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Abstract

A new hybrid algorithm technique(HAT) based on the idea of mixing
two or more algorithms is proposed. Though the algorithm is general and
may be applied to the majority of optimization problems, a hybrid algo-
rithm search technique(IIAST) is the focus of this paper. As an example of
HAST, this paper describes mixing of simulated annealing and tabu search
algorithms into a new hybrid search algorithm applied to the traveling sales-
man problem. A brief introduction to the simulated annealing and tabu
search algorithms is given followed by a description of how we mixed these
algorithms to form a new parallel hybrid search technique. Comparison of
our algorithm mixer with simulated annealing and tabu scarch indicates
consistently better results. Examples include 33, 42, 50, 57, 75, and 100
city problems from the literature. Solutions for the 50 and 75 city problems
outperform best known published to date results.

Key Words : Algorithm, search techniques, simulated annealing, tabu
search, traveling salesman problem.



1 INTRODUCTION

The idea of combining two or more different algorithms into a single hybrid
algorithm was inspired by the possibility of this new algorithm perform-
ing better than any of its component algorithms individually. The result
is a new class of algorithms under the umbrella of hybrid algorithms tech-
niques(HAT). The hybrid algorithm combines the strengths of the individual
algorithms so that the resulting algorithm provides a combination of the fol-
lowing advantages:

1. can produce better solutions,
2. and/or produce solutions in less time.

3. can effectively handle problems with larger input sizes, especially with
respect to NP problems.

These advantages seem to be gained without major new disadvantages.

Within HAT, the algorithms we are interested are different search tech-
niques applicable to solving combinatorial optimization problems, and are
therefore called hybrid algorithm search techniques(HAST). In order to
guarantee the optimum solution, all possible solutions must be considered.
Unfortunately, many of these problems fall into the class of NP-complete,
and therefore the set of all possible solutions is too large to consider. Heuris-
tics are therefore used to test only more promising subsets of the possible
solutions. The existing algorithms cannot, therefore, assure the optimum
solution will be found.

Several algorithms to solve combinatorial optimization problems exist.
Hybridization of some of these algorithms is intended to combine the strengths
of their respective heuristic techniques into a better algorithm. This new
algorithm should produce solutions more near optimal, or in less time, or
both. The algorithm which produces satisfactory results in less time can
also be applied to larger problems.

We expect our new hybrid algorithm technique to be general and ap-
plicable to the majority of optimization problems. Some examples of these
problems where HAST could be applied are in computer-aided design (e.g.,
integrated circuit or printed circuit board placement and routing), schedul-
ing, resource allocation, test generation, integer programming and a number
of graph heuristic algorithms such as coloring and partitioning. To demon-
strate viability of our hypothesis of increased performance we have chosen
the Traveling Salesman Problem (TSP) which is an easily defined problem



in combinatorial optimization research. The problem consists of finding the
shortest Hamiltonian circuit (circuit that includes every node) in a complete
graph. The nodes of the graph represent cities of a map and the edges are
weighted with the distance between each pair of cities. We will define and
test our algorithms with respect to the traveling salesman problem.

QOur objective is to implement two different combinatorial optimization
algorithms such that they may execute in parallel and exchange data pe-
riodically. The goal is to study the time efficiency and cost of mixing the
simulated annealing[1] and tabu search[2] algorithms into a new parallel
hybrid search algorithm as compared to these algorithms executing inde-
pendently. These three search algorithms are tested on the move of the
2-opt heuristic which is based on swapping pairs of edges [3]. Experiments
are conducted on six well known problems from the literature, namely, the
33 city, 42 city, 50 city, 57 city, 75 city, and 100 city problems. The 50 city
and 75 city problems have no known optimal solutions while the others do.

2 DESCRIPTION OF ALGORITHMS
2.1 SIMULATED ANNEALING

Simulated annealing uses the analogy of annealing to guide the use of moves
which increase cost[4]. The main body of the algorithm (see Figure 1)consists
of two loops, where the inner loop is nested within an outer loop. The in-
ner loop runs till an equilibrium is reached. In this loop, a possible move is
generated using the 2-opt exchange and the decision of accepting the chosen
move is made using an accept function. If the move is accepted, it is applied
to the current tour to generate the next tour state. Equilibrium is reached
when large swings in energy (miles) no longer occur.

The outer loop checks for the stopping condition to be met. Each time
the inner loop is completed, the temperature *(T) is updated using an up-
date temperature function and the stopping criterion is checked again. This
continues until the stopping criterion is met.

The accept function

IF (AC < 0) RETURN(TRUE)
ELSEIF (e~ > random(0,1)) RETURN(TRUE)

!Temperature, by analogy to physical annealing process, represents the control variable
for accepting uphill moves.



ELSE RETURN(FALSE)

assigns a probability of accepting a move based on the current tempera-
ture and the change in cost(AC) which would result in the tour if the move
is accepted. If AC is negative, meaning the cost would go down, a probabil-
ity of one is assigned to acceptance. Otherwise the probability of acceptance
is assigned the value

probability of acceptance = exp(—AC/T).

A randomly generated number is used to test whether the move is accepted.

In our implementation of the simulated annealing algorithm we chose
the stopping criteria to be a set temperature such that the probability of
accepting an uphill move is very close to zero. After a fixed number of
iterations in our algorithm we assume equilibrium is reached. Finally, to
update temperature following equilibrium, we simply multiply the current
temperature by a constant ALPHA, where ALPHA is less than one, to
obtain the new temperature. Thus our implementation of the simulated
annealing algorithms has as inputs the initial temperature, the number of
iterations to simulate equilibrium, and ALPHA. These parameters allow
tuning of the algorithm for the TSP problem.

2.2 Tabu Search

Tabu search is another optimization technique for solving permutation prob-
lems [2]. In this technique, we start with an arbitrary permutation and make
a succession of moves to transform this permutation into an optimal one (or

WHILE (stopping criterion not met)
WHILE (equilibrium not reached)
Generate-next-move()
IF (Accept(Temperature, change-in-cost))
Update-tour()
ENDWHILE
Calculate-new-temperature()
ENDWHILE

Figure 1: Simulated annealing algorithm.



as close to the optimum as possible). In determining the shortest tour for
a given set of cities, the tabu search procedure starts with a randomly gen-
erated tour and makes a succession of 2-opt exchanges that reduces the
cost. At each step all the possible 2-opt moves are examined and the one
which gives the best improvement in tour cost is chosen. In order to prevent
the process from being trapped at a local optimum, this algorithm allows
moves that increases the tour cost (uphill moves). It is most likely that the
moves following the uphill moves will reverse it and retrace the path back
to the local optimum. This results in cycling. To avoid this, the procedure
maintains a history of recent moves and classifies moves that reverse these
as tabu. This enables the search process to escape the local optima and
explore new areas of the solution state space.

Creating a tabu classification for the moves involves the identification of
the swap attributes which could be one of the following :

e the cities involved in the swap, or
e the positions they occupy before/after the swap, or
e the direction in which the cities move in the swap.

The tour of the cities is represented in a one-dimensional array format, with
the array index denoting the position of the city in the tour. If the city
moves from a lower index to a higher index during a swap, then it is said to
move right. Conversely, if it moves from a higher index to a lower one, then
it is said to move left.

We also need to identify the tabu classifications based on the attributes
so that we can specify a set of moves as tabu. These attributes are dis-
cussed in detail in the next section. Figure 2 shows the tabu search strategy
superimposed on the hill climbing heuristic.

The algorithm examines all the swaps of the current tour and keeps track
of the best-swap-value, however, those that are classified as tabu are rejected
if they do not satisfy the aspiration criteria 2, In other words, we restrict
the set of available swaps. The tabu status of the move is overridden and
the move is accepted if the swap-value satisfies the aspiration level. The
best-swap among all the available swaps for the current tour is obtained at
the exit of the inner loop. In the hill climbing method, the best-swap-value

27This is a concept based on the observation that it may be advantageous to override a
tabu restriction if it promises a better solution or a new search space.
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is usually negative indicating a reduction of the current tour cost. When it
becomes positive, the process has reached its terminating condition.

In tabu search, the best-swap is executed regardless of the sign of the
best-swap-value. The best swap from the inner loop is accepted even if
it results in a higher tour cost. This helps the process to climb out of
local optima. The outer loop keeps track of the best-tour and its cost.
The tabu list is also updated by including the current move made. The
stopping criteria is usually a fixed set of iterations or a fixed computation
time specified in the input.

2.2.1 Tabu conditions

This section presents examples of the move attributes and the tabu restric-
tions based on these attributes. In our implementation we select only one
tabu condition for a specific tabu search process.

1. Vector (I, J, POSITION(I), POSITION(J) ) -
this vector is maintained to prevent any swap in the future from re-
sulting in a tour with city I and city J occupying POSITION(I) and
POSITION(J) respectively.

2. Vector (I, J, POSITION(I), POSITION(J) ) -
the same vector to prevent a swap resulting in city I occupying POSI-
TION(I) or city J occupying POSITION(J).

3. Vector (I, POSITION(I)) -
to prevent city I from returning to POSITION(I).

4. City I -
to prevent city I from moving LEFT of current position.

5, City I - .
to prevent I from moving in any direction.

6. Vector (J, POSITION(J)) -
to prevent city J from returning to POSITION(J).

7. City J -
to prevent city J from moving RIGHT of current position.

8. City J -
to prevent J from moving in any direction.



9, Cities I and J -
to prevent both from moving.

Conditions 3 through 9 have been established by assuming that cities
1 and J are identified such that POSITION(I) < POSITION(J). It is ob-
vious that condition 1 is the least restrictive and 9 is the most restrictive.
Conditions 3, 4 and 5 have increasing restrictiveness.

2.3 SIMULATED ANNEALING/TABU SEARCH HYBRID
(SATH)

As can be seen from the previous two sections, simulated annealing and
tabu search use very different approaches to search for optimal solutions to
combinatorial optimization problems. Although both of these algorithms
provide good results on some problems, neither can guarantee the optimal
solution will be found in real time. This, of course, leaves room for improved
algorithms. We have therefore developed a hybrid algorithm in attempt to
produce better performance.

SATH is a simulated annealing/tabu search hybrid algorithm, the first
in a new class of easily parallelizable hybrid algorithms. SATH incorporates
both simulated annealing and tabu search as low level algorithms with a
high level algorithm to mix the results from each. The idea is to execute
each low level algorithm for some specified amount of time, the results of
which are evaluated by the high level algorithm. The low level routines are
than restarted in a more promising area of the solution space. This process
is repeated as many times as is necessary or desired.

The SATH algorithm can be realized with the simulated annealing and
tabu search portions implemented as subroutines. These subroutines could
be executed, one after the other, followed by analysis of the results by a
higher level routine. However, one of the most important features of this
hybrid algorithm is the ease with which it may be executed in parallel. Each
low level algorithm can be executed in parallel with a supervising process
to synchronize execution and analyze results. This opens up the possiblility
of executing several low level algorithms in parallel, any number of which
may be instances of simulated annealing or tabu search with different oper-
ating parameters. Interprocess communication is minimal and only occurs
between a low level algorithm and the single high level algorithm. Speedup
can therefore be linear with the number of processors as long as the number
of processors does not exceed the number of low level algorithms.



3 IMPLEMENTATION OF ALGORITHMS

3.1 Implementation of simulated annealing

To implement the simulated annealing algorithm, as described earlier, re-
quires specifying the stopping and equilibrium criteria, and the update tem-
perature tule. The stopping criteria chosen for the algorithm is for the
temperature to reach a specified value. This stopping temperature is chosen
such that the probability of accepting an uphill move is very close to 0. We
make the typical assumption that the equilibrium is reached after a fixed
number of iterations. The update temperature rule is
new-temperature = a * lemperature,

where « is a constant less than one.

The consequence of choosing these parameters to be simple constants
is some increase in computation time. It forces the choice of a and the
number of iterations to be tuned for the critical regions of temperature.
This critical region requires a slow annealing rate. However, at high and
low temperatures it is possible to anneal at a faster rate.

The simulated annealing algorithm implemented has as inputs the initial
temperature, the number of iterations to simulate equilibrium, and a. These
parameters allow the algorithm to be tuned for any TSP problem.

3.2 Implementation of Tabu search
3.2.1 Data structures

In order to determine the tabu status of a move and update the tabu list
efficiently, we need well-designed data structures. As an example, the tabu
identification and tabu-list update for one of the tabu conditions(condition-
4) is described below.

There are two lists, tabu-left and tabu-list. The first list, tabu-left, indi-
cates which cities are prevented from moving left of their current position.
The second list, tabu-list, contains a fixed number of cities that had been
moved to the right in the last k iterations (k is the tabu-list size which is an
input parameter).

Updating the tabu-list with a new city ¢ which was moved right is done
by incrementing an index(ring-indez) to the tabu-list and overwriting the
city ¢ at this new index position. This automatically removes the tabu status
of the city which was residing in the new position of the index. In order for
the index to stay in range of the list, the incrementing is done using a mod



operator : new-ring-index = (ring-index + 1) mod tabu-size. Similar data
structures have been implemented for other tabu conditions.

3.2.2 Aspiration criterion

The aspiration criterion we have used is straightforward. Any tabu move
that reduces the current tour-cost to a value below the best-tour-cost ob-
tained by the process so far is accepted. When the move results in a tour-cost
lower than the best-tour-cost, it indicates a new path not previously visited
and so the move can no longer be termed as tabu. This simple aspiration
criterion is :

tour-cost + swap-value(I,J) < best-tour-cost

3.2.3 Tabu list size

This parameter needs experimental tuning. It can be observed that for
highly restrictive tabu conditions the tabu list size has to be smaller than for
lesser restrictive conditions. If the tabu list size is small, cycling phenomenon
will be evident, whereas, if it is large, the process might be driven away
from the vicinity of global optimum. The optimum tabu list size will be the
one which is long encugh to prevent cycling but small enough to explore a
continuum of solution space. Experimental results with the 42 and 57 city
problems have shown that for tabu conditions 1, 2, 3 and 6, list sizes of the
order of the size of the problem is good. For conditions 4, 5, 7 and 8, the
list size ranging from 7 to 30 gave us good results.

3.2.4 Long term memory

This is a function designed to enable the process to explore new areas of the
solution state space. Applying tabu search from several different starting
points is more likely to perform better than exploring from one starting
point. Instead of starting at randomly chosen starting points, if we can
provide a purposeful alternate starting point for search, we might be able to
reach the optimum faster. In our approach for an alternate starting point,
we use a long term history function that maintains the edges visited by the
process and generates a starting point consisting of edges that have been
visited the least. We maintain a two dimensional array of occurrence of
each edge. After each 2-opt move, the entries corresponding to all the edges



in the new tour are incremented. After a specified number of iterations, a
new starting tour is generated based on the edges that occur least frequently.
The results obtained using this memory function are very encouraging. We
were able to reach the optimum results for the 42 and 57 city problems
consistently from different random starting points.

3.3 Implementation of SATH

We implemented our SATH algorithm by allocating a separate process for
each part of the algorithm. The basic implementation includes one main
process and two child processes. When the program is executed, a main
process is generated which reads in the problem definition. The main process
then creates a set of child processes, one of which is a simulated annealing
process, the other of which is a tabu search process. After specified time
intervals, the child processes are halted and the main process compares their
results. It selects a good solution for the child processes to continue with.
A good solution might be the one with the least cost. In case the tour with
the least cost had already been given to the child processes, passing the
same tour again will result in cycling. To prevent this from happening, the
tour with the next to least tour (if not previously encountered) is made the
common starting point for the child processes.

Implemented in this fashion the SATH algorithm can be executed on a
single processor or on multiple processors with very little effort. The al-
gorithm is also expandable by adding additional simulated annealing and
tabu search processes executing with different search parameters. The algo-
rithm can be expanded in this way until there is a process for every available
Processor.

To execute the SATH algorithm on a single processor requires that only
one processor is available to execute the processes. In addition, synchro-
nization was added to assure one process executes to completion before the
next one begins.

In our SATH algorithm each simulated annealing process executes with
a different annealing schedule. The schedules are chosen as in the accel-
erated simulated annealing algorithm described in [3]. When the SATH
algorithm had multiple tabu search processes, each process had a different
tabu condition and a corresponding tabu list size to distribute the search in
the solution space.

10



4 TSP EXPERIMENTS

The experiments on the TSP were performed on a multiprocessor system,
the Sequent Balance 8000 computer running the DYNIX?3 operating sys-
tem, a version of UNIX 4.2bsd?. The Sequent Balance 8000 has ten ho-
mogeneous 32-bit processors. Our programs are written in PPL (Parallel
Program Language)[5] , which is a set of extensions to the C programming
language[6]. PPL allows easy parallelization of the SATH algorithm.

The experiments were conducted on the 33, 42, 57 and 100 city prob-
lems, each with known optimum solutions. In addition, experiments were
conducted on the 50 and 75 city problems, each with unknown optimum
solutions. For each problem, six tours were generated randomly and this
set was given as starting tours to all algorithms. The SATH algorithm was
executed on one, two, four and eight processors, with half the processors
executing simulated annealing and the other half executing tabu search. It
was found that one processor implementation of mixing the algorithms gave
the same results as the parallel version in which both processes were run in
parallel on two processors. The time of execution and the best time for one
processor implementation were roughly twice that of the two processor par-
allel implementation. Hence further experiments were conducted on mutiple
processors with all processes executing in parallel.

The parameters of the algorithm were tuned for each problem and then
these parameters were used for all the six starting tours. The parameters
were not changed for each starting tour. The simulated annealing algorithm
is supposed to give the best result at the end of the annealing process and so
the time at which the best result was obtained is the same as the execution
time for the algorithm. Tabu search algorithm maintains a monitor which
records the best result as it is generated. The best time is the instance of
time at which the best result was generated. In SATH, a monitor keeps
track of the best tours at the instances of comparison and the best time
refers to the time at which the main process encountered the best result
while comparing and passing back tours. Hence in tabu search and SATH,
the best time is not necessarily the execution time of the process.

3DYNIX is a trademark of Sequent Computer, Inc.
4UUNIX 4.2bsd is a Berkeley Software Distribution version of UNIX, UNIX is a trade-
mark of AT& T
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4.1 Simulated Annealing

Each execution of the simulated annealing algorithm takes as input pa-
rameters the number of iterations to approximate equilibrium, the starting
temperature, and the cooling rate . These input parameters allow the al-
gorithm to be tuned for a specific problem. Experiments were performed for
the 33, 42, 57 and 100 city problems with proven optimum solution and for
50 and 75 city problems where only best solutions to date are known[7].

For each problem the first step in the experimentation was to tune the
algorithm for the problem. During tuning of the algorithm we varied the
input parameters throughout a wide range. The number of iterations to
simulate equilibrium ranged from 4 to 20. The starting temperatures varied
from 10 all the way up to 10,000. o values of .98 down to .50 were tried.
For each of these problems a different input parameter set was chosen from
the tuning process.

Results from applying our simulated annealing algorithm on the 33 city
problem was very good, reaching the known optimal solution from all but
one starting tour. The the published optimum solution has a tour cost
of 10861 miles. The time required for execution of the problem was 115
seconds.

The process of tuning the algorithm for the 42 city problem resulted
in several input parameter sets reaching the same minimum cost solution.
The parameter set which found the minimum cost in shortest time took
185 seconds to execute. Using this input parameter set, resulting tour costs
ranged from 699 miles to 705 miles. Roughly half of the results had a tour
cost of 699 miles for our set of randomly generated starting tours. The
optimal solution to the 42 city problem is published to be 699 miles [8]. We
observed this tour to be (0 1 2 ... 40 41).

The 57 city problem proved to be more difficult. After tuning the algo-
rithm, we reached the optimum solution of 12955 [9] miles only once on our
set of randomly generated starting tours. However, all non-optimal results
were within one percent of optimum. Resulting tour costs found ranged
from 12955 miles to 13042 miles, requiring 430 seconds to execute.

The 100 city problem was the most difficult. The published optimal
solution is 21282 miles when the problem is executed using floating point
numbers. This corresponds to a tour cost of 21247 miles when the elements
of the cost matrix are truncated, as we did in our experiments for the 100
city problem, for the same tour. While tuning our algorithm for this problem
we chose cooling schedules which took up to 10 hours to complete. However,

12



Table 1: Results of simulated annealing algorithm.

Problem | Average | Average % above | Average | Best cost

size cost best known solution time

33 10905 0.4 113 10861
42 701 0.3 185 699
50 432 1.6 280 425
57 12999 0.34 430 12955
75 546 2.1 570 535
100 21500 1.19 1242 21267

we never reached the optimal solution. The cooling schedule we finally chose
required 1242 seconds to execute. Using this schedule our results averaged
21500 miles, with the best result of 21267 miles, on our randomly generated
set of starting tours.

The final two problems we considered have no proven optimal solutions.
We reported the best to date solution to the 50 city problem as 425 miles
and 535 miles for the 75 city problem [3]. Executing our simulated annealing
algorithm on the 50 city problem resulted in one solution equalling our
reported best solution for our set of randomly generated starting tours. Our
results ranged from 425 miles to 438 miles with an average cost of 432 miles.
The time to execute our algorithm on this problem was 280 seconds.

For the 75 city problem our algorithm resulted in one solution of equal
quality to our previously reported results on our set of randomly generated
stating tours. The range of results was from 535 miles to 559 miles, with an
average tour cost of 546 miles. The time to execute our algorithm on this
problem was 315 seconds.

Table 1 shows the results of the simulated annealing algorithm for the six
problems studied. Columns 2 and 4 show the average tour cost and average
execution time for six randomly selected starting tours. The third column
represents the percentage by which the average tour cost is inferior to the
optimum or the best known cost. The best cost obtained in the six rumns is
shown in the last column.
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4.2 Tabu search

The first stage in developing the tabu search algorithm was the implemen-
tation of the hill climbing heuristic. The hill climbing algorithm was then
transformed into the tabu search algorithm using the nine different tabu con-
ditions discussed earlier. The tabu search process has the following input
parameters :

¢ tabu condition,
e tabu list size and
e total number of iterations.

The tabu condition and the tabu list size are two interdependant parameters
and the algorithm is very sensitive to both of them. A smaller tabu list size
for a weaker tabu condition will result in cycling, whereas, a larger tabu list
size for a stronger tabu condition could drive the search process away from
the global optimum. A compromise had to be reached and experiments
were conducted for all the nine tabu conditions to find out a reasonable
range of tabu list sizes for each of these conditions. Generally, tabu list
sizes from one-fourth to one-third the number of cities for conditions 4 and
7, and about one-fifth for conditions 5, 8 and 9 gave the best results for
the problems tested. Conditions 1, 2, 3 and 6 required tabu list sizes in
the vicinity of the problem size. On an average, tabu conditions 4 and 7
produced better results in a shorter time than the other conditions.

The next step was to include the long term memory function. This
function requires the tuning of an additional input parameter - the num-
ber of iterations in tabu search before generating a new starting tour. The
algorithm must be given sufficient search time in its current path before gen-
erating a totally different starting tour. The performance of the algorithm
with long term memory function was compared with the original tabu search
algorithm by making the total number of iterations and the starting points
identical for both versions. For every run, the algorithm with the memory
function outperformed the simpler version in both computation time and
the quality of the solution.

On the 33 and 42 city problems, the tabu search algorithm produced the
published optimal results of 10861 and 699 miles from each of the randomly
selected starting tours. For the 33 city problem, the number of iterations
required to produce optimum result ranged from 29 to 271 iterations taking
a total run time of about 30 seconds. For the 42 city problem, the optimum

14



Table 2: Results of tabu search algorithm.

Problem | Average | Average % above Average time | Best cost | Total time
size cost best known solution | (for best cost) (seconds)
33 10861 0 15 10861 31
42 699 0 31 699 31
50 430 1.2 47 426 100
57 12999 0.34 109 12955 260
75 545 1.9 117 537 225
100 21611 1.7 792 21317 1000

was attained in less than 30 seconds in each run with the number of iterations
ranging from 33 to 117.

The 57 city problem proved to be more difficult with the optimum of
12955 miles attained twice with six randomly selected starting tours. But,
the worst tour cost in these runs was only 13067 miles. The number of
iterations for these random starting tours to reach the best tour varied from
73 to 897 iterations requiring a maximum of 260 seconds.

The best solution found by tabu search for the 100 city problem was
21317 miles taking 1193 iterations (about 16 minutes). For the 50 and 75
city problems whose optimal solutions are unknown, tabu search easily beat
the best previously published results. The best solution for the 50 city
problem had a tour length of 426 miles and tabu search equalled or bettered
the best previously known solution of 430 miles in 7 out of 12 runs conducted.
The average time at which the best solution was found in each run was 47
seconds. Tabu search superceded the previous best result of 553 miles for
the 75 city problem in 11 out of 12 runs. The best solution had a tour length
of 537 miles and the average time taken to reach the best solution in each
run was 117 seconds. The results of the tabu search algorithm for the six
problems tested are tabulated in table 2.

4.3 SATH

QOur experiments with SATH included three configurations, namely with
two, four, and eight low level processes. In each case there were an equal
number of simulated annealing and tabu search processes. Each low level
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process executed in parallel. The experiments were conducted much like
that described in the previous sections for simulated annealing and tabu
search algorithms. First we tuned the SATH algorithm for a given starting
tour and then applied the tuned algorithm to a set of six randomly generated
starting tours.

For the 33 and 42 city problems the two, four, and eight process SATH
algorithms easily found the optimum solution for each starting tour. For
both problems the average time required for executing the algorithm was
comparable with the tabu search algorithm executing alone. The perfor-
mance was much better than the simulated annealing algorithm executing
alone in terms of both time and quality of solution.

Executing our SATH algorithms on the 57 city problem resulted in so-
lutions with better average quality than either simulated annealing or tabu
search algorithms executing alone. In addition, performance for both time
and tour costs of solutions improved as the number of low level processes
went from two to four and then to eight. The time performance, as com-
pared to simulated annealing and tabu search algorithms alone, was in the
intermediate range with tabu search performing the best.

The 100 city problem demonstrated the strength of our SATH algorithm
on larger problems. The time performance for the two, four, and eight
process SATH algorithms was 458, 444, and 287 seconds respectively. This
compares with 792 seconds for tabu search and 1242 seconds for simulated
annealing. At the same time the quality of solution was also better for each
SATH algorithm. This leds us to believe our SATH algorithm can be applied
to larger problems with acceptable performance.

For the 50 and 75 city problems, for which the optimal solutions is un-
known, our SATH algorithms provided better average quality of solution
than either simulated annealing or tabu search algorithms. For both prob-
lems the time performance was in the intermediate range, with tabu search
performing the best. The eight process SATH algorithm produced results
which was equal to our previously reported best solutions on both of these
problems for many of the starting tours. In fact, the average tour cost
found for the 50 city problem was just one mile longer than the best tour
cost found to date for this problem. Likewise, the average tour cost for the
75 city problem was just 3 miles longer than the best tour cost found to
date.

Tables 3, 4 and 5 show the results of SATH with two, four and eight low
level processes. Columns 2 and 4 show the average time to obtain the best
result for six randomly generated starting tours. Column 3 represents the
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Table 3: Results of two processor simulated annealing/tabu search hybrid.

Problem | Average | Average % above Average time | Best cost | Total time
size cost | best known solution | (for best cost) (seconds)
33 10861 0 19 10861 49

42 699 0 46 699 82
50 427 0.47 106 425 120
57 12986 0.24 170 12955 280
75 542 1.3 158 535 254
100 21450 0.95 458 21267 525

Table 4: Results of four processor simulated annealing/tabu search hybrid.

Problem | Avg. cost | % Optimum Avg. time Best cost | Total time
size or Best known | (for best cost) (seconds)
33 10861 0 15 10861 52
42 699 0 37 699 82
50 427 0.47 79 425 134
57 12982 0.21 144 12955 305
75 540 0.93 158 535 253
100 21402 0.73 444 21247 530

percentage by which the average tour cost is inferior to the optimum cost (or
in the case of 50 and 75 city problems, the best known solution). Column
5 shows the best tour cost obtained in the six runs. The last column shows

the average of the total execution time for the six runs.

For graphical comparison of the experimental results for the quality of
solution refer to Figure 3. Likewise, Figure 4 gives the graphical compari-
son of the relative time performance. The Figures include data for simulated
annealing, tabu search, and two process SATH algorithms. Figure 3 shows
how SATH generally outperforms both simulated annealing and tabu search
in terms of solution quality. Figure 4 shows how SATH has a intermedi-
ate time performance. However, the trend, as the problem size increases,
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Table 5: Results of eight processor simulated annealing/tabu search hybrid.

Problem | Avg. cost | % Optimum Avg. time Best cost | Total time
size or Best known | (for best cost) (seconds)
33 10861 0 14 10861 54
42 699 0 33 699 94
50 426 0.24 79 425 128
57 12965 0.07 74 12955 125
75 538 0.56 168 535 292
100 21319 0.33 287 21267 423

is toward better time and cost performance for our SATH algorithm. A in
depth analysis of this data does bring out a problem with making compar-
isons. Each algorithm was executed for different amounts of time on each
problem. This makes it difficult to analyze which algorithm would be best
if a specified amount of time is the desired limiting factor. It is also difficult
to compare time performance for a given quality of solution required.

To give a better idea of the relative performance of the algorithms for
equal time or cost requirements, consider Figure 5. This figure was derived
from executing each of our algorithms for the 57 city problem again and
taking time and tour cost measurements at incremental times during exe-
cution. Each point on the graph represents the average tour cost at a given
time value for a algorithm given the six randomly generated starting tours.
As can be seen in the figure, for any given time or tour cost value, SATH
performs better than or equal to tabu search, and always better than simu-
lated annealing. Figure 6 shows a magnified portion of Figure 5 for better
clarity.

In addition, SATH performance improves with the number of low level
processes. The Figure 7 shows the improvement in the quality of the results
as the number of processes in SATH is increased for the 50, 57 and 100 city
problems. Figure 8 shows the reduction in time with increasing number of
processes.
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5 CONCLUSIONS

A new hybrid algorithm technique based on the idea of mixing two or more
algorithms for improved performance was proposed. The goal of achieving
better solutions in less time was demonstrated by implementing HAT for
a combinatorial optimization problem. Our experiments with the traveling
salesman problem have illustrated the advantages of using a hybrid search
technique based on mixing simulated annealing and tabu search algorithms.
The hybrid algorithm performs very well for all of the investigated prob-
lems, namely 33, 42, 50, 57, 75 and 100 city problems. It holds considerable
potential for reducing execution time for solving NP-complete problems and
at the same time improving the quality of the solution. In our opinion, the
hybrid algorithm is very well suited for other problems too, not necessarily
search techniques. With the advent of parallel processing in the computing
environment, it becomes especially attractive to exploit the inherent paral-
lelism in our algorithm.
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