being delayed. The unique mode of

sharing mentioned above is an artifact of Unix and is needed primarily for compatibly of distributed Unix

systems with conventional Unix software. Most DFSs try to emunlate these semantics to some extent (€.g.,

Locus, Sprite) mainly because of compatibility reasons.

Session semantics

« Writes to an open file by a client are not visible immediately by other clients that have the same file
open simultaneously.

. Once a file is closed, the changes made to it are visible only in sessions starting later. Already open in-
stances of the file do not reflect these changes.

According to these semantics, a file may be temporarily associated with several (possibly different) images

at the same time. Consequently, multiple clients are allowed to perform both Read and Wrile accesses con-

currently on their image of the file, without being delayed. Notice that almost no constraints are enforced

on scheduling accesses. Therefore, it is possible to schedule accesses in such a way that their effects are not

reproducible by any serial scheduling. Since accesses are not delayed and serialization is not enforced, these

semantics are not a good match for a distributed database application. These semantics are used in the An-

drew file system.

Immutable Shared Files Semantics

A different, quite unique approach is that of immutable shared tiles [Schroeder et al. 1985]. Once a file 1s de-
clared as shared by its creator, it cannot be modified any more. An immutable file has two important prop-
erties: its name may not be reused and its contents may not be altered. Thus, the name of an immutable file
signifies the fixed contents of the file, not the file as a container for variable information. The implementa-
tion of these semantics in a distributed system is very simple since the sharing is very disciplined (read
only).

Transaction-like Semantics

Identifying a file session with a Database transaction yields the following familiar semantics: The effects of
file sessions on a file and their output are equivalent to the effect and output of executing the same sessions
in some serial order. In the Cambridge File Server the beginning and end of a transaction are implicit in the
Open file, Close file operations, and transactions can involve only one file [Needham and Herbert 19821,
Thus, their notion of a transaction is equivalent (in the concurrency control sense) to our notion of a file
session.

Selecting and implementing consistency semantics are closely related to the remote access methods presented
in the following Section.

REMOTE ACCESS METHODS

Consider a client process that requests to access (i.e., Read or Write) a remote file. Assuming that the server
storing the file was located by the naming scheme, the actual data transfer to satisfy the client request for the
remote access should take place. There are two complementary methods for handling this type of data transfer.

< Remote Service. Requests for accesses are delivered to the server. The server machine performs the ac-
cesses and their results are forwarded back to the client. There is a direct correspondence between access-
es and traffic to, and from, the server. Access requests are translated to messages for the servers, and

server replies are packed as messages sent back to the clients. Every access is handled by the server and
results in network traffic. For example, a Read corresponds 1o a request message sent 1o the server, and
a reply 1o the client with the requested data. A similar notion called Remote Open is defined in
[Howard et al. 1988].

« Caching. 1f the data needed to satisty the access request is not already cached, then a copy of that data is
brought from the server to the client. Accesses are performed on the cached copy, in the client side. The
idea is to retain recently-accessed disk blocks in cache, so that repeated accesses to the same information
can be handled locally, without additional network traffic. A replacement policy (e.g., Least Recently
Used) is nsed 10 keep the cache size bounded. There is no direct correspondence between accesses and waf-
fic 1o the server. Files are still identified with one master copy residing at the server machine, but cop-
ies of (parts of) the file are scattered in different caches. When a cached copy is modified, the changes
need to be reflected on the master copy to preserve the relevant consistency semantics. The problem of
keeping the cached copies consistent with the master file is referred in the literature as the cache consis-
rency problem.

1t should be realized that there is a direct analogy between disk access methods in conventional file sys-
lfems and remoic access methods in DESs. A pure Remote Service method is analogous to perfornung a disk ac-
cess for cach and every access request. Similarly, a Caching scheme in a DFS is just an extension of caching or
buffering techniques in conventional file systems {e.g., buffering block VO in Unix [Mckusik 1984]). In con-
ventional file systems, the rationale behind Caching is to reduce disk /O, whereas in DFSs the goal is to re-
duce network traffic. For these reasons, a pure Remote Service method is actually not practical. Implementa-
tions must incorporate some form of Caching for performance enhancement. Many implementations can be
thought of as a hybrid of Caching and Remote service. In NFES and Locus, for instance, the implementation is
hased on Remote Service but is augmented with Caching for performance. On the other hand, Sprite’s imple-
mentation is based on Caching, but under certain circumstances a Remote Service method is adopted. Thus,
when we evaluate the two methods we actually evaluate to what degree should one method be emphasized
over the other.

The Remote Service method is quite straightforward, and does not require further explanation. Thus,
the bulk of the following material is concerned with the method of Caching.
4.4 Designing a Caching Scheme
The following discussion pertains to (file data) caching scheme between a client’s cache and a server. The lat-
ter is viewed as 2 uniform entity and its main-memory and disk are not differentiated. Similar considerations
are relevant for a traditional caching scheme on the server side, between its own cache and disk.
A caching scheme in a DFS should address the following design decisions [Nelson et al. 1985}
. What is the granularity of cached data?
< Where should the client’s cache be kept, main memory or local disk?
. How are modifications on cached copies going to be propagated?
< How can a client determine whether its cached data is consistent or not?
The choices in answering these questions are intertwined and are related to the selected consistency semantics.
4.1.1 Cache Unit Size
The granularity of the cached data can vary from parts of a file 10 an entire file. Usually, more data is cached
than is needed to satisfy a single access so that many accesses can be served by the cached data. Andrew caches
entire files, but it is not intended to handle very large files. The rest of the systems suppori caching of indi-
vidual blocks driven by clients’ demand. Increasing the caching unit increases the hit ratio on the one hand, but
delays the actual data transfer and increases the potential for consisiency problems. Selecting the unit of cach-
ing involves parameters such as the network transfer unit, and the Remote Procedure Call (RPC hereafier)

9

protocol service unil (in case an RPC protocol is used) {Birrel and Nelson 1984} The network transfer unit
(Ethernet packets) are about 1.5K bytes, so big units of cached data need to be disassembled for delivery and
re-assembled upon reception [Welch 1986].

Block size and the total cache size are obviously of importance for block-caching schemes. In Unix-like
systems, common block sizes are 4K or 8K bytes. For large caches {(over 1M bytes) large block sizes (over 8K
bytes) are beneficial [Ousrerhout et al. 85; Lazowska et al. 86]. For smaller caches, large block sizes are less
beneficial because they result in fewer blocks m the cache, and most of the cache space is wasted due 1o inter-
nal fragmentation.

4.1.2 Cache location

Regarding the second decision, disk caches have one clear advantage, reliability. Modifications to cached data
are lost in a crash if the cache is kept in volatile memory. Moreover, if the cached data is kept on disk, it is
still there during recovery and there is no need to fetch it again. On the other hand, main-memory caches have
several advantages of their own. First, main memory caches permil workstations to be diskless. Second, data
can be accesses more quickly from a cache in main memory than on a disk. Third, the current technology trend
is bigger and cheaper memories. The achieved performance speedup is predicied 1o outweight disk caches advan-
tages. Fourth, the server caches (the ones used to speed up disk VO) will be in main memory regardless of
where client caches are located; by using main-memory caches on clients 100, il is possible 1o build a single
caching mechanism for use by both servers and clients (as it is done in Sprite}.

4.1.3 Modification Policy

The policy used to write dirty blocks back 1o the server’s master copy has critical effect on the system’s per-
formance and reliability. The sumplest policy 15 1o write data through to disk as soon as it is placed on any
cache. The advantage of write-through is its reliability. Litlle information is lost when 2 client crashes. How-
ever, this policy requires each write access to wait until the information is sent to the server, which results in
poor Write performance. Caching with write-through is actually equivalent io using Remote Service for
Write accesses and exploiting Caching only for Read accesses.

An alternate write policy is to delay updates to the master copy. Modifications are written to the cache
and then written through to the server sometime later. This policy has two advantages over write-through.
First, since writes are 10 the cache, Write accesses complete much more quickly. Second, data may be deleted
before it is written back, in which case it needs never be written at all. Unfortunately, delayed-wrire schemes
introduce reliability problems, since unwritien data will be lost whenever a client crashes.

There are several variations of the delayed-write policy that differ in when to flush dirty blocks 1o the
server. One alternative is 1o flush a block when it is about 10 be ejected from the client’s cache. This option
can result in good performance, but some blocks can reside in the client’s cache long time betfore they written
back to the server [Ousterhout et al. 85]. A compromise between the latter alternative and the write-through
policy is to scan the cache periodically, at regular intervals, and flush blocks that have been modified since the
last scan. Sprite uses this policy with a thirty seconds interval.

Yet another variation on delayed-write is 10 write data back to the server when the file is closed. This
policy, write-on-close, is used in the Andrew system. In case of files that are open for very short periods or
are rarely modified, this policy does not significantly reduce network traffic. In addition, the write-on-close
policy requires the closing process 1o delay while the file is written through, which reduces the performance
advantages of delayed writes. The performance advantages of this policy over delayed-write with more fre-
quent flushing are apparent for files that are open for long periods and are modified frequently.

As a reference, we present some data regarding the wutility of Caching in Unix 4.2 BSD. Unix 4.2 BSD
uses a cache of about 400K bytes holding different size blocks (the most common size is 4K bytes). A delayed-
write policy with about thirty seconds intervals is used. A miss ratio (ratio of the number of real disk VO 1o
logical disk accesses) of 15% is reported in [McKusic et al. 84], and of 50% is reported in [Qusterhout et al,
851. The latter paper also provides the following statistics which were obtained by simulations on Unix A

10

4M bytes cache of 4K bytes disk blocks eliminates between 65% and 90% of all disk accesses for file data. A
write-through policy resulied in the highest miss-ratio, and delayed-write policy, with flushing when the
block is gjected from cache, had the lowest miss ratio.

There is a tight relation between the modification policy and the consistency semantics. Write-on-close
is very suitable for Session Semantics. By contrast, using any kind of delayed-write policy when files are up-
dated concurrently frequently in conjunction with Unix semantics is not reasonable and will result in long de-
lays and complex mechanisms. A wrile-through policy is more suitable for Unix Semantics under such circum-
stances.

4.1.4 Cache Validation

A client is faced with the problem of deciding whether its locally cached copy of the data is consistent with
the master copy (and hence can be used) or not. If the client determines that its cached data is out-of-date, ac-
cesses cannot be served by that cached data any longer. An up-to-date copy of the data needs 1o be cached.
There are basically two approaches to verify the validity of cached data:

= (lient initiated approach. The client initiates a validity check m which 1t contacts the server and checks
whether the local data is consisient with the master copy. The frequency of the validity check is the
crux of this approach and determines the resulting consistency semantics. It can range from a check be-
fore every single access, to a check only on first access to a file (on file open basically). Every access
that is coupled with a validity check is delayed, compared with an access served immediately by the
cache. Alternatively, a check can be initiated every fixed interval of time. Usually the validity check in-
volves comparing file header information (e.g., i-node information in Unix). Depending on the frequen-
cy it can load both the network and the server. This phenomenon was the cause for Andrew designers 10
withdraw from this approach (refer to [Howard et al. 1988] for detailed performance data).

o Server initiated approach. The server records for each client, the (parts of) files it caches. When the
server detects a potential for inconsistency, it is its responsibility to react. A potential for inconsisten-
cy occurs when a file is cached by two different clients in conflicting modes. If Session Semantics are
implemented, then whenever a server receives a request 1o close a file that has been modified, it should
react by notifying the clients to discard their cached data and consider it invalid. Clients having this file
open at that time, discard their copy when the current session is over. Other clients discard their copy at
once. Implementing Session Semantics, the server need not be informed about Open’s of already cached
files. The server’s reaction is triggered only by the Close of a writing session, and hence only this kind
of sessions are delayed. In Andrew, Session Semantics are implemented, and a server initiated method,
called callback, is employed.

On the other hand, if a more restrictive consistency semantics is implemented, like Unix Semantics, the
server must be much more involved. The server must be notified whenever a file is opened and the in-
tended mode (Read or Write mode) must be indicated for every Open. Assuming such notification, the
server can act when it detects a file that is opened simultaneously i contlicting modes by disabling
caching for that particular file (as done in Sprite). Actually, disabling caching results in switching to
Remote Service mode of operation.

A problem with this approach is that it violates the traditional chient-server model, where clients ini-
tiate activities by requesting service. Such wviolation can result in irregular and complex code for both
clients and servers.

In summary, the choice here trades longer accesses and greater server load using the former method, for
larger server state using the latter.

4.2 Cache Consistency

Before delving into the evaluation and comparison of the two methods, we relate them to the various exam-
ples of consistency semantics introduced in the Section 3.

4.3

Session Semantics are a perfect match for caching of entire files. Read and Write accesses within a ses-
sion can be handied by the cached copy, since the file can be associated with different images according
1o the semantics. The cache consistency problem diminishes to propagating the modifications performed
in a session 1o the master copy at the end of a session. This model is quitc attractive since it has simple
implementation. Observe that coupling these semantics with caching of parts of files defeats the pur-
pose of simple implementation.

A distributed implementation of Unix Semantics using caching would be complex because of the need
lo serialize accesses to the cached copies of the file. Some kind of distributed conflict resolution scheme
is needed for this end. In addition. once a cached copy is modified, the changes need to be propagated im-
mediately to the rest of the cached copics. Frequent Write's can generate tremendous network traffic,
and cause long delays before requests are satisfied. As was already stated, these semantics lend them-
selves to an implementation where a file is accessed as an exclusive resource. A remote Service ap-
proach, where all requests are direcied and served by a single server fits nicely with these semantics.

The immutable shared files semantics presented in [Schroeder et al. 1985] were invented for a whole file
caching scheme. Observe that with this semantics the cache consistency problem vanishes totally.
Serialization of transactions can be implemented in a straight forward manner using locking, when they

are all served by the same server on the same machine as done in Remote Service.

A Comparison of Caching and Remote Service

Essentially, the choice between Caching and Remote Service trades a potential of increased performance, for
simplicity. We evaluate this rade-off by listing the merits and demerits of the two methods.

A substantial amount of the remote accesses can be handled efficiently by the local cache when Caching
is used. Capitalizing on locality in file access pattemns makes Caching even more attractive. Ramifica-
tions can be performance transparency: Most of the remote accesses will be served as fast as local ones.
Moreover, servers are contacted only occasionally and not for each access. Consequently, server load and
network traffic are reduced and the potential for scalability is enhanced. By contrast, each and every re-
mote access is handled across the network when employing the Remote Service method. The penalty in
network traffic, server load and performance is obvious.

Total network overhead in transmitting big chunks of data, as done in Caching, is lower than when se-
ries of responses o specific requests are transmitted (as in the Remote Service method).

Disk access routines on the server may be better optimized if it is known that requests are always for
big, contiguous segments of data rather than random disk blocks. (The last two reasons indicate strong-
Iy the merits of whole file caching as done in Andrew).

The cache consistency problem is the major drawback of Caching. In access patterns that exhibit infre-
quent Write’s, caching is superior. However when Write's are frequent, the mechanisms employed to
overcome the consistency problem incur substantial overhead in terms of performance, network raffic,
and server load.

It is hard to emulate the consistency semantics of a centralized system, in a system employing caching
as its remote access method. The reason is the cache consistency problem. Namely, the fact that accesses
are directed to distributed copies, and not 10 a central data object. Observe that the two Caching-orient-
ed semantics, Session Semantics Immutable Shared Files Semantics, are not restrictive and do not en-
force serializability. On the other hand, using Remote Service, the server serializes all accesses, and
hence, is able to implement any centralized consistency semantics.

In order to use Caching and benefit from its merits, clients must have either local disks or large main
memories. Diskless clients can use the Remote Service methods without any problems.

Since data is transferred en masse between the server and client, and not in response to the specific
needs of a file operation, the lower inter-machine interface is quite different from the apper client inter-

i2

face. The remote service paradigm on the other band, is just an extension of the local file system inter-
face across the network. Thus, the inter-machine interface mirrors the local client-file system interface.

5 FAULT TOLERANCE ISSUES

Fault tolerance is an umportant and broad subject in the context of DFS. In this Section we focus on the fol-
lowing two kinds of fault tolerance issucs:

- Tolerating faulls occurring when some service activity is being carried out. For instance, a server crash
on active clients belongs to this category. Section 5.1 examines two service paradigms in this context.

- Tolerating faults occurring afiter data was deposited with the file system. For instance, a machine fail-
ure that temporarily prevents access 1o a file stored there. These kinds of faults can hinder the availabil-
iry of files. In Section 5.2 we define the concept of availability and discuss how to increase the availabil-
ity of files. Section 5.3 reviews file replication as another means for enhancing availability.

5.1 Stateful versus Siateless Service

The typical scenario of a stateful file service 1s as follows. A chent must perform an Open on a file before ac-
cessing it. The server fetches some information about the file from its disk, stores it in its memory, and gives
the chient some connpection identifier which is unique to the client and the open file. (In Unix terms, the serv-
er fetches the i-node and gives the client a file descriptor, which serves as an index 10 an in-core table of i-
nodes). This identifier is used by the client for subsequent accesses until the session ends. A stateful service is
characterized by a virtual circuit between the client and the server during a session. The connection identifier
embodies this virtual circuit. Either upon closing the file, or by garbage collection mechanism, the server
must reclaim the main-memory space used by clients that are no longer active.

The advantage of stateful service is performance. File information is cached in main-memory and can be
easily accessed using the connection identifier, thereby saving disk accesses. The key point regarding fault-tol-
erance in a stateful service approach is the main-memory information kept by the server on its clients.

A stateless server avoids this state information by making each request self-contained. That is, each re-
quest identifies the file and position in the file (for Read and Write accesses) in full. The server need not keep
a table of open files in main memory, though this is usually done for efficiency reasons. Moreover, there is no
need to establish and terminate a connection by Open and Close operations. They are totally redundant, since
each file operation stands on its own and is pot considered as part of a session. Clearly, it is easier 1o build a2
stateless service than a stateful service on top of a datagram communication protocol.

The distinction between stateful and stateless service becomes evident when considering the effects of a
crash occurring during some service activity. A stateful server loses all its volatile state in a crash. A grace-
ful recovery of such server involves restoring this state usually by a recovery protocol based on a dialog with
clients. Less graceful recovery implies abortion of the operations that were underway when the crash occurred.

A different problem is caused by client failures. The server needs 1o become aware of such failures, in
order to reclaim space allocated to record state of crashed clients. This phenomena is sometimes referred © as
orphan detection and elimination.

A stateless server avoids the above problems, since a newly reincarnated server can respond 1o a self con-
tained request without any difficulty. Therefore, the effects of server failures and recovery are almost not no-
ticeable. There is no difference between a slow server and a recovering server from a client’s point of view,
The client keeps retransmitting its request if it gets po response. Regarding client failures, no obsolete state
needs 1o be cleaned up on the server side.

The penalty for using the robust stateless service is longer request messages, and slower processing of
requests, since there is no in-core information to speed the processing. In addition, staieless service imposes ad-
ditional constraints on the design of the DFS. First, since each request identifies the target file, 2 uniform,
system-wide, low level naming is advised. Translating remote to local names for each request would imply

even slower processing of the requests. Second, since clients re-transmit requests for files operations, these op-
erations must be idempoten: 10 prevent races. An idempotent operation has the same effect and retums the
same output if executed several times consecutively. Sell’ contained Read and Wrile accesses are idempotent,
since they use an absolute byte count to indicate the position within a filc and do not rely on an incremental
offset {as done i Unix Read and Write systern calls). However, care must be taken when implementing de-
structive operations (such as Delete a file) to make them idempotent too.

In some environments a stateful service is a necessity. If a Wide Area Network, or Internetworks are
used, reordering of messages is possible. A stateful, virtual-circuit oriented service, would be preferable in
such a case. Also observe that if the server employs the server-initiated method for cache validation it cannot
provide stateless service, since it maintains a record of which files are cached by which clients,

The way Unix uses file descriptors and implicit offsels is inherently stateful. Servers must maintain ta-
bles to map the file descriptors to i-nodes, and store the carrent offset within a file. This is why NFS, which
employs a stateless service, does not use file descriptors, and does include explicit offset in every access.

5.2 Improving Availability

Svobodova defines two file properties in the context of fault tolerance: A file is recoverable if is pos-
sible to revert it to an earlier consistent state when an operation on a file fails or is aboried by the client. A
file is called robust if it is guaranteed to survive crashes of the storage device and decays of the storage medi-
um’” [Svebodova 1984]. A robust file is not necessarily recoverable and vica versa. Different techniques must
be used to implement these two distinct concepts. Recoverable files are realized by atomic update techniques.
Locus for example, uses shadow paging technique to make ils files recoverable. We do not give account of
atomic updates techniques in this paper. Robust files are implemented by redundancy techniques such as stable
storage {Lampson 1981]. We find it necessary to add an additional criterion which we call availabiiiry. A file
is called available if it can be accessed whenever needed, despite machine and storage device crashes, and com-
munication faults.

Availability is often confused with robustness, probably because they both can be implemented by re-
dundancy techniques. A robust file is gnaranteed to survive failures, bul it may not be available wuntil the
faulty component has recovered. Availability is a very fragile and unstable property. First, it is temporal;
availability varies as the system’s state changes. Also, it is relative 1o a client; for one client s file may be
available, whereas for another client on a different machine, the same file may be unavailable.

Replicating files enhances their availability (see Section 5.3), however merely replicating file is not suf-
ficient. There are some principles destined to ensure increased availability of files which are described beliow.

The number of machines involved in a file operation should be minimal, since the probability of failure
grows with the number of involved parties. Most systems adbere to the client-server pair for all file opera-
tions. (This refers to a LAN environment, where no routing is needed). Locus makes an exception, since its
service model involves a triple: a clieni, a server, and a Centralized Synchronization Site (CSS). The CSS is in-
volved only in Open and Close operations, but still if the CSS cannot be reached by a client, the file may be
available, but not to that particular client. In general, having more than two machines involved in a file opera-
tion can cause bizarre situations where a file is available to some but not all clients.

Once a file has been located there is no reason to involve machines other than the client and the server
machines. However, locating a file and establishing the client-server conpection is more problematic. A file
location mechanism i$ an important factor in determining the availability of files. Traditionally, locating a
file is done by a pathname traversal, which in a2 DFS may cross machine boundaries several times, and hence in-
volve more than two machines. In principle, most systems (e.g., Locus, NFS, Andrew) approach the problem
by requiring that each component in the pathname would be looked up directly by the client. Therefore, when
machine boundaries are crossed, the server in the client-server pair changes, but the client remains the same. In
Unix United, partially because of routing concerns, this clieni-server model is not preserved in the pathname
traversal. Instead. the pathname ftraversal request is forwarded from machine to machine along the pathname,

14

without involving the client machine each time.

Observe that if a file is located by pathname traversal, the availability of a file depends on the availabil-
ity of the directories in its pathname. In a situation that can arise, a file might be available to reading and
writing clients, but it cannot be located by new clients, since a directory in its pathname is unavailable. Repli-
cating top level direclories can partially rectify the problem, and is indeed wused in Locus 10 increase the avail-
ability of files.

Caching directory mformation can both speed-up the pathname traversal and avoid the problem of un-
available directories in the pathname. Andrew and NFS usc this technique. Sprite employs a better mechanism
for quick and reliable pathname traversal. In Sprite, machines maintain prefix tables that map prefixes of path-
names to the servers that store the corresponding component units. Once a file in some component unil is
open, all subsequent Opens of files within that same unit address the right server directly without intermedi-
ate lookups at other servers. This mechanism is both faster and guarantees better availability. (For complete
description of the prefix table mechanism refer 1o Section 9.2).

5.3 File Replication

Replication of files is a useful redundancy for improving availability. We focus on replication of files on dif-
ferent machines, rather than replication on different media on the same machine, as demonstrated by mmirrored
disks [Lampson 1981]. Multi-machine replication can benefit performance too, since selecting a nearby replica
{0 serve an access request, results in shorter service time.

The very basic requirement from a replication scheme is that different replicas of the same file reside on
failure-independent machines. That is, the availability of one replica is not affected by the availability of the
rest of the replicas. This obvious requirement implies that replication management is inberently a location
opaque activity. Provisions for placing a replica on a particular machine must be available.

It is desirable to hide the details of replication from users. It is the task of the naming scheme to map a
replicated file name 1o a particalar replica. The existence of replicas should be invisible to higher levels.
However, at some level the replicas must be distinguished from one another by having different lower-level
names. This can be accomplished by first mapping a file name to an entity that is able to differentiate the rep-
licas (as done in Locus). Another wransparency issue is providing replication control at higher levels. Replica-
tion control includes determining the degree of replication and placement of replicas. Under certain circum-
stances, it is desirable 10 expose these details to users. Locus, for instance, provides users and sysitern adminis-
trators with mechanism to control the replication scheme.

The main problem associated with replicas is their update. From a user’s point of view, replicas of a
file, denote the same logical entity, and thus, an update to any replica must be reflected on all other replicas.
More precisely, the relevant consistency semantics must be preserved when accesses to replicas are viewed as
virtual accesses to their logical files. The analogous database term is One-Copy Serializability [Bernstein et
al. 19871, [Davidson et al. 8§5] gives a survey of approaches to replication for database systems, where consis-
tency considerations are of major importance. If consistency is not of primary importance, it can be sacrificed
for availability and performance. This is an incarnation of a fundamental trade-off in the arca of fault 1oler-
ance. The choice is between preserving consistency at all costs, thereby creating a potential for indefinite
blocking, or sacrificing consistency under some (hopefully rare) circumstance of catastrophic failures for the
sake of guaranteed progress. Among the surveyed systems, Locus employs replication extensively and sacrific-
es consistency in a partitioned environment, for the sake of availability of files for both Read and Write ac-
cesses (see Section 8.5 for details).

As an ilustration of the concepts discussed above, we describe the replication scheme in Ibis which is
quite nnique [Tichy and Ruan 1984]. Ibis uses a variation of the primary copy approach. The domain of the
namc mapping i a pair: primary replica identifier, and local replica identifier, if there is one. (If there is no
replica locally, a special value is returned). Thus, the mapping is relative to a machine. If the local replica is
the primary one, the pair contains two identical identificrs. Ibis supports demand replication, which is an au-

ot
N

tomatic replication control policy. Demand replication means that rcading a non-local replica causes it 10 be
cached locally, thereby generating a2 new non-primary replica. Updates are performed only on the primary copy
and cause all other replicas 1o be invalidated by sending appropriaie messages. Synchronization of the invalida-
tion is not guaranteed. Hence, it is possible that a stale replicas is considered valid. Consistency of replicas is
sacrificed for a simple update protocol. To satisfy remote Write accesses, the primary copy is migrated 1o the
requesting machine.

6 Scalability Issues

Very large scale DFSs, 10 a large extent, are still visionary. Andrew is the closest system 10 be classified as a
very large scale system with a planned configuration of couple of thousands workstations. There are 110 magic
guidelines 10 ensure the scalability of a system. It is easier to point out current designs and mdicate why they
are not scalable. In Section 6.1 we discuss several designs that pose problems and propose possible solutions,
all in the context of scalability. Section 6.2 describes an implementation technique, Light Weight Processes,
that is essential for high-performance and scalable designs.
6.1 Guidelines by Negative Examples

Barak and Komatzky [Barak and Kornatzky 1987] list several principles for designing very large scale
systems. The first one is called Bounded Resources: “The service demand from any component of the system
should be bounded by a constant. This constant is independent of the number of nodes in the system.”” Any ser-
vice mechanism whose load demand is proportional to the size of the system is destined to become clogged
once the system grows beyond a certain size. Adding more resources would not alleviate such a problem. The
capacity of this mechanism simply limits the growth of the system. This is why the CSS of Locus is not a
scalable design. In Locus, every file group (the Locus component unit, which is equivalent 1o a2 Unix remov-
able file system) is assigned a CSS, whose responsibility is to synchronize accesses to files in that file group.
Every Open request to a file within that file group must go through this machine. Beyond a certain gystem
size, CSS"s of frequently accessed file groups are bound to become point of congestion, since they w ould need
1o satisfy a growing number of clients.

The principle of bounded resources can be applied to channels and network traffic 100, and hence prohib-
its the use of broadcasting. Broadcasting is an activity that involves every machine in the petwork. A mecha-
nism that relies on broadcasting simply is not realistic for large scale systems.

The third example combines aspects of scalability and fault-tolerance. It was already mentioned that if
a stateless service is used, a server need not detect a client’s crash, nor take any precautions because o it. Obvi-
ously this is not the case with stateful service since the server must detect clients’ crashes and at least discard
state it maintains for them. It is interesting to contrast the ways MOS [Barak and Litman 1985; Barak and Par-
adise 1986] and Locus reclaim obsolete staie storage on servers. The approach taken in MOS is garbage collec-
tion. Tt is the client’s responsibility to reset an expiration date on state objects the servers maintain for it
Clients reset this date whenever they access the object or by special, infrequent messages. 1f this date has ex-
pired a periodic garbage collector reclaims that storage. This way, the server need not detect clients’™ crashes.
By contrast, Locus invokes a clean-up procedure whenever a machine determines that a particular machine is un-
available. Among other things, this procedure releases space occupied by state of chients from the crashed ma-
chine. Detecting crashes can be very expensive, since it is based on polling and time-out mechanisms that incur
substantial network overhead. The scheme MOS uses, requires tolerable and scalable overhead, where every cli-
ent signals a bounded number (its own) of objects, whereas a failure detection mechanism is not scalable since
it depends on the size of the sysiem.

Central control schemes and central resources should not be used to build scalable (and fault-tolerant)
systems. Examples of centralized entities are central authentication server, central naming server, o©r cenfral
file server. Centralization is a form of functional asymmetry between machines comprising the sy stem. The
ideal aliernative is a configuration which is functionally symmetric; that is, all the component machines have

16

equal role 1n the operation of the system, and hence each machine has some degree of autonomy. Practically, it
is virtually impossible to comply with such a principle. For instance, incorporating diskless machines violates
functional symmetry. However, autonomy and symmetry are important goals 10 aspire 10.

The practical approximation to. symmetric and autonomous configuration is clusiering. The system is
partitioned into a collection of semi-autonomous clusters. A cluster consists of a set of machines arxd a dedi-
cated cluster server. In order 1o make cross-cluster file references relatively infrequent, each machine’s re-
quests should be satisfied by its own cluster server most of the time. Of course, this depends on the ability to
localize file references and placing the component units appropriately. If the cluster is well balanced. that is
the server in charge suffices to satisfy all of the cluster demands, it can be used as a modular building block
to scale up the system. Observe that clustering complies with the Bounded Resources Principle. Andrew’s
clusters and cluster servers are a good example for a scalable clustering scheme.

Unix United is a system that exemplifies the concept of autonomy. There, Unix systems are joined tfo-
gether in a recursive manner [Randell 1983) to create a bigger and bigger global system. Each component sys-
tem is a complete Unix system that can operate mdependently. Again, modular and autonomous components
are combined to create a large scale system.

6.2 Light Weight Processes

A major problem in the design of any service is the process structure of the server. Servers are supposed 1o op-
erate efficiently in peak periods when hundreds of active clients need to be served simultaneously. A single
process server, is certainly not a good choice, since whenever a request necessitates disk 1/O the whole service
is blocked. Assigning a process for each client is a better choice, however the expensive price of freguent con-
text switches between the processes must be paid. ‘

A related problem has 1o do with the fact that all the server processes need to share information, such
as file headers, service tables etc. In Unix 4.2 BSD processes are not permitted 1o share address spaces, hence
sharing must be obtained externally by using files and other unnatural mechanisms

It appears that one of the best solutions for the server architecture is the use of Light Weighr Processes
or Threads. A thread is a process that has very little non-shared state. A group of peer threads share code, ad-
dress space, and operating system resources. An individual thread has at least ifs own register state. T he exten-
sive sharing makes context switches among peer threads and threads” creation inexpensive, compared with con-
lext switches among traditional, heavy-weight processes. Thus, blocking a thread and switching to another
thread is a reasonable solution to the problem of a server handling many requests. The abstraction presented
by a group of light weight processes is that of multiple threads of conirol associated with some shared re-
sources.

There are many alternatives regarding threads; we briefly mention few of them. Threads can be support-
ed by the kernel (as in Mach [Tevanian et al. 87]) or above the kernel, at the user level (as done in Andrew]).
Usually a light weight process is not bound 1o a particular client. Instead, it serves single requests of differ-
ent clients. Scheduling threads can be preemptive or non-preemptive. If threads are allowed to run 1o comple-
tion, then their shared data need not be explicitly protecicd. Otherwise, some explicii Jocking mechanism
must be used.

It is quite clear that some form of light weight processes scheme is essential for servers to be scalable.

Locus, Sprite, Andrew, and in the future NFS too, employ such schemes. Detailed studies of threads imple-
mentations can be found in [Tevanian et al. 87] and [Kepecs 85].

7 Unix United

The Unix United project from the University of Newcastle upon Tyne, England, is one of the ecarliest attempts
aimed at scaling up the Unix file system to a2 distributed one without modifying the Unix kernel. In Unix
United, a software subsystem is added 10 each of a set of interconnected Unix systems (referred 10 as compo-

[
]

nent or constituent sysiems), so as 10 construct a distributed system which 1s functionally indistinaguishabie
from a conventional centralized Unix system. ’

Originally, the component systems were perceived as mainframes functioning as time-sharing Unix Sys-
tems, and indeed the original implementation was based on a set of PDP117s connected by a Cambridge Ring.

The system is presented in two levels of detail. First, an outlook of Unix United is given. Then the im-
plementation, the Newcasile Conneciion layer, is examined, and some issues regarding networking and inter-
networking are discussed.

7.1 Overview

Any number of inter-linked Unix sysiem can be joined to compose a Unix United system. Their narmning struc-
tures (for files, devices, directories, and commands) are joined together into a single naming structure, in
which each component system is to all intents and purposes just a directory. Ignoring for the moment ques-
tions regarding accreditation and access control, the resulting system is one where each user can read or wrile
any file, use any device, exccute any command, or inspect any directory, regardless of which system it belongs
to.

The component unit is a complete Unix tree belonging 1o a certain machine. The position of these com-
ponent units in the naming hierarchy is quite arbitrary. They can appear in the naming structure in positions
subservient to other component units (directly or via intermediary directories).

Roots of component units are assigned names so that they become accessible and distinguishable exter-
nally. A file systemy's own root is still referred to as °/" and still serves as the starting point of all path-
names starting with a */". However, a subservient file sysiem can access its superior system by referring to its
own root parent, {i.e., ". . /7). Therefore, there is only one root that is its own parent and that is not assigned
a string name; namely, the root of the composite name structure which is just a virtual node peeded to make
the whole structure a single tree. Under this conventions, there is no notion of absolute pathname. Each path-
narmne is relative t0 some context, either the current working directory or the current component unit.

In Figure 7.1, unixl, moix2, unix3, and unix4 are names of component systems. To illustrate the rela-
tive pathnames note that /.. /unix2/£2 is the name of the file £2 on the system unix2, from wwithin the
unixl system. From the unix3 sysiem, the same file is referred 10 as /.. /.. /unix2/£2. Now , suppose
that the current oot (/7 is as shown by the arrow. Then, file £3 can be referenced as /£3, file f1 is referred
to as /../f1, file f2 is referred 10 as /../../unix2/£2, and finally file f4 iy referred to as
/. ./. . /uanix2/dir/unix3/f4.

Observe that a user is awarc of the upward boundaries of his current component unit since he must use
the ../ syntax whenever he wishes 1o ascend outside of his current machine. Hence, Unix United does not
provide complete location transparency.

The traditional root directories {e.g. /dev, /temp) are maintained for each machine separately. Because
of the relative naming scheme they are named, from within a component sysiem, in the exact way as in a con-
ventional Unix.

Each component system has its own set of named users and its own administrator (super-user}. The lat-
ter is responsible for the accreditation for users of his own system as well as remote users. Remote wusers iden-
tifiers are prefixed with the name of their original system for uniqueness. Accesses are governed by the sian-
dards Unix file protection mechanisms, even if they cross components boundaries. That is, there is no need for
a user to log in separately or provide passwords, when he accesses remote files, in case he is properly accredit-
ed. However, users wishing to access files in a remote system, must arrange with the specific systerm adminis-
trator separately.

It is often convenient to set the naming structure as to reflect organizational hierarchy of the environ-
ment in which the system exists.

18

7.2 Impiementation—ithe Newcastle Connection

The Newcastle Connection is @ {(user-level) software layer incorporated in each component system. This layer
separates between the Unix kernel on ene hand, and applications, command programs and the shell on the oth-
er hand (see Figure 7.2). 1t intercepts all system calls concerning files, and filters out those that have 1o be re-
directed to remote systems. Also, the Connection layer accepts system calls that have been directed to it from
other systems. Remote layers communicate by the means of a RPC protocol.

Incorporating the Connection layer enables preserving both the same Unix system call interface and the
Unix kernel, in spite of the extensive remote activity the system carries out. The penalty of preserving the
kernel intact is the fact that the service is implemented as user-level daemon processes which slow down re-
mote operation.

Each Connection layer stores a partial skeleton of the overall naming structure. Obviously, eachr system
stores locally its own file system. In addition, cach system stores fragments of the overall name structure
that relate it to its neighboring systems in the naming structure (i.e., systems that can be reached via traversal
of the naming tree without passing through another system). Figure 7.3(a), (b) and (¢) show the partial skele-
tons of the hierarchy of the file systems of Figure 1 as maintained by the sysiems unixl, unix2, and unix3 re-
spectively (only the relevant parts are shown).

The fragments maintained by different systems overlap and hence must remain consistent, a reguirement
that makes changing the overall structure a very infrequent event. Some leaves of the partial structure stored
locally correspond to remote roots of other parts of the global file system. These leaves are specially marked,
and contain addresses of the appropriate storage sites of the descending file systems. Pathname traversals have
to be continued remotely when encountering such marked leaves, and in fact, can span more than two sysiems
until the target file is located. Therefore, a strict client-server pair model is not preserved.

Once a name is resolved and the file is opened it is accessed using file descriptors. The Connection layer marks
descriptors that refer to remote files and keeps network addresses and routing information for them in a per-
process table.

The actual remote file accesses are carried out by a set of file server processes on the target system.
Each user has its own file server process with which it communicates directly. The initial connection is estab-
lished with the aid of a “spawner’ process that has a standard fixed name which makes it callable from any ex-
ternal process. This “spawner’ process performs the remote access rights checks according to a machine-user
identification pair. Also, it converts this identification to a valid local name. For the sake of preserving Unix
semantics, once a user process forks, its file service process forks as well. File descriptors (and not lower lev-
el means such as inodes) are used to identify files between a user and its file server. This service scheme does
not excel in terms of robustness. Special recovery actions has to be taken in case of both sever and wuser fail-
ures. However, the Connection layer attempts to mask and isolate failures resulting from the fact that the
system is a distributed one.

7.3 Networking issues

Unix United is well suited for a diverse inter-network topology, spanning LANs, as well as direct links and
even WAN’s. The logical name space needs to be properly mapped onto routing information in such a complex
inter-network. An important design principle is that the naming hierarchy needs bear no relationship to the to-
pology. The approach taken is that each machine routes remote requests 10 an appropriate one of its physically
adjacent machines, which can then pass the request on further. Therefore, each system has to be aware of hard-
ware addresses only of machines that are directly connected to it (by the same LAN or a hard-wired link).
Unix United takes advantage of its own system-wide unique naming scheme to guide in addressing and rout-
ing. Within each machine routing tables translate these logical names to the next hop en rouwie 1o the destna-
tion.

When pathname traversal is performed, the pathname is followed as an inter-machine rovte, s0 that all

authentication and proiection demands are satisficd. However, it may not be necessary {0 repeat the same route
when a file has been successfully opened, if some shorter route is available.

As a message travels along the physical links the addressing information it containg (which is described
in terms of paths) will sometimes have to be adjusted to reflect the fact that movement around the physical
topology causes movement around the naming structure (recall that there is no relationship between the two).
For instance, in Figure 7.4, a message from U1 to U2 would use the path /. . /U2, Passing through M1 this
message would need this path to be changed to /. . /M2/02.

7.4 Summary
The overall profile of the Unix United system can be characterized by the following prominent fea-

tares:

< Logical Name Structure. The Unix United name structure is a hierarchy composed of compomnent Unix

subtrees. There is an explicitly visible correspondence between a machine and a subtree in the structure:
hence, machine boundaries are noticeable. Users must use the ~. . /7 tap to get out of the current com-
ponent unit. The naming scheme is quite unique, since all pathnames are relative 1o some comntext and
there are no abschite pathnames.

« Recursive Structuring. Structuring a Unix United System out of a set of component systems iS a recur-
sive process, akin 10 a recursive definition of a tree. In theory, such a system can be indefinitely extensi-
ble. The building block of this recursive scheme is an autonomous and complete Unix system.

« Jnter-nerworking. The intention of constructing very large distributed systems is evident also from the
aspect of inter-networking capabilities Unix United has. The system is suited to operate on a variety of
petworks including both LANs and WANs. Atiention was given 1o separating the network topology
from the name structure.

s The Connection Layer. Conceptually, the connection layer implementation is very clean and simple. It
is a modular subsystemn interfacing two existing layers without modifying neither of them nor their
original semantics, and sull extending their capabilities by large. The implementation strategy is by
relinking application programs with the Connection layer library routines. These routines intercept file
system calls and forward the remote ones to user-level remote daemons at the remote sites.

Finally, we note that Unix United most valuable contributions to the state of the art of DFSs should
not be measured by its actual implementation and performance, but rather by the concepts it spurred and gave
rise t0.

8 Locus

Locus is an ambitious project aimed ai building a full scale distributed operating system. The system is up-
ward compatible with Unix, but unlike NFS, Unix United and other Unix based distributed systems, the ex-
tensions are major ones and necessitate a new kernel, rather than a modified one. Locus stands out among other
systems by hosting a variety of sophisticated features such as automatic managemeni of replicated data, atomic
file update, full implementation of nested transactions [Weinstein et al. 1985], remote tasking and abhility to
withstand (1o a certain extent) failures and network partitions. The system has been operational in UJCLA for
several years on a set of mainframes and workstations connected by an Ethernet. In [Sheltzer and Popek
1986}, & general strategy for extending some of Locus features o an internet environment is outlined.

The heart of the Locus architecture is its DFS. We give first an overview of the features and general im-
plementation philosophy of the file sysiem. In the next sections we discuss in more detail the static nature of
the file system (Sections 8.2) and its dynamics (Sections 8.3, and 8.4). Section 8.5 is devoted 1o the operation
of the system in a faulty environment.

20

8.1 Overview

The Locus file system presents a single tree-structure naming hicrarchy to users and applications. This struc-
ture covers all objects (files, directories, executable files, and devices) of all the machines in the system. Lo-
cus names are fully transparent; it is not possible to discern from a name of an object the its location in the
network. To a first approximation, there is almost no way to distinguish the Locus name structure from a
standard Unix tree.

A Locus file may correspond to a set of copies distributed on different sites. An additional transparency
dimension is introduced since it is the system responsibility to keep all copies up to date and assure that access
requests are served by the most recent available version. Users may have control on both the number and loca-
tion of replicated files when a file is created as well as later on. Conversely, users may prefer 1o be totaily
unaware of the replication scheme. In Locus, file replication serves mainly to increase availability for reading
purposes facing failures and partitions. A primary copy approach is adopted for modifications.

Locus adheres to the same file access semantics that standard Unix presents users with, Locus strives to
provide these semantics in the distributed and replicated environment in which it operates. Alternate mecha-
nisms of advisory and enforced locking of files and parts of files are also offered. Moreover, atomic updates
of files are supported by commit and abort system calls.

Operation facing failures and network partitions is empbasized in Locus design. As long as a copy of a
file is available, read requests can be served, and it is still guaranteed that the version read is the most recent
available one. Automatic mechanisms take care to update stale copies of files upon the merge of their storage
site 10 & partiuon.

Emphasizing high performance in the design of Locus led to incorporating networking functions (such
as formatting, queueing, fransmitting, and retransmitting of messages) into the operating system. Specialized
remote operations protocols were devised for kernel-to-kernel communication, in contrast to the prewvalent ap-
proach of using RPC protocol, or some other existing protocol. Lack of mulu-layering enabled achieving high
performance for remote operations. On the other hand, this specialized protocols hamper Locus portability 1o
different networks and file systems.

An efficient but limited process facility called server processes (or light-weight processes) is devised
for serving remote requests. These are processes which have no pon-privileged address space. All their code
and stack are resident in the operating system nucleus, they can call internal system routines directly, and can
share some data. These processes are assigned to serve network requests which accumulate in 2 systern queue.
The systern is configured with some number of these processes, but that pumber 1S automatically and dynami-
cally altered during system operation.

8.2 The Name Structure

The logical name structure disguises both location and replication details from users and applications. Virtual-
ly. logical ﬁ/egr()upsz are joined together to form this upified structure. Physically, a logical filegroup is
mapped to multiple physical contginers {called also packs) residing at vanous sites and sioring replicas of
the files of that filegroup. The pair {logical filegroup number, inode number;, which will be referred to as a
file’s designaior, serves as a globally unique low-level name for a file. Observe that the designator itself
hides both location and replication details.

Each site has a consistent and complere view of the logical name structure. A logical mount table is
globally replicated and contains an entry for each logical filegroup. An entry records the file designator of
the directory over which the filegroup is logically mounted, and indication of which site is currently responsi-
ble for access synchronization (the function of this site is explained subsequently) within the filegroup. In ad-
dition, each site that stores a copy of the directory over which a sub-tree is mounted must keep that directo-

2 N . . . ~ . .-
“ A removable Unix file system, in Locus terms, is called a filegroup. A filegroup is the component unit in Locus.

21

ry’s inode in core with ap indication that 11 is mounied over. This is done so that any access from any site ©
that directory will be caught, allowing the standard Unix mount indirection [Rilchy and Thompson 1974;
Quarterman ¢t al. 1985] to function (via the logical mount table). A protocol, implemented within the mount
and unmount Locus system calls, performs update of the logical mount tables on all sites when necessary.

On the physical level, physical containers correspond to disk partitions and are assigned pack numbers
which together with logical filegroup number identify an individual pack. One of the packs is desiginated as
the Primary Copy. A file must be stored at the site of the primary copy, and in addition can be stored at any
subset of the other sites where there exists a pack corresponding 1o its filegroup. Thus, the primary copy
stores the filegroup completely, whereas the rest of the packs might be partial.

Replication is especially useful for directories in the high levels of the name hierarchy. Such directories
exhibit almost read-only character and are crucial for pathnames translation of most of the files.

The various copies of a file are assigned the same inode number on all the filegroup’s packs. Conisequent-
ly, a pack has an empty inode slot for all files that it does not store. Data page numbers may be different on
different packs, hence reference over the network to data pages use logical page numbers rather than physical
ones. Each pack has a mapping of these logical numbers to its physical numbers. To facilitate automatic repli-
cation management, each inode of a file copy contains a version number, determining which copy dominates
other copies.

Each site has a container table, which maps logical filegroup numbers to disk locations for the file-
groups that have packs locally on this site. When requests for accesses to files stored locally get to a site,
this table is consulted to map the file designator to a local disk address.

While globally unique file naming is very important most of the time, there are certain files and direc-
tories which are hardware and site specific (e.g., /bin which is hardware specific, and /dev which is site spe-
cific). Locus provides transparent means for translating references to these traditional file names, 1< a hard-
ware- and site-specific files.

8.3 File Operations

Locus approach to file operations is certainly a departure from the prevalent client-server model. The fact that
files are replicated, and the intention to provide synchronized accesses necessitate an additional functiczz. There-
fore, Locus distinguishes three logical roles in file accesses: each one potentially performed by a different site:

« Using Site {US}, which issues the requests to open and access a remote file.
< Storage Site (SS), which is the selected site to serve the requests.

< Curreni Synchronization Sire (CSS), which enforces global synchronization policy for a3 filegroup, and
selects a SS for each and every open request referring 1o a file in the filegroup. There is at most one CSS
for each filegroup in any set of communicating sites (i.e., a parntition). The CSS maintains the version
number, and a list of physical containers for every file in the filegroup.

The following subsections describe the open, read, write, close, commit, and abort operations, as they
are carried out by the above entities. Related synchronization issucs are described separately in the next section.

8.3.1 Opening and Reading a File

We first describe how a file is opened and read given its designator and then describe how a designator is ob-
tained from a string pathname.

Opening a file given its designator commences as follows. The US determines the relevant CSS by look-
ing ap the filegroup in the logical mount table, and then forwards the open request 1o the CSS. The €SS polls
potential S8°s for that file to decide which one of them will act as the real SS. In its polling messages, the
(S8 includes the version number for the particular file, so that the potential SS's can, by comparing this pum-
ber to their own, decide whether their copy is up 1o date, or nol. The CSS selects 2 SS by considering the re-
sponses it got back from the candidate sites and sends the selected SS identity to the US. Both the CSS and the

SS allocate in-core inode structures for the opened file. The CSS needs this information o make future syn-
chronization decisions, and the SS maintains the inode in order 1o serve efficiently forthcoming accesses.

After a file is open, 2 read request is sent directly to the S8 without the C8S intervention. A read re-
quest contains the designator of the file, the logical number of the needed page within that file, and a guess as
t0 where the in core mode is stored in the SS. Once the inode is found, the SS translates the logical page num-
ber to physical number, and a standard low-level routine is called to allocaie a buffer and get the appropriate
page from disk. The buffer is queued on the network queue for transmission back to the US as a response,
where it stored in a kernel buffer. Once a page was feiched to the US, further read calls are serviced from the
kernel buffer. As in the case of local disk reads, read ahead is useful to speed up sequential read, boih at the
US and the SS.

If a process loses its connection with a file it is reading remotely, the system attempts to reopen a dif-
ferent copy of the same version of the file.

Translating a pathname into a file designator is carried out by seemingly conventional pathname travers-
al mechanism since pathnames are regular Unix pathnames, with no exception {unlike Unix United). Every
lookup of a component of the pathname within a directory involves opening the latter and reading from it
These operations are conducted according to the above protocols (i.c., directory entries are also cached in US
buffers). Observe that there is no parallel to NFS's remote lookup operation and that the actual directory
searching is performed by the client rather than by the server.

A directory opened for pathname searching is not open for normal read. but instead for an internal un-
synchronized read. The distinction is that no global synchronization is needed, and no locking is done while
the reading is performed; that is, updates to the directory can occur while the search is ongoing. When the di-
rectory is local the CSS is even not informed of such access.

8.3.2 Write and Close
In Locus, a primary copy policy s employed for file modification. The CSS has to select the primary copy
pack site as the SS for an open for a write. The act of modifying data takes on two forms. If the modification
does not include the entire page, the old page is read from the SS using the read protocol. If the change in-
volves the entire page, a buffer is set up at the US without any reads. In either case, after changes are made,
possibly by delayed-write, the page 1s sent back 1o the SS. All modified pages must be flushed (o the SS be-
fore a modified file can be closed.

If a file is closed by the last user process at a US, the SS and CSS must be informed so that they can
deallocate in-core node structures, and so that the CSS can alter state data which might affect its next syn-
chronization decision.

Observe that in both read and write operations, caching of data pages is relied upon heavily. The valida-
tion of the cached data is dealt with in Section 4.

Commit and abort system calls are provided, and closing a file commits it. If a file is open for modifi-
cation by more that one process, the changes are not made permanent until one of the processes issues a com-
mit system call or until they all close the file.

8.3.3 Commit and Abort

Locuos uses shadow page mechanism for implementing atomuc comunit. The main disadvantage of shadow paging
(that is, the inability to maimain physical relationship among data pages) is not a problem in a Unix file sys-
tem, or in general where record-level updates do not predominate.

When a file is modified, shadow pages are allocated at the SS. The in-core copy of the disk inode is up-
dated to point 10 these new shadow pages. The disk inode is kept intact pointing to the original pages. The
atomic commit operation consists merely of moving the n-core inode, to the disk inode. Afier that point, the
file contains the new information. To abort a set of changes, one merely discards the in-core inode informa-
tion, and frees up the disk space used 1o record the changes. The US function never deals with actual disk pag-

]
(s

¢s, but rather with logical pages. Thas, the entire shadow page mechanism is implemenied at the SS and is
transparent 1o the US.

Locus deals with file modification by first committing the change to the primary copy. Later, mmessages
are sent to all other S57s of the modified file as well as the CSS. At minimum these messages identify the
modified file and contain the new version number (in order 1o prevent atiempls to read the old versions). At
this point, it is the responsibility of these additional SS’s to bring their version up to date by propagating in
the entire file or just the changes. A queuc of propagation requests is kept within the kernel at each site and a
kernel process services the queue efficiently by issuing appropriate read requests. This propagation procedure
uses the standard commit mechanism. Thus, if contact with the file containing the newer version is lost, the
tocal file is left with a coherent copy, albeit still out of date.

Given this commmit mechanism, one is always left with either the original file or a completely changed file,
but never with a partially made change, even in the face of site failures.

8.4 Synchronizing Accesses to Files

Locus tries to emulate conventional Unix semantics on file accesses in a distributed environment. In standard
Unix, multiple processes are permitied to have the same file open concurrently. These processes issue read and
write system calls and the system guarantees that each successive operation sees the effects of the omnes that
precede it. This is implemenied fairly easily by baving the processes share the same operating system data
structures and caches, and by using locks on data structures to serialize requests. Since remote tasking is sup-
ported in Locus, such situations can arise when the sharing processes do not co-reside on the same machine and
hence complicate the implementation significantly.

There are two sharing modes 10 consider. First, in Unix, several processes descending from the same an-
cestor process can share the same current position (offset) in a file. A single token scheme iy devised to pre-
serve this special mode of sharing. Only when the token is presenl, a sile can proceed with executing system
calls needing the offset.

Secondly, in Unix the same in-core inode for a file can be shared by few processes. In Locus, the situa-
tion is much more complicated, since the inode of the file can be cached at several sites. Also, data pages are
cached at multiple sites. A multiple data-tokens scheme is used to synchronize sharing of file's inode and da-
ta. A single exclusive writer, multiple readers policy is enforced. Only a site with the write token for a file
may modify the file, and any site with a read token can read it. Both token schemed are coordinated by token
managers operating at the corresponding storage sites.

The cached data pages are guaranteed o contain valid data only when the file's data token is present.
When the write data token is taken from that site, the inode is copied back to the SS. as well as all mnodified
pages. Since arbitrary changes may have occurred to the file when the token was pot present, all cached buffers
are invalidated when the token is released. When a data token is granted to a site, both the inode and data pag-
es need 1o be fetched from the SS. There are some exceptions to enforcing this policy. Some attribute reading
and writing calls {e.g., stat), as well as directory reading and modifying (¢.2., lockup) calls are not sub-
ject to the synchronization constraints. These calls are sent directly to the S8, where the changes are made,
committed and propagated to all storage and using sites.

The above mechanisim guaraniees consisiency; each access sees the most recent data. A different issue re-
garding access synchronization is serializability of accesses. To this end Locus offers facilities for locking en-
tire files or parts of them. Locking can be advisory (only checked as a result of a locking attempt), or en-
forced (checked on all reads and writes). A process can choose to either fail if it cannot immediately get a
lock or it can wait for it to be released.

8.5 Operation in a Faully Environment

The basic approach in Locus is 1o maintain, within a single partition, strict synchronization among copies of g
file, so that all uses of that file within that partition see the most recent version.

24

The primary copy approach eliminaies the possibility of contlicting updates, since the primary copy
must be in the user’s partition to allow an update. However, the problem of detecting updates, and propagat-
ing them to all the copies remains, especially since updates are allowed in a partitioned network. During nor-
mal operation, the commit protocol ascertains proper detection and propagation of updates as was described
carlier. However, a more elaborate scheme has 10 be employed by recovering sites wishing to bring their packs
up-to-date. To this end, the system mainiains a commir count for each filegroup, enumerating each cormmit of
every lile in the filegroup. Each pack has a lower-warer-mark (bvm) that is a cornmit count value, up 10 which
the system guarantees that all prior commits are reflected in the pack. Also, the primary copy pack keeps a
complete list of all the recent commits in secondary storage. When a pack joins a partition it contacts the pri-
mary copy site, and checks whether its /wm is within the recemt commit list bounds. If this is the c¢ase, the
pack site schedules a kernel process which brings the pack to a consistent state by performing the missing up-
dates. If the primary pack is not available, writing is disallowed in this partition, but reading is possible after
a new CSS is chosen. The new CSS communicates with the partition members so that it would be informed of
the most recent available (in the partition) version of each file in the filegroup. Once the new CSS accomplish-
es this objective, other pack sites can reconcile themselves with it. As a result, all communicating sites see
the same view of the filegroup and this view is as complele as possible, given a particular partition. MNote that
since updaies are allowed within the partition with the primary copy, and Reads are allowed in the rest of the
partitions, it possible to Read out-of-date replicas of a file. Thus, Locus sacrifices consistency for the ability
to continue and both update and read files in a partitioned environment.

When a pack is too far out-of-date (ie., its Jwm indicates a prior value to the earliest commit count val-
ue in the primary copy commit list) the system invokes an application-level process to bring the filegroup up
to date. At this point the system lacks sufficient knowledge of the most recent commits in order to redo the
changes. Instead, the site must inspect the entire inode space to determine which files in its pack are out of
date.

When a site is lost from an operational Locus network a cleanup procedure is necessary. Essentially,
once a site has decided that a particular site is unavailable, it must invoke failure handling for all resources
which local processes were using at that site and for all local resources which processes at that site were us-
ing. This substantial cleaning procedure is the penalty of the state information kept by all three sites partici-
pating in file access.

Since directory updates are not restricted 10 be applied to the primary copy [Walker et al. 19831, con-
flicts among updates in different partitions may arise. However, because of the simple nature of directory en-
tries modification, an automatic reconciliation procedure is devised. This procedure is based on comparing the
inodes and string name pairs of replicas of the same directory. The most extreme action taken is wwhen the
same name string corresponds to two different inodes, and amounts to altering slightly the files name and no-
tifying the files owners by electronic mail.

8.6 Summary
We summarize by outlining an overall profile and evaluation of Locus by pointing out the following issues:

s A distribuied operating system. Because of the multiple dimensions of transparency in Locus, it comes
close to [Tanenbaum and Van Renesse 1985] definition of a truly distributed operating systemy. At least
from the file system aspect, a user is totally unaware of the multiplicity of machines, and to a large ex-
tent is presented with the illusion of a uni-processor Unix machine. Moreover, a user is partially
shielded from effects of various failures of machines and the network. One of the prominent irmpacts of
this characterization is Locus extension into the network. The common pattem in Locus is kernel 1o ker-
nel communication via specialized, high-performance protocols, rather than incorporating some layered,
generic network service, Essentially, kernel augmentation is the implementation strategy in Locus.

» Replicarion. A primary copy replication scheme is employed in Locus. The main merit of this kind of
replication scheme is increased availability of directories which exhibit high read-write ratio. A vailabil-

ity for modifying files is not increased by the primary copy approach. Handling replication trasisparent-
ly is one of the reasons for introducing the CSS entity, which is a third entity taking part in s remote
access. In this context, the CSS functions as the mapping from an abstract {file 1o a physical replica.

Access Synchronization. Locus does not ignore this complex issue. The sharing mode of Unix are emu-
lated to the last detail, in spite of caching at multiple US’s. Alternatively, locking facilities are provid-
ed.

Faulr Tolerance. Subsiantial effort has been devoted to designing mechanisms for faull tolerance. We
name a few: An atomic update facility, merging of replicated packs after recovery and a degree of inde-
pendent operation of partitions.

The resulting robustness can be characterized as follows:

« Within a partiton, the most recent, available version of a file is read. The primary copy mmust be
available for write operations.

« The prumary copy of a file is always up-to-date with the most recent committed version. Other copies
may have either the same version, or an older version, but never a partially modified one.

» The CSS function introduces an additional point of failure. For a file to be available for opening,
both the CSS for the filegroup and a SS must be available.

- Every pathname component must be available for the corresponding file to be available for opening.

A basic questionable decision regarding fault tolerance is the extensive use of in-core inforrmmation by
the CSS and SS functions. Supporting the synchronization policy is a partial cause for maintaining this
information; however, the price paid during recovery is enormous. Besides, explicit deallocation is need-
ed to reclaim this in-core space, resulting in 2 pure overhead of message tratfic.

Scalability Locus does not lend itself for very large distributed system environment, mainly because of
the following reasons.

< A (CSS per an entire filegroup can easily become a bottle-neck for heavily accessed filegroups.

= A logical mount table replicated at all sites is clearly not a scalable mechanism. Distributing this
mapping 1able in a clever way is not an easy task.

= Extensive message traffic and server load caused by the complex synchronization of accesses needed 10
provide Unix Semantics.

Unix compatibility. The way Locus handles remote operation is geared to emulation of standard Unix.
The implementation is merely an extension of Unix implementation across the network. Whenewver buff-
ering is used i Unix, it is used in locus as well. Unix compatibility is indeed retained; however, this
approach has some inherent flaws. First it is not clear whether Unix Semantics are appropriate. For in-
stance, the mechanism for supporting shared file offset by remote processes is complex and expensive.
It is unclear whether this peculiar mode of sharing justifies this price. Second, using caching and buffer-
ing as done in Unix in a distributed sysiem bas some ramifications on the robustness and recowerability
of the system. Compatibility with Unix is indeed an important design goal, but sometimes it obscures
the development of an advanced distributed and robust system.

Finally, we note that there is a Iot to be learned from Locns, merely because of the attempt 1o build a

novel systen.

9

Sprite

Sprite is an experimental distributed operating systern under development at the University of California at
Berkeley. 1t is part of the Spur project [Hill et al. 1986], whose goal is the design and construction of high-
performance multi-processor workstation. A preliminary version of Sprite iy currently operational on inter-
connected Sun workstations.

26

An overview of the file sysiem and related aspects is given in the Section 9.1, Section 9.2 elaborates on
the file lookup mechanism {(called prefix tables) and Section 9.3 on the caching methods employed i the file
system.

8.1 Overview

Sprite designers envision the next generation of workstations as powerful machines with vast physical memo-
ry3. The configuration they target Sprite for, i that of large and fast disks concentrated on a few server ma-
chines servicing the storage nceds of hundreds of diskless workstations inter-connected by several connected
LANSs. By caching files, the large physical memories will compensate for the Jack of local disks.

The interface that Sprite provides in general, and to the file sysiem in particular, is much like the onc
provided by Unix. The file system appears as a single Unix tree encompassing all files and devices in the net-
work, making them equally and transparently accessible from every workstation. As with Locus, the location
transparency is complete; there is no way 1o discern a file’s network location from ils name.

In spite of its functional similarity to Unix, the Sprite kernel was developed from scraich. Oriented to-
wards multi-processing, the kernel is multi-threaded. Synchronization between the multiple threads is based
on monitor-like structures with many small locks protecting the shared data [Hoare 1974]. Network integra-
tion is based on simple kernel-to-kemel RPC facility implemented on top of special purpose network proto-
col. The technique used in the protocol i1s implicit acknowledgment, originally discussed in [Birrel and Nelson
1984].

Unlike NFS, sprite enforces consistency of shared files. Each read system call is guaranteed to retumn
the most up-to-date data for a file, even if it is being opened concurrently by several remote processes. Thus,
as with Locus, Sprite emulates a single time-sharing Unix system on a distributed environment.

A unique feature of the Sprite file system is its interplay with the virtual memory system. Most ver-
sions of Unix use a special disk partition as a swapping area for virtnal memory purposes. In contrast, Sprite
uses ordinary files (called backing files) to store data and stacks of running processes. The motivationns for this
design is that it simplifies process migration and enables flexibility and sharing of the space allocated for
swapping. Backing files are cached in the main memories of servers, just like any other file. It is clairned that
clients would be able to read random pages from server’'s (physical) cache faster than from local disk, which
means that a server with a large cache may provide better paging performance than local disk.

The virtual memory and file system share the same cache and negotiate on how to divide 1t according to
their conflicting needs. Sprite allows the file cache on each machine to grow and shrink in response to chang-
ing demands of the machine’s virtual memory and file system.

We briefly mention some other features of Sprite. In contrast to Unix, where only code can be shared
among processes, Sprite provides a mechanism for sharing an address space between user processes onr a single
workstation. Process migration facility which is transparent both 10 users as well as the migrated process, is
also provided.

9.2 Looking up files with prefix tables

Sprite presents its user with a single file systern hierarchy. The hierarchy is composed of several subtrees
called domains (the Sprite term for component unit), with each server providing storage for one or mnore do-
mains. Each machine maintains a server map called a prefix lable {Welch and Ousterhout 1986], whose function
is to map domains to servers. The mapping is built and updated dynamically by a broadcast protocol. We first
describe how the tables are used during name lookups, and later describe how the tables change dynamically.

Each entry in a prefix table corresponds 1o one of the domains. It contains the pame of the topmost di-
rectory in the domain (called prefix for the domain), the network address of the server storing the dormnain and

7 Currently, workstations have 4M 10 32M byies of main memory. Sprite designers predict that memories of 100M to 500M bytes s»-il} be com-
monplace in few years.

a numeric designator identifying the domain’s root directory for the storing server. Typically this designator
is an index into the server table of open files; it saves repeating expensive name translation.

Every lookup operation for an absolute pathname staris with the client searching 11s prefix table for
the longest prefix matching the given file name. The client strips the matching prefix from the file 1zame and
sends the remaining of the name 1o the selected server along with the designator from the prefix table entry.
The server uses this designator to locate the root direciory of the domain and then it proceeds by usual Unix
pathpame translation for the remainder of the file name. If the server succeeds in completing the translation it
replies with a designator for the open file.

There are several cases where the server does not complete the lookup:

e When the server encounters an absolute pathname in a symbolic link it returns to the client the absolute
pathname without any further ado. The client looks up the new name in its prefix table and initiates an-
other lookup with a new server.

< A pathname can ascend past the root of a domain (because of a parent, i.e., "..", component). In such a
case the server returns the remainder of the pathname to the client. The latter combines the remainder
with the prefix of the domain that was just exited to form a new absolute pathname.

- A pathname can descend down into a new domain too. This can happen when an entry for a domains is
absent from the table, and as a result the prefix of the domain above the missing domain is the longest
matching prefix. The selected server cannot complete the pathname traversal since il descends outside
its domain. Altematively, when a root of a domain is beneath a working directory and a file inn that do-
main is referred to with a relative pathname, the server cannot complete the wanslation, t0o. The solu-
tion to these situations is to place a marker to indicate domain boundaries (2 mount point in NES and
Locus jargon). The marker is a special kind of file called a remore link. Similarly 10 a2 symbolic link, its
content is a file name — its own name in this case. When a2 server encounters a remote link it returns
the file name 1o the clienl.

Relative pathnames are treated simularly to the way they are treated in conventional Unix. When a pro-
cess specifies a new working directory, the prefix mechanism is used to open the working directory and both
its server address and designator are saved in the process’s state. When a lookup operation detects a relative
pathname, it sends the pathname directly to the server for the cumrent working directory along with the lat-
ter’s designator. Hence, from the server's point of view there is no difference between relative and absolute
name lookups.

So far, the key difference from mappings based on the Unix mount mechanism was the initial step of
matching the file name against the prefix table instead of looking it up component by component. Systems
{such as NFS and conventional Unix) which employ name lookup cache get a similar effect of avoiding the
component by component lookup once the cache holds the appropriate information.

Prefix tables are a unique mechanism mainly because of the way they evolve and change. When a remote
link is encountered by the server, it indicates that the client lacks an entry for a domain — the domain whose
remote link was encountered. To obtain the missing prefix information, a client broadcasts a file name. The
server storing that file responds with the prefix table entry for this file, including the string to use as a pre-
fix, the server’s address and the descriptor corresponding to the domain’s rool. The client then can fill in the
details in its prefix table.

Initially each client starts with an empty prefix table. The broadcast protocol is invoked to find the en-
try for the root domain. More entries are added gradually when needed; a domain that has never beenn accessed
will not appear in the table.

The server locations kept in the prefix table are hints that are corrected when found to be wrong.
Hence, it a client fries to open a file and gets no response from the server, it invalidates the prefix iable entry
and attempts a broadcast query. If the server has become available again, it responds to the broadcast and the

28

prefix table entry is re-established. This same mechanism also works if the server reboots at a different net-
work address, or if its domains are moved 10 other servers.

The prefix mechanism ensures that whenever g server storing a domain is up, the domain’s files can be
opened and accessed from any machine regardless of the status of the servers of domains above the prarticular
domain. Essentially, the built-in broadcast protocol enables dynamic configuration and a certain degree of ro-
bustness. Also, when a prefix for a domain exists in a client’s fable, a direct client-server connection is estab-
lished as soon as the client attempts 1o open a file in that domain (in contrast 1o pathname traversal schemes} .

A machine with local disk wishing to keep some local files private can accomplish this by placing an en-
try for the private domain in its prefix table and refusing 1o respond to broadcast queries aboutl it. Orze of the
uses of this provision can be for the directory /usxr/tmp which holds temporary files generated by many
Unix programs. Every workstation neceds access to /usr/tmp. But workstations with local disks would
probably prefer to use their own disk for the temporary space. They can set up their /usr/tmp dorrrains for
private use, with a network file server providing a public version of the domain for diskless clients. All
broadcast queries for fusx /tmp would be handled by the public server.

A primitive form of read-only replication can also be provided. It can be arranged that servers storing a
replicated domamn give different clients different prefix entries (standing for different replicas) for the same
domain. The sarne technique can be used for sharing binary files by different hardware types of machines.

Since the prefix tables bypass part of the directory lookup mechanism, the permission checking done dur-
ing lookup is bypassed 10o0. The effect is that all programs implicitly have search permission along all the
paths denoting prefixes of domains. If access to a domain is to be restricted, it must be restricted at the root
of the domain or below it.

9.3 Caching and Consistency

An important aspect of the Sprite file system design is the extent of using caching techniques. Capitalizing on

-the big main memories and advocating diskless workstations, file caches are stored in-core instead of local
disks (as in Andrew). Caching is used by both client and server workstations. The caches are organized on a
block basis rather than a file basis (as in Andrew). Blocks are currently 4K byies. Each block in the <cache is
virtually addressed by the file designator and a block location within the file. Using virtual addresses instead
of physical disk addresses enables clients to create new blocks in the cache and locate any block without the
file inode being brought from the server.

When a read kernel call is invoked to read a block of a file, the kernel first checks its cache and returns
the information from the cache, if it is present. If the block is not in the cache, the kernel reads it from disk
(if the file is locally stored), or requests it from the server; in either case the block s added to the <ache re-
placing the least recently used block. If the block is requested from the server, the server checks its ova'n cache
before issuing a disk YO and adds the block to its cache, if it was not already there. Currently, Sprite does not
use read-ahead* to speed up sequential read (in contrast 1o NFS).

A delayed-write approach is used to handle file modification. When an application issues a write kemnel
call, the kernel simply writes the block into its cache and returns to the application. The block is not written
through 1o the server’s cache or the disk until if is ejected from the cache, or thirty seconds have elapsed since
the block was last modified. Hence, a block written on a client machine will be written to the server’s cache
in at most thirty seconds, and will be wriiten to the serve’s disk after an additional thirty seconds. T his poli-
¢y results in better performance on the account of a possibility of losing recent changes in a crash.

Sprite employs a version number scheme to enforce consistency of shared files. The version nurmber of a
file is incremented whenever a file is opened in write mode. When a client opens 2 file, it obtains from the
server the file's current version number, which the client compares to the version number associated with the

Read-shead is useful in case of sequential read. Blocks are read from the server disk and buffered on both server and client sides, befesre they are
actually needed. 10 speed-up the read.

cached blocks for that file. If they are difierent, the client discards all cached blocks for the file and reloads
its cache from the server when the blocks are needed. Because of the delayed-write policy, the server does not
always have the current file data. Servers handle this situation by keeping track of the last writer for each
file. When a client other than the last writer opens the file, the server forces the last writer to write all its
dirty blocks back to the server’s cache.

When a server detects (during an Open operation) that file is open on two or more workstations and at
least one of them is writing the file, it disables client caching for that file. All subsequent reads and writes
go through the server, which serializes the accesses. Caching is disabled on a file basis, and the disablements
affects only clients with open files. Obviously, a substantial degradation of performance occurs wherr caching
is disabled. A non-cachable file becomes cachable again when it has been closed on all clients. A file may be
cached simultaneously by several active readers.

This approach depends on the fact that the server is notified whenever a file is opened or closed. This
prohibits performance optimizations such as name caching in which clients open files without contacting the
file servers. Essentially, the servers arc used as centralized control points for cache consistency. Inn order to
fulfill this function they must maintain state information about open files.

9.4 Summary

Since Sprite is currently under development its design sull evolves. However, some definile characteristics of
the system are evident already:

= Extensive use of caching. Sprite is inspired by the vision of diskless workstations with huge physical
memories, and accordingly relies heavily on caching. The current design is fragile due to the arnount of
the state kept in-core by the servers. A server crash results in aborting all processes using files on the
server. On the other hand, Sprite demonstrates the big merit of caching on block basis in main memo-
ry—performance.

= (Consistency semansics. Sprite sacrifices even performance in order to emulate Unix semantics. T his deci-
sion eliminates the possibility of whole file caching as done in Andrew and its benefits.

s Prefix 1ables. There is nothing out of the ordinary in prefix tables. Nevertheless, for LAN based file
systems, prefix tables are a most efficient, dynamic, versatile, and robust mechanism for file lookup.
The key advantages are the built in facility for processing whole prefixes of pathnames (instead of pro-
cessing component by component) and the supporting broadcast protocol which allows dynamic changes
in the tables.

10 The Sun Network File System

The Network File System—NFS—is a name for both an implementation and a specification of a software sys-
tem for accessing remote files across LANs. The implementation is part of the SunOS operating systern which
is a modified version of Unix 4.2 BSD. running on Sun Workstation using an unreliable datagram protocol
(UDP/IP protocol [Postel 80} and Ethernet. The specification and the implementation are intertwined in the
description; whenever a level of detail is needed we refer to the SunOS implementation and whenever the de-
scription is general enough 1t applies to the specification also.

The system is presented in three levels of detail. First (n Section 10.1), the external capabilities of
NFS are described mainly from a user’'s point of view. Then, two service protocols which are the building
blocks for the implementation are examined (Section 10.2). In Section 10.3, a description of the SunOS imple-
mentation is given.

10.1 NFS QOverview

NFS views a sel of interconmected workstations as a set of independens machines with independent file sys-
tems. The goal is 1o allow some degree of sharing among these file systems (upon explicil request) in a trans-

30

parent manner. Sharing is based on server-client relationship. A machine may be, and ofien is, both a chent
and a server. Sharing is allowed between any pair of machines, and not only with dedicated server mrachines.
Consistent with the independence of a machine, is the critical observation that sharing of a remote file system
affects only the client machine and no other machine. Therefore, is no notion of globally shared file system as
in Locus, Sprite, Unix United and Andrew.

To make a remote directory accessible in a transparent manner from a client machine, a user of that ma-
chine has to carry out a mount operation first!. The semantics of the operation is that a remote directory is
mounted over a directory of a local file system. Once the mount is completed, the mounted directory looks
like an integral subtree of the local file system, replacing the subtree descending from the wnderlying directo-
ry. The local directory becomes the name of the rool of the newly mounted directory. Specilying the remote
directory as an argument for the mount operation is dome in a non-transparent manner; the location {i.e. host-
name) of the remote directory has to be provided. However, from then on, users on the chient machine can ac-
cess files in the remote directory in a totally transparent manner, as if it is local. See Figure 10.1 for an exam-
ple of mount mechanism. In Figure 10.1(a), the independent file systems of three machines named client, serv-
erl and server?2 are shown. In Figure 10.1(b), the effects of the mount command

client# /usr/etc/mount serverl:/usr/shared client:/usr/local

performed by the super-user of client are shown. Observe that any file within the dirl directory for in-
stance, can be accessed using the prefix /usr/shared/dirl in client after the mount is complete. T he direc-
tory /usr/local on that machine is not visible any more.

Subject to access rights accreditation, potentially any file system, or a directory within a file system,
can be remotely mounted on top of any local directory. In the latest NFS version (version 4.0, May 1988 de-
scribed in [SUN]}, diskless workstations can even mount their own roots from servers.

Cascading mounts are also permitied. That is, a file system can be mounted over another file system
that is not a local one, but rather a remotely mounted one. However, a machine 1s affected only by the mounts
it has invoked frself. By mounting a remote file system, it does not gain access 1o other file systems that
were, by chance, mounted over the former file system. Thus, the mount mechanism does not exhibit a transi-
tivity property. In Figure 2 we illustrate cascading mounts by continuing our previous example. The figure
shows the result of mounting server2:/dir2/dir3 over client:/usr/shared/dirl which i al-
ready remotely mounted from serverl. Files within dir3 can be accessed in client using the prefix
/usr/shared/dir3.

By mounting a shared file system over user home directories on all the machines, a user can log in o
any workstation and get his home environment. This property is referred 1o as user mobility.

One of the design goals of NES was to operate in a heterogeneous environment of different zmnachines,
operating systems and network architectures. The NFS specification is independent of these mediums and thus
encourages other implementations. This independence is achieved through the use of RPC primitives built on
top of an External Date Represemiation (XDR) protocol—iwo implementation independent interfaces {Sun
1988]. Hence, if the system consists of heterogencous machines and file systems that are properly interfaced to
NFS, file systems of different types can be mounted both locally and remotely.

10.2 NFS Services

The NFS specification distinguishes between the services provided by a mount mechanism and the actual re-
mote file access services. Accordingly, two separate protocols are specified for these services; a mownt proio-
col and a protocol for remote file accesses called the NFS prorocol. The protocols are specified as sets of
RPC’s that define their functionality. These RPC’s are the building blocks used 1o implement transparent re-
mote file access.

3 Actually, only a super-user can invoke the mount system call,

31

10.2.1 The Mount Protocol

The mount protocol is used 1o establish the initial connection between a server and a chient. The semantics of
the mount operation were described in Section 10.1. In Sun’s implementation each machine has a server process
outside the kernel, performing the protocol functions.

A mount operation includes the name of the remote directory to be mounted and the name of the server
machine storing it. The mount request is mapped to the corresponding RPC and forwarded 1o the moumnt server
running on the specific server machine. The server maintains an export lisi (the etc/exports in Unix, which
can be edited only by a super-user), which specifies local file systerns that it exports for mounting, along
with names of machines that are permitied to mount them. Recall that any directory within an exported file
system can be remotely mounted by an accredited machine. Hence, a component unit is such a directorsy’. When
the scrver receives a mount request which conforms to its export hist, it returns to the chient a file handle
that is the key for further accesses to files within the mounted file systemn. The file handle contains all the in-
formation that the server needs to distinguish an individual file 1t stores. In Unix terms the file haradle con-
sists of a file system identifier, and an inode number to identify the exact mounted directory withirz the ex-
ported file system.

The server also maintains a list of the client machines and the corresponding currently mounted directo-
ries. This list is mainly for administrative purposes, for instance notifymg all chients that the server is going
down. Adding and deleting an entry in this list is the only way that the server state is affected by the mount
protocol.

In previous NFS versions, a diskless workstation depended on the ND (Network Disk) protocol which
provides raw block TO service from remote disks. The server disk used to be partiioned, and no sharing of
root file systems was allowed. In the new NFS version, the ND protocol was eliminated and root file sys-
tems can be shared 100.

Usually a system has some static mounting pre-configuration which is established at boot time
{/etc/fstab in Unix); however this layout can be modified.

Besides the actual mount procedure, the mount protocol includes several other procedures like 1xnmount,
return export list etc.

The exact details of how a mount operation changes the client’s view of the file system is explained in
the implememation section; however, it is crucial to pote that this operation changes only the client’s view
and does not affect the server side.

10.2.2 The NFS Protocol
The NFS protocol provides a set of remote procedure calls for remote file operations. The procedures support
the following operations:

= Searching for a file within a directory.

- Reading a set of directory entries.

- Manipulating links and directorics.

« Accessing file atiributes.

s Reading and writing files.

These procedures can be invoked only after having a file handle for the remotely mounted direciory. Re-
call that the mount operation supplies this file handle.

The omission of Open and Close operations is intentional. A prominent feature of NFS servers is that
they are siareless. Servers do not maintain information about their clients from one access 1o another access.
There are no parallels to Unix’s open files table or file structures on the server side. Consequently., each re-

quest has to provide a full set of arguments including a unique file identifier, and an absolute offsct inside the
file for the appropriate operations. The resulting design is very robust since no special measures need 1o be tak-

o
[

en to recover a server afler a crash. File operations need 1o be idempotent for this end.

Maintaining the clients list mentioned in Section 10.2.1 seems 1o violate the statelessness of the server.
However, it is not essential in any manner for the correct operation of the client or the server and herce need
not he restored after a server crash. Consequently, it might include inconsistent data and should be treated
only as a hint.

A further implication of the statcless server philosophy and a result of the synchrony of a RPCT is that
modified data (including indirection and status blocks) musl be committed to the server’s disk before retum-
ing results to the client. Also, il is guaranteed that 2 single NFS write procedure call is atomic, and not in-
termixed with other write calls to the same file.

The NFS protocol does not provide concurrency control mechanisms at all. It is guaranteed that a single
NFS write is atomic; however, since a write system call may be broken up to a few RPC writes (because
each NFS write or read call can contain up to 8192 bytes of data), two clients writing 10 the same remote
file may get intermixed. The claim is that since locks management is inberently stateful, a service outside the
NFS should provide locking. It is advised that users would coordinate access to shared files using mechanisms
outside the scope of NFS.

10.3 Implementation

In general, Sun’s implementation of NFS is integrated with the SunOS kernel for reasons of efficiency
(although such integration is not strictly necessary). In this section we outline this implementation.

10.3.1 Architecture
The NFS architecture consists of three major layers and is schematically depicled in Figure 3. The first layer
is the Unix file system interface based on the open, read,write, close calls and file descriptors.

The second laver is called Virtual File System (VES) layer, and it serves two important functions:

< Separating file system generic operations from their implementation by defining a clean Virtual File
System interface. Several implementations for the VFS interface may coexist on the same machine, al-
lowing transparent access to different types of file systems mounted locally.

< The VFS is based on a file representation structure called a vnode, that contains 2 numerical designator
for a file that is petwork-wide upique. (Recall that Unix inodes are umique only within a single file
system). The kernel maintains one vnode structure for each active node (file or directory).

Thus, the VFS distinguishes local files from remote ones, and local files are further distinguished ac-
cording to their file system types.

Similarly to 2 single-site Unix, the kernel maintains a table (/etc/mtab in Unix) recording the de-
1ails of the mounts in which it took part as a client. Further, the vnodes for each directory which is 1nounte
over are kept in core at all times and are marked, so that requests concerning that directories will be redirect-
ed 1o the corresponding mounted file systems via the mount table. Essentially, the vnode structures comple-
mented by the mount table provide for every file a pointer 10 its parent file sysitem, as well as to the file sys-
tem over which it is mounted.

The VFS activates file systern specific operations 1o handle local requests according to their file system
types, and calls the NFS protocol procedures for remote requests. File handles are consiructed from the rele-
vant vnodes and passed as arguments to these procedures. The layer implementing the NFS protocol is the bot-
tom layer of the architecture and is called the NFS service layer.

As an illustration of the architecture let us trace how an operation on an already open remote file 18
handled (follow the example on Figure 10.3). The client initiates the operation by a regular system call. The
operating system layer maps this call t0 a VFS operation on the appropriate vnode. The VFS layer idenufies
the file as a remote one and invokes the appropriate NFS procedure. An RPC call is made to the NES service
layer at the remote server. This call is reinjected to the VFS layer which finds that it 1s local and inwvokes the
appropriate file system operation. This path is retraced to retumn the result. An advantage of this architecture

L)
L

is the fact that the client and the server are identical; thus, it is possible for a machine to be a client, or 4 serv-
er, or both.

The actual service on each server is performed by several kernel processes, that provide a temporary sub-
stitute 1o a light-weigh-process facility.
10.3.2 Pathname Translation
Pathnames translation is done by breaking the path into component names and doing a separatc NFS I ookup
call for every pair of component name and directory vnode. Once a mount point was crossed, every cornponent
lookup causes a separate RPC 1o the sever. This expensive pathname traversal scheme is needed since each cli-
ent has a unigue layout of its logical name space, dictated by the mounts it performed. It would hzave been
much more efficient 1o hand a server a pathname and receive a target vnode once a mount point was encoun-
tered. But at any point there can be another mount point for the particular client that the stateless server is
unaware of.

To make Jookup faster, a directory name lookup cache in the clients side holds the vnodes for remote di-
rectory names. This cache speeds up references to files with the same initial pathname. The directory cache is
discarded when attributes returned from the server do not match the attributes of the cached vnode.

Recall that mounting a remote file system on top of another already mounted remote file system
(cascading mount) 1s allowed in NFS. However, a server cannot act as an intermediary between a client and an-
other server. Instead, a client should establish direct server-client connection with the second server by direct-
ly mounting the desired directory. When a client has a cascading mount, more than one server can be involved
in a pathname traversal. However, each component lookup is performed between the original client and some
server. Therefore, when a client does a lookup on a directory on which the server has mounted a file system,
the client sees the underlying directory instead of the mounted directory. This decision is based on several fac-
tors. First, performance degradation caused by intermediate connections. Second, complication to access con-
trol. Third, preventing cyclic service arrangements rather than detecting or avoiding them.

10.3.3 Remote Operations

With the exception of opening and closing files, there is almost one-to-one correspondence between the regu-
lar Unix system calls for file operations and The NFS protocol RPCs. Thus, a remote file operation can be
translated directly to the comresponding RPC. Conceptually, NFS adheres to the Remote Service paradigm,
but in practice buffering and caching techniques are employed for the sake of performance. There is no direct
correspondence between a remote operation and an RPC. Instead, file blocks and file atiributes are fetiched by
the RPC’s and cached locally. Future remote operations use the cached data subject t0 some consistency con-
straints.

There are two caches: File blocks cache and file attribute (i-node information) cache. On a file ©pen, the
kernel checks with the remote server whether to fetch or revalidate the cached attributes. The cached file
blocks are used only if the corresponding cached attributes are up-to-date. The attribute cache is updated when-
ever new attributes arrive from the server. Cached attributes are discarded after three seconds for files or thir-
ty seconds for directories. Both read-ahead and delayed-write techniques are wsed between the server and the
client [Sun 88]. (Earlier versions of NFS employed write-on-close [Sandberg et al. 85]). Clients do not free
delayed-write blocks until the server confirms that the data is written to disk. In contrast 1o Sprite, delayed-
write is retained even when a file open concurrently, in conflicting modes. Hence, Unix Semantics are not pre-
served.

Tuning the system for performance makes it very difficult 1o characterize the consisiency sernantics of
NFS. New files created on a machine may not be visible elsewhere for thirty seconds. It is indeierminate
whether writes to a file at one site are visible to other sites that have this file open for reading. New opens of
that file observe only the changes that have already been flushed to the server. Thus, NFS fails to provide nei-
ther strict emulation of Unix Semantics, nor the Session Semantics of Andrew.

10.4 Summary

- Logical name siructure. A fundamental observation is that every machine cstablishes its own view of
the logical name structure, since mounts affect only clients and not servers. Different machines are free
to mount different file systems, and even diffcrent parts of the same exported file system. There is no
notion of global name hierarchy. Each machine has its own root serving as a private and absoluite point
of reference for its own view of the namc structure. This view starts from the Jocal root and descends
downward to the leaf files, crossing mount points that tailor the fragments of the file systerm togeth-
er. Selective mounting of parts of file systems upon explicit request allows cach machine to obitain its
unique view of the global file system. As a result, users enjoy some degree of independence, tlexibility
and privacy. It seems that the penalty paid for this flexibility is administrative complexity. T here are
no facilities 1o administrate and maintain the set of machines as a coherent system. Separatc attention
has to be paid 1o each one of them. The fact that paris of file systems can be mounted complicates mat-
ters even further, since taking a server off-line has the effect of making different parts of different file
systems unavailable.

e Nepnvork service versus distribuied operating sysiem. NFS is a network service for sharing files rather
than an integral component of a distributed operating system as [Tanenbaum and Van Renesse 19851 de-
fines one. This characterization does not contradict the SunOS kernel implementation of NFS, since the
kernel integration is only for performance reasons. Being a network service has two main implications.
First, remole file sharing is not the default, the service for doing so has to be explicitly invoked. More-
over, the first step in accessing a remote file—the mount call—is a location dependent one. Second, per-
ceiving NFS as a service and not as part of the operating system allows its design specification to be im-
plementation independent.

= Remore Service. Once a file can be accessed transparently, VO operations are performed accordinig to the
Remote Service method: The data in the file is not feiched en masse; instead, the remote site protential-
ly participates in each read and write operation. NFS employs caching to improve performance. but the
remote site is conceptually involved in every /O operation.

o Fauli Tolerance. A novel feature of NFS is the stateless approach taken in the design of the servers.
The result 1s resiliency to client, server or network failures. Should a client fail it is nol necessary for
the server 10 take any action. Should a server or the network fail, it is only necessary that clients con-
tinne to attempt to complete NFS operations. Once caching was introduced various patches had to be in-
vented to keep the cached data consistent, without making the server stateful.

o (Consistency Semanrics. NFS does not provide Unix semantics for concurrently open files. In fact the
current semantics cannot be characterized clearly, since they are timing-dependent.
~Finally, it should be realized that NFS is a commercially available software with very reasonable per-
formance and is perceived as an adequate successor of Unix.

11 Andrew

Andrew is a distributed computing environment that has been under development since 1983 at Carnegie-Mel-
lon University. The Andrew file sysiem constitutes the underlying information sharing mechanismn arriong us-
ers of the environment. One of the most formidable requirements of Andrew is its scale — the sysicin is tar-
geted to span over 5,000 workstations. Since 1983, Andrew has gone through design, prototype implementa-
tion, and refinement phases. We concentrate on the current design and implementation which is still a
forerunner for futare versions. It is interesting to examine how the design evolved from the prototype to the
current version. An excellent account on this evolution along with a concise description of the first prototype
can be found in [Howard et al. 19881

In early 1987 Andrew encompassed about 400 workstations and 16 servers. Typically, the workstations
are Sun2’s with local disks of 65M bytes, and the file servers are Sun2’s or Vax-750, each with 2 oxr 3 disks

Lad
L

of 400M bytes.

Section 11.1 gives a brief overview of the file system and introduces #ts primary architectural compo-
nents. Sections 11.2, 11.3 and 11.4 discuss the shared name space structure, the strategy for implemexting file
opcrations, and various implementation details respectively.

11.1 Overview of the Andrew file system

Andrew distinguishes between cliery machines (sometimes referred (0 just as workstations) and dedicated
server machines. Servers and clients alike run the Unix 4.2BSD operating system and are interconnected by an
internet of LANS.

Clients are presenied with a partitioned space of file names: A local name space and a shared name
space. A collection of dedicated servers, collectively called Vice, presents the shared pame space to the cli-
ents as an homogenous, identical, and location transparent file hierarchy. The local name space is the root file
system of a workstation, from which the shared name space descends (see Figure 12.1). Workstatioras are re-
quired to have local disks where they store their local name space, whereas servers collectively are re sponsible
for the storage and management of the shared name space. The Jocal name space is small, distinct for each
workstation, and containg system programs essential for autonomous operation and better performance, tempo-
rary files, and files that the workstation owner explicitly wants, for privacy reasons, to store locally,

Viewed at a finer granularity, clients and servers are structured in clusters interconnecied by a backbone
LAN. Each cluster consists of a collection of workstations, a representative of Vice called a cluster server,
and is connected to the backbone by a rourer (see Figure 2). The decomposition into clusters is primarily to ad-
dress the problem of scale. For optimal performance, workstations should use the server on their own cluster
most of the time, thereby making cross-cluster file references relatively infrequent.

The file system architecture was motivated by consideration of scale, t00. The basic heuristic was to off-
load work from the servers to the clients, in light of the common experience [Lazowska 1986] indicating that
server’s CPU is the system’s bottle-neck. Following this heuristic, the key mechanism selected for remote
file operations is whole file caching. Opening a file causes caching i, in its entirety, in the local disk. Reads
and writes are directed to the cached copy without involving the servers at all. Under cerfain circuzmstances,
the cached copy can be further used for forthcoming opens.

Entire file caching mechanism has a lot of merits which are described subsequently. However, this de-
sign cannot accommodate remote access to very large files (ie., above few Megabytes). Thus, a separate design
will have to address the issue of usage of large databases in the Andrew environment.

There are additional issues in Andrew’s design that will not be discussed here and are just briefly pointed ouat:
= User mobiliry. Users are able (0 access any file in the shared name space from any workstation. The only
noticeable effect of a user accessing files not from his usual workstation would be some initial degrad-
ed performance due to the caching of files.

= Securiry. Special consideration was given to this issue. The Vice interface is considered as the bDoundary
of wustworthiness since no user programs are execuied on Vice machines. Authentication and secure
transmission functions are provided as part of a connection-based communication package, based on the
RP(C paradigm. After mutual anthentication, a Vice server and a client cormunicate via encrypited mes-
sages. Encryption is performed by hardware devices. Information about users and groups is stored in a
protection database that is replicated at each server.

= Protection. Andrew provides access lists for protecting directories and the regular Unix bits for file
protection. The access lists mechanism is based on recursive groups structure, similar to the re gistration
database of Grapevine [Birrel et al. 1982].

» Hererogeneity. Defining a clear ipterface to Vice is a key for integration of diverse workstation hard-
ware and operating sysiem. To facilitate heterogeneity, some files in the local /bin directory are sym-
bolic links pointing to machine specific executable files residing in Vice.

11.2 The shared name space

Andrew’s shared name space is constituied of component units called volumes. Andrew’s volumes are winusnal-
ly small component unit typically they are associated with the files of a single user. Few volumes reside
within a single disk partition and may grow (up 10 a quota) and shrink in size. Conceptually, voluzmmes are
glued together by a mechanism similar to Unix mount mechanism. However, the granularity difference is sig-
nificant, since in Unix only an entire disk partition (containing a file sysiem) can be mounted. Volumres are a
key administrative unit and play a vital role in identifying and locating an individual file.

A Vice file or directory is identified by a low level identifier called fid. Each Andrew directory entry
maps a pathnarme component 1o a fid. A fid is 96 bits long and has 3 equal length components: A volusrne num-
ber, a vnode number, and a uniguifier. The vnode number is used as an index into an array containing the in-
odes of files in a single volume. The uniquitier allows reuse of vnode numbers, thereby keeping certain data
structures compact. Fid's are location transparent; therefore, file movements from server to server d¢» not in-
validate cached dircctory contents.

Location information is kept on a volume basis in a volume location database replicated on eac by server.
A client can identify the location of every volume in the system, querying this database. It is the aggzregation
of tiles into volumes that makes it possible 1o keep the location database at 2 manageable size.

In order to balance the available disk space and utilization of servers, volumes need to be znigrated
among disk partitions and servers. When a volume is shipped to its new location, its original servesr is left
with a temporary forwarding information, so that the location database need not be updated synchzronously.
While the volume 1s being wansferred the original server stll may handle updates, which are shippedd later 10
the new server. At some point the volume is briefly disabled to process the recent modifications, and then the
new volume becomes available again at the new site. The volume movement operation is atomic; if eitkzer serv-
er crashes the operation is aborted.

Read only replication at the granularity of an entire volume is supported for system executable files
and seldom updated files in the upper levels of the Vice name space. The volume location database specifies
the server containing the only read-write copy of a volume and a list of read-only replication sites.

11.3 File Operations and Consistency Semantics

The fundamental architectural principle in Andrew is the caching of enrire files from servers. Accorclingly, a
client workstation inferacts with Vice servers only during opening and closing of files, and even this 2s not al-
ways necessary. No remote interaction is caused by reading or writing files (in contrast to the Remote Service
method). This key distinction has far-reaching ramifications op performance as well as semantics of fiie opera-
tons.

The operating system on each workstations intercepts file system calls and forwards them 1o a =iser lev-
el process on that workstation. This process, called Venus, caches files from Vice when they are opened and
stores modified copies of files back on servers they came from when they are closed. Venus may contact Vice
only when a file is opened or closed; reading and writing of individual bytes of a file are performecdd directly
on the cached copy and bypass Venus. Ags a resull writes at some sites are not visible immediately at other
sites.

Caching is further exploited for future opens of the cached file. Venus assumes that cache«d entries
(files or directories) are valid unless notified otherwise. Therefore, Venus need not contact Vice always on a
file open in order to validate the cached copy. The mechanism to support this policy is called Callback, and it
dramatically reduces the number of cache validation requests received by servers. It works as follows: When a
client caches a file or a directory, the server updates ils state information recording this caching. We say that
the client has a callback on that file. The server notifies the client before allowing a modification {& the file
by another client. In such a case, we say that the server removes the callback on the file for the formeesr client.

37

A client can usc a cached file for open purposes only when the file has a callback. Therefore, i a cliennt closed
a file afier modifying it, all other clients caching this file lose their callbacks. When these clients open the
file later, they have 1o get the new version from the server.

Reading and writing bytes of a file arc donc directly by the kernel without Venus inferventiorz on the
cached copy. Venus regains control when the file 15 closed and, if it has been modified locally, updates it on
the appropriate server. Thus, the only occasions in which Venus contacts Vice servers are on open of files that
either are not in the cache or their callback bas been revoked, and on closes of locally modified filcs.

Basically, Andrew implements Session Semantics. The only exceptions are file operations other than the
primitive Read and Write (such as protection changes at the directory level), which are visible everyw here on
the network immediately after the operation completes.

In spite of the callback mechanism, a small amount of cached validation waffic is still present, wusually
to replace callbacks lost because of machine or petwork failures. When a workstation is rebooted, Verzus con-
siders all cached files and directories suspect and generates a cache validation request for the first use of each
such entry.

The callback mechanism forces each server to maintain callback information and each client to ¥maintain
validity information. 1f the amount of callback information maintained by a server is excessive, it can break
callbacks and reclaim some storage by unilaterally notifying clients and revoking the validity of theix~ cached
files. There 1s a potential for inconsistency if the callback state maintained by Venus gets out of sync wwith the
corresponding state maintained by the servers.

Venus also caches contents of directories and symbolic link for pathname translation. Each cormponent
in the pathname is fetched and a callback is established for it if it is not already cached, or if the client does
not have a callback on it. Lookups are done Jocally by Venus on the fetched directories using fid’s. Thexre is no
forwarding of requests from one server to another. At the end of a pathname traversal all the intermediiate di-
rectories and the target file are in the cache with callbacks on them. Future open calls to this file will in-
volve no network communication at all, unless a callback is broken on a component of the pathname.

The only exception to the caching policy are modifications {o directories which are made directl» on the
server responsible for that directory for reasons of integrity. There are well defined operations in the “ice in-
terface for such purposes. Venus reflects the changes in its cached copy 1o aveid refetching the directory.

11.4 Implementations

User processes are inferfaced to a Unix kernel with the uvsual set of system calls. The kemel is rmodified
slightly to detect references to Vice files in the relevant operations and to forward the requests to tize user-
level Venus process at the worksiation.

Venus carries out pathname translation component by component as was described earlier. It has a map-
ping cache which associates volumes 1o server locations in order 1o avoid server interrogation for arx already
known volume location. If a volume is not present in this cache, Venus contacts any server that it has already
a connection 1o, requests the location information, and enters it into the mapping cache. Unless Venus alrcady
has a connection 10 the server, it establishes a new connection. It then uses this connection to fetch the file or
directory., Connection establishment is needed for authentication and security purposcs. When a targest file is
found and cached, a copy is created on the local disk. Venus then returns 1o the kernel, which opens the cached
copy and returns its handle to the user process.

The Unix file system is used as a low level storage system for both servers and clients. The client cache
is a local directory on the workstation’s disk. Within this directory are files whose names are place -holders
for cache entries. Both Venus and server processes access Unix files directly by their inodes to avoid the< expen-
sive pathname translation routine (namei). Since the internal inode interface is not visible 1o user-le vel pro-
cesses (both Venus and server processes are user-level processes) an appropriate set of additional system calls
was added.

38

Venus manages two separaic caches, one for status and the other for data. Venus uses 2 simple ieast-re-
cently-used (LRU) algorithm to keep cach of them bounded in size. When a file is flushed from the cache, Ve-
nus notifies the appropriate server 1o remove the callback for this file. The status cache is kept in virtual mem-
ory to allow rapid servicing of stat system calls. The data cache is resident on the Jocal disk, but Unix VO
buffering mechanism does some caching of disk blocks in memory that is transparent to Venus.

A single user-level process on each file server services all file requests from chients. This process uses 2
Light Weight Process Package (LWP) with non-preemplable scheduling to concurrently service many < lient re-
quests. The RPC package 1s integrated with the LWP, thereby allowing the file server to be concurrenily mak-
ing or servicing one RPC per lightweight process. RPC 1s built on top of a low level datagram abstraction.
Whole file transfer is implemented as a side effect of RPC call. There is an RPC connection per client, but
there is no a priont binding of lightweight processes to these connections. Instead, a pool of lightwei ght pro-
cesses service client requests on all connections. The use of single, user level, server process allows 10 main-
tain in its address space caches of data structures necded for its operation. On the other hand, a single server
process crash has a disastrous effect of paralyzing this particular server.

11.5 Summary
We revise the highlights of the Andrew file system:

o Name Space and Service Model. Andrew explicitly distinguishes among local and shared name spaces,
as well as among clients and dedicated servers. Clients have small and distinct local name space and can
access the shared name space managed by the servers.

« Scalabiliry. Undoubtedly Andrew is distinguished by this feature. The strategy adopted to address scale

is whole file caching (to local disks) in order to reduce servers load. Servers are not involved iz reading
and writing operations at all. The callback mechanism was invented to reduce the number of wvalidity
checks, Performing pathnames traversal by chients off-loads this burden from servers. The pemnalty for
choosing this strategy and the corresponding designs includes the inability to handle large files, intro-
ducing a lot of state on the servers for the callback mechamsm, and a different consistency semantics.
The structuring of Andrew in clusters tries 1o take advantage of locality of reference, as clients are sup-
posed to access their cluster server files most frequently. Also, this structuring lends iiself easily to
adding workstations and with some effort 10 adding complete clusters (the replicated location <latabase
has to be updated in the latter case).

- Consistency semaniics. Andrew’s semantics are simple and well defined (in contrast to NFS for in-
stance, where effects of concurrent accesses are timing-dependent). However, they are not Unix seman-
tics. Basically, Andrew’s semantics ensure that file updates are visible across the network only after
they are closed.

e Componeni units and location mapping. Andrew’s component unit—the volume—is of relatively fine
granularity and exhibits some primitive mobility capabiliies. Volume location mapping is umxplement-
ed as a complete and replicated mapping at each server,

In [ANI] results of a thorough series of performance experimentation with Andrew is preserxted. The
resulis confirm the current design predictions. That is, the desired effects on server CPU utilization, network
traffic, and overall time needed to perform remote file operations were obtained, in particular under severe
server load. The performance experiments include a benchmark comparison with NFS in which Andrew demon-
strated its superiority regarding the recently mentioned criteria, again especially for severe server load.

12 Overview of Related Work

This paper has focused on small number of concepts and systems, and does not claim to exhaust the area of DF-
Ss. Consequently, many aspects and many sysiems are omitted. In this Section we cite references that comple-
ment this paper.

39

A detailed survey of mainly centralized file servers is found in [Svobodova 84]. The emphasis there is

on support of atomic transactions and not on location transparency and naming. A tutorial on distributecd oper-
ating systems is presented in [Tanenbaum and Van Renesse 85]. There, a distributed operating system is <lefined
and issues like communication primitives and protection are discussed. These two surveys include rich ¥»ibliog-
raphy to a variety of earlier and current distributed systems.

i3

Next, we give a concise overview of a few interesting DFSs that were not surveyed in this paper.

Roe [Ellis and Floyd 85; Floyd 89]. Roe presents a file as an abstraction hiding both replication zand lo-
cation details. Files are migrated to achieve balancing of system-wide disk storage allocation, azxd also
as a remote access method. Consistency of replicated files is obtained by weighted voting al g orithm
[Gifford 1979].

Eden [Jessop et al. 1982; Almes et al. 1983; Black 1985]. A radically different approach is adopsted for
the experimental Eden file sysiem from the university of Washington. The system is based on the ob-
ject-oriented and capability-based [Levy 84] approaches. A file is a dynamic object that can be viewed as
an instance of an abstract data type. It includes processes that satisfy requests oriented to the file (.e.,
there is no separation of passive data files and active server processes). A kernel supported storage sys-
tem provides prunitives for checkpointing the representation of an object to secondary storage, € opying
it, or moving it from machine to machine. Eden files can be replicated, migrated, are named in a loca-
tion independent manner and can support atomic transactions. Emerald is an object-based langua ge and
system for construction of distributed programs, developed at the same university, and it purszies the
same object-oriented approach of Eden [Jul et al. 1987].

Stork [Paris and Tichy 1983]. Stork is an experimental file system that was designed to evaluate the fea-
sibility of file migration as a remote access method. Locating a migratory file is based on a primitive
mechanism of associating the file’s owner with a list of possible machines, where his files can be locat-
ed. Tt is emphasized that file access patterns must exhibit locality in order to make file migratiorz an at-
tractive remote access method.

ibis [Tichy and Ruan 84]. This system is the successor of Stork. Ibis is a user level extension of Unix.
Remote file names are prefixed with their host name, and can appear in system calls as well as #n shell
commands. The replication scheme was described in Section 5.3. Low-level, structured, but location-de-
pendent names are used. One of the parts of the structured name designates the machine that currently
stores the file. These names render file migration a very expensive operation, since it involves all direc-
tories containing the names of the moved file.

Apollo Domain [Leach et al. 82]. The Domain system is a commercial product featuring a collec tion of
powerful workstations connected by a high-speed LAN. An object-oriented approach is taken. Files are
objects, and similarly to other objects are named by UlDs. A UID is a network-wide vnique, low-lev-
el, location independent name. No global state information is kept on object locations. Instead, a sim-
ple location algorithm, based on heuristics for guessing the object’s location, is employed. A unigue fea-
ture of Domain is the way objects are accessed once located. Objects are mapped onto clients” zaddress
spaces and accessed via virtual memory paging. Only the needed portions of the objects are zctually
fetched over the network. Objects are organized in hierarchical directories that associate them with loca-
tion independent textual names.

CONCLUSIONS

In this paper we have presented the basic concepts underlying the design of a distributed file system, axnd sur-
veyed few of the most prominent systems. A comparison of the system is presenied in Table 1.

A cracial observation, based on the assessment of current DFSs, is that the design of a DFS must depart

from approaches developed for conventional file systems. Basing a DFS on emulation of a conventiczal file
system miight be a transparency goal, but it certainly should not be an implementation sirategy. Extending

40

mechanisms developed for conventional file systems over the network is a strategy that disregards the unique
characteristics of a DFS.

Supporting this claim is the observation that a loose notion of consistency semantic is more appropriate
for a DFS than conventional Unix Semantics. Resfrictive semantics incur a complex design and intolerable
overhead. A provision to facilitate restrictive semantics for database applications may be offered as an option.
Consequently, Unix compatibility should be sacrificed for the sake of a good DFS design.

Another area in which departing from conventional system design is essential is the server process archi-
tecture. There is a wide consensus that some form of light weight processes are more suitable than traditional
processes, for handling efficiently high loads of service requests.

It is difficult to present concrete guidelines in the context of fault tolerance and scalability, mainly be-
cause there is still not enough experience in these arcas. It is clear, however, that distribution of control and
data as presented in this paper is a key concept. User convenience calls for hiding the distributed nature of such
a system. As was pointed out in Section 2, the additional flexibility gained by mobile files is the next step in
the spirit of distribution and transparency.

Based on the Andrew experience, off-loading work from servers to clients, and structuring a system as
a collection of clusters prove to be two sound scalability strategies. Clusters should be as autonomous as pos-
sible and should serve as a modular building block for an expandable system.

A factor that is certain to be prominent in the design of future DFSs is the available technology. It is
important to follow technological trends and exploit their potential. Some imminent possibilities are as fol-
fows:

» Big main memories. As main memories become larger and cheaper, main-memory caching (as exempli-
fied in Sprite) would become more attractive. The rewards in terms of performance can be exceptional.

e QOptical Disks. Write-once optical disks [Fujitani 84]] arc already available. Their key features are very
big density, slow access time, and non-erasable writing. For the time being, this medium is bound to be-
come on-line tertiary storage and replace tape devices. Rewritable optical disks are under research and
development.

» Non-volatile RAMs. Battery-backed memorics can survive power outage, thereby enhancing the reliabili-
ty of main-memories caches. A big and reliable memory can cause a revolution in storage techniques.
Still, it is questionable whether this technology is sufficient to make main memories as reliable as
disks, because of the unpredictable consequences of operating system crash [Ousterhout 89].

ACKNOWLEDGMENTS

This work was partially supported by NSF grant IRI 8805215,

REFERENCES

Almes, G. T., Black, A. P. , Lazowska, E. D, Noe, J. D. 1983. The Eden System: A Technical Review. IEEE Transactions on
Software Engineering. Yol. 11, No. 1 (January) , pp. 43-59.

Barak, A., Litman, A. 1985. MOS: a Multicomputer Distributed Operating System. Software — Practice and Experience Vol.
15, No. 8 (August), pp. 725-737.

Barak, A., Malki, D., Wheeler, R. 1986. AFS, BFS, CFS ... or Distributed File Systems for UNIX. EUUG Autumn 86,
(September 22-24, Manchester UK}, pp. 461-472.

Barak, A., Paradise, O. G. 1986. Mos - Scaling up Unix. Proceedings of Usenix 1986 Summer Conference. pp. 414-418.

Rarak, A., Kornatzky, Y. 1987. Design Principles of Operating Systems for Large Scale Multicomputers. IBM Research Divi-
sion, T. J. Watson Research, RC 13220 (#59114).

Bernstein, P., A., Hadzilacos, V.. Goodman, N., 1987. Concurrency Control and Recovery an Database Systems. Addison-Wes-

41

ley, Reading, Mass.

Black, A. P. 1985. Supporting Distributed Applications: Experience with Hden. Proceedings of the 10th Symposium on Oper-
ating Systems Principles, (Orcas Island, Washington, December 1-4). ACM, New York, pp. 181-193.

Birrel, A. D., Levin, R, Needham, R. M., Schroeder, M. D. 1982. Grapevine: An Exercise in Distributed Computing. Communi-
cations of the ACM, Vol. 25, No. 4 (April), pp. 260-274.

Birrel, A. D., Nelson, B. J. 1984. Implementing Remote Procedure calls. ACM Transactions on Computer Systems, Vol. 2, No. 1
{February).

Brownbridge, D. R., Marshall, L. F., Randell, B. 1982. The Newcastle Connection or Unixes of the World Unite! Software —
Practice and Experience, Vol. 12, No. 12 (December), pp. 1147-1162.

Davidson, S. B., Garcia-Molina, H., Skeen, D. 1985. Consistency in Partitioned Networks. ACM Computing Surveys Vol. 17,
No. 3 (September), pp. 341 - 370.

Dion, J. 1980. The Cambridge File Server. ACM SIGOPS Operating Systems Review Vol. 14, No. 4 (October), pp. 26 -35.

Douglis. F., Ousterhout, 1. K. 1989. Beating the /O Bottleneck. ACM SIGOPS Operating Systems Review, Vol 23, No. 1
(January), pp. 11-28.

Ellis, C. S., Floyd, R. A. 1983. The ROE File System. Proceedings of the 3rd Symposium on Reliability in Distributed Soft-
ware and Database Systems, (Clearwater Beach, Florida, October 17-19) IEEE, New York.

Floyd, R. 1989. Transparency in Distributed File Systems. Technical Report 272, Department of Computer Science, Universi-
ty of Rochester, January 1989.

Fujitani, L., Laser Optical Disks: The Coming revolution in On-line Storage. Communication of the ACM Vol. 27, No. © (June).

Gifford, D., Weighted Voting for Replicated Data. Proceedings of the 7th Symposium on Operating Systems Principles
(December). ACM, New York, pp. 150-159.

Hill, M., et al. 1986. Design Decisions in Spur. IEEE Computer, Vol. 19, No. 11 (November), pp. 8-22.

Hoare, C. A. R. 1974. Monitors: An Operating System Structuring Concept. Communication of the ACM, Vol. 17, No. 10
(October).

Howard, I. H., Kazar, M. L., Menees, 8. G., Nichols, D. A., Satyanarayanan, M., Sidebotham, R. N. 1988, Scale and Perfor-
mance in a Distributed File System. ACM Transactions on Computer Systems, Vol. 6, No. 1 (February), pp. 535-81.

Jessop, W. H. et. al. 1982. The Eden Transaction Based File System. Proceedings of the 2nd Symposium on Reliability in Dis-
tributed Software and Databases Systems, (July). IEEE, New York, pp. 163-169.

Jul, E., Levy, H. M., Huchinson, N., Black, A. 1987. Fine Grain Mobility in the Emerald system (extended abstract). Proceed-
ings of the 11th Symposiam on Operating Systems Principles, (Austin Texas, November).

Kepecs, J. 1985, Light Weight Processes for Unix Implementation and Applications. Proceedings of Usenix 1985 Summer
Conference.

Lampson, B. W, eds. 1981. Distributed System — Architecture and Implementation. Springer-Verlag.

Lazowska, E. D., Levy, H. M., Almes, G. T. 1981. The Architecture of the Eden System. Proceedings of the 8th Symposium on
Operating Systems Principles (December). ACM, New York,, pp. 148-159.

Lazowska, E. D., Zahrojan, J., Cheriton, D., Zwaenepoel, W. 1986. File Access Performance of Diskless Workstations, ACM
Transactions on Computer Systems, Vol. 4, No. 3 (August), pp. 238 - 268.

Leach, P. I, Stump B. L., Hamilton, J. A., Levine, P. H. 1982. UID’s as internal names in a distributed file system. Proceedings
of the 1st Symposium on Principles of Distributed Computing (Ottawa, Ontario, Canada, August 18 - 20). ACM,
New York, pp. 34 - 41.

Levy, H. M. 1984, Capability Based Computer Systems. Digital Press, Bedford, Mass.

McKusic, M. K., Joy, W. N, Leffer, 3. J., Fabry, R. 8. 1984, A Fast File System for Unix. ACM Transactions on Computer
Systems Vol. Z MNo. 3 (August), pp. 181-197.

Mitchell, J. G., 1982. File Servers for Local Area Networks. Lecture Notes, Course on Local Area Networks, University of
Kent, Canterbury, England, pp. 83-114.

Morris, J. H., et al. 1986. Andrew: a Distributed Personal Computing Environment. Communication of the ACM, Vol. 29, No. 3
(March), pp. 184-201.

Needham, R. M., Herbert, A. 1. 1982, The Cambridge Distributed Computing System, Addison Wesley, Reading, Mass., 1982

Nelson, M., Welch, B., Ousterhout, J. K. 1988. Caching in the Sprite Network File System. ACM Transactions on Computer
Systems, Vol. 6, No. 1 (February).

Ousterhout J. K., et al. 1985. A Trace-Driven Analysis of the Unix 4.2 BSD File System. Proceedings of the 10th Sy mmposium
on Operating Systems Principles. (Orcas Island, Washington, December 1-4). ACM, New York, pp. 15-24.

Ousterhout, J. K., Cherenson, A. R., Douglis, F., Nelson, M. N., Welch, B. B. 1988. The Sprite Network Operating System.
IEEE Computer, Vol. 21, No. 2 (February), pp. 23-36.

Paris, J. F., Tichy, W. F. 1983. Stork: An Experimental Migrating File System for Computer Networks, Proceedings TEEE IN-
FCOM. IEEE, New York, pp. 168-175.

Popek, G., Walker, B. eds. 1985. The LOCUS Distributed System Architecture. MIT Press, Cambridge Mass., 1985.
Postel, J. 1980. User Datagram Protocol, RFC-768, Network Information Center, SRI, August 1980.

Quarterman, J. 8., Silberschatz, A., Peterson, J. L. 1985. 4.2 and 4.3 BSD as Examples of the UNIX System. ACM Computing
Surveys Vol. 17, No. 4 (December).

Randell, B. 1983, Recursively Structured Distributed Computing Systems. Proceedings of the 3rd Symposium on Reliability
in Distributed Software and Database Systems, {Clearwater Beach, Florida, October 17-19) IEEE, New York, pp. 3-
11.

Ritchie, D. M., Thompson, K. 1974. The UNIX Time Sharing System. Communication of the ACM, Vol. 19, No. 7 (July), pp.
365-375.

Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyone, B.. 1985. Design and Implementation of the Sun Network File Sys-
tem. Proceedings of Usenix 1985 Summer Conference, (June), pp. 119-130.

Satyanarayanan, M., Howard, J. H., Nichols, D. A., Satyvanarayanan, M., Sidebotham, R. N., Spector, A. 7., West, M. J. 1985,
ITC Distributed File System: Principles and Design. Proceedings of the 10th Symposium on Operating Systems
Principles, (Orcas Island, washington, December 1-4). ACM, New York, pp. 35-50.

Schroeder, M. D., Biurrel, A. D., Needham, R. M. 1984. Experience with Grapevine: The Growth of a Distributed System. ACM
Transactions on Computer Systems, Vol. 2, No. 1 (February), pp. 3-23.

Schroeder, M. D., Gifford, D. K., Needham, R. M. 1985. A Caching File System for a Programmer’s Workstation. Sy mposium
on Operating Systems Principles, (Orcas Island, Washington, December 1-4). ACM, New York, pp. 25-32.

Sheltzer, A. B., Popek, G.J. 1986. Internet Locus: Extending transparency to an Internet Environment, IEEE Transactions on
Software Engineering. Vol. SE-12, No. 11 (November).

Sun Microsystems Inc. 1988. Network Programming, Sun Microsystems, Part Number: 800-1779-10, Revision A, of 9 May
1088.

Svobodova, L. 1984. File Servers for Network Based Distributed Systems. ACM Computing Surveys Vol. 16, No. 4
(December), pp. 353 - 398.

Tanenbaum, A. 5., Van Renesse R. 1985 Distributed Operating Systems. ACM Computing Surveys, Vol. 17, No. 4
(December), pp. 419-470.

Tevanian, A., Rashid, R., Golub, D., black, D., Cooper, E., Young, M. 1987. Mach Threads and the Unix Kernel: The Battle for
Control. Proceedings of Usenix 1987 Summer Conference.

Tichy, W. F., Ruan, Z. 1984. Towards a Distributed File System. Proceedings of Usenix 1984 Summer Conference, (Salt lake
City, Utah), pp. 87-97.

Walker, B., Popek, 1., English, R, Kline, C., Thiel, G. 1983. The LOCUS distributed Operating System. ACM SIGOPS , Operat-
ing Systems Review. Vol. 17, No. 5 (October), pp. 49-70.

43

Weinstein, M. J., Page, T. W. Jr., B. K. Livezey, G. I. Popek. 1985. Transactions and Synchronization in a Distributed Operat-
ing System. Proceedings of the 10th Symposium on Operating Systems Principles, (Orcas Island, washington, Decem-
ber 1-4). ACM, New York.

Welch, B. 1986. The Sprite Remote Procedure Call system. Technical report UCB/CSD 86/302, Computer Science Division
(EECS), University of California, Berkeley.

Welch, B., Qusterhout, J. K. 1986. Prefix Tables: & Simple Mechanism for Locating Files in a distributed System. Proceedings
of the 6th Conference on Distributed Computing Systems (May). IEEE, New York, pp. 184-189.

Unix United

Table 1

Locus

Sprite

NFS

Andrew

Background

Interconnecting a set of loosely-cou-
pled Unix systems without modifving

the kernel.

liable di
providing
transparency

A highly buted
ing system

mensions of

operat-
multiple
and
Unix-compatible.

Designed for an environment consist-
ing of diskless workstations with huge
main

LAl

memories interconnected by a

A network service so that indepen-

dent workstations would be able to

share remote files transparentiy.

Designed as the sharing mechanism

of a large-scale svstem for a u

Ly campus.

Single pseudo-Unix tree. Noticeable — Single Umix tree, hiding ~ both Single Unix tree. hiding location, Fach machine has its own view of the Private name spaces and one Unix
machine boundaries. Al pathnames cation and location. global name space. tree for the shared name space. The
meﬂ::j@ mijgmw are relative (by the "7 svntax), In- shared tree descends from each local
dependence of component systems. name space.
Recursive structuring.
O 3# CS:.. Entire Unix hierarchy. A Togical filegroup (Unix file svstem) A domain (Unix file svstem). A directory within an exported file A volume (tvpically. all files of & sin-
om UO_J@ svstem can be remotely mounted, gle user),
Hi Not supported. Supported. Probablv supported. Potential for suppon cists: de- Fully supported.
User Mobility PP P At s _or suppor
mands certain configuration.
Each machine can be both. A triple: USSS.CSS. - Bvery file- Typically, clients are diskless. and serv- Tivery machine can be both. Direct Clustering: Dedicated serve per
O:mw_\;immﬁ<®—. group has a CSS which selects $S and ers are machines with disks. client-server relationship is en- cluster,
synchronizes accesses, Once a file forced.
open, direct US-8S protocol.
E j Emulation of conventional Unix Once a file is open. accesses are Block caching in main memory. In case Remote Service mixed with block Whole file caching in local disks,
@30@@ access Bmﬁ - across the network served by caching. of concurrent writes, switch to Remote caching for ser
OQ Service.
Emulation of Unix buffering. Block caching similar to Unix buffer- Block caching similar to Unix buffering. Block caching similar to Unix buffer- Read and write are served directly

ing. A token scheme for cache con-

Delayed-write policv. Client checks va-

ing. Client checks validity of cached

by the cache without server involve-

O@Oj_j@ sistency. Closing a file commits it on liditv of cached data on each open. Serv- data on each open. Delaved-write ment. Write-on-close policy. Server
the server. er ables caching when a file is poli initiated approach for cache validation
opened in contlicting modes. (callback). hence no need o check
on each open.
OijTwé mmgms Complete Unix Semantics, including Unix Semantics, Not Unix Semantics. timing-depen- Session Semantics.
. " sharing of file offset. dent semantics.
The pathname translation request is US reads each directory and per- Prefix tables mechanism. Inside a do. Lookups are done remotely for each M,J:Q; M%Mnm wwc_w»vm_%w_o::.v. Baﬁcaﬁ
forwarded trom machine to machine. - itself. Give file- ; : + by ser ha ¢ c ¢ o [OTMS Q0OKUp Hseil. Liven o vowume
«U@ﬁ.ﬁgmgm :m<m~\mm_ forms lookup _52&, i:wf: 8 :_w main. lookup is done by server, pathname component, but é of sumber. the server i found i a vol.
eroup number, the CSS is found in them are ated from the client. A ’ i ’ ne moa o

the replicated at all machines logical
mount table. The CSS picks 88.

lookup cache for speedup,

database
Parts of
are cached on each machine.

ume location replicated on

each server. this database

Reconfiguration, File
mobility

Impossible to without
changing

configuration.

move a

its name. No dynamic re-

Because of replication, servers can

he taken off line or fail without distur-
bance. can be

Directory hierarchy

changed by mounting/unmounting,

Broadcast protocol supports

ignment of domains to serve

dyvnamic
res

Mount/unmount can be done dynam-

ically by super-user for each ma-

chine. and change its directory hier-

archy.

Volume migration is supported.

Availability

Not dealt with

Availability of a file means that the
RS and 8§ are available.
file’s pathname
be available for the file 1o be

Each com-

ponent in the must

If a server of a file is available. the file is
available regardless of the state of other
servers (along the pathname).

In cose of cascading mount, each serv-
er along the mount chain has to be

available for a file to be available.

A client has to have & conne
each
nent must be available.

on oo

server, and pathname compo-

opened. The primary copy must be
svailable for a Write.
Oﬂj@ﬂ ?@C: ..ﬂo_@ﬁ A file is committed on close. The pri- No guarantees because of the delayed Complete stateless service. Idempo- Not dealt with f vel. Stateful ges-
mary. copy is always up-to-date. Oth- write polic . Stateful service. tent operations. vice,
ance 1ssues er replicas mayv have older (but not
: partially_modified) versions.
Recursive structuring. Replicated mount table on each site The fact that broadcast is relied upon Not intended for verv large scale svs- Reducing server load and clustering
and €SS for a filegroup are major and server involvement in operations fems. are the main strategy. Replicated lo-
.Mw@mwamg:;x\ _mwcmm problems. might be aproblem. eation database might be a problem.

Unix kernel kept intact. Connection

laver is a library thal intercepts re-

Table 1. continued

Extensive Unix kerne! modification.

Kemel is pushed into the network.

multi-thread-
multi-processor

New kernel based on

ing, intended for

3 lavers: Unix system call interface.
VFS interface to separate file system

with
level processes: Venus al each client,

Augmenting Unix kernel user-

“Bm_mﬂ:mgmzoz m:mﬁa mote calls. User-level daemons for- Some kemel LWP for remote servie- workstation. implementation from operations, and and & single server process on each
e >_‘.Oj;®0~:\=.@ ward and service remote operations. es. Structured, low-level. location-in- NFS laver. Independent specifica- server emploving non-preemptable
@v\.‘ A spawner process creales a server dependent file identifiers arc used. tions for mount and NFS protocols. LWP's. Stiuctured. low-level loca-
process per user that accesses files The Current implementation is ker- tion-independent file identifiers are
using file descriptors. nel-based. used.
Suitable for arbitrary internetwork to- [AN LAN LAN Cluster structure. with a router per
Z@gOle@ pology. No relationship of topology cluster. All communication is based
and name space. Static routing, on high bandwidth LAN technology.
OOBBCﬁgomﬂOS _U—\Ol RPC Specialized low level protocols for RPC on top of special purpose net- RPC, and XDR on top of Uppp RPC on lop of datsgram protocol.
- each operation. work protocol. {unreliable datagram). Whole file transfer as a side effect.
tocol
Replication {primary copy). Atomic Regular files used as swapping area. Staicless service. W/E:aﬂ:om:o: and _ encryption uilt
. . . N 1] ioati ol Ac-
mﬂumoﬁm_ .mmwmﬁcﬂmm update by shadow paging. Interaction between file svstem and nto .mo:ESE:wm:on,39?2 ,»:
virtual memory system cess list mechanism for protection.
ST Limited read-only replication.
. Original Unix kernel. Internetwork- Performance, because of kernel im- Performance. due to main memory Faull tolerance. because of stateless Ability to scale up gracefully. Clear
7\”@“3 mﬂx\mDﬁm@@ ing capabilities. plementation. Fault tolerance. duc 1o caching. protocol. Implementation-indepen- and simple consistency semantics.
replication. atomic update and other dent protocols, ideal for heteroge-
features. Unix compatibility, neous environment,
?_W:J Q_mmwﬂ<m3.~m@® Not fully transparent naming. Complicated %w@~ and large ker- Questionable scalabifity. Not much in Unclear semantics. Performance im- Pault tolerance tssues, due to main-
nel Unscalable features. Complex .00 ocro i olerance. provements obscure clean design. tained state,

recovery due to maintained state.

unix4

Figure 7.1

User-level programs User-level programs

: P .
Connection Layer RPC Connection Layer

Unix Kemel Unix Kermel

Figure 7.2 A schematic view of Unix United
Architecture

unix3

unixl

(a)

unix?2

unixl unix?2

dir

unix4

(b)

Figure 7.3

unix3 /

(©)

unix 1

U2

M2

Ul

(a) Name structure

M1

Figure 7.4

Ul

Mi

(b) Partial topology

U2

Client: Serverl: ServerZ:

usr usr dir2

local shared dir3

dirl

(a)

Client:

dirl

(b)

Figure 10.1

Client:

usr

shared

dirl

N\

Figure 10.2

Client

System calls interface

VFS interface

¥ ¥
Other types Unix 4.2 file NFS client
of file sytems systems
RPC/XDR

Server

VFS interface

NFS server Unix 4.2 file
systems
RPC/XDR 2
disk

Network

Figure 10.3 A Schematic view of the NFS architecture.

