A FRAMEWORK FOR THE PARALLEL
PROCESSING OF DATALOG QUERIES

Sumit Ganguly, Avi Silberschatz, and Shalom Tsur
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-89-05 March 1989

A Framework for the Parallel Processing of Datalog Queries

Sumit Ganguly”
Avi Silberschatz!
Shalom Tsur?

Department of Computer Sciences
The University of Texas
Austin, Texas 78712

Abstract

This paper presents several complementary methods for the parallel, bottom-up evalu-
ation of a class of Datalog queries. Fach of these methods consists of three steps:

1. A rewrite step that renders an equivalent program to the original one, explicitly
amenable to parallel execution.

2. An assignment step that assigns the rules and data of the rewritten program to
Processors.

3. An execution step that performs the computation, either with or without processor
intercommunication.

We introduce the notion of a discriminating predicate by which the computation is
partitioned among the processors and parallelism is acheived. The methods demon-
strate the trade-offs between redundancy (duplication of computation by processors)
and interprocessor-communication.

* Also visiting the Microelectronics and Computer Technology Corporation, Austin, Texas
tThis material is based in part upon work supported by NSF Grant IRI-8805215
!Microelectronics and Computer Technology Corporation, Austin, Texas 78759

1 Introduction

This paper is concerned with the parallel evaluation of linear Datalog programs consisting of one
non-recursive rule (also called exit rule) and one linear recursive rule. These programs have one
derived predicate (also called intensional predicate or output predicate). The canonical Datalog
program that we study in this paper is of the form :

T(E) - R(E)
T(z) « B@)T@)

where:
e T is the output predicate symbol.
e R is an input predicate symbol.
e % is the sequence of variables appearing in the head of the recursive rule.

7 is the sequence of variables which appear as arguments to the unique occurrence of T in
the recursive rule.

[]

e 7 is the sequence of variables appearing in the head of the exit rule.

e B(@) is the conjunction of all the extensional atoms appearing in the body of the recursive
rule. @ is the set of all the variables appearing in the extensional atoms of the body of the
recursive rule.

e In order to ensure the safety property (i.e. finite set of answers), we assume that every
variable appearing in the head of the recursive rule also appears in its body. In terms of @,
and § this means that every variable appearing in Z appears in at least oneof & or § .

We present three parallelization schemes in this paper, each of which take a Datalog program
of the kind stated above, and produces a parallel execution scheme for the Datalog program. In
the sequel, we show how these parallelization techniques can be implemented on two processors.
However, the parallelization schemes are completely scalable, and may be used to obtain parallel
executions on any number of processors. The parallelization techniques proceed in three stages:

1. A rewrite stage. During this stage, the original Datalog program is rewritten in an equivalent
form that preserves the semantics of the original program. In its rewritten form, the program
becomes amenable to a distribution over more than one processor.

2. An assignment stage. At this stage, the rules of the rewritten program are assigned to specific
Processsors.

3. An execution stage. During this stage, the program is executed in parallel. Each of the
processors uses the semi-naive evaluation method. At the end, the results are collected.

For each of the parallelization schemes that we will present, the rewritten programs are different.
We will introduce the notion of a discriminating predicate which partitions the computation carried
out at both the processors. The rewriting method, the assignment of rules of the rewritten program
to the processors and the choice of the discriminating predicate affect the performance of the parallel
execution. Some of the factors that characterize the preformance are:

b

e non-redundancy : Intuitively, this is a measure of the amount of computation duplicated by
each of the processors.

e communication: The additional computation overhead forced by the need to move results
form one processor to the other.

The first parallelization scheme presented in this paper acheives non-redundancy but requires
communication in general (although there are some important special cases like Transitive Clo-
sure in which no communication is required.) The second parallelization scheme does not require
communication. However, this scheme might result in the duplication of computations by the pro-
cessors. The third scheme combines the features of the above parallelization schemes,and exhibits
a trade-off between non-redundancy and communication.

The rest of the paper is organized as follows. Section 2 presents an example of one of the
parallelization schemes by tracing its execution on given data. Section 3 deals with notation and
preliminaries of the underlying theory of Datalog. Sections 4, 5 and 6 respectively present each of
the three parallelization schemes presented in this paper. Section 7 shows how the choice of the
discriminating predicate may affect the parallel execution. We derive two algorithms that have
already appeared in the literature [4, 3] as special cases of our parallelization schemes, by varying
the discriminating predicate. In Section 8, we present our conclusions.

2 An Tllustration of the Parallelization Technique

In this section we introduce our method by showing how a given Datalog program can be executed
in parallel. Given a logic program in the canonical form specified above, we wish to execute it
in parallel using two communicating sequential processes. We have chosen the “same-generation”
Datalog program as an example. We will refer to this program by SG.

SG: sg(z,y) — plua),s9(u,v),p(v,).
sg(z,z) «— human(z).

Intuitively, the atom sg(a,b) is true if ¢ and b have a common ancestor ¢, and the “generation
gap” between a and ¢ and between b and c is the same. Logically, the recursive rule states that =
and y are of the same generation if they have parents u and v that belong to the same generation.
The relation p(u,v) has the intended interpretation: u is the parent of v. The first step in the
parallelization scheme is to rewrite §G as an equivalent Datalog program. We define two Datalog
programs, SG1 and SG2 as follows:

SG1: sgui(z,z) — human(z),odd(z).
sgu(z,y) — plu,),8911(u, v), p(v,y), odd(z).
sga(z,y) — plu,), s911(u,v), p(v,y), even().
3912(357 y) - p(u7$)>3.§’12($’ y)aP(”? y),even(:v).
5911<x3y) A p(u,x},sglg(x,y),p(v’y),odd(w).

SG2: sgoalz,z) human(z), even(z).

1

35’22(37)@/) - p(u7$)73g22(u7 U)’P(”a y),even(a:).
sga2(2,y) — plu,z),5921(u, v), p(v,y), even(z).
5!721(@7 y) - p(uax)asgﬂ(u: v),p(v,y),add(x).
sgai(z,y) < p(u,2), sg21(u, v), p(v, y), odd(z).

Let us denote by Mgsg (p, human)(sg) the set of results produced in the relation sg by the program
SG for the given input relations p and human. We will demonstrate in this example that:

Mse(p, human)(sg) = Mse1(p, human)(sgi1) U Mse: (p, human)(sg22)

The example will use a particular data set; the equality in general will be shown in section 5.
Let the base relations be as follows:

human = {(1,1),(2,2),...,(13,13)}
The relation p is depicted by the graph below. An arci —J implies (¢,7) € p.

We will assign the program SG1 to one processor and SG2 to the other processor. The following
is a trace of the computation.

Processor 1 Processor 2
initial value: {(151),(3,3),...,(13,13)} {(2,2),(4,4),...,(125 12)}
New Tuples after {(2,3),(3,2),(6,7), {(4,5),(5,4),(8,9),

first iteration : {(7,6),(12,13),(13,12)} {(9,8),(10,11), (11,10)}

New tuples after {(4,6),(4,7),(5,6),(5,7), {(10,12),(10,13),(11,12),(11,13),
second iteration : {(6,4),(6,5),(7,4),(7,5)} {(12,10),(12,11),(13,11),(13,10)}

After third
iteration: {} {3

Fixpoint was reached for both computations and the resulis are:

Tuples generated by processor 1 = 21
Tuples generated by processor 2 = 21
Tuples duplicated = 0

If we had executed the sequential program SG on the same input data, then the number of tuples
produced in the output-would be 42. Thus, the parallelization scheme adopted in this example cuts
the execution time in two with no additional overhead. In general, the results obtained for other
programs and different data sets are not always without overhead. This overhead, in particular the
trade-off between redundant computation and communication will be explored in the sequel.

4

3 Preliminaries and Notation

A term in Datalog is a constant or a variable. An atom is a predicate symbol with a constant
or a variable in each of its arguments. A ground atom is an atom with a constant in each of its
arguments. We assume that the constants are natural numbers. An 5 — atom is an atom having §
as the predicate symbol. A rule consists of an atom @), designated as the head, and a conjunction
of one or more atoms, denoted by Q1...Q designated as the body. Such a rule is denoted as
Q—Q1...Qk-

A Datalog program is a finite set of rules whose predicate symbols are divided into two disjoint
subsets: the base predicates, (also called sl extensional predicates) and the derived predicates,
(also called intensional predicates). The base predicates may not appear in the head of any rule
in a Datalog program. An input to a program P is a relation for each base predicate. An output
of P is a relation for each derived predicate of P. The declarative semantics for the output is the
smallest model satisfying P that contains the input relations. Let R;...R, be the base predicate
symbols appearing in the program. Then the smallest model satisfying P and containing Ry ... R,
is denoted as Mp(R1...R,). The interpretation of a specific derived predicate 7' occurring in P
in this smallest model is denoted by Mp(R; ... R,)(T). The notion of completion of a program is
frequently used in the paper and is defined next.

Let p(t1,...,%n) < L1,..., L, be a program clause in a Datalog program P, where #4,...%,, are
Datalog terms. We will require a new predicate symbol “=" , not appearing in P, whose intended
interpretation is the equality relation. The first step is to transform the given clause into

P(T1y ey Zn) — (B1=t)A . (Zn=T) A LA .o A L.

where 21,...,2, are variables not appearing in the clause. Then if 3;,...,yq are the variables of
the original clause, we transform the above formula into

p(a:l,...,xn)é——ﬂyl,...,yd(mlztl)/\ AN (Z‘n:in)/\ Ll/\ AN Lm.

Now, suppose that this transformation is performed for each rule with the predicate symbol p in
its head. Then we obtain k, & > 1 transformed formulas of the form:

})((L‘l, . .,a:n) e El.

p(z1,--.,%n) — Ep.
The union of the formulas above is given by the formula:
Yaq,.. .,Il?n(p($1, . e .,IEn) o< By VoL, Ek)

and is called the completed definiton of p.

For a program P, denote by IFF(P) the union of the completed definitions of each of the predicate
symbols appearing in P. The completion of P, denoted by comp(P) is I[FF(P)UIFF(=). We will
use the following results from the theory of logic programming [1, 2].

1. Every model of the completion of a Datalog program is a model of the datalog program.

2. The smallest model of the completion of a Datalog program is the smallest model of the
datalog program.

A predicate J in a program derives a predicate R if it occurs in the body of a rule whose head
is an R atom. @ is recursive if (€}, Q) is in the non-reflexive transitive closure of the “derives”
relstion. A program P is recursive if it has a recursive predicate. A rule is recursive if the predicate
in its head transitively derives some predicate in its body. The theory of logic programming is
comprehensively treated in [2] and in [1].

4 Parallelization with no Redundancy

In this section we present a parallelization scheme that results in no redundancy. Given the following
program:

L: T(2) « R().
T(z) « B(a),T(F)

Let 7 be any subset of all the variables occurring in the body of the recursive rule, including
the base predicate symbols and the derived predicate symbol. We now introduce the notion of
a discrminating predicate. p, g are called discriminating predicates over some domain I if they
satisfy the following properties:

1. Forany z € D, p(2)V ¢(z) = true.
2. Forany 2 € D, p(z) A q(z) = false.

Examples of such predicates are odd and even , where the domain is the set of natural numbers.
In the following, we assume that p, ¢ and s,{ are discrminating predicates. The predicate symbols
»,q,8 and t are new predicate symbols that do not appear in the original program. In the next
section we rewrite the program L.

4.1 Rewrite Stage

The following program ¢} consists of the subprograms Q1,@2,C, F1,1. Let T be an n-ary predicate
symbol of I and let @ be a sequence of n new variables not appearing in the program L. Introduce
new n-ary predicate symbols 111,719,751 and Tog. Let ¥ be a sequence of some (or possibly
all) of the variables appearing in the body of the recursive rule of L. Let € be a sequence of
some (or possibly all) of the variables appearing in the body of the exit rule of L. The sequences
%, §J, Z and @ are identical to the corresponding sequences in L. The parallelism is obtained by
partitioning the derivation of tuples. The final output 7" is the union of the individual relations T3,
and Ty computed in parallel by processors 1 and 2 respectively. The relation Ty contains the set
of tuples that must be communicated from processor 1 to processor 2, and vice-versa for T5;. The
subprogram [gives the rules for the inital assignment of values to 711 and Ty respectively. The
initial values of T2 and T5; are empty relations. @J1 and (2 represent the recursive components
of the parallel program. @1 evaluates the set of all tuples in T3; whose derivation satisfies the
discriminating predicate p (and vice-versa for §2). However, it is possible that some results in
the final output are generated by applying the derivation of Q1 to the reaults of 2. Hence the
communication step in the subprogram is necessary in general. The double subscripts 7, 7 used
in the predicates T; ; are to be interpreted as follows. The first subscript ¢ denotes the processor
number (1 or 2) where this relation is computed. The second subscript j denotes whether the
derivation of the tuples for T ; satisfy the discriminating predicate p (1) or ¢ (2). We emphasize

that the above discussion is for intuitive clarification alone, and from a formal point of view is not
necessary.

Ql: Tu(®) +« B&),Tu7),p®).
T12(§) ha B(’Zi)v Tll(g)19(6)

Q2: Ty(F) « B(@),Toa(¥), q(7).
Tgl(f) - B(ﬁ)7T22(§)ap("—])

The program @ lends itself to parallelism in a very natural way. However, we first need to establish
the equivalence of the logic programs L and ¢ while preserving the semantics of Datalog. The
claim is that given input relations B ad R, the interpretation of the relation 7" occurring in the
smallest model of I is identical to the interpretation of the relation T' in the smallest model for Q.

Lemma 1: comp(Q) = comp(L).

Proof: Let I be the set of variables appearing in the body of the recursive rule of L, but not in

the head.
Let eq; denote the following formula:

eqi: (w1 =21)A.. . A(w, =2zy)

where z; is the term appearing in the ith argument position in the head of the recursive rule. Let
eqy denote the following formula :

ego: (w1 =2z1)A .. A(wy = 2y)
where z; is the term appearing in the ith argument position of the head of the exit rule. Then,

IFF(L) = Yo (T(®) <& 3A(BE)IANTF)IA eq)V (R(Z)N eq))

Yo (T(ﬂ?) <> T}_l(@)\/ ng(?f)))f\

Vo (Tu(w) « 3 (B@)A Tia(F) A p(v) Aeq)V
Tu(®)V (R(Z)A s(&) A eg2))A

Vo (Tw(®) & F(BE)A Tl)N ¢(8) A equ))A

Vo (Ton(w) < 3(B(@)A Ta2(J)N PO IA equ))A

Vio (Tog{lw) < F(B(@)A Tox(G)N ¢(T)A eq)V
Tia(®)V (R(Z)A HE) A egz))

i

IFF(Q)

IFFQ) = Vo (T(®)
= Vo (T(D)

T}l(?}))V TQQ(?Z’)}
A(B(@)A Tu(F)A p(B)A eq)V
Tya(@)V (R(2) A s(8) A ega)V
A(Ba)A Te(F)A ¢T)A eq1)V
Too(®)V (R(2)A 1(€) A eq))
= VYo (T(@) & 3 (B@)A Tu(@)A p(T)A eq)V
A(B(a)n Tn(@)A p(B)A eq)V
A(Ba)ATu(g)N ¢B)A eq)V
M (Bla)A TG)N (B)N eq)V
(R(Z) A eg2))
= Yo (T(’l—l}) =4 Hl_ (B(’E A Tu(g']) A €Q1)V
A(B(a)A Tn(f)A eqr)V (R(Z)A eq))
= Yo (T(ﬁ:’) =2 3{ (B(ﬂ,) A (Tll(gj) Vv ng(g‘/)) A eql) vV (R(§) A 6QQ))
= VYo (T(w) & A BEIANTE)IA eq)V (R(Z)A eq))
= IFF(L)

U

Let EQ(L) denote the equality theory for the program L, and EQ(P) denote the equality theory
for Q). Since every variable and constant appearing in L also appears in (), we can claim that

EQ(Q)= EQ(L). Hence,

comp(Q) & IFF(Q)AN EQ(Q)
= IFF(L)A EQ(L)
& comp(L)O

Lemma 2: For any input relations B and R, Mg(B,R) 2 My (B,R) .

Proof: Since I and @ are positive definite programs (as all Datalog programs are), Mg(B, R) is
a model of comp(Q). From lemma 1, it is a model of comp(L). Mr(B, R) is the smallest model for
comp(L) and hence Mq(B,R) 2 M(B,R). O

Lemma 3 Let T be an n-ary predicate symbol, and &5 be a sequence of n constants. Then, if
T(5o) or T11(0) or T12(o) or T51(%o) or Tao(&p) has an SLD-refutation of length n from @,
then 7'(dp) has an SLD-refutation from L.

Proof: For the purposes of this proof we will asume that the symbol O denotes the empty clause
and signifies the end of a successful SLD-refutation. The proof is by induction on the length of the
SLD-refutation of T(%o) or Th1(go) or Tha(Zo) or To1(%o) or Tza(%o) from Q.

n=1: T(%o)T21(Fo) and T12(Fo) cannot have SLD-refutation oflength 1. Thus we have two cases:
either Th1(2p) has an SLD-refutation of length 1, or To2(@o) has an SLD-refutation of length

1. Suppose T11(%0) has an SLD-refutation of length 1. Then T11() N R(%0)s(dp) — O
Hence T(&o) 2, R(&o) — O
The same argument holds for Toy(7g).

n>1: Considern =&+ 1.

Case 1:

Case 2:

Case 3:

T(&o) has an SLD-refutation of length » = k + 1 from . The clause used in the first

step of the refutation must be from E1. Suppose the first clause of E1 is used. Then

-1
T(SC_Q) "‘E-L T11(fg) 12—%' . .S.i?-g—)f) |

By the induction hypothesis we know that T'(#y) may be refuted from L.
The proof is similar if the second clause of E2 is used in the first step of the SLD-
refutation.

Suppose T11(Zo) has an SLD-refutation of length n = &k + 1 from Q. There are two
possibilities.

1. The first step in the SLD-refutation may use a clause from Q1.
_ 1 _ _ _, n—lsteps
Ty (%0) 2 B(aio)Tux(go)p(%0) — .- 2o
Hence Ti1(9o) may be refuted from @ using n — 1 steps. By the induction hypoth-

esis, T(go) may be refuted from L. Hence T(#o) may be refuted from L as follows:
T(zo) — B)T (gg) — ... — O

2. The first step in the SLD-refutation may use a clause from C.

— 1st
Tu(f()) -g—% Tgl(fo) £—> . .S. E’E—i O

T51(%o) has an SLD-refutation of n — 1 steps from Q. Hence T(%p) has an SLD-
refutation from L.

The first step in the SLD-refutation must use a clause from ¢J2.

~ 2 _ - _ nsteps
TQl(iE()) ‘9—> B(uo)ng(yg)p(@g) —— p-—> 0

Hence T22(%o) has an SLD-refutation of length n — 1 from ¢J. By the induction hy-
pothesis, T(Jo) has an SLD-refutation from L. hence T(yo) may be refuted from L as
follows.

T(zo) — B(io)JT(go) — ... — O

The other cases for Ty(Fo) and T51(dg) are symmetric. O

Lemma 4: Mp(B,R)T) 2 Mqo(B,R)(T) .

Proof:
Mo(B,RY(T) = {T(&o)| T(do) has an SLD-refutation from Q}
by lemma 3 C {T(do)|T(Zo)has an SLD-refutation from L}

ML{Bv R)(T>

Theorem 4: Mp(B,R)T)= Mg(B,R)(T).

Proof: From lemma 2 we have :

ML(B, R)(T) € Mg(B, R)(T)

From lemma 4 we have :
Mr(B,R)(T) 2 Mqg(B, R)T)
Hence :

Mp(B,R)T) = Mg(B,R)(T)1.

4.2 Assignment and Execution Stages

The equivalence of the Datalog programs L and ¢} have been proven in the previous section. In this
section we will discuss the assignment of the subprograms of ¢} to two processors and their execution.
However, this schema can be generalised to any number of processors. One possibility might be to
assign)1 to processor 1,and assign @2 to processor 2; once this is done, the computation proceeds
as follows. The parallel termination of this algorithm will not be discussed here.

Processor 1: Processor 2:

evaluate the rule evaluate the rule

Tll(f) o R(2),S(é) ng(z) R R(f),t(é)

repeat repeat
evaluate the following rule to a fixpoint evaluate the following rule to a fixpoint
Ty(z) = B(@), Tia(7), 25). Tpo(3)« B), Tua(7), (0).
evaluate the following rule once evaluate the following rule once
T12(Z) — B(a), T12(7), p(7) Ti2(Z) « B(), T12(7), p(?)
send 739 to processor 2 send 151 to processor 1
T]Q(’if?) ~ TQQ('ZE) Tn(?ﬁ) e T21(’&7)
receive Ty from processor 2 receive T35 from processor 1
Tll(ﬁ)) — TZl(?D) Tzz(’EZ?) e T12(’LTJ)

until termination until termination

4.3 Discussion

The algorithm presented above is non-redundant in the following sense. Given input relations B
and R we define :

1. couni(zp) = the number of times tuple T11(4o) or Tye(%o) was generated by the parallel
evaluation algorithm.

2. count— parallel(T) = the sum of the count(&,) for every tuple T11(%o) or Th9(p) generated
by the parallel algorithm. Thus,

count — parallel(T) = Z{count(m‘g V| T(%o) is a tuple in the output}

3. count — seminaive(T) = the sum of the number of times a tuple T(&y) is produced in the
semi-naive evaluation of the original logic program L.

10

We claim that count—seminaive(T) > count—parallel(T). The proof of this claim is quite lengthy.
For brevity we will give only an intuitive justification.

If T(#¢) is generated in the evaluation of the logic program (J1 , then there exists Wy such
that B(do) A T(go) A p(¥p) is true. Hence B(up) A T(go) A ¢(¥o) is false(because p and ¢
are discriminating predicates) and hence the same derivation of the output tuple T(&y) cannot be
replicated in the evaluation of §2. Hence, processors 1 and 2 do not duplicate any work.

5 Parallelization without Communication

In this section we present another parallelization scheme for the logic program I that does not
require communication between processors.

5.1 Rewrite Stage

Rewrite the logic program L as the union of the subprograms P1, P2, and E. The assumptions
about the predicate symbols T, 111, Ti2, T21, T22 and the varible sequences € ,7 and @ are the same
as for program () described earlier. Notice that in this parallelization scheme, the C-component
that appeared in program ¢} is omitted.

Pl: Tiu(Z) < B(@),Tu(y),pv).
Tw(z) « B(u),Tu(y),q®).
Ti2(Z) « B(),T12(9), a(v).
Tll(i) e B(ﬂ),Tm(f]),p(’l_))

Notice that the first two rules of P1 are the same as Q1.

P2: Tpu(Z) « B(z),Tu(),p7©).
Too(Z) « B(u), Ty),q().
Tox(Z) < B(u), T2),q(?).
To1(Z) « B3), T2y),p().

Notice that the last two rules of P2 are the same as Q2.

B T(ﬁf)) A T11(’17J)
T(%) — Tou(d)
T(a’:) el ng(ii)

I: Tn(f) — R(E), 8(5)
Ty(2) — R(2),%@).

We now demonstrate the equivalence of the logic programs L and P,P = P1UP2UJTUE.

Lemma 5: comp(P) = comp(L)

Proof: Let [be the set of variables appearing in the body of the recursive rule of L, but not in
the head.

Let eq; denote the following formula:

eqr: (wi=z1)A . . A(w, =a,)

where z; is the term appearing in the sth argument position in the head of the recursive rule. Let
eqo denote the following formula :

eqa: (w1 =2)A . A(wy = 2,)

where z; is the term appearing in the ith argument position of the head of the exit rule. Then,

IFF(L) = Vo (T(3) € 3N(BE)IA eqr)V (R(Z)A eqr))
IFF(P) < Yo (T(”J)) < Tn“(’lli)V le(?f))\/ T21(’ID)V TQQ(U_)))
Vo (Tu(w) & 3L(B@E)A Tu(@)A pl3)A eqr)V
A A (B)N Ti(F) A p(O) A eq)V

R(Z)N sz) A o))
Vo (Tiz(w) & 3(B(@)A Tu(g)N ¢(¥) A eq)V
ST (B(a)A Tin(@) A a(o)A)
Vo (To(@w) © 3 (B@)A Ta2(g)N p(B)A eq)V
3 (B(a) A Ta(5) A p(0)A eq))
Vi (Top(®) © 3L (B(@)A Ta2()N p(B)A eq)V
A A (B(@)N Taa(g)N p(B)N eqi)V
R(Z)A s(e) N eq))
After simplification as in Lemma 1, we can prove that IFF(P) = IFF(L). Let EQ(P) and
EQ(L) denote the equality theories for P and L respectively. Since every constant, variable and
predicate symbol appearing in L also appear in P, we can claim that EQ(P) = EQ(L). Thus:

IFF(PYUEQ(P)
IFF(LYU EQ(L)
comp(L)O

comp(P)

oy

Theorem 6: M(B,R)(T)= Mp(B,R)(T) .

Proof: By a sequence of lemmas as in lemmas 2 through 5 ,the above result is obtained. O

5.2 Assignment and Execution Stage

One way to get a parallel implementation of P is to assign the various rules of P to different
processors. Notice that the programs P1 and P2 only share the base relations but not the derived
relations. Hence P1 and P2 can be independently assigned to processors without any need for
communication. The computation proceeds operationally as follows.

Processor 1: Processor 2:
evaluate the following datalog evaluate the following datalog
program to a fixpoint program to a fixpoint
Tll(f) o R(E), S(.’f) ng(:l? } R R({Z),t(f)
Tu(@) « B(u)Tu(y)p(®). Tn(z) « B), Ty),p(v).
Tip(Z) « B(@)T11(7)a(v). To2(z) « B(2),To1(¥), (7).
Tio(z) « B(E)T12(7)a(9). Tp2(z) « B), T22(F), q(?).
Tu(Z) < B(@)Ty)p(v). T1(2) < B(2), 1227), p(D).

12

5.2 Discussion

In the above parallel implementation, each processor works with a subset of the input. Hence, it
is expected that each processor would evaluate its output faster than in the case where a single
processor does the evaluation over the entire input relations. Because there is no communication
we can claim that this parallel program performs no worse than a sequential semi-naive evaluation.
To argue that the parallel program actually outperforms the sequential evaluation, we must further
establish that each processor computes only a part of the output and not the entire output. While
intuitively this would almost always be true, one could construct pathological cases where one
of the processors would compute the entire output, and hence there would be no gain over the
sequential case. Consider shared memory architechtures where all inut relations are shared. In that
case there is no overhead of replication of base relations at the processor sites. We can therefore
argue that the above scheme has enough merits to be considered “better” over a sequential semi-
naive evaluation scheme. However, since some computation may be replicated by the processors
redundant computation may result. Contrast this with the algorithm of section 4, which had
no redundancy but required communication. If communication cost is free, the first algorithm is
certainly better than the present one. However, if communication is expensive, it might be better
to use the above algorithm. These are the two extremes, non-redundancy but with communication
vs no communication accompanied by redundancy. In the next section we present an algorithm
whch demonstrates a trade-off betwen the two extremes.

6 Tradeoff between Communication and Redundancy

Let us now compare the properties of the parallelization schemes presented in sections 4 and 5. The
strategy presented in section 4, had the property of no redundancy, but required communication in
general. The strategy presented in section 5 did not require communication, but in general might
result in some redundant computation. In this section, we present a strategy which combines these
strategies. Consider the logic program § = P1U P2UC UIU E; where P1,P2,C,I and E are
the same as the respective subprograms used in programs ¢ and P. We claim that this program is
equivalent to the program L.

Lemma 7: Mg(B,R)2 Mp(B,R)

Proof: S=PlUP2UCUIUE
and P=P1UP2UIUE
Hence, § = P. Therefore Mg(B,R) 2 Mp(B,R). O

Theorem 8 Mr(B,R)(T)= Mp(B,R)(T)= Ms(B,R)(T)
Proof: By an argument exactly similar to lemmas 3 through 5, we establish the above result. O

Since equivalence of § with L has been proved, any correct implementation of § would be a
correct implementation of L. Let us assign processor 1 to evaluate P1, processor 2 to evaluate
P2, and let C represent a synchronous communication between the processors. Suppose that in
a parallel implementation of 5, the subprogram C is never executed. In that case the parallel
implementation reduces to that of P, whose equivalence with I we have already showed. Thus,
executing the communication step is not critical to the correctness of a parallel implementation

13

ofS. We noted earlier that the first two rules of P1 are the same as 1, and the last two rules of
P2 are the same as Q2. Hnce one way to compute the fixpoint of P1 and P2 is the following:

computing fixpoint of P1 computing fixpoint of P2
repeat Tepeat
1. compute subprogram 1. compute subprogram
Q@1 to a fixpoint Q2 to a fixpoint
2. evaluate the last 2. evaluate the first
two rules of P1 once two rules of P2 once
until fixpoint is reached. until fixpoint is reached.

Let us now suppose that the communication step is executed once after each iteration of the
above computation for P1 and P2. Such a communication scheme results in an execution that is
identical to the one for @ presented in section 4. As we already showed there, the scheme resulted
in no redundancy. Thus both the previous parallelization schemes can be derived as different
execution schemes for the above rewriting §, one resulting in no redundancy and the other mnot
requiring communication. In general, more frequent executions of the communication step would
result in lesser redundancy and vice-versa. The above parallelization scheme vividly illustrates the
trade-off between communication and redundancy.

7 The Role of the Discriminating Predicate

In this section we explore the influence of the discriminating predicate on the parallelization schemes
presented. We apply the discriminating predicate to variables respectively appearing in the input
and derived relations. The parallelization scheme of section 5, when applied to a Transitive Closure
and a discriminating predicate applied to the derived relation, is essentially the schema presented
by Wolfson and Silberschatz [4]. The schema of section 4 with the discriminating predicate applied
to the input relation is the same as that presented by Valduriez and Khoshafian [3].

7.1 Discriminating Predicate Applied to the Derived Relation
Consider the folowing Transitive Closure program.

TC : T(z,y) « R(z,y).
T(z,y) <« T(z,2),R(z,9).

Suppose we choose the discriminating predicate to be on the first attribute of the derived relation
T (i.e. attribute z). Let p and ¢ be the discriminating predicates odd and even respectively. Also
let s and be odd and even respectively. Consider the parallelization scheme described in section
5. The rewrite stage of this scheme when applied to T'C above, with p,q,s and ¢ as interpreted
above, generates a new Datalog program W5, as follows:

WS1: Tulz,y) <« R(z,y),odd(z).
Tll(m:y) A TH(J’U,Z),R(Z?y),Odd(CB).
T11($,y) o Tm(s'a,z),R(z,y),add(x).
Tio(z,y) <« Tii(z,2), R(z,y),even(z).
Tio(z,y) « Tialz,2), R(z,y),,even(z).

14

WS82: Tooz,y) — R(z,y),even(z).
T??(wa y) h T22($az)7R(Za y),even(a:).
Tao(z,y) «— Taulz,2),R(z,y),even(z).
TQI("E’ y) A T22($7Z)7R(zsy)50dd(x)'
Tgl(-’l?, ?J) - T21($,Z), R(Z,@),Odd(ﬂf).

After the assign stage, processor 1 is assigned the logic program W51 and procesor 2 is assigned
the logic program WS52. Let us take a closer look at the execution of W.51. It follows from the
rules of WS1 that during the execution phase if (z,y) € Ty then 2 is odd. Therefore the third rule
of WS1 above may be eliminated since it would never contribute anything to the result. Similarily,
if (z,2) € Ty then z is even. Therefore, the fourth rule of W51 may also be eliminated. Thus
W S1 may be rewritten equivalently as:

Tll(xay) A R(CE, y)?‘)dd(w)'
Tll(a:,y) = Tll(mvz)7 R(Z, y)70dd(w)
le(w,y) -~ TlQ(mvz)7R(Z7 y),even(a:).

Notice that the predicate definition of T2 is purely self-recursive, and it is initialised to ¢. Hence
Ty, contributes nothing to the result. Therefore the last rule above may be dropped from W S51.
After this final transformation,W 51 reduces to:

WS Ti(z,y) «— R(z,y),odd(z).
Tu(lﬁ,y) A T11($>Z)>R(Z=y)70dd($)'

Carrying out similar transformations for W52, we get:

W52 : Talz,y) «— R(z,y),even(z).
Too(z,y) « Toa(z,2),R(z,y),even(z).

The parallel program WS’ = W51’ UWS52'. The important property about W' is that

Ti(z,y) = odd(z).
Too(z,y) = even(z).

Processor 1 computes the logic program WS§1’ which contains only one recursive predicate 77i;.
Processor 2 computes the logic program WS2' which contains only one recursive predicate T5,.
Because of the property noted above we can claim that there is no tuple (z,y) in the output which
is computed by both the processors. Hence the parallel computation is non-redundant.

Interpreted as a computation over the graph of the relation R, W.51'is the logic program which
computes all tuples (2, y) such that there is a path in the graph from z to y and z is odd. Similarily
W52’ is the logic program which computes all tuples (z,y) such that z is even and there is a path
from z to y. An important thing to note is that the entire relation R is accessed by both the
processors and hence must be either shared or replicated as the case may be. The reasoning
presented above is applicable to any pivotal programs presented in [4].

7.2 Discriminating Predicate Applied to the Variables of the Input.

Suppose that the base relation R is partitioned (horizontally) into R1 and E2 such that processor
1 has access to R1 and processor 2 has access to R2. Define the discriminating predicate to be

15

»(z,y) = (z,9) € R1
g(z,y) = (z,y) € R2

By applying the rewriting procedure of Section 4, and using the above discriminating predicate, we
get the following Datalog program VK = VK1UVK2.

VE1l: Tu(z,y) « R(z,y),p(z,9)
T11(33sy) b Til(x9z)7R(zvy)’p(z7y)’
T21($ay) A TQQ(Q?,Z),R(Z,?/),}D(Z,Q)-
Tii(z,y) < Taul(z,y).

VEKZ2: T22($> y) A R(‘Ta y)aQ($7y)‘
Toa(z,y) «— Tas(z,2), R(2,9),4(2,9)-
T12(w7y) A Tn(x,z),R(z’y),q(z,y).
Toz(z,y) < Tiz(z,9).

Assign program V K1 to processor 1 and program V K2 to processor 2. Notice that the evaluation of
program V K1 requires the relation oy,)(R) = R1 only. Thus the program VK1 can be evaluated
by processor 1 because the partial input R1 is accessible by it. Smilarily the program VK2 can
be evaluated by processor 2 because the partial input B2 = 0y(y,.) (L) is accessible by processor 2.
However, communication is necessary between the processors because relations Ty; and Ty, appear
in both VK1 and VK2. Thus the evaluation of VK1 cannot be done independent of the program
V K2. Intuitively, the Datalog program V K1 computes the set of all pairs of vertices (z,y) such
that there is a path from z to y, and the last edge in this path belongs to the relation E1. Similarily,
the Datalog program V K2 computes the set of all pairs of vertices (z,y) such that there is a path
from z to y in the graph of R, and the last edge in this path comes from the relation R2. T hus,
if R1 and R2 is an exhaustive partition of all edges of the graph of relation R, it is clear that the
transitive closure is correctly computed. This also explains why it is not possible to compute the
sets computed by V K1 and V K2 independent of each other, for example suppose there is precisely
one path from z to y, with the edges in this path exactly alternating between K1 and E2. The
algorithm obtained as above is essentially the same as the one presented in [3].

7.3 Discussion

The two algorithms above illustrate the impact made by the choice of the discriminating predicate
and its arguments upon the operational nature of the parallel iimplementation. It also shows
how one might be led to choose a discriminating predicate and design an algorithm based upon
constraints such as no replication of data or complete non-redundancy and no communication.
The first algorithm does not require communication, is non-redundant but requires that the input
relation R be shared. The second algorithm requires communication, is non-redundant but does
not require that the input relation be shared.

8 Conclusions

We have presented several complementary methods for the parallel, bottom-up evaluation of linear
Datalog programs. Each of these methods consists of three steps:

16

1. A rewrite step that renders an equivalent program to the original one, explicitly amenable to
parallel execution.

2. An assignment step that assigns the rules and data of the rewritten program to processors.

3. An execution step that performs the computation, either with or without processor intercom-
munication.

We introduced the notion of a discriminating predicate by which the computation is partitioned
among the processors and parallelism is acheived. The methods demonstrate the trade-offs between
redundancy (duplication of computation by processors) and interprocessor-communication.

We would like to extend the applicability of the above strategies to more general classes of
Datalog queries. The choice of discriminating predicates influences the performance of the parallel
execution, and is a very important parameter to the parallelization process. In order for this
method to be useful to a compiler, it would be important to know how these predicates should be
chosen, depending upon the underlying architechture, availability of data and other such factors.
The problem of parallel evaluation of recursive queries has also been addressed in [5, 6, 8, 7].

Acknowledgements

We would like to thank Carlo Zaniolo for many fruitful discussions. We would also like to thank
QOuri Wolfson for discussions during his visit to Austin.

References

[1] Apt K. R. Introduction to Logic Programming. Technical Report TR-87-35, Department of
Computer Sciences, The University of Texas at Austin, 1988.

[2] Lloyd J.W. Foundations of Logic Programming. Springer-Verlag, second edition, 1987.

[3] Valduriez P. and S. Khoshafian. Parallel evaluation of the transitive closure of a database
relation. In International Journal of Parallel Programming, March 1989.

[4] Wolfson O. and A. Silberschatz. Distributed processing of logic programs. In Proceedings of the
1988 ACM SIGMOD International Conference on Management of Data, June 1988.

[5] Wolfson O. Sharing the load of Logic Program Evaluation. In Proceedings of the 1988 Interna-
tional Symposium on Databases in Parallel and Distributed Systems, December 1988.

[6] Cohen S. and O Wolfson. Why A Single Parallelization Strategy is not enough in Knowledge
Bases In Proceedings of the 8th ACM Symposium on Principles of Database Systems, March
1989.

[7] Dong G. On Distributed Processibility of Datalog Queries by Decomposing databases. Personal
Communication.

[8] Houtsma M.A.W. et al. A Logic Query Language and its Algebraic Optimization for a Multi-
processor Database Machine, University of Twenele, December 1988.

