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1. Introduction

In the past decade highly successful algebraic methods for mechanically proving theorems in
elementary geometries have been developed. Notably, the method developed by Wu Wen-Tsiin
has been used to prove hundreds of hard theorems in Euclidean geometry and non-Euclidean
geometries [CH1]. Wu’s method is based on Ritt’s characteristic set (CS) method. The CS
method originally developed by J. F. Ritt can be also used to prove theorems in differential
geometry, because the CS method is also for differential polynomials. Actually it was Wu who
first proposed a method for proving theorems in differential geometry using Ritt’s CS method
and also gave several theorems proved by his method [WU1,WU2, WU3]. However, Wu’s work
needs further clarification. E.g., it is not clear from Wu’s work that in what sense his method
proves theorems. Wu mentioned the notion of “generically (generally) true” for a geometry
statement. But his definition of “generally true” needs clarifying. The key problem here is
how to understand and handle non-degenerate conditions which are usually implicit and are
necessary for a geometry statement to be valid.

Theorems that the CS method addresses are those whose hypothesis and conclusion can
be expressed by differential polynomial equations (theorems of equation type). We use the
following simple example to illustrate the geometry problems we deal with in this paper.

Example 1.1. Show that the curvature k& of a circle is constant.

We adopt a coordinate system in the plane of the circle and choose the center of the circle to
be the origin (0,0). We use parametric representation for the circle: let (2., z3) = (22(¢), z5(%))
be the point on the circle with the radius z;. Note that z; is a constant, i.e., the derivative
of z; with respective to (ab. wrpt) ¢ is zero. As usual, we use 2} to denote the derivative of
z;(t), i.e., fl%;@. Let z4 be the square of the derivative of the arc of the circle wrpt ¢t and z;
be the curvature k of the circle, then the hypothesis can be expressed by the following three

equations.

H =zi+2i-27=0 The equation of the circle ¢ = (2, 23).

Hy=24—28 —22 =0 x4 = (%) = |¢/|?, where s is the arc.
7 i

Hs = 2322 — (afal — zh25)? =0 The definition of the curvature k = 1"‘!6,?3 L,

The conclusion that &k is constant can be expressed by the equation G = z{ = 0. Thus one can
ask whether the conclusion G = 0 follows from the three hypothesis equations, i.e., whether
the following formula

is valid. However, (1.2) is not valid because certain non-degenerate conditions are missing. For

example, (1.2) is not valid when z; = 0, i.e., the circle degenerates to a point. In this paper we
propose two approaches to dealing with non-degeneracy.

Let HS = {H,; = 0,...., H. = 0} be the set (conjunction) of the hypotheses and G = 0 be
the conclusion of a geometry statement, where the H; and G are differential polynomials (for
the definition see Section 2). As we know, the formula

(1.3) Vz[(H, =0A---ANH, =0)= G =10

is not accurate because it is valid only under certain non-degenerate conditions. As in ele-
mentary geometry, there are two formulations (approaches) for dealing with non-degenerate
conditions.
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Formulation F1. Introduce parameters and the notion of “generally (generically) true ” and
decide whether (1.3) is generally true, at the same time generating non-degenerate conditions
to make (1.3) valid. We will give the precise definition of “generally true” in Section 3.

Formulation F2. Explicitly specify non-degenerate conditions as a part of the geometry
statement. Let DS = {D; # 0,...,D; # 0} be the non-degenerate conditions thus specified,
then this formulation is to decide whether the following formula is valid:

(1.4) Va[(Hy, =0A---AH, =0AD; #0A---AD #0) = G =0].

Example 1.1. (Continue). The variables z; and =z, i.e., the radius of the circle and one
coordinate of the point, can be arbitrarily chosen. Thus they can be chosen to be parameters.
Once z; and z, are fixed, the remaining variables, z3, 24, and z5, are determined by the three
hypothesis equations. Thus they are dependent variables. According to Formulation F1, the
problem now is to ask whether formula (1.2) is generally true wrpt parameters z; and z,. In
Formulation F2, a natural non-degenerate condition can be z; # 0. Thus we can ask whether

is valid without adding any additional conditions.

Formulation F2 is easy to understand. However, if one of the necessary non-degenerate con-
ditions is missing and (1.4) is invalid, then we don’t have any information about why (1.4) is
invalid: it is invalid because of a missing necessary non-degenerate condition or because of the
nature of the statement, i.e., it cannot be valid no matter how many reasonable non-degenerate
conditions are added. Formulation F1 can answer this question, but it needs more mathemat-
ical background. In this paper we will present two methods to prove (differential geometry)
theorems according to Formulations F1 and F2, respectively. Our method for Formulation F1
is a further development of Wu’s work on the same topic. Our method for Formulation F2 is
new.

The basis of our methods is Ritt—-Wu’s zero decomposition algorithm. In our experience,
the original version of Ritt-Wu’s algorithm often produces large differential polynomials, thus
in many cases making the CS method beyond the computer time and space limits available.
To overcome this difficulty, we extend the concepts of weak ascending chain and W-prem for
ordinary polynomials presented in [CG1] to the case of differential polynomials, the sizes of
polynomials occurring in the decomposition can be reduced. Based on these concepts, an
improved version of Ritt-Wu’s decomposition algorithm is presented. A program based on the
new version of the decomposition algorithm is efficient and has mechanically proved about 100
nontrivial theorems in the theory of space curves.

The methods developed in this paper can also be used to prove theorems in mechanics. For
details, see [CG2, CG3].

This paper consists of two parts: an improved version of Ritt~Wu’s zero decomposition
algorithm (Section 2) and two methods for proving differential geometry theorems based on
this algorithm (Section 3). In Section 4, we give several theorems in the space curve theory
mechanically proved by our program.

2. An Improvement of Ritt-Wu’s Decomposition Algorithm
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2.1. Preliminary Definitions and Algorithms

A differential field is a field together with a third (unary) operation ’ (the differential opera-
tion) satisfying the following properties:

(a+b) = o +¥
(ab) = d'b+ab'.

Generally, we can work with a computable differential field K of characteristic zero. But for
our purpose of theorem proving, in what follows, we assume that K is the rational function field
Q(t) in the variable ¢t with the differential operation: d/dt. Let z,...,z, be indeterminates.
The j-th (j > 0) derivative of a variable z; is denoted by z; ;. Thus z; = 2, (2:) = 21,
(2;)" = 2; 2, etc. An ordinary polynomial P in variables z; ; (for j > 0) and with coefficients
in K is called a differential polynomial (ab. d-pol) in z4,...,2,. For example, H;, H, and H;
in Example 1.1 are differential polynomials. As far as the operations plus “+” and times “.”
are concerned, d-pols behave as ordinary polynomials. However, they have the third operation,
i.e., the ’ operation. The set of all differential polynomials in 21,...,2, is called the differential
polynomial ring in 1, ...,z, over K and denoted by K{z1,...,z,} = K{X}.

A non-empty subset D of K{X} is called an idealif forany g€ D, (i) fe D= f+g € D;
(ii) f € K{X} = fg € D; (iii) ¢’ € D. An ideal D is called a prime idealif fg € D = f €
Dorgé€ D forany f and g in K{X}. An ideal D is called a radical idealif f* € D = f€ D
for any f € K{X} and positive integer n. Let S be a non-empty set in K{X}, the minimal
ideal D containing S is called the ideal generated by S and denoted by Ideal(S); S is called
a set of generators of D. Similarly, we can define Radical(S) to be the minimal radical ideal
containing . It is a well known result in [RI2] that a radical ideal has a finite set of generators
(Raudenbuch’s theorem); but this is not true for an ideal. Obviously, Ideal(5) is the set of all
linear combinations of the d-pols in § and their derivatives.

Let P be a d-pol. The class of P, denoted by class(P), is the largest p such that some w, ;
actually occurs in P. If P € K, class(P) = 0. The order of P wrpt z; is the largest j such
that z; ; appears in P. If P does not involve z;, the order of P wrpt @; is 0. Let a d-pol P be
of class p and the order of P wrpt 2, be o, then z, and z, , are called the leading variable and
the lead of P respectively. Let P, and P; be two d-pols, we say P, is of higher rank than Py in
z;, if either P, is of higher order than P, wrpt «; or P and P, are of the same order g wrpt
z; and P, is of higher degree in x; , than P,. P, is said to be of higher rank than P, if either
class(Py) > class(Py) or P, and Py are of the same class p and P, is of higher rank than P, in
z,. Two d-pols for which no difference in rank is established by the foregoing criteria are said
to be of the same rank.

A sequence of d-pols ASC = Ay, ..., A, is said to be a quasi ascending (ab. asc) chain, if
either r = 1 and A; # 0 or 0 < class{A;) < class(A;) for 1 <1 < j. ASC is called nontrivial if
class(A;) > 0. A quasi asc chain ASC is said to be of higher rank than another quasi asc chain
ASC' = By,...,B,, if either (i) there is a j, exceeding neither p nor s, such that 4, and B; are
of the same rank for 7 < j and that A; is of higher rank than B;; or (ii) s > p and A; and B,
are of the same rank for 7 < p. We denote ASC > ASC’. Two quasi asc chains for which no
difference in rank is established by the foregoing criteria are said to be of the same rank.

Lemma 2.1. Let
ASC,ASC,, ..., ASC;, ...
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be an infinite sequence of quasi asc chains the ranks of which do not increase. Then there is an
index to such that for any 7 > 4y, ASC; and ASC;, have the same rank.

Proof. See the proof for a similar result in 4 of Chapter I in [RI2]. |

Let a d-pol P be of class p > 0 and of order m in z,. We call afpm the separant of P. The
coefficient of the highest power of z, ,, in P considered as a pOlynpémial of @, n, is called the
initial of P. Let I and 5 be the initial and separant of P respectively. For any d-pol G we
shall define the pseudo remainder of G wrpt P: prem(G, P) as below. Let G be of order h in
z, and ky = h —m. If k; > 0 then P1) the k;-th derivative of P, will be linear in z, 5, with
S as the coefficient. Note that G and P*1) can be looked as ordinary polynomials of z, 5.
Using the algorithm of pseudo division of ordinary polynomials for G and P we can find a

nonnegative integer v; and d-pols Cy and D, such that:

511G =, P*) 4 Dy

where D; is of order less than h in z,. If Dy is of order higher than P in z,, we repeat the
above process for D;, and so on. Finally we can find a nonnegative integer v and d-pols @,
such that:

S'G=Q,P%) 4 ... 4 Q,P%) 4 D

where D is of order not higher than m in z,. If the order of D wrpt x, is less than m then
define prem(G, P) = G. Otherwise, D is of order m wrpt 2, and both D and P can be looked as
ordinary polynomials of z, ,,. Using the algorithm of pseudo division of ordinary polynomials
for D and P, we have

SUIVG = Qllp(kl) 4o Q’sp(ks) + QP + R
where R is a d-pol with lower rank than P in z,. We define R = prem(G&, P).

As an example let us show how to calculate prem(go, ;) for go = 25 +23 and ¢; = 2242222,

g) = 2x32% + 2257, — 22,7 The differentiation of ¢,.
g3 = 223¢2 — ¢4 = 223 — 2z,2h + 22,7 Eliminating z5.
gs = g3 — 2q; = 22,7} — 2zy7h + 2? — o Eliminating z3.

Let R = q4 = prem(qa, ¢; ). We have the remainder formula S¢; = ¢} + 2¢: + R, where § = 2z;
is the separant of g;.

For a quasi asc chain ASC = A,,..., A, with class(A;) > 0, we define the pseudo remainder
of G wrpt ASC inductively as prem(G, ASC) = prem(prem(G, A, ), A1,...,4,_1). Let R =
prem(G, ASC), then there is a product J of powers of the initials and separants of d-pols in
ASC and we have the following important remainder formula:

(2.2) JG — R € Ideal(Ay, ..., A,).

Definition 2.3. Let ASC = A,,...,A, be a quasi asc chain. It is called a weak asc chain, if
for each ¢ (1 < ¢ < p) the pseudo remainders of the initial and separant of A; wrpt Ay, ..., A; 1
are not zero. ASC is called an asc chain if for each 1 < 2 < p, A; is of lower rank than A4; in
the leading variable of A; (j = 1,...,¢ — 1). Note that an asc chain is also a weak asc chain.

Now we define a new reduction procedure, the key to our improved algorithm.
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Definition 2.4. The weak pseudo remainder, W-prem, of a d-pol P wrpt to a nontrivial quasi
asc chain ASC = A, ..., 4, is defined inductively as follows. Base case p = 1: if dass(P) =
class(A;) or the pseudo remainder of the initial or separant of P wrpt A; is zero then W-
prem(P, A;) = prem(P, A;); otherwise W-prem(P, 4,) = P. If p > 1, then we have the
following four cases:

Case a. W-prem(P, ASC) = W-prem(prem(P, A,), A1,..., A,_1) if class(P) = class(4,).
Case b. W-prem(P, ASC) = W-prem(P, Ay, ..., A,_1) if class(P) < class(A,).
Case ¢. W-prem(P, ASC) = prem(P, ASC), if the pseudo remainder of the separant or the
initial
of P wrpt ASC is zero.
Case d. Otherwise, W-prem(P, ASC) = P.

If W-prem(P, ASC) = P, we say P is W-reduced wrpt ASC. Note that W-prem(P, ASC)
is always W-reduced wrpt ASC and a quasi asc chain ASC = A, ..., A, is a weak asc chain if
each A; is W-reduced wrpt Ay, ..., 4;_1.

Lemma 2.5. For a d-pol P and a weak asc chain ASC = A;,..., 4,, if W-prem(P,ASC) =0
then prem(P, ASC) = 0.

Proof. Use induction on p. It is obvious when p = 1. Suppose p > 1. There are four cases
a—d. For cases a and b if prem(P, 4,) = 0 the lemma is true; otherwise the lemma comes
from the induction hypothesis. For case c, the lemma is also true because W-prem(P, ASC) =
prem(P, ASC). For case d, W-prem(P, ASC') # 0. Then the lemma is obviously true in this
case. i

In what follows, whenever we talk about a finite set of d-pols DPS, we always assume it is
non-empty and does not contain 0.

Lemma 2.6. For a finite d-pol set DPS, we can find a weak asc chain ASC in DPS which is
not higher than other weak asc chains in DPS. Such a weak asc chain is called a weak basic
set of DPS.

Proof. Let B; be a d-pol which has the lowest rank in P, = DPS. If By is in K then the asc
chain B, satisfies the condition of the lemma. Otherwise, the class of B; is positive. Let P,
be the set of the d-pols in P, which are W-reduced wrpt B;. If P; is empty, then B, satisfies
the condition of the lemma. Otherwise, let B, be a d-pol of the lowest rank in P. Then B,
must be of higher class than B;. Repeat the above process, at last we get a weak asc chain
By, Bs, ..., B, with the desired property. i

Lemma 2.7. If P is W-reduced wrpt a weak basic set of DPS, then a weak basic set of
DPS U {P} is of lower rank than a weak basic set of DPS.

Proof. Let BS = By, ..., B, be a weak basic set of DPS. If the class of P is not equal to the
class of any d-pol in BS, let iy be the last index such that the class of B; is less than the class
of P, then By, ..., B;,, P will be a weak asc chain contained in DPS U {P} which has lower rank
than BS. Otherwise, let B;, has the same class as P. As P is W-reduced to BS then P must
be of lower rank than B;, by (a) of definition 2.4. Then Bi,...,B;, 1, is a weak asc chain
contained in DPS U {P} which is of lower rank than BS5. I



For a quasi asc chain ASC, we introduce the following important notation
PD(ASC)={G |G e K{X} and prem(G, ASC) = 0}.

For a set of d-pols DPS, let E-Zero(DPS) denote the common solutions of the d-pols in DPS
in any extension field E of K, i.e.,

E-Zero(DPS) = {z € E" : P(z) = 0,YP € DPS}

Let RS be another set of d-pols, we define E-Zero(DPS/RS) = E-Zero(DPS) — E-Zero( RS).

Lemma 2.8. (Ritt-Wu’s Principle) For a given finite set DP3 of d-pols, we can find either a
nonzero d-pol P € K N Ideal(DPS) or a nontrivial weak asc chain ASC and an enlarged d-pol
set DPS’ of DPS such that:

(a) ASC is a weak basic set of DPS’.

(b) E-Zero(DPS) = E-Zero(DPS').

(c) BE-Zero(DPS) = E-Zero(ASC/J)U Uses B-Zero(DPS' U {T}).
(d) E-Zero(ASC/J) C E-Zero(PD(ASC)) C E-Zero(DPS).

where J is the set of all initials and separants of the d-pols in ASC.

Proof. Let BS; be a weak basic set of DPS. If BS; = B, and B; € K then B; € K N
Ideal(DPS). Otherwise, for the d-pols belonging to DPS but not to BSy, we form the weak
pseudo remainders and adjoin all the nonzero remainders to DPS to get an enlarged set of d-pols
DPS,. As the remainders obtained above are in Ideal(DPS), DPS and DPS; have the same
zero. If DPS # DPS;, by lemma 2.7, DPS; has a basic set BS, with lower rank than B.5;.
Repeating the above process for DPS; and so on, we either get a d-pol P € K N Ideal(DPS)
or get a sequence of d-pol sets which have the same zeros

DPSCDPS, C---
and a sequence of nontrivial, strictly decreasing weak asc chains:
BSy > BS; > -

By lemma 2.1, the above iteration must terminate in finite steps, i.e., there is an iy such that
W-prem(G, BS;,) = 0 for all G € DPS,,. Then BS;, and DPS5;, satisfy (a) and (b). (c) follows
from (2.2) and (b). The first inclusion of (d) is an immediate consequence of (2.2). The second
inclusion of (d) comes from the fact the pseudo remainders of the d-pols in DPS wrpt BS;, are
zero. i

2.2. An Improved Ritt-Wu’s Zero Decomposition Algorithm

Algorithm 2.9. (Ritt-Wu’s Zero Decomposition Algorithm: the Coarse Form) For two finite
sets of d-pols DPS and RS, the algorithm either detects the emptiness of E-Zero(DPS/RS) or
furnishes a decomposition of the following forms:

(2.10) E-Zero(DPS/RS) = Ul_, E-Zero(ASC; /RS U J;)
(2.11) E-Zero(DPS/RS) = U_,E-Zero(PD(ASC;)/RS)
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where for each i <[, ASC; is a weak asc chain such that prem(P, ASC;) # 0 for P € RS and
J; is the set of all initials and separants of the d-pols in ASCj.

Proof. Let ASC; and DPS, be the weak asc chain and the enlarged d-pol set obtained from
DPS as in Lemma 2.8. If ASC) is trivial, then E-Zero(DPS/RS) is empty. Otherwise, compute
the pseudo remainders of the d-pols in RS wrpt to ASC;. If one of them is zero, then E-
Zero(ASC; /RS U Jy) is empty, where J; is the set of all initials and separants of ASC;. Thus,
by Lemma 2.8, we have

E-Zero(DPS/RS) = Ure 7, E-Zero(DPS; U{I}/RS).
Otherwise, we have
E-Zero(DPS/RS) = E-Zero(ASC: /RS U J1)U Ure s, E-Zero(DPS, U {I}/RS).

For each I € Ji,let I' = W-prem(I, ASC1). We have E-Zero(DPS; U{/,I'}) = E-Zero(DPS; U
{I}). Repeating the above process for DPS; U {I,I'}, we get another weak asc chain ASC5.
Since prem(I,ASCi) # 0, I’ is not zero by lemma 2.5. Hence ASC, must be of lower rank
than ASC; by lemma 2.7. The above process must terminate within a finite number of steps
and we will get a decomposition of form (2.10). From the above process, it is clear that the
pseudo remainders of the d-pols in DPS wrpt to each ASC; are zero. Thus (2.11) comes from
(d) of lemma 2.8. i

The above decomposition is not complete in the sense that each PD(ASC;) is generally
not a prime ideal. To give a complete decomposition we need the notion of irreducibility and
factorization. Let ASC = A,,..., A, be an asc chain. Let the lead of 4; be z;, ,,. We rename
each z;, ,, to be z; and rename the remaining z; ; in the A by vy, ..., v¢. With such a renaming,
ASC becomes an asc chain of ordinary polynomials: ASC’ = By, ..., B, of the v and the z. ASC
is said to be irreducible if ASC’ is irreducible as a polynomial asc chain, i.e., if B; is irreducible
and for each & > 1, Bj, is irreducible in the ring K(v)[z1,..., 25-1,25]/(B1,..., Bx_1), where
(B, ..., Bi_1) stands for the polynomial ideal generated by By, ..., Br_1 in K (v)[z1, ..., 2 1]

Theorem 2.12. (Ritt) ASC is an irreducible asc chain if and only if PD(ASC) is a prime
ideal.

Proof. See page 97 in [RI2]. i

Theorem 2.13. If asc chain ASC’ = Ay,..., A, ; is irreducible and asc chain ASC =
Ay, ey Ap_1, Ap is Teducible, then we can find nonzero d-pols G and F which are W-reduced
wrpt ASC and with the same lead as A, such that GF € Ideal(A,,...,A).

Proof. See page 107 in [RI2]. i

Lemma 2.14. Let ASC, and ASC, be two weak asc chains, and ASC, be irreducible. If the
pseudo remainders of the d-pols in ASC, wrpt ASC, are zero and the pseudo remainder of
the product of the initials and separants of ASC; wrpt ASC, is not zero, then PD(ASCy) C
PD(ASC,).

Proof. As ASC, is irreducible, PD(ASC,) is a prime ideal by theorem 2.12. We have AS5C; C
PD(ASCy) and J ¢ PD(ASC,) where J is any product of the separants and initials of the d-
pols in ASC,. Let P € PD(ASC,), then there exists a product J; of the separants and initials
of the d-pols in ASC; such that J, P € Ideal(ASC,). Therefore, we have J, P € PD(ASC,).



Hence P € PD(ASC,) as J; is not in PD(ASC,). i

Theorem 2.15. For a nontrivial weak asc chain ASC = A;,..., 4y, let ASC' = A}, ..., 4]
where A} = A; and A] = prem(4;, A;,...,4; 1) (¢ = 2,...,p). Then either (a) we can find two
nonzero d-pols G and H which are W-reduced wrpt ASC such that HG € Ideal(ASC), or (b)

ASC’ is an irreducible asc chain and PD(ASC) = PD(ASC").

Proof. Induction on p. If p = 1, the result is obviously true. Assuming the result is true for
p =k — 1, we want to prove the result is true for p = k. By the induction hypothesis, either
(a) or (b) is true for ASCy_y. If (a) is true for ASC)_,, then (a) is also true for ASC;. Now
we suppose (b) is true for ASCy_1, ie., PD(ASC)_,) = PD(ASC|_,) are prime ideals. By
definition we have A} = prem(A;, Ay, ..., Ay_1), then by (2.2) we have

(2.16) Al — JA, € Ideal(ASCy_,) C PD(ASCy_1)

where J is a product of the initials and separants of A;,...,4;.1. As ASC is a weak asc
chain, A) and A; have the same lead and the same degree wrpt the lead. Then ASC is
an asc chain. If ASC’ is reducible, then according to theorem 2.13, we can find non-zero d-
pols H and G which are W-reduced wrpt ASC’ such that HG € Ideal(ASC’). By (2.16),
we have HG € Ideal(ASC). H and G are also W-reduced to ASC, as PD(ASCy_,) is
a prime ideal. In this case, (a) is true. Now we assume ASC’ is irreducible. As ASC is
a weak asc chain, the pseudo remainders of the initial and separant of A, wrpt ASCy_+,
hence wrpt ASC}_,, are not zero. By (2.16), the pseudo remainder of A4, wrpt ASC’ is zero.
Thus PD(ASC) C PD(ASC’) follows from lemma 2.14 and the induction hypothesis. To
prove the other direction, let P € PD(ASC’) and let P’ = prem(P, Ag). P’ € PD(ASC") as
A, € PD(ASC”). Since P’ is of lower rank than A}, prem(P’, ASC") = prem(P’, ASC}_,) = 0.
By the induction hypothesis, prem(P’, ASCy_;) = 0. Hence prem(P, ASC) = 0. This proves
PD(ASC") C PD(ASC). I

In case (b) of Theorem 2.15, we call the weak asc chain ASC irreducible. Our improved
version of the complete Ritt-Wu'’s decomposition algorithm is as follows.

Algorithm 2.17. (Ritt-Wu’s Zero Decomposition Algorithm: the Strong Form) The same as
algorithm 2.9, except the ASC; in (2.10) and (2.11) are irreducible.

Proof. Similar to the proof of Algorithm 2.9, let ASC,; and DPS; be the weak asc chain and
the enlarged d-pol set obtained from DPS as in Lemma 2.8. If ASC; is irreducible or trivial,
then do the same decomposition as algorithm 2.9. Otherwise, by theorem 2.15, we can find two
non-zero d-pols G and F' which are W-reduced wrpt ASC, such that GF € Ideal(ASC;). We
have:

E-Zero(DPS/RS) = E-Zero(DPS; U{F}/RS)UE-Zero(DPS; U{G}/RS)

We can repeat the above process for DPS; U{F'} and DPS; U{G}. As F and G are W-reduced
wrpt ASC,, then each weak basic set of DPS; U{F'} or DPS; U{G} must be of lower rank than
ASC,. Thus the process will terminate at a finite number of steps. i

The difference between the two versions of decompositions 2.9 and 2.17 is that 2.9 does
not require factorization, but it is incomplete. On the other hand, 2.17 requires not only
maultivariate factorization over @, but also factorization over algebraic extensions of fields of
rational functions. In practice, we haven’t encountered examples which need factorization
over extension fields and multivariate factorization over Q is enough. Thus the algorithm
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implemented in our program is a mixture of 2.9 and 2.17, i.e., whenever a polynomial is reducible
over Q(t) at certain steps, we put its factors into polynomial sets.

For a quasi asc chain ASC = Aq,...,A,, we make a renaming of the variables. If A; is of
class m;, we rename z,,, as &;, other variables are renamed as uy,...,%,, where ¢ = n —p. The
variables w, ...,u, are called the parameter set of ASC. If ASC is irreducible, DIM(ASC) =
g = n—pis defined to be the dimension of ASC and ORD(ASC) = 3°%_, o; is defined to be the
order of ASC wrpt to the given parameter set, where o; is the order of A; wrpt z;. DIM(ASC)
and ORD(ASC) are actually the dimension and order of the prime ideal P D(ASC) respectively
[RI2].

Example 2.18. (Continuation of Example 1.1). Let HS = {H,, H,, Hz}, where the H; are in
Example 1.1. Using our algorithm for decomposition we have

E-Zero(HS) = U_,E-Zero(ASC;/J;) = Ui, E-Zero(PD(ASC;))

where
ASC, = al+4al -2}, zy—af -2, izl (2¥ah —ahay)®, Ji = {2z5,22825};
ASCQ = .ZC{?, 1% + x% - 2?%, Ty, Jg = {23}3}’
ASC3 = za+ 21, Z3, T4, Js = {1}
ASCy = x3 — @1, 3, T4, Jo= {1}
ASCs = =z, zi + 22, Z4, Js = {223}.

This decomposition is redundant, i.e., some components may contain others. For example,
PD(ASC;) C PD(ASC,) for i = 3,4 (it is non-trivial to prove this fact). Unlike the case of
ordinary polynomials, no methods have been found to delete the redundant components in the
above decomposition completely.

2.3, The H-extension

This subsection is needed only when the reader wants to know the completeness problem of
our methods in the next section. It can be skipped if the reader only needs to know how our
methods works.

An extension field E of K is said to be an H-extension if for any finite variables yq,..., 9,
each non-unit ideal in K{y1,...,y.} has at least one zero in E*.

Lemma 2.19. For an extension field £ of K, the following statements are equivalent:
(a) E is an H-extension of K.

(b) Let G, Fi, ..., F, be d-pols in K{X}. If G vanishes on the E-zeros of F1,..., F,, then a power
of G is a linear combination of the ¥ and their derivatives.

(¢) For a radical ideal D in K{X}, we have D = I(E-Zero(D)). For 5 C E™, we denote the set
of d-pols in K{X} which vanish on S by I(5).

Proof. (a) = (b). As G vanishes on all E-zeros of F1, ..., Fy, then for a new variable z, the ideal
D = Ideal(Fy, ..., Fy,2G — 1) has no E-zero. By (a), 1isin D, i.e,, 1 is a linear combination of
the F', G —1 and their derivatives, with d-polsin K{2y,...,z,, 2} as coefficients. Set z = 1/G in
this expression and clear the denominators. Note that 2’ = —~G'/G?, 2" = (2G”* -G"G)/G?, ...,
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then some power of G can be expressed as linear combination of the F and their derivatives.
This proves (b).

(b) = (¢): from the definition of radical ideals.

(c) = (a). Let D be a non-unit ideal. Then Radical(D) is also non-unit. By (¢) Radical(D) =
I(Zero(Radical(D))). Thus Zero(D) = Zero(Radical( D)) must be non-empty. i

From [KO1], we know that for a differential field K of characteristic zero, there always exists
an H-extension field of K. In [RI2], Ritt proved that the field of meromorphic functions over an
open region in the complex plane is an H-extension of itself. The completeness of our methods
in next section is based on the following theorem.

Theorem 2.20. Let ASC be an irreducible weak asc chain and R be a d-pol with nonzero
pseudo remainder wrpt ASC. Then for an H-extension field F of I, a nonzero d-pol G vanishes
on E-Zero(PD(ASC)/R) if and only if prem(G, ASC) = 0.

Proof. The if part is obvious. As ASC is irreducible, PD(ASC) is a prime ideal by theorem (b)
of 2.15. Since G vanishes on E-Zero(PD(ASC)/R), GR vanishes on E-Zero(PD(ASC)). Then
GR € PD(ASC) by lemma 2.19 (c), because a prime ideal is always a radical ideal. Since R is
not in PD(ASC), we have G € PD(ASC), i.e., prem(G,ASC) = 0. i

3. The Methods

Now we present two methods to solve the problems raised by Formulations F1 and ¥2 in
Section 1. For a statement (S) in differential geometry, let H.S, DS and G be the same as in
Section 1. We denote such a geometry statement (S) by (HS,DS,G). For Formulation F'2, we
introduce the following notion:

Definition 3.1. A geometry statement (S) = (HS,DS,G) is said to be true (valid) in an
extension field F of K if

Vee E"[(Hi=0A---ANH, =0AD; #0A---AD; #0) = G =0].

(S) is called universally true (valid) if it is true in any extension of K.

Theorem 3.2. A geometry statement (HS,DS,() is universally valid if and only if this
statement is valid in an H-extension field Q of K.

Proof. Only the if part needs proof. The statement is valid in 2 means
Vee Q"[(Hi=0A---ANH, =0AD, #0A---AD #0) = G =0]
which is equivalent to:
Ve e QVz € Q[(H, =0A---ANH, =0AzD; —1=0A---AznD;—1=0)= G =0]
for some new variables zy,...,2;. By lemma 2.19 (b), some power of G is in the ideal generated
by Hy,.., H,2: Dy —1,...,2, D; — 1, which implies the statement is valid in any extension field

of K. z
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Algorithm 3.3. Decide whether a geometry statement (S) = (.5, DS, &) is universally valid.

Step 1. Using algorithm 2.9, we have:*
(3.4) E-Zero(HS/DS) = Ui_, E-Zero(PD(ASC;)/DS)

Step 2. If the pseudo remainders of G wrpt the ASC in (3.4) are all zero, then the statement
is universally valid.

Step 3. Otherwise, using algorithm 2.17 we have the complete decomposition:
(3.5) E-Zero(HS/DS) = Ui_,E-Zero(PD(ASC})/DS)

Step 4. The statement is universally valid if and only if the pseudo remainders of G wrpt the
ASC! in (3.5) are all zero. i

Example 3.6. (Continuation of Example 1.1). If we want to decide whether (1.5) is universally
valid, by example 2.18, we can decompose E-Zero(HS/xz1) = Uicica E-Zero(PD(ASC;)/x1).
We have prem(G,ASC;) = 0; however, prem(G,ASC;) # 0 for ¢ = 2,3,4. Thus the state-
ment is not confirmed to be valid. The problem here is due to the mistake in choosing non-
degenerate conditions. Instead, if we choose DS to be {24}, i.e., the arc is not constant, then
E-Zero(HS/z,) = E-Zero(PD(ASC1)/x4). Since prem(G, ASCy) = 0, the geometry statement

Va(H, =0AHy =0AHs;=0Azs #0= G =0)

has been proved to be universally valid.

Now we give a method to prove theorems according to Formulation F'1. First we give the def-
inition of general validity in the context of differential polynomials. For a geometric statement
with HS and G, we divide the variables occurring in HS and G into two groups: wui,...,u,
and zy,...,7, in the sense that in this statement the u can generally take any values and the
2 can be determined as some functions of the u. We call the u and the z the parameter and
the dependent variables of the geometry statement. Applying algorithm 2.17 to H.S under the
variable order u; < -+ < 4y < 2y < -+ < T, we have

E-Zero(HS) = U, B-Zero{ PD(ASC))|J Ul -, E-Zero( PD(ASCy))

where the ASC; are the weak asc chains with the parameters of the statement, i.e., us, ..., 4y,
as their parameter sets. Let 7 = maz{_;ORD(ASC}). A component E-Zero(PD(ASCY)) is
called @ main component of the statement, if ORD(ASC}) = r, i.e., the main components are
represented by the weak asc chains which have the same parameters as the statement and have
the highest order. Other components are called degenerate components. The following is a
clarification of Wu'’s notion of a geometry statement to be generally true.

Definition 3.7. For a geometry statement with H S and &, suppose the set of parameters is
given. The statement is said to be generally true wrpt the parameters, if G vanishes on all the
main components of the statement.

* Depending on the context, HS and DS sometimes also denote the d-pol sets {H,...,H}
and {D,,..., D}, respectively.
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Definition 3.7 actually provides a method to prove a statement to be generally true. But
for some examples, we do not need to give a complete decomposition. So we can first use the
coarse form of the decomposition algorithm to test whether the statement is generally true. If
failed, we use the strong form to give a complete answer.

Algorithm 3.8. For a geometry statement with HS, G, and a parameter set uq,...,u,, decide
whether the geometry statement is generally true wrpt the u.

Step 1. Using algorithm 2.9 to HS
E-Zero(HS) = Ui, E-Zero( PD(ASC )| Ul o, E-Zero(PD(ASC;))
where the ASC; are all the weak asc chains that contain at least a d-pol in the u alone.

Step 2. If prem(G,ASC;) = 0 (for i < s), the geometry statement is generally true, as
each main component (if there are any) of the geometry statement is contained in some
E-Zero(PD(ASCY)).

Step 3. If not all the pseudo remainders are zero, then use algorithm 2.17 to get a complete
decomposition.

E-Zero(H S) = Ui_,E-Zero(PD(ASC})) U Uy E-Zero(PD(ASC;))

j=1
where the ASC; are the irreducible weak asc chains with the u as parameters.

Step 4. Let r = maazl_ ORD(ASC}) and let M S be the set of ASC} such that ORD(ASCY) =
7.

Step 5. The statement is generally true wrpt the u if and only if the pseudo remainders of &
wrpt the weak asc chains in M S are all zero. i

Remark 3.9. For the decomposition in steps 2 and 3, we don’t have to compute the weak asc
chains ASC; which have at least a d-pol in the u only. In algorithms 2.9 and 2.17, whenever a
d-pol in the u only occurs, we don’t need to go further because all weak asc chains obtained in
this branch will have a d-pol D; in the u only. This is the key to the efficiency of Algorithm
3.8. Let Dy,...,D; be all such d-pols in the u alone. If the statement is proved to be generally
true by step 2 of Algorithm 3.8, the following formula is valid:

VuVz[(H, = 0A---AH, =0AD; #0A---AD  #0) = G =0].

Example 3.10. (Continuation of Example 1.1). By example 2.18, the only main component
of Zero(HS) is Zero(PD(ASC})), because other ASC; (¢ = 2,...,5) contain a d-pol in the
parameters z; and z; alone. Since prem(G,ASC:) = 0, (1.2) is proved to be generally true
wrpt the parameters z; and z,. As mentioned in Remark 3.9, we actually don’t have to compute
ASC; (i = 2,...,5). The d-pols in u alone collected in the decomposition are zy — 23, 5 + 21,
), and z;. Thus our method also proves the following formula to be universally true:*

Vx{(]{l:OAHQZO/\HSZOAxg—xl#0/\9:2—{—551#GA@é#GAxl7&0):>G:0],

* Note that the inequations in this formula are not independent. We can use our method again
to infer 2, # 0= 25 £ 2, # 0. Thus only 2}, # 0 and z;, # 0 are necessary.
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We can see that the above algorithms in essence deal with statements in H-extension fields
of the base field K (similar to the algebraic closed field in the polynomial case). A statement
is valid in the usual case of real differential geometry means the statement is valid in the field
of real analytical functions. So the methods can only confirm theorems in real differential
geometry. But, almost all the theorems we encountered in real differential geometry are also
valid in complex case. So these geometry statements are actually universally valid and can be
confirmed by our methods.

4. Mechanical Theorem Proving For Space Curves

The following lemma is used in the examples to transform an algebraic relation into a differ-
ential polynomial equation.

Lemma 4.1. For nonzero functions of #: zi,...,2,, there exist arbitrary constants a,, ..., a,
such that
a1 Ty + ..+ Ap Ty = 0

if and only if DLR(21,...,%,) = 0. The function DLR can be defined recursively as follows:

DLR(%) =

DLR(y1,92) = 4192 — Yo%
DLR(yl,...,yr) = DLR(DLR(yl,yg),, DLR(yl,yr))

where the primes here are used for the differentiation operation wrpt ¢.

Proof. we prove it by induction. For n = 1, as a; is an arbitrary constant then we have
a;z; = 01if and only if 2, = 0. For n = 2, a12; + axz, = 0 can be written as 2, /2, =
—ay/a;. This formula is true if and only if (2,/z,) = 0 or equivalently DLR(z;,zs) =
zixs — 212y = 0 as ;25 # 0. Now assume the theorem for r = k. DLR(zy,...,254,) = 0
means DLR(DLR(x1,25),..., DLR(21,2141)) = 0 or equivalently there are some arbitrary
constants by,...,b; such that by DLR(z1,25) + ... + by DLR(21,241) = 0. The last equation is
actually (byzo/21 + ... + bpapy1/21) = 0 or equivalently byzs/z; + ... + b2y /21 = by for a
constant by. This proves our lemma. i

Consider a space curve C' = (2,7, z) with its length of arc s as parameter. Let the tangent
vector, the principal normal vector, and the binormal vector of C' be 7" = (2/,¢,2'), N =
(ny,n2,n3), and B = (b1, b, b3) respectively. Let k be the curvature of C' and ¢ be the torsion
of C'. Then we have

P2 4y? 42 —1=0 C with its arc as parameter
;CZ . Z;,«z . yu? . znz =0 k — iT,i
kn, —2" =0 N =T"/T|
i:{f??,z _ yu =0

(4.1) kns — 2" =0
kbl . ylzll + y//Z/ — O

kby + 2’2" — 2”2 =0 B=TxN
ka _ xiy// + er'/yi =0
t+ ngby + noby + b =0 t=-N.B

where the primes represent the derivation wrpt the length of arc of C', i.e. wrpt s.
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Some examples about the classifications of the curves according to their curvature and torsion
as functions of their arcs are given below.

Example 1. The following statements are equivalent:
(a) C is a straight line.
by &' xC”" =0.
(¢) k=0.
(d) The tangent lines of C pass a fixed point.
(a), (b), (c), and (d) can be reduced to:

2" =0
(4.2) y' =
Z// — 0

(4.3) 2’2" — 2" =0

(4.4) k=20

DLR(iE"?y,,.’L‘/y - Zj’l‘) —_ ZL‘!(.’L‘}:Z]H . $l!y;)2 - 0
(4.5) DLR(2',7 2’2 — 2'2) = 2/(2'2" — 2'2")* = 0
DLR(y' .2,y —2'y) =y (y2" = 2'y")* = 0

respectively. The equivalences of (a) between (4.2) and (d) between (4.5) come from lemma
4.1. (For details, see the appendix of [CG3].) There is no non-degenerate condition for this
problem.

We use algorithm 3.3 to prove this statement. Applying algorithm 2.9 to (4.2), we get
one component and the pseudo remainders of the d-pols in (4.3) wrpt the weak asc chain
representing the component are zero. This proves that (a) implies (b). To prove that (b)
implies (a), applying algorithm 2.9 to (4.3)U{2* + 3 + 2> — 1 = 0}, we get eight components
and the pseudo remainders of the d-pols in (4.2) wrpt the eight weak asc chains representing
the eight components are zero. Hence we have proved that (a) and (b) are equivalent. The
equivalence of the other statements can be proved similarly. We have proved all the statements
are universally valid. Note that, to prove this statement we only use step 1 and 2 of algorithm
3.3 and the complete decomposition algorithm 2.17 is actually not used. This is true for all of
the following examples.

From (4.1) we know that if £ = 0, then the vectors 7', B and the torsion ¢ can not be defined.
So in the following examples, we shall exclude the case of straight line.

Example 2. For a curve C, not a straight line, the following statements are equivalent:
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(a) C is a plane curve.

(b) The tangent lines are perpendicular to a fixed line.
(¢)t=0.

(d) The osculating planes of C' pass a fixed point.

(e) The binormals are constant.

By lemma 4.1, (a), (b), (¢), (d), and (e) can be reduced to

(4.6) DLR(1,z,y,2)=0

(4.7) DLR(z",y,2")=0

(4.8) t=0

(4.9) DLR(by,by,bs,byz + by +bsz) =0
(4.10) b, = 0,0, =0,b3 =0

respectively. The non-degenerate condition is & # 0. We use algorithm 3.3 to prove this
statement. Applying algorithm 2.9 to the d-pol sets of (4.6) U (4.1), (4.7)U (4.1), (4.8)U (4.1),
(4.9)U (4.1), and (4.10) U (4.1) respectively, we find 14, 14, 7, 7, and 22 components respectively
under the nondegenerate condition & # 0. The pseudo remainders of the d-pols in (4.6),
(4.7), (4.8), (4.9), and (4.10) wrpt the 64 weak asc chains representing the 64 corresponding
components are all zero. This proves that the statements are equivalent universally under the
non-degenerate condition k& # 0.

Example 3. For a curve, not a straight line, the following statements are equivalent:
(a) The ratio of the torsion to the curvature is a constant.
(b) The curve makes a constant angle with a fixed line.
(c) The principal normals are parallel to a fixed plane.
(d) The binormals make a constant angle with a fixed line.
A curve satisfying these conditions is called a helix.

Bye lemma 4.1, (a), (b), (¢), and (d) can be reduced to:

(4.11) DLR(k,t)y=kt—-tk=0
(4.12) DLR(1,2",y,2)=0
(4.13) DLR(z" ,y",2")=0
(4.14) DLR(1,b1,bs,b3) =0

respectively. The non-degenerate condition is k # 0. We use algorithm 3.3 to prove this
statement. Applying algorithm 2.9 to the d-pol sets of (4.11)U (4.1) , (4.12) U (4.1), (4.13) U
(4.1) , and (4.14) U (4.1) respectively, we find 3, 3, 3, and 5 components respectively under
the non-degenerate condition & # 0. The pseudo remainders of the d-pols in (4.11), (4.12),
(4.13), and (4.14) wrpt the 14 weak asc chains representing the 14 components are all zero.
This proves the equivalences.
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Example 4. For a curve C, not a plane curve the following statements are equivalent:
(a) C is a spherical curve.

(b) rt 4 (r'/t) =0, where r = 1/k.

(¢) The normal planes pass a fixed point.

Bye lemma 4.1, (a), (b), and (c¢) can be reduced to

(4.15) DLR(1,z,y,2° +y*> +2°) =0
(4.16) e+ (7'p) =0
(4.17) DLR(z',y 2" ,za’ +yy' +22') =0

respectively, where 7k — 1 = 0,pt — 1 = 0. The non-degenerate condition is ¢t # 0. We use
algorithm 3.3 to prove this statement. Applying algorithm 2.9 to the d-pol sets of (4.15) U
(41) U {rk—1=0,pt —1 =0}, (416) U (41) U {rk— 1= 0,pt — 1 = 0}, and (4.17) U (4.1)
U {rk — 1= 0,pt — 1 = 0} respectively, we find 3, 4, and 3 components respectively under the
non-degenerate condition ¢ # 0. The pseudo remainders of the d-pols in (4.15), (4.16), and
(4.17) wrpt the 10 weak asc chains representing the 10 components are all zero. This proves
the equivalences.

More examples can be found in the appendix.

5. Bertrand Curves In Metric Space

A pair of curves having their principal normals in common are said to be associate Bertrand
curves. But here we will consider more general problems. Given two curves ) and Cy let
us attach moving frames (p;,e11, €12, €13) and (P2, €21, €29, €23) to C; and Cy at corresponding
points p; and ps, and let us denote the arc, curvature and torsion of C; and C; by s,ky,%;, and
s, ky, 15 respectively. Following [WU4], let

P2 =p1+ @By +aErs +azEys (5.1)

€21 = U11€11 + U12€12 + U13€i3
€99 = Ug1€11 + Uga€12 + Uszz€is (5.2)

€23 = U31€11 1 Usz€12 + Uzz€is
Differentiate (5.1) and (5.2) and use the Frenet formulas of C;, 5, we have:

agt; — ds' [dsuys +ay =0

asty — arky +ds'jdsus —alh, =0

ask, +ds'[dsuy; —a} —1=0

ds' [dsugsks — uyat; — uly, = 0

ds' [dsugoks + uiaty — up ks — ), =0

ds'[dsuarks + uiaky —uj; =0

ds' [dsussty — ds' [dsuysks — usat; — ups = 0 (5.3)
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ds' [dsugaty — ds' [dsuisks + Uty — usi ks —uby =0
ds' [dsusity — ds'[dsuy ks + usaky — uy; =0
ds'[dsussts + usaty + uss = 0

ds' [dsugats — ugsty + ug by + uz, = 0

ds' [dsuaity — ugaks +u3z =0

To transform a right-handed orthogonal system {e;1,e12, €13} to another right handed orthog-
onal system {es1, €22, €23}, we must have

u?s‘*‘“?z’*‘u?l -1=0

u§3+ug2+ugl —1=0

u§3+u§2+u§1-120

U1alUas + UraUzs + U112 = 0 (5.4)

U13Us3 + Ur2Uzs + Utz =0

UgzUsz + UgaUza + Upy Uz = 0

(g1 Uz2 — UroUng JUss + (—U11Uz3 + UraUss JUss + (Ur2Usz — Uialias Uz — 1 =0

We add the last equation (5.4) to Wu’s original equations to protect the right-handness of the
moving system.

5.1. The Case of Identical

Let EI;; denote the case for which e,; is identical with e;; at the corresponding points. At
case El;;, we have:

ag, =0 ki #1
uji—1=0 (5.5)
U, =0 ki #£1¢
up; =0 k#j

For each concrete case EJ; ;,, apply our decomposition algorithm to (5.3), (5.4), and (5.5)
under the non-degenerate condition &y # 0,k, # 0,ds’/ds # 0, i.e. the curves C; and C, are
not lines for which the Frenet moving frames can not be defined and the arc length of C5 as
a function of the length of C; is not a constant. Once the decomposition furnished, we may
prove or derive formulas from the given asc chain. We always assume the following variable
order in this section. d-S//dS <y < Ay < Az < Uy < Uz < Uiz < Uz < Uay < Uz < Uz <
Ugy < Uaz < by <1y < ky <1y

We have the following results:

Case FEI,;. C; and Cs must be identical, i.e. p1 = p2, €11 = e€21,€12 = €32,813 = €a3
r = 1,k1 = kQ, and tl = tQ.

Case EI,. We have

a. py and p; are both plane curves.
b. p2 =p1 + ar€s.
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c¢. There are two cases:

€91 —€12,€22 = €11,€23 = €13
t

ay = —-1,@11@'2 =1 (56)
dSI/dS = —@1]‘31

€91 = €13,€22 = €11,€23 = —€13

/ P
a1:~1,a1k2:~——1 (51)
dSl/dS :alkl

The geometric meaning of the above results can be stated as following: If C; are the involutes
of C; in the strong sense that the principal normals of C, are identical with the tangent lines
of Cy, then both curve must be plane curves, and

(i) p2 = p1 + (co — s)e1; where ¢ is a constant.
(i) pr = p2 + %622, i.e C is the locus of the curvature center of Cs.

(iii) The arc length of C; between two points equal to the difference of the reciprocal of the
curvature of Cy at the corresponding points.

Case EI5. There exist no curves satisfying e;; = es3 under the condition ds'/ds # 0.
Case EI,,. We have

a. The distance from p; to py is constant.

b. The angle formed by the tangent lines at p; and p, respectively is constant.
c. (Bertrand) There exists a linear relation between k; and ¢;.

d. (Schell) The production of #; and ¢, is constant.

Case Fl,;. We have

a. The distance from p; to p, is constant.

b. (Mannheim) k7 + 1] = c1ky

c. 1112 = eo(ty — 12)

where ¢; and ¢y are constants.

Case Els3. We have either

a. Py = P2, €11 = €21,€12 = €39,€13 = €33, and by = ky,1; =1y or

b. p: and p, are both plane curves and e;; = ea1, €10 = €90,€15 = €23 a5 = 0,ds'[ds = 1,k; =
ko

In this case, we have either C; and C, are identical or both curves are plane curves and C»
is translation of C; with a constant distance along the binormal of C;.
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Take Els, the classical case of Bertrand as an example. In this case, we have 9 components.
The main component is:

a; =0

ap =0

a3 =

up;, =0

Uy =0

uls +ui; —1=0 (5.8)
ug; =0

VUgy — 1 =0
Uos = 0
uzy + u1z3 = 0
Uzg = 0
usz — Up =0
ask; +ds’[dsu;, —1=0
asty — ds'[dsuiz =0
ds'[dsaske — uy; +ds'[ds =0
ds' [dsasty — w1z = 0

By lemma 3.10, the four conclusions of Fl,5 are equivalent to

a, =0

uy, =0

DLR(1,ky,t) =kt =k =0 (5.9)
(iltz)/ =0

respectively. The pseudo remainders of the first two d-pols of (5.9) w.r.t all the nine asc
chains are zero, but the last two d-pols are not zero on two components in which we have
as = 0,k = ko, and #; = t. At these cases C; and C; becomes one curve and hence there
is no restriction for their curvature and torsion. Thus the last d-pols of (5.9) can not be
zero. Therefore, if we formulate the conclusions of El, as (5.7), then we must add another
non-degenerate condition a; # 0.

On the other hand, we can obtain our results from (5.8) directly. af) = O and uf, = 0 are
already in (5.8) Eliminate ds'/ds from the last four equations of (5.8), we have:

asui1ty + astiisky —uiz = 0
aitity — uly (5.10)

a3tiky + asty — U113 = 0

As ay,uyq, (and hence uyg = V11— u?,) are constants, the first two formulas of (5.10) actually
give the concrete expression of Bertrand’s theorem and Schell’s theorem. From (5.10) we can

find formulas between &y, ko; kq,1o; and ks, ¢y respectively.
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(1 —_ G;zkl)(i + Cl',gkg) o ufl =0
{égkltg - agiz + U1tz = 0 (511}

GoUi1ty — QoUizks — U1z = 0

The conclusions in (5.10) and (5.11) are correct at the nondegenerate condition ki kyds’/ds # 0.

For EI,s, we can find the following concrete expressions for (b) and (c¢) of Els:

sztf -+ agkf - k]_ =0
altyti —ty+1, =0

and other algebraic relations among ki, %k, and ¢5:
asfite —ky =0
B2 442 — 148, =0
(aZk; —ay)t2 +k =0

For ds’/ds, we have:
(ds'[ds)? = £2/(£2 + k?)
(ds'ds)? = t1 /1,
ds'[ds = uyy

Note that k, does not occurred in the above expressions. There are no algebraic relations
among ko, ky,t1,12, and a;. We have the following formulas for k,:

2t ks + dky [/ds' =0

astoky — (ds'/ds) [(ds'[ds)? = 0

All the above results are true under the nondegenerate condition kik.ds’ /ds # 0.
5.2. The Case Of Parallel

Let EP,;; denote the case for which vector ey; is parallel to vector e;; at the corresponding
points. At case EF;;, we have

Uksi = ]C}éj

For each concrete case EP; ;,, apply our decomposition algorithm to (5.3), (5.4) and (5.12)
under the non-degenerate condition ky # 0,ky # 0,ds'/ds # 0. For L Py, /P35, and E P33 the
following results can be derived automatically.
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Case FP;;. We have four cases:

4. €91 = —€11,€22 = €12,€23 = —E€13, and
dS//dS = —kl/kz = -t1/t2.

b. eg1 = —ej1,€23 = —€12,€23 = €13, and
ds'[ds = ki [ky = —11 [t2.

C. €3] = €311,€23 = —€13,€33 = —E€13, and

dSl/dS = —kl/kg = tl/tg.
d. es1 = e11,€32 = €12,€23 = €13, and

ds'/ds = kl/kg :tl/tg.

Case EP;5. We have four cases:

4. €31 = —€13,€a2 = —€13,€23 = —E€11, and
ds' [ds = —t; ks = —ky [t

b. €31 = e13,€22 = €32,€23 = —err,and
dS//dS R —tl/kg = kl/tg.

C. €y = —e13,€33 = €13,€33 = €11, and
ds'[ds =ty ks = —k1 /5.

d. €91 = €13,€2 = —€15,€23 = e11,and

dS,/dS :il/kg == k‘l/ig.

Case EP;;. We have the same results as £F;.

Take EP;, as an example. Using our decomposition algorithm to (5.3), (5.4), and {u1s =
0,u13 = 0,us, = 0,us; = 0} under the following variable order: &y < #; < by <ty < ds'/ds <
a1 < a3 < a3 < U < Uz < Uz < U < Ugg < Uz < Uzy < Uzy < Uzz, WE find four main
components which give the four results respectively.

5. The Conclusion

In this paper, we present an improved version of Ritt-Wu’s zero decomposition algorithm
and use the algorithm to prove theorems in differential geometry mechanically according to two
approaches.

We have implemented a prover using KCL Lisp with enhancement by Schelter in a SUN
3/280 based on both formulations. We use the prover to prove theorems in the space curve
theory. Our experiments on the computer shows that a large portion of the theorems in the
space curve theory can be proved by our methods. About one hundred theorems in space
curve theory have been proved according to Formulation 1 under certain explicitly given non-
degenerate conditions. Most of the theorems are also proved to be generally true according to
Formulation 2. A description of the prover (input etc.) and most of the examples proved can
be found in the appendix of this paper.
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Appendix. Provers For Differential Geometry And More Examples

A.1. Some Geometry Predicates In Differential Geometry

letn = (n1,n3,n3>;?71 = (531,2}121),’02 = (37273J232}703 = (z3, Ys, 73 ), Vs = (24,Ya,24), Where
the n, z, y, and z are variables. We define the following predicates.

1. The norm of vector v; is p.

2. Vector v; has constant length.

3. Vector v, is parallel to vector v,.

4. Vector v, is parallel to a fixed vector, or equivalently v, has constant direction.

5. Vector v; is perpendicular to vector v,, or v; is parallel to the plane with v, as normal
vector.

6. Vector v; is perpendicular to a fixed vector, or v; is parallel to a fixed plane.
7. Vector v, is on the line passing v; and parallel to n.

8. The lines passing v; and parallel to n go through a fixed point.

9. Vectors v;, v2, and vz are on the same line.

10. The lines passing v; and v, go through a fixed point.

11. Vector v, is on the plane passing v; and with n as its normal vector.

12. The planes passing v; and with n as its normal vector go through a fixed point.
13. Vectors v, 14, and vg are parallel to a plane.

14. The planes containing v;, v; and the origin point go through a fixed point.
15. Vector vi, v3, v3, and vy are on the same plane.

16. The planes determined by v;, v, and vz pass a fixed point.

17. The vector v; is a constant vector.

In the following, We shall give the exact representations for the above predicates by differ-
ential polynomial equations respectively. The proof of the correctness of theses representation
can be found in section 2 of this appendix.

The differentiations are w.r.t t. (v;,v;) stands for the inner product of v; and vy. (vy vy v3)
is defined to be (v, v2 X vs).

S1. (v-norm v; p). The square of the norm of vector vy is p.
A tyita-p=0
S2. (cons-len v;). Vector v; has constant length.
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2z Yy, Fray =0

S3. (v-para vy ). Vector v; is parallel to vector v, ifand only if vy X v4 = 0 or
Y129 — Z21Y2 = 0
T1Zg — 21Ty = 0

T1Ys — Y122 =0

S4. (cons-dir v1). Vector v; has constant direction if and only if v; X v} = 0 or
Y121 — Y121 =0
z12) —2iz =0

1y — 21y =0

S5. (v-perp vy v2). Vector v; is perpendicular to vector v, if and only if (vy,v2) =0 or

T1Ty + Y1Ys + 2122 =0

$6. (perp-fix-line v;) or (para-fix-plane v;). Vector v; is perpendicular to a fixed line if and
only if (v, v],v{) =0 or
(z19) — 2iy1)2) + (=) +2iyn)z + (21 —2iy;) =0

S7. (co2-linear n v, vy) Vector v, is on the line passing v; and parallel to n if and only if
nX (v2 —v)=0o0r

(y2 — yl)ns + (—22 +z1)ny =0
(332 - @‘1)72-3 + (—-22 + Zl)nl =0
(zo —2z1)ns + (=92 + 1)1 =0

S8. (fix-co2-linear n vy).  The lines passing v; and parallel to n go through a fixed point if
and only if the following conditions are generically true.

(DLR ny na Mgy —ne2r) =0

(DLR ny ms nyz —nszy) =0

(DLR ny ng 7moz; —nayr) =0

S9. (co3-linear v; vy w3) Vectors vy, vg, and v are on the same line if and only if (vg — vy) X
(v3 —vy)=0or

(yo —y1)za+ (=22 + 21)¥s + y122 — 2192 = 0

(20 — 1)z + (=20 + 21 )25 + 2123 — 2122 = 0

(22— 21 )ys +(—y2 +y1)w3 + 2192 — Y122 = 0

510. (fix-co3-linear v; v;).  The lines passing v; and v, go through a fixed point if and only
if (fix-co2-linear v; — vy vy) or

(DLR (y2 —91) (=22 +21) (122 —21%2)) =0

(DLR (25 — 1) (=22 + 21) (2122 — 2122)) = 0

(DLR (23 — z1) (~y2+ 1) (2192 —4122)) =0
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S11. (co2-plane n vy v;) Vectors v, is on the plane passing v; and with n as its normal vector
if an only if (n,v2 —v1) =0 or

(20 — 2z1)n3 + (Y2 — y1)n2 + (22 — z)ng =0

$12. (fix-co2-plane # »;) The planes passing v; and with = as its normal vector go through a
fixed point.

(DLR ny ny ng mi%1 + Nayy +71321) =0

(perp-fix-line n) # 0

S13. (co3-plane v; vy w3) Vectors vy, vz, and vs are parallel to a plane if and only if
(vy,v9,v3) =0 or

(21y2 — Y1T2)23 + (—2122 + 2122)Ys + (122 — 2192 )23 = 0

S14. (fix-co3-plane v; vy) The planes containing v1, v2, and the origin point go through a
fixed point.
(DLR (y122 — 2192) (=122 + 21%2) (2192 = 3122)) = 0

S15. (cod-plane vy v, vs v5) Vector vy, vs, vs, and vy are on the same plane if and only if

(co3-plane vy — v1 v — v Vg —v1) =0

or
(2 — 21)ys + (=y2 + y1)T3 + T1y2 — 1122)7%
+ (=22 + @1)23 + (22 — 21)23 — T122 + Z1%3 )Ya
+ ((y2 = y1)zs + (=22 + 21)ys + 9122 — 21Y2)T4
4 (—21ys + Y129)7s + (@122 — 2122)Ys + (—¥122 + 2192 )23 = 0

S16. (fix-cod-plane v; vy v3) The planes determined by v;, vo, and v pass a fixed point if

and only if
(fix-co2-plane v; X va v3) =0
(perp-fix-line vy X vy) #0

S17. (cons-v v1). v is a constant vector if and only if

In what follows, for a predicate s we use e(s) to represent the equation part of the d-pol
translation of s.

A.2. A General Purpose Prover

In this section all d-pols are considered in Q{z1,...,2,}. A geometry statment is defined as
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follows:

stat = {par-vars

dep-vars

pot-list

81
(A.2.1)

Sy

cone

[non-deg d; --- dyi]

[cons-var y; -+ Y]
where par-vars is a subset of {21, ..., %, }; dep-vars is a subset of {z1,..., Tp } such that par-vars
N dep-vars = @; pot-list = (p1 (w1 ¥1 21) =+ Pm (W Ym 2m)) in which the p are some variables
other than the z and the w, y, and z are varaibles in par-vars and dep-vars; s, ..., s¢, cong,
di, ..., dy are predicates given in section 1 or some d-pols. yi,...,y are certain variables in

par-vars or dep-vars. We also assume that the variables occurred in the s, conc, and the d must
be defined in par-vars, dep-vars, or pot-list.

Definition A.2.2. A statement as above is true if the following statement
Va[(e(si)A--Ae(s)Ayy =0A--~ Ay =0Ae(d)A--- A-e(dy)] = e(conc)]
is generally true.

Here we actually use a mixture of Formulation F1 and Formulation F2, i.e. to prove a state-
ment generally true under certain non-degenerate conditions. If par-vars is empty, a statement
is true according as definition A.2.2 is the same as the statement is universally valid defined in
section 3 of the main paper. If £ = 0, a statement is true according as definition A2.1 is the
same as the statement is generally true defined in section 3 of the main paper.

Theorem A.2.3. For a geometry problem stat, we have a prover (prove-th stat) to decide
whether staf is true.

We now prove the correctness of the description of the geometry statements in section 1 using
our prover Prove-th. 51, $2, 83, S5, 57, S9, S11, 513, 515, and S17 are obviously true. 54 can
be reduced to the following two examples

Example 1. If v, is parallel to a nonzero constant vector v; then (cons-dir v, ) is true.

We need to prove that (prove-th (() (z1 y1 21 @2 ¥2 22) (v1 (21 ¥1 21) v2 (T2 Yo z9)) (v-para
vy vy) (cons-dir v;) non-deg (v-norm v; 0) cons-var vq)) is true.

Example 2. If v, is a unit vector satisfying (cons-dir v;), then v; is a constant vector, i.e. v,
has a constant direction.

The example can be reduced to (prove-th (() (21 1 21 T2 Y2 22) (vs (21 Yy 21) va (22 Y2 22))
(cons-dir v;) (v-norm vy 1) (cons-v v;))) is true.

S6 can be derived from lemma 3.10. By reducing S6 to the following two examples, we can
also prove it by our prover.
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Example 3. If v, is perpendicular to a nonzero constant vector v; then we have (perp-fix-line
’572).
The example is equivalent to (prove-th (() (21 y1 21 2 Y2 22) (v1 (21 11 21) v2 (22 Y2 22))

(v-perp v; ve) (perp-fix-line v, ) non-deg (v-norm v, 0) cons-var v;)) is true.

Example 4. v; satisfies (perp-fix-line v;) does not have constant direction. Then the vector
perpendicular to v; and v] has constant direction.

The example is equivalent to (prove-th (() (z1 y1 21 22 ¥2 22) (v1 (T1 Y1 21) v2 (22 Y2 22))
(v-perp v; vs) (v-perp v{ v3) (perp-fix-line v;) (cons-dir v;) non-deg (cons-dir v1))) is true.

We assume v; does not toward a fixed direction in which case the result is obviously true.
By the following two examples, we know that S8 is generically true.

Example 5. (prove-th (() (n1 n2 n3 21 91 21 22 Y2 22) (n (01 72 na) v1 (1 91 21) v2 (22 Y2 22))
(co2-linear n vy v3) (fix-co2-linear n v,) cons-var v, )) is true.

Example 6. (prove-th () (ny no 73 1 Y1 21 T2 Y2 22) (0 (0 12 n3) v (X1 Y1 21) V2 (T2 Y2 22))
(co2-linear n v1 v2) (fix-co2-linear n v;) (cons-v vy ) non-deg (para-v n vy) p cons-var zs Yz )) is

true, where p = ((n?nynb — ninin)ng)ny + (=2ninynl + 2nynini)ng + ((—ninenf +2nin? +
(nyn!! — 202 )nd)ns)ny + (ninineny — 2nyninf + ((—ninf + 20 )ny)nh)n3. We also assume

that n is not parallel to v;, otherwise the result is true obviously.

We can prove S10 by substituting »n for v, — vy in S8. For 512, one direction is easy, i.e we
have

Example 7. (prove-th (() (n1 ns ng @1 Y1 21 T2 Y2 22) (0 (01 2 na) vy (21 Y1 21) V2 (T2 Y2 22))
(co2-plane n v; vs) (fix-co2-plane n v, ) cons-var v,)) is true.

For another direction, by lemma 3.10 there exist constants #;,1%;,%3 and t4 such that
ting +tams +t3ns + ta(nizy + noyr +n32) =0

If 1, # 0, the planes passing v; and with n as its normal vector always pass (11 /ts t2/ts t5/%4).
Otherwise, we must have (perp-fix-line n; ns nz) = 0 which is impossible.

S14 comes immediately from lemma 3.10. But we can also prove 514 using our prover by the
two examples below.

Example 8. (prove-th (() (z1 y1 21 2 ¥2 22 %3 ¥s 23) (v1 (21 ¥1 21) V2 (T2 Y2 22) v3 (23 Y3 23))
(co3-plane v vy v3) (fix-co3-plane vy vs) non-deg (v-norm v; 0) cons-var vy)) is true.

Example 9. (prove-th (() (z1 y1 21 @2 y2 22 23 Y3 23) (v1 (21 ¥1 21) v2 (22 Y2 22) v3 (23 U3 23))
(co3-plane v; v3 v3) (v-perp (v; X v2)" vs) (fix-co3-plane v; vy) (cons-dir v3) non-deg (cons-dir
(11 X wq))) is true.

$16 comes from S12.
The following examples give some relations among the geometry statements in section 1.
Example 10.

(2) (() (z1 y1 21) (v (21 y1 1)) (cons-dir vy) (perp-fix-line vy)) is true, i.e. if v; is parallel to
a fixed direction then v, must be perpendicular to a fixed line.
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(1) () (ny o ng 21 Y1 21) (0 (ng 12 n3) v1 (21 41 21)) (v-para n vy) (fix-co2-linear n vy )) is
true, l.e. if vectors n and v; are parallel then the lines passing vy and parallel to n pass a fixed
point.

() () (21 y1 21 T2 Y2 22 T3 Y3 23) (v1 (21 Y1 21) v2 (T2 Y2 22) vs (@3 Y3 25)) (co3-linear vy vy w3)
(co3-plane v; vy vs)) is a theorem.

A.3. A Prover For Space Curve

For space curves, we can develop more efficient system. In the prover, we fix a curve C =
(z y z) with its arc s as parameter. Let T = (2' ¢/ 2/), N = (n1 ny n3), B = (by by b3),
and O = (0; 02 03) be the tangent vector, principal vector, binormal vector, and the curvature
center of C respectively. Denote the curvature, torsion, and curvature radius of C by k&, ¢, and
r. We have

52 + y’g +$:2 —1=0 (3_1)

kz _ Z//Z = y//Q . 3:;/2 =0

kEr—1=290
knl—:U“:O
kno —y”" =0

knz — 2" =0

kbl - ylsz + ylle'
ka + 22—
kbs - x/ylf + :Bt'/yl — O

0y —rn; —x =10

=0
=0 (3.2)

09 — Ty —y =10
03 — TNy — 2 =10
i+ ngbly + nobl, +nyb) =0

Let curve-vars = {2 y 2z k 7 ny ny n3 by by b3 05 02 03 t}. Other curves are also considered
having s as parameters. Consider the following new predicates.

18. ky and ?; are the curvature and torsion of curve v; respectively.

19. k¢ and ¢; are the curvature and torsion of curve v, with arc parameter.
20. Give the principal normal vector of curve v,.

21. Give the binormal vector of curve v,.

22. The curve v; is a straight line.

23. The curve v; is a plane curve.

24. The curve vy is in a plane passing the origin point.

25. The curve v; is a spherical curve.
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26. The curve C is a helix.
We can describe the statements as below.

S18. (curve vy ko ki #1)

2 2
ko — 22 —y? —a? =0

kghkt = ((vy x v7), (v} X v7)) = 0

31.2 / 777 A
kykity — (vp,0f,0") =0

S19. (curve-arc vy k1 1)
B ot — g =7 =0
k2ty — (vi, o), 0)") =0
$20. (curve-norm vy ).

(curve-norm v1) = (v}, vy )vf — (v, v} )v)

S21. (curve-binorm vy ).
(curve-binorm v ) = v] X (curve-norm vy )

$22. (fix-line v;). The curve v; is a straight line if and only if v] has constant direction, or
Vil el = 0
o e — 27 =
oyl — 2l =0

S23. (fix-plane v1). The curve v, is a plane curve if and only if (v}, {,2{") =0 or

(407 — 2 U)A" + (=l + o) + (Ll — ) = 0
S24. (fix-plane-ov;). The curve v, is in a plane passing the origin point if and only if (DL R vy)
or

(2191 — @590)2 + (=21 + 27y1)z + (2hy) — 27y)) =0
S25. (fix-sph v1). The curve v; is a spherical curve if and only if

i +yi+zE+ feitgn+thate=0
for constants f, g, h, and e, or equivalently

(DLR 27 ¥) 2 @127 + 0uys +2121) =0

(DLR 27 4} 1) # 0
$26. (fix-helix vy ). The curve v; is a helix if and only if (C”,C",C"") = 0 or

(x//y/// - :Z:H/y/i)zilii + (—@”y”“ + :c/l/[y[l)zlil + (ajlfi’yllli . x“”'y]“>2” — O

518 and S19 are definitions. S20 and S21 come from S4 and S6 respectively. 522 and 523
come from lemma 3.10. S24 comes from example 4 of the original paper.

Let stat be a geometry statement as (A.2.1), but the s and d can be the predicates described
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in section 1 and in this section of this appendix. Set

statl = {par-varsl
dep-varsl
pot-listl

81

S¢

(3.1)u (3.2)

conc

non-deg dy --- dy k2" +y"* + 2"

[cons-var y; -+ U]}

where par-varsl is the union of par-vars and a subset of curve-vars; dep-varsl is the union of
dep-vars and a subset of curve-vars; pot-listl = pot-listU{c (z y 2) n{ng no nz) 0 (0y 03 03)}.
we have the following definition

Definition A.3.1 Use the same notation as the above paragraph. The statement stal is true
in the theory of space curve if statl is true and we define (prove-curve stat) = (prove-th stail).

Note that in proving theorems in the space curve theory, we always assume the curvature of
the curve is not zero, i.e. the curve is not a straight line; because from (3.1) we know when
Lk = 0 we cannot define N, B, O, and 1 at all.

A.4. More Examples For Space Curve

Here are some of the theorems in space curve theory which have been prove mechanically by
our prover (prove-curve).

Example 11. (Frenet formula) N = —kC +{B.

We need to prove (() () () n} + ka' — tby nfy + ky’ — thy nh + kz' — tb3) is true.
Example 12. kt = -17".B'

We need to prove (() () () kt + (C”.B")) is true.
Example 13. (C',C",C") =kt

We need to prove (() () () K% — (C' C” C")} is true.
Example 14. (C"C"'C"") = K5 (t/k)'.

We need to prove (() () () k*¢' — B*K't — (C” C"" C"'")) is true.
Example 15. 2 = 50" — k% — (%)2

We need to prove (() () () k%2 — (C™" C"") + k* + k) is true.
Example 16. ¢ =k'N — 2O + kB,



We need to prove (() () () C" — k'N + k*C’ — ktB) is true.
Example 17. N/ =¢'B — (E* + )N - K'C".

We need to prove (() () () =N" + B — (k* +{*)N — K'C") is true.
Example 18. B” = t(kC' —1B) -V N.

We need to prove (() () () —=B” +t(kC" —tB) —1'N) is true.
Example 19. (C” C") = k(K" — k> — ki*).

We need to prove (() () () (C" C"") — k(K" — k® — kt?)) is true.
Example 20. (B’ B” b)) = t*(k't — kt').

We need to prove (() () () (B’ B” b)) = t*(K't — kt')) is true.
Example 21. The following statements are equivalent
(a) Curve C is a circle.
(b) k # 0is a constant, and ¢ = 0.

Without loss of generality, we consider a simple case: C is on the z plane. We need to prove
(prove-curve DLR(1,z,y,2* + y*) z (k' t)) and (prove-curve k' ¢t z DLR(1,z,y,2* + y*)) are
true.

Example 22. Show that the tangents to a space curve and the locus of its center of curvature
at corresponding points are mutually perpendicular.

The example can be reduced to (prove-curve (() () () (v-perp T O'))) is true.

Example 23. Show that the principal normal of a twisted curve at a point P is tangent to
the locus of the center of the curvature when and only when ¢t = 0 at P.

The example can be reduced to (prove-curve (() () () ¢ (v-para N 0’))) and (prove-curve (()
() () (v-para N O") t)) are true.

Example 24. Show that the principal normal of a twisted curve at a point P is perpendicular
to the locus of the center of the curvature if and only if £/ = 0 at P.

The example can be reduced to (prove-curve (() () () k' (v-perp N O7))) and (prove-curve
(OO O (v-perp N O) ¥')) are true.

Example 25. If two curves are reflections of one another in a point, their curvatures at
corresponding points are equal and their torsions are negatives of one another.

The example can be reduced to (prove-curve (() () () vo + C — vy (curve vy ky ko o) (1 4
iy k% — k?) non-deg ky &y cons-var v1))) is true.

Example 26. If two curves are reflections of one another in a plane then their curvatures at
corresponding points are equal and their torsions are negatives of one another.

Consider a special case: curves v; and C are reflections of one another in the z-plane. The
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example can be reduced to (prove-curve (() () () 21 — 2,51 — ¥, 21 + 2, (curve vy ky kg 13)
(tg + t,k* — k3 ) non-deg k; ky)) is true.

Example 27. The tangent indicatrix, the principal normal indicatrix, and the binormal indi-
catrix of the curve C are the loci represented respectively by the vectors: 7, N, and B Show
that all three indicatrices lie on the sphere of unit radius whose center is at the origin.

The example is equivalent to (prove-curve (() () () (v-norm 7' 1) (v-norm B 1) (v-norm N
1))) is true.

Example 28. Show that the tangents to the tangent and binormal indicatrices at the points
corresponding to a given point P of a twisted curve C are parallel to the principal normal of C
at P.

The example is equivalent to (prove-curve (() () () (v-para N T") (v-para N N'))) is true.

Example 29. The derivative of the arc of the tangent indicatrix w.r.t the arc of C is the
curvature of C.

The derivative of the arc of a curve v; w.r.t s is equal to \/x’12 + 32 + 2%, The example is
equivalent to (prove-curve (() () () (curve T ky ks t2) (k1 — k?) non-deg (k1, k2)))) is true.

Example 30. The derivative of the arc of the principal normal indicatrix w.r.t the arc of C'is
equal to vVk? + 12.

The example is equivalent to (prove-curve (() () () (curve N ky ky t5) (k1 —t* — k*) non-deg
k,ky)) is true.

Example 31. The derivative of the arc of the binormal indicatrix w.r.t the arc of ¢ is the
torsion of C.

The example is equivalent to (prove-curve ({) () () (curve B ki ks t3) (k1 — t?) non-deg
(k17 kg))) is true.

Example 32. Show that a twisted curve is a helix if and only if the tangent indicatrix is a
plane curve.

The example is equivalent to (prove-curve (() () () (fix-helix C') (fix-plane T") non-deg (fix-
plane C))) and (prove-curve (() () () (fix-plane T) (fix-helix C) non-deg (fix-plane C'))) are
true.

Example 33. Show that a twisted curve is a helix if and only if the binormal indicatrix is a
plane curve.

The example is equivalent to {prove-curve (() () () (fix-helix C) (fix-plane B) non-deg (fix-
plane C))) and (prove-curve (() () () (fix-plane B) (fix-helix C') non-deg (fix-plane C'))) are
true.

Example 34. Show that a twisted curveis a helix if and only if the principal normal indicatrix
is part of a great circle of the unin sphere.

The example is equivalent to (prove-curve (() () () (fix-plane-o V) (fix-helix C))) and (prove-
curve (() () () (fix-helix C) (fix-plane-o V))) are true.
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Example 35. Show that a curve, not straight line, is a plane curve if and only if the tangent
indicatrix is part of a great circle of the unit spherical.

The example is equivalent to (prove-curve (() () () (fix-plane C) (fix-plane-o T))) and (prove-
curve {() () () (fix-plane-o T') (fix-plane C))) are true.

Example 36. Let C be a twisted curve on the unit sphere with its arc as parameter. Show
that ¢ = —rN — 'pB, where r = 1/k,p = 1/1.

The example is equivalent to (prove-curve (() () () (v-norm C 1) pt — 1 (C' + rN + 7'pB)
non-deg k,1)) is true.

Example 37. Curve v; is defined by v; = fOS B(t)dt. Show that the arc of C is also the arc of
Vi,

The example is equivalent to (prove-curve (() () () v; — B (curve v k1 k2 t2) (k1 — 1) non-deg
ki ko)) is true.

Example 38. Curve v; is defined by v; = [ B(t)dt. Let ky and ¢, be the curvature and
torsion of Vi. Show that & = +¢ and t; = £k,

The example is equivalent to (prove-curve (() () () (curve-arc vy ky ty) vj — B (k% — 2,12 — k?)
non-deg k;)) is true.

Example 39. The rectifying planes of a curve pass a fixed point if and only if t/k = as + b,
where a and b are constants and s is the arc of the curve.

The example is equivalent to (prove-curve (() () () (¢7)" (fix-co2-plane N C') non-deg (perp-
fix-line V))) and (prove-curve (() () () (fix-coZ-plane N C) (¢r)" non-deg (perp-fix-line N)))
are true.

Example 40. Let O be the locus of the curvature center of curve € which has constant
curvature k. Show that the principal normal of C' and O are parallel to each other, i.e. C and
O consist a Bertrand curve pair.

The example is equivalent to (prove-curve (() () () (¥, (curve O ky k2 15)) (v-para N (curve-
norm O) non-deg &k, k; cons-var k 7)) is true.

Example 41. The radius of spherical curvature of a curve is R? = % + -

The example is equivalent to (prove-curve (() (s1 52 s3) (s (81 82 83)) pt—1,5—C—rN —pr'B,

(s,8) —r? — p*r'?)) is true.

Example 42. The radius of spherical curvature of a curve is R? = = (V" C"") — L.

k242

The example is equivalent to (prove-curve (() (81 92 33) (s (81 83 83)) pt—1,8s—C—rN —pr' B,
(s,8) — rp*(C"" C"") — p?)) is true.

Example 43. The tangent of the locus of the center of the spherical curvature is parallel to
B.

The example is equivalent to (prove-curve (() (s; 82 83) (s (81 82 83)) pt—1,8—C—rN —pr' B,
(v—para B (v—d s 1))))) is true.
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Example 44. The principle normal of the locus of the center of the spherical curvature is
parallel to N.

The example is equivalent to (prove-curve (() (81 52 $3) (s (81 82 83)) pt =1, s~ C~r N —pr’' B,
(v — para N (curve —norm s)))) is true.

Example 45. When the tangents to a curve are normals to another curve, the later is called
an involute of the former. Prove that ¢y = C 4 uC" is the involute of C if and only if v’ = —1.

The example is equivalent to (prove-curve (() (21 1 21) (¢l (21 41 21)) ¢1 = C —uC’, (v-para
C' (curve-norm cl)), u+ 1)) and (prove-curve (() (z1 y1 21) (¢l (x1 y1 21)) 1 =C —ul', u+1,
(v-para C’ (curve-norm cl)))) are true.

Example 46. The involute of a curve ¢ is parallel to the principle normal of ¢.

The example is equivalent to (prove-curve ’(() (a s =1 y1 21) (¢l (21 y1 21)) (v~ ¢l C (s
(pp— as)(v—dcl))),s —1,(v-para N (v—d cl 1)), cons-var a)) is true.

Example 47. The derivative of the arc of the involute ¢; = C + (@ — s)C’ of a curve C is
dsy .
= (a - S)k

The example is equivalent to (prove-curve (() (a s z1 yl 21 s1 k1 t1) (¢l (21 y1 21))
(v— c1C(s*x (pp— as)iv—dc1l))),s —1, (curve ¢l s1 k1 t1), (p = (pp* sl s1) (pp*
(pp— as)(pp— as)kk)) non-deg (p= s20%k20) cons-var a)) is true.

B2t

Example 48. The curvature of the involute ¢; = C' + (a — 5)C" of a curve C'is k) = T

The example is equivalent to (prove-curve (() (a s 21 yl 21 s1 k1 ¢1) (¢l (21 y1 z1))
(v— c1C(s* (pp— as)v—dcl))),s —1, (curvecl s1 k1 ¢1),(p= (pp* k1 k1 k k (pp—
as)(pp— as))(pp+ (pp*x k k) (pp* t1))) non-deg (p = s1 0kl 0) cons-var a)) is true.

kt' L't

Example 49. The torsion of the involute ¢; = C+(a—s)C’ of acurve C'is t; = T

The example is equivalent to (prove-curve (() (a s 21 yl 21 s1 k1 ¢1) (c1 (21 yl1 z1))
(v— c1C(s* (pp— as)(v—dcl))),s -1, (curvecl s1 k1tl),(p= (pp* {1k (pp+ (pp*

k k)(pp * )z)t))(pp-— as))pp— (pp* k(dt 1)) (pp+ t (d k1)), non-deg (p = s1 0 k1 0)
cons-var a)} is true.

Example 50. The principal normal of the involute ¢; = C + (a — s)C’ of a curve C is parallel
to V7.

The example is equivalent to (prove-curve (() (a s z1 y1 21 s1 k1 t1) (el (21 yl z1))
(v— ¢c1C (s (pp— as)(v—dcl))),s —1, (v-para (curve-norm cl) (v-d N 1)))) cons-var
a)) is true.

Example 51. The binormal of the involute ¢; = C + (a — s)C’ of a curve ' is parallel to

kB +tC".

The example is equivalent to (prove-curve (() (a s 21 yl1 21 s1 k1 1) (el (21 y1 21))

(v— ¢l C(sx (pp— as)(v—del))) s =1, (v-para (curve-binorm cl) (v+ (s* k B) (s* ¢
(v-d C 1)))) cons-var a)) is true.
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