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1. Introduction

In 1977 Wu Wen-Tsiin introduced an algebraic method which could be used to prove quite
non-trivial theorems not involving betweenness in Fuclidean geometry [11]. Further work [13],
[12] showed that the algebraic tools and algorithms of the method were already begun in
the work of J. F. Ritt [9], [10]. Wu revised Ritt’s work for his own need of mechanically
proving geometry theorems. Key to the method is Ritt-Wu’s principle [12], and Ritt-Wu’s
Zero Structure Algorithm [14]. However, there is almost no work touching the improvement
of these algorithms. If one implements the algorithms literally according to the description
of the work of Ritt and Wu, the sizes of polynomials produced in the process will become
larger and larger. People actually use some modifications of Ritt-Wu’s original descriptions.
Especially, Wu himself uses the notion of ascending chain in weak sense [12] to reduce the sizes
of polynomial produced. However, ascending chain in Wu’s weak sense still cannot prevent the
size growth of polynomials in many cases.

This paper presents another modification of Ritt-Wu’s decomposition algorithm, giving its
full descriptions and the proof of its correctness (including its termination.) The efficiency of the
modification has been demonstrated by the second part of the paper. Besides the improvements
of the algorithms, we establish several theorems (especially Theorem (4.4)) of both theoretical
and practical interests.

The paper consists of two parts: the improved algorithm and its application to geometry
theorem proving.

In the second part we will address the same kinds of geometric statements as Wu’s original
method addresses. A valid geometric statement is valid only under certain nondegenerate
conditions. There are two approaches to dealing nondegenerate conditions:

Approach (1.1). Introducing the notion of “generally (generically) true” and proving geo-
metric statement to be generally true, at the same time giving the nondegenerate conditions
automatically during the proof process.

Approach (1.2). Giving nondegenerate conditions manually at the beginning as a part of the
hypothesis. Then the prover only needs to answer whether the conclusion follows the hypothesis
without adding any additional conditions.

Our prover [2] mainly uses approach (1.1). Approach (1.1) often generates non-degenerate
conditions more than actually needed. The second part is to address approach (1.2). Our
improved algorithm /program has proved more than 500 theorems according to approach (1.2).
Among the work related to approach (1.2), we mention the work of H. P. Ko [8] and D. Kapur
[7]. We will discuss their work in Section 8.

Part I. An Improved Ritt-Wu’s Decomposition Algorithm

2. Preliminary Definitions and Algorithms

In order to make the paper self contained, we first introduce some definitions briefly, which
can be quickly gone through if the reader is already familiar with Ritt-Wu’s work [10], [12].
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Let K be a computable field such as Q, the field of rational numbers, and ¥ = Y1, Y2, - - ¥m
be indeterminates. Unless stated otherwise, all polynomials mentioned in this section are in
A= Ky, 9m] = K[y]. We fix the order of the indeterminates as ¢y < 72 < -+ < ¥Um,
which is essential for the subsequent discussion. Unless stated otherwise, we assume this order
among the variables y1,..., ¥m-

Let f be a polynomial. Denote the degree of f in the variable v;, i.e., the highest degree
of y; occurring in f, by deg(f,y;). The class of f is the smallest integer ¢ such that f is in
Klyy,-.-,y.]. We denote it by class(f). If fisin K we define class(f) = 0. Let ¢ = class(f)
be non-zero and [v(f) denote the leading variable y. of f. Considering f as a polynomial in y.,
we can write f as

Gyt +an 1yl o+ o

where a,,...,a0 are in Klyi,... 1), 7 > 0, and a, # 0. We call g, the initial or leading
coefficient of f and n the leading degree of f, denoting them as le(f) and Id(f), respectively.

Now we present the pseudo division algorithm, a basic step for most algorithms. Let f and
g be in K[y] and v be one of the y;,...,yn . Suppose that deg(f,v) > 0. Considering f and ¢
as polynomials in v, we can write g and fasg=a,v" +---+a, f=0b vF 4 ... 4 by. First set
7 = g. Then repeat the following process while m = deg(r,v) > k: 7:= b7 — ¢ v™ =k f where
¢, is the leading coefficient of r in the variable v. It is easy to see that m strictly decreases
after each iteration. Thus the process terminates. At the end, we have the pseudo remainder
prem(g, f,v) = r = ro and the following formula

big =qf +7r, wheres<n-—k+1 and deg(ro,v) < deg(f,v).

Let f and g be two polynomials. A polynomial g is reduced with respect to f if deg(g,y.) <
deg(f,y.), where ¢ = class(f) > 0. Let ¢ = class(f) > 0, then prem(g, f,y.) is reduced with
respect to f; we denote prem(y, f,¥.) simply by prem(g; f).

Definition (2.1). Let C = fi, fo,..., fr be a sequence of polynomials in Kly]. We call
it a quasi ascending chain or a triangular form if either r = 1 and f; # 0, or r > 1 and
0 < class(fy) < class(f2) < --- < class(fr).

Let fi,..., [, be a quasi ascending chain with class(f1) > 0. We define prem(g; fi, ..., fr)
inductively to be prem((prem(g; fa,..., fr); f1). Let it be R. Then we have the following
important Remainder Formula:

Ly Lrg=1fi+--+Q. fr + R

where the I; are the initials of the f;, s1,...,s, are some non-negative integers, Q1,...,¢, are
polynomials. Furthermore, deg(R,%;) < deg(f;,z;), for i =1,...,7, where z; = Iv( f;).

(i) A quasi ascending chain is called an ascending chain in Ritt’s sense if f; are reduced with
respect to f; for 7 < 7.

(i) A quasi ascending chain is called an ascending chain in Wu’s sense if the initials I; of
the f; are reduced with respect to fi for 2 < 5.

(iii) A quasi ascending chain is called an ascending chain in weak sense if prem(Ii; fi, ..., fr)
#£0,fori=1,...,7.



Obviously, an ascending chain in Ritt’s sense is an ascending chain in Wu’s sense; an ascending
chain in Wu’s sense is an ascending chain in weak sense. The key to our improved version of
the algorithm is to use ascending chains in weak sense. As Wu correctly pointed out that
using quasi ascending chains without any restrictions, one cannot insure the termination of
algorithms (3.1), and (4.1) or (4.3). One of the main tasks of our improved version is to use
ascending chains in weak sense in a proper way, insuring both the termination of the algorithm
and the reduction of the size growth of polynomials. From now on, we will call an ascending
chain in weak sense simply as an ascending chain.

We define a partial order < in K[y]: f < g (g is of higher rank or higher than f) if class(f) <
class(g) or class(f) = class(g) > 0 and ld(f) < ld(g). If neither f < g nor g < f, then we
say f and g are of the same rank. Obviously, this partial order is well founded, i.e., every
nonempty polynomial set S has a minimal element, i.e., the one which is not higher than any
other element in S.

Definition (2.2). Let C = fi,...f, and Cy = g1, ..., be two ascending chains. We define
C < C, if there is an s such that s < min(r,m) and f; and g; are of the same rank for 7 < s
and that f, < g,, or m < r and f; and g; are of the same rank for ¢ < m.

Proposition (2.3). The partial order < among the set of all ascending chains is well-
founded, i.e, there are no infinite, strictly decreasing sequences of ascending chains €y > C3 >
> > e

Proof. See Lemma 1 of [12].

Definition (2.4). Let S be a nonempty polynomial set. A minimal ascending chain in the
set of all chains formed from polynomials in S is called a basic set of 5.

Unless stated otherwise, whenever we talk about a finite polynomial set S, we assume S does
not contain zero. By (2.3), every nonempty polynomial set S has a basic set.

Algorithm (2.5). Let S be a finite, non-empty polynomial set. The algorithm is to construct
a basic set of 5.

Proof. Let fi be a polynomial with minimal rank in 5. If f; is of class zero, then it is a basic
set of §. Now let f; be of positive class. Let S; be the set of all polynomials in 5, whose classes
are higher than class(f,) and whose initials I are such that prem([; f1) # 0. If 5, is empty,
then f, forms a basic set of §. Now suppose S; is nonempty. Continuing this way, at step &,
we have an ascending chain C = fi,...,fx in S. Let Sj be the set of all polynomials in 5, whose
classes are higher than class(f;) and whose initials I are such that prem(l; fi,..., f) # 0. If
S, is empty, then fi, ..., f is a basic set of S. Otherwise, chose an element f;41 with minimal
rank in Si. fis-rr f, fos1 form an ascending chain again. Eventually, we arrive at a basic set
of § in no more than m steps. i

In the original presentation of Ritt-Wu’s principle (cf. [10], [12]) the key operation prem(f;
ASC) is repeatedly used. Since the main purpose of triangulation is to reduce the class or the
leading degree of f, we need only to take fewer pseudo remainders than prem(f; ASC) takes.
This can reduce the size growth of polynomials produced. The following W—prem is one of our

1 In practice, one can further order polynomials with the same rank to enhance the efficiency
while preserving the well foundedness.
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key steps to control the size growth of polynomials.

Algorithm W—prem (2.6). Given a polynomial g and an ascending chain ASC = fi,...., f;
with non-constant f;. We define W—prem(g; ASC) to be:

Case 1. prem(g; fi,..., fr) if prem(initial(g); f1, vy fr)=0.

Case 2. g if class(f,) < class(g).

Case 3. W—prem(prem(g; fr); fis s fro1) if class( f,) = class(g).
Case 4. W—prem(g; fi,..., fr—1) if class(f,) > class(g).

The remainder formula is still valid for W-prem, except deg(R,z;) < deg(f;,»;) (where
z; = lv(f;)) is not necessarily true.

Proposition (2.7). For a non-trivial ascending chain ASC' = fi, ..., f» and a polynomial g,
if W—prem(g; ASC) = 0, then prem(g; ASC) = 0.

Proof. We use induction on r. Suppose g is not zero and for » — 1, the proposition is
true. We want to prove it is true for r. According to (2.6) there are 4 cases. In case 1, 0
= W-prem(g; ASC) = prem(g; ASC). Case 2 cannot happen since W—prem(g; ASC) = g #
0. In case 3, W-prem(g; ASC) = W-prem(prem(g; f+); fi, s fr-1) = 0. By the induction
hypothesis, prem(g; ASC) = prem(prem(g; f); fi, -, fr=1) = 0. In case 4, by the induction
hypothesis again, prem(g; ASC) = 0. I

We introduce a new notation extremely important for the rest of the paper:
PD(ASC) = {g | prem(g; ASC) = 0}.

Thus, (2.7) says that if W-prem(g; ASC) = 0, then g € PD(ASC). The following proposition
insures the termination of the triangulation procedure of Ritt-Wu’s principle, when using W-
prem.

Proposition (2.8). Let B = f1,..., f, be a basic set of polynomial set S with 0 < class(f1),
and h be a polynomial. Suppose g = W-prem(h; fi,--., f,) is not zero. Then the set 5 =
S U {g} has a basic set lower than B.

Proof. From Algorithm (2.6) for W—prem, it is not hard to see that (i) W—prem(initial(g);
fi,...o ) # 0; (ii) if g and f; have the same class, say, ¢, then deg(g,y:) < deg( fr,vi)-

If class(g) < class(f,), then g alone forms an ascending chain lower than B. Now suppose
class(g) > class(fi), and let § = maz{i| class(f;) < class(g)}. If class(f;+1) = class(g), then
ld(g) < 1d(f;4+1). Thus f1,....f;. g form an ascending chain lower then B. i

3. A Modification of Ritt-Wu’s Principle

A complete triangulation algorithm, which was implicitly in Ritt’s work ([9], [10]) and was
rewritten by Wu in detail ([13], [12]). It was called Ritt’s Principle and considered the basis of
his method by Wu. The following modification is an improvement and used in our prover.

Theorem (3.1). (Ritt-Wu’s Principle). Let § = {hy, ...k, } be a finite nonempty polynomial
setin A= K[y1,-..,Ym], and I be the ideal (hy,...,h,) of A. The algorithm is to construct an
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ascending chain ASC such that either
(3.2). ASC consists of non-zero constant in K N I.

(3.3). ASC = f1,..., [, with class(f;) > 0 and such that f; € I and W-prem(h;; fiowns fr) =
Qforalli=1,...,rand 7=1,...,n.

Proof. By (2.5), we can construct a basic set By of §; = 5. If By comsists of only one
nonzero constant, then we have (3.2). Otherwise, we can expand 57 to S, by adding nonzero
W-prem(g; B1) of all g elements of S;. If S5 = 51, then we have (3.3). Otherwise, we can
construct a basic set By of S5. By (2.8), By > B,. If B, does not consist of one nonzero
constant, then we can expand S, to S; using the same procedure. Thus we have a strictly
increasing sequence of polynomial sets:

S, C S C-eey
with the corresponding strictly decreasing sequence of characteristic sets
By >By >

By (2.3), this decreasing sequence can be only finite. Thus, there is an integer k > 1 such
that either B; consists of a nonzero constant or S, = Si41; then we have either (3.2) or (3.3),
respectively. i

Now let us fix an extension E of the base field K. We denote Zero(S) the common zeros of
polynomials in 5, i.e., the set

{(a1,s ) € E™ | h{ay,...;a,) =0, for all h € S}.

Let G be another polynomial set. Following Wu, we denote Zero(5/G) to be Zero(S) —
UgGG’ Zero(g). Note that all zeros are taken from the (fizred) extension E. Unless essential, we
will not mention this field explicitly. We have Zero(S/{1}) = Zero(S).

Let ASC be a non-trivial ascending chain and G be a polynomial set. We introduce a new
notation pfactors(G; ASC) =

Case 1. 0 if prem(g; ASC) = 0 for some g € G.
Case 2. |J{all prime factors of prem(g; ASC)| for all g € G}.

In the case of (3.2), the polynomial set S is said to be contradictory and does not have a
common zeros. Otherwise we have the following:

Theorem (3.4). Suppose S in (3.1) is not contradictory. Let ASC = fi,..., [, be the
ascending chain obtained in (3.3), I, be the initials of the fi, [ = {[1,...., I} (I is called the
initial set of ASC) and J = pfactors(I; ASC) (note that J is non-zero).

(i) Zero(ASC/I)= Zero(ASC/[J).
(ii) Zero(ASC/I) C Zero(PD(ASC)) C Zero(S) C Zero(ASC).
(iii) Zero(S)= Zero(ASC[T)UU {Zero(SU{p})|pe I}

)



(iv) Zero(S) = Zero(ASC/J)UU, {Zero(SU{p})|pe€ J}.

Proof. For each of I, letting I}, = prem(Iy; fi, ..., fe—1), we have
(3.4.1) [;1..‘];:':11]& =Qifi+ -+ Qi1 for + 1.

For some non-negative integer s; (i = 1,...,k—1) and polynomials @; (¢ = 1,..., k—1). Therefore,
if a € Zero(ASC/I), then a € Zero(ASC/J). Conversely, if a € Zero(ASC/J), then there is
k such that I{(a) # 0, where I} = prem(I; fi,..., fr-1). By (3.4.1) again, [;(a) = 0 for some
j < k. Thus a € Zero(ASC/I). Therefore, (i) follows.

Since ASC C Ideal(S) and S C PD(ASC) (by (2.7) & (3.3)), Zero(PD(ASC)) C Zero(S5)
C Zero(ASC). For each h € PD(ASC) we have prem(h; ASC) = 0, thus by the remainder
formula, we have:

I Drh=Q1fi+---+Q fr.
That means Zero(ASC/I) C Zero(PD(ASC)). Therefore, (ii) follows.

Since Zero(ASC) = Zero(ASC/I)U {Zero(ASC U{p}) | p € I}, (iii) follows from (ii) by
taking intersection with Zero(S). (iv) is similar. ? i

4. A Modification of Ritt-Wu’s Decomposition Algorithm
Algorithm (4.1). Ritt-Wu’s Zero Decomposition Algorithm (Refined Form). Let S and

G be two non-empty polynomial sets. The algorithm is either to detect the emptiness of
Zero(S/G) or to decompose Zero(S/G) in the following form:

(4.1.1) Zero(§/G)= | ) Zero(ASC;/I;UG)
1<i<k

(4.1.2) Zero(S§/G)= | Zero(PD(ASC;)/G)
1<i<k

where each ASC; is a non-trivial irreducible ascending chain,® the I; are the initial sets of the
ascending chains ASC;, and prem(g; ASC;) # 0forallg € G and ¢ = 1,..., k.

Proof. Let ASCs a set of ascending chains, initialized to be empty at the beginning.

Step 1. According to (3.1) we can construct an ascending chain having the property of either
(3.2) or (3.3). In the case of (3.2), Zero(S/G) is empty. In the case of (3.3), we have an

2 Gince the main purpose of the algorithm in (3.1) is to insure theorem (3.4), we can delete
some redundant factors of a polynomial produced by pseudo division. For example, we can
replace 1,93 — ¥2 by y1y2 — y». Such variable factors y; is easy to detect and remove. However,
it enhances the efficiency greatly in some cases.

3 For the definition and properties of irreducible ascending chains see the Appendix or [10],
[12], [2]



ascending chain ASC and a polynomial set S (i.e., S; in the proof of (3.1)) having ASC as
one of its basic sets. Zero(S) = Zero(S’).

Step 2. Check whether the ascending chain ASC = fi,..., f, is reducible. If it is, then there
is an integer k > 0 such that fi,..., fr_1 is irreducible, but fi,..., fi is reducible. By (9.4) in
the Appendix, we can find two polynomials g and k with class(fy) = class(g) = class(h) and
gh € Ideal(f1,..., fx). We have decomposition: Zero(S') = Zero(S' U{g}) U Zero(S' U {h}).
Obviously, S’ U {g} and S’ U {h} have basic sets strictly lower than that of 5’. We can take
each of 8’ U {g} and 5’ U {h} as a new S, and go to step 1.

Step 3. Let [ be the initial set of of ASC. By (3.4) we have:

(4.1.3)  Zero(S/G)= Zero(S'|G) = Zero(ASC[/ITUG)U U{Zero(S’ u{p}/G):pel}

P

Step 4. If prem(g; ASC) = 0 for some g € G, then Zero(ASC/I U G) is empty. Otherwise,
we add this ascending chain to ASCs.

Step 5. For each p in I, let p' = prem(p; ASC). Note that p' # 0. For each Zero(S' U
{p}/G) = Zero(S' U {p,p'}/G) in (4.1.3), take 5" U {p,p'} as a new S, then go to step 1.
Repeat this process recursively. Since S’ U {p,p'} has a basic set strictly lower than that of 5’
by (2.8), this recursive process will finally terminate. For otherwise, we would have a strictly
decreasing sequence of ascending chains, contradicting to (2.3). The termination of each branch
happens when I consists of constant polynomials.

Upon termination, we have two cases:
(i) ASCs is empty. This means that S does not have common zeros.

(i) ACSs = {ASCy,...,ASCy} (1 < k), then we have the decomposition (4.1.1). Since
Zero(ASC;/1;) C Zero(PD(ASC;)) C Zero(S), (4.1.2) follows from (4.1.1). I

Remark. The branches produced in the recursive step 5 can be as many as thousands and
most of them are redundant. If G = 1, we still don’t have a satisfactory strategy to control the
growth of the branches and make the termination earlier. In Part II, G is a set of polynomials
expressing degenerate cases. We have the following modification to control the growth of
branches effectively.

Step 3'. Let I be the set of all initials of ASC,
I'={p| pe I and is not a factor of some g € G},

J = pfactors(I'; ASC), and D = {p | p € I’ and is not a factor of some g € G}. * We have:

(4.1.3")  Zero(5/G) = Zero(5'|G) = Zero(ASC/J UG U U{ZeTO(S’ U{p}/G):pe€ D}.

4

4 In our actual implementation, the procedure is more complicated. For example, we can at
least use ¢’ = G—prem(g; ASC) instead of g in G. Here G—prem is different from prem in that
G-prem uses only polynomials with constant initials in ASC to take pseudo remainders.
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Step 4'. If prem(g; ASC) = 0 for some g € G, then Zero(ASC/J U G) is empty. Otherwise,
we add this ascending chain to ASCs. More important, if G-prem(g; ASC) = 0 for some
g € G, then Zero(ASC/G), hence Zero(S/G) is empty; this branch terminates. Here we use
the notation G—prem in the previous footnote.

Step 5. For each Zero(S' U {p}/G), do the same recursive process as in step 5. The
termination of each branch happens when D in step 3’ consists of constant polynomials or G-
prem(g; ASC') = 0 for some g € G in step 4'. With a careful arrangement, we can make many
branches terminated earlier. This is another key step of our improvements. End of Remark.

Theorem (4.2). Let E be an algebraically closed extension of the base filed K and G = {1}.
Then (4.1.2) becomes

(4.2.1) Zero(S) = U Zero(PD(ASC;))

1<i<k
which is a decomposition of algebraic set Zero(S) into the union of the irreducible varieties
Zero(PD(ASC;)). Here each PD(ASC;) is a prime ideal (see (9.2) in the Appendix). Or
alternatively,

(4.2.2) Radical(S) = (] PD(ASC;).

1<i<k

Step 2 in (4.1) generally needs factorization of polynomials over successive algebraic exten-
sions of the field of rational functions. The actual implementation in our prover can only do (1)
factorization of polynomials over the field of rational functions; (2) factorization of polynomials
over successive quadratic extensions of the field of rational functions. Even (1) is enough for
most problems we found in geometry. The following variant of (4.1) does not need factorization
over extension fields.

Algorithm (4.3). Ritt-Wu’s Zero Decomposition Algorithm (Coarse Form). The same
statement as in (4.1), except we do not require that each ascending ASC; be irreducible.

Proof. The only thing needed to change in Algorithm (4.1) is to drop step 2 in the proof
of (4.1). However, since multivariate factorization is available in many algebraic systems, we
suggest to keep step 2 and check the reducibility of prem(fx; fi, ..., fo—1)- i

In the coarse form, PD(ASC;) even may not be an ideal. Thus, decomposition (4.2.2) is
generally not valid.

The decompositions in (4.1)~(4.3) are generally redundant, i.e., some Zero((PD(ASC;)) may
be contained in others. To remove all such redundancy (see Theorem (4.6)) is time-consuming.
However, the following theorem, which is important to the second part of the paper, removes
some redundancy without any cost.

Theorem (4.4). Let n = length(S) be the number of polynomials in 5. Suppose that the
emptiness of Zero(5) is not detected in algorithm (4.1) or (4.3) and the set unions in (4.1.1)
and (4.1.2) (either in the refined form or in the coarse form) are arranged in such a way that
length(ASC;) < nfor ¢ < I, and length(ASC;) > n for ¢ > [ for some integer 0 < [ < £k, then
0 < I we have the decomposition

(4.4.1) Zero(S/G)= || Zero(PD(ASC;)/G).

1<ig!



Proof. First we assume F is algebraically closed and & = {1}. If Zero(S) is empty (this can
be definitely detected using algorithm (4.1)), then nothing is needed to prove. Assume Zero(S5)
is non-empty. Then we have

Zero(S) = | Zero(ASC;/L)U |J Zero(ASCi/I;)

1<igl 1<i<k
= |J Zero(PD(ASC))U |J Zero(ASCi/I;)
1<i<! 1<i<k

By the Affine Dimension Theorem (page 48 in [6]), the dimensions of all érredundant (irre-
ducible) components of Zero(5) are greater than or equal to m — n, (Remember that m is the
number of variables yi, ..., Um .) By Lemma (4.5) below, Zero( ASC;/1I;) is contained in the union
of irreducible varieties (of Zero( PD(ASC;)) C Zero(S)) with dimension < m — length(ASC;).
Thus, if ¢ > [, m — length(ASC;) < m — n and each such irreducible variety with dimension
< m — n must be in one of the components of Zero(S). Therefore, [ > 0 and each components
of Zero(S) must be contained in some Zero(PD(ASC;)) for i < I. Hence,

(4.4.2) Zero(S) = | ) Zero(PD(ASCy)).

1<i<i

Since any extension E of K is contained in an algebraically extension of K, (4.4.2) is valid
for any extension E of K. For any polynomial set G, (4.4.1) follows from (4.4.2). (Here we have
a little abuse of notations, the [ in (4.4.1) and (4.4.2) are different. By the algorithm (4.3) (see
Step 3), only those ASC; in (4.2.2) are kept in (4.4.1) that prem(g; ASC;) # 0forallg € G.) |

Remark. Notice that if ASC is irreducible, then Lemma (4.5) is obviously true by the affine
dimension theorem. Thus Theorem (4.4) under the refined form (4.1) is true, independently
of Lemma (4.5). The practical importance of Lemma (4.5) is that we can use Theorem (4.4)
without factorization. Notice also that the formula:

Zero(§]G)= | ] Zero(ASC;/I; UG)

1<i<l

is generally not true even for the refined form. This is the key advantage to use Zero( PD(ASCy))
instead of Zero(ASC;/I;).

Lemma (4.5). Let ASC = fi,....f, be a non-trivial quasi ascending chain, I; be the
initials of fi, and J = {I1,...,I,}. Then Zero(ASC/J) is contained in the union of varieties
C Zero( PD(ASC)) with dimensions < m — 7.

Proof. This is the theorem most difficult to prove in this paper. We write the proof completely
in (9.7) in the Appendix. 1

Theorem (4.6). There is an algorithm to remove the redundancy in the decomposition
(4.2.1) completely.

Proof.

Step 1. First we can use Theorem (4.4) to remove some redundancy in (4.2.1) without any
cost.
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Step 2. Use Theorems (9.5) and (9.6) in the Appendix to remove further redundancy.

Step 3. For each remaining prime ideal PD(ASC;), we can obtain its Grobner basis from the
ascending chain ASC;, using the algorithm in [3].> Having the Grobmner bases, we can decide
the inclusionship among these prime ideals, thus removing the remaining redundancy. i

Remark. Steps 1 and 2 are not necessary, but they are much cheaper than step 3. Thus the
algorithm is more efficient based on Theorems (4.4), (9.5) and (9.6).

The method for geometry theorem proving in Part I is based on the following two theorems.

Theorem (4.7). Let the notation be the same as in (4.4) and g be any polynomial. Suppose
we have decomposition (4.4.1) (in the coarse or refined form). If prem(g; ASC;) = 0 for all
i=1,..,10, then Z(S/G) C Zero(g).

Proof. Since by assumption prem(g; ASC;) = 0, g € PD(ASC;). Hence Zero(PD(ASC)))
C Zero(g) for all i. By (4.4.1), Zero(S/G) C Zero(g). i

Theorem (4.8). Let the notation be the same as in (4.4) and g be any polynomial. Suppose
we have decomposition (4.4.1) in the refined form (i.e., all ASC; are irreducible) and all zeros
are taken from an algebraically closed extension E of K. Then

(i) Each Zero(PD(ASC;)/G) is non-empty.
(ii) Zero(S/G) C Zero(g) if and only if prem(g; ASC;) = 0foralle =1,..,1.

Proof. This is an obvious consequence of Theorem (9.3) in the Appendix. |

Part II. Applications to Geometry Theorem Proving

5. A Method for Approach (1.2)

Let E be the field associated with a given geometry. Suppose the hypothesis of a geome-
try statement can be algebraically expressed by a set of polynomial equations {h1(y1, ..., ¥m) =
0, .e0shin (Y15 s Ym ) = 0} together with a set of inequations {s1 (Y1, s Um ) # 0,3 8(Y1, o Ym ) #
0} expressing the non-degenerate conditions and the conclusion by a polynomial equation
(Y15 -y Ym ) = 0. Then the equivalent algebraic form of the geometry statement is

(5.1) Yoy oo Ym € E[(h1 =0A - Ah, =0AS8; #0A---As, #0) = g =0].

Let S = {h1,....hin} and G = {s1..., 5, }, then the above formula is equivalent to
(5.2) Zero(S|G) C Zerolg).

Method (5.3). Suppose a geometry statement can be given algebraically in the form (5.1),
the method is to confirm (5.1), or in the case when the field associated with the geometry is
algebraically closed, to decide whether (5.1) is valid.

5 Let ASC = fi,...,f, be an irreducible ascending chain. Then GB(PD(ASC)) = K[y]n
GB(fi,. fr, I -z — 1), where I is the product of all initials of ASC and z is a new variable.
Here the compatible ordering among monomials can be any ordering satisfying w'z? < z. For
details, see [3].
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Using Algorithms (4.1) or (4.3), and Theorem (4.4) to decompose Zero(S/G) into

Zero(5]G) = || Zero(PD(ASC;)/G).

1<ig!

Each Zero(PD(ASC;)/G) is called a component of Zero(S/G), though it may redundant,
reducible or even empty.

Case 1. prem(g; ASC;) = 0 for all i = 1,...,[. Then (5.2), hence formula (5.1) is valid by
Theorem (4.7).

Case 2. prem(g; ASC;) # 0 for some 7. If E is algebraically closed and each ascending chain
ASC; is irreducible, then formula (5.1) is not valid by Theorem (4.8). i

In case 2 and when formula (5.1) is disproved, the question that whether the original geometry
statement is true remains open up to the interpretation of the person who uses the method.
Since nondegenerate conditions are often implicit in a geometry statement and are extremely
hard to find in certain cases (see the examples below), some of them may be missing in formula
(5.1). In that case formula (5.1) may be false and we don’t have any information about the
reason why it is false: it is false because the geometry statement is generally false or because
some nondegenerate conditions are missing. This is why the authors are in favor of approach
(1.1) in Section 1 to introduce the notion “generally (generically) true”, which is inherent to a
given geometry statement regardless of how much nondegenerate conditions are added.

6. Examples

Example (6.1) (Pascal’s Theorem). Let A, B, C, D, F and E be six points on a circle (O).
Let P= ABNDF,Q = BCNFE and S = CDnN EA. Show that P, @ and § are collinear
(Figure 1).

The obvious non-degenerate conditions in this problem seem to be “the three pairs of lines,
AB and DF, BC and FE, and CD and EA, have normal intersections”. Thus we can let
B = (u1,0)7 A= (0,0% C= (Uzaus), 0= ($27931)7 D= (x37u4), F = (5847%5); E = (335,U6),
P = (26,0), @ = (z5,27), and § = (210, %9). Then the problem can be algebraically specified
as follows:

hy = 2uomy + 2uzxy — ui —ui =0 OA = 0OC.
ho = 2u 9 —u? =0 0A=O0OB.
hs = 22 — 22223 — 2uay +uj =0 OA=0D.
hg = 22 — 22224 — 2usz; +ui =0 OA=0F,
hs = 22 — 22205 — 2usT; + ug =0 OA=O0E.
he = (us — ta)Ts + UsZTy — usz3 = 0 P, D and F are collinear.
Ry = (ug — U5 )Ts — (T5 — T4 )27 + UsTs — UsTs = 0 Q, F and F are collinear.
hs = uszs — (42 — U1)z7 — tyus =0 @, B and C are collinear.
hg = ug®ip — 5% = 0 S, F and A are collinear.
hio = (us — us)@10 — (T3 — U )To + U3T3 — Usttg = 0 S, C and D are collinear.
s1 = (Ug — U3)ZTs — UsZs + Ustlg # 0 Lines AF and C D have a normal intersection.

S9 = Uady — Uzly — (U2 b 'Lii}'li,@ -+ (Uz — 4 }’U/{) # 0
Lines BC and FF have a normal intersection.
S3 = Ui Uy — UrUg F O Lines AB and DF have a normal intersection.
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g = 27210 — (Zs — Ts)Ty — TeZ7 = 0 Conclusion: 5, @ and P are collinear.

Zero(5/G) has only one component (in 6.9s °) whose corresponding ascending chain ASC,
is just the one obtained from the polynomial set 5 = {h1, ...y 1o} using Ritt-Wu’s principle
(3.1). Since prem(g; ASCy) =0 (in 0.4s), theorem has been confirmed. This problem gives an
impression that finding non-degenerate conditions is not hard. Let us look at another example.

Figure 1 Figure 2

Example (6.2) (Morley’s Trisector Theorem.) The points of intersection D, £ and F" of the
adjacent trisectors of the angles of any triangle ABC are the vertices of an equilateral triangle
(Figure 2).

We can let B = (y;,0), A =(0,0), D = (¢2,73),C = (ys,va), F = (ys,y7), and E = (10, %s)-
Then the problem can be algebraically specified as follows:”

he = (y3 + (=392 + 6y1y2 — 3y2)ys)ys + (=32 + 3y1)93 + 95 — 31195 + 3yive — 3 )y —

Y3 + (33193 — 6yTys +3yi)ys = 0 tan(LCBA) — tan(3LDBA) = 0.
hy = (y3 — 3y2ys)ys + (—3%295 + ¥3)ys = 0 tan(£CAB) — tan(3LDAB) = 0.
hs =y —3=0 tan(+7r/3) = £+/3.

hy = (((y{a? + y§ ~ Y1Y2)Ys — Y1Y3Ya)¥s + Y1Y3Ys +9(y§ + y% - y;yg)yzz)ys + ((y1y3ys + (y§ +
Y2 — 112 )9 s — (V2 + Y3 — y1y2)ys + 1 vava)yr — (95 + 93 — 9192095 + (Y3 + 93 — 1172)yi)ys —

Y1Ysye — y1ysys =0 tan(.BAD + LDBA + LACF) = /3.
hs = (%193Ys — Y1%2Y2)Ys + ($1Y2Ys + Y1¥Ysya)yr = 0 tan(DAB) = tan(CAF).
he = (319395 + (=912 + ¥2)a — Y33 010 + (192 — Y1) ¥s + Y1 YaYa — Y7 %2 + 97 )9 — YT yYs¥s +
(y2y2 — ¥3)ya + Y7ys =0 tan(ABD) = tan(EBC).

§ Meaning that it took 6.9 seconds to complete the decomposition on a Symbolics 3600, running
on Release 7.2.

7 The specification was due to Wu [12]. There are 18 triangles DEF thus formed. The
specification of non-degenerate conditions here was due to us. Our proof applies to all 18
equilateral triangles. The authors first suspected that there might be other non-degenerate
conditions. For example, can we insure that all those 18 triangles are well formed under any
circumstances (besides those specified)? Is it possible that some trisectors do not intersect
under some peculiar conditions?
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hy = ((2y4y5—y1g4)ys+(—~y§+ylys+y§)y7—y4y§—yi’)ym+((-—y§+y;ys+y§)ys+(—~2y4ys+
1)y HuE 1 YU Ys— 1 v3 Yo H(—vavd =3 )ys H(¥E —y1 Y3 HYEYs — 1 YD) Y+ Yayi+yi Y = 0
tan( ACF) = tan(EC B).

s, =11ys #0 A, B, C are not collinear.
so=y2 £0 Line AB is non-isotropic.?
s3=(ys —9)? +y3#0 Line BC( is non-isotropic.
sa=yl+ Yyl £0 Line AC is non-isotropic.
g = (YsUs — Yr — Y2Ys + Y3)¥10 + (Us + Ysyr — Ys¥s — Y2)¥o + (—Y2Ys — ¥3)ys + (—¥a¥s +

ya )yr + (y2 + v2)ys = 0 Conclusion: tan(ZEDF) = ++/3.

Zero(S/G) has only one component (in 756.7s) whose corresponding ascending chain ASC; is
just the one obtained from the polynomial set S using Ritt-Wu’s principle. Since prem(g; ASCy)
= 0 (in 6.4s), the theorem has been confirmed.

Remark. The authors spent several hours to figure out degenerate cases s; = 0,83 = 0 and
s, = 0. At first, we overlooked these cases and the proof failed;® then could we say Morley’s
trisector theorem is not a “theorem” (in complex geometry)? This is why the authors are
in favor of the notion “generally true” introduced by Wu. In Euclidean geometry, s; # 0
(i = 2,3,4) are consequences of s; # 0; they are redundant. Thus, one could argue that the
trouble with s, 82, andss is due to the method: if we use the Tarski-Seidenberg-Collins method,
then s; # 0 is enough. But Tarski-Seidenberg-Collins method cannot be applied to unordered
geometry: in unordered geometry these non-degenerate conditions are all necessary. Let us
look at another example.

By

Ax

Cy
Figure 3 Figure 4

Example (6.3). (One Form of the Nine Point Circle Theorem). The circle (N) passing
though the feet D, E and F of the three altitudes of a triangle ABC also passes through the
midpoints of its sides (Figure 3).

We can let B = (%’1»0)-, A= (070>a ¢ = (3327?3)7 D = (?57’9’4)7 E = (y77 y6>7 F = (3}270),
M = (ys,0), and N = (y10,%s). Then the problem can be algebraically specified as follows:

8 An isotropic line is a line perpendicular to itself. It does not exist in Euclidean geometry,
but exists in general metric geometries.
8 Zero(S/{s1}) has 7 components (in 846.2s) and g vanishes only on the first component (in
9.2s).
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hy = ysys +{—Y2 + Y1 )% — ¥1y3 =0 D. B and C are collinear.

ho = (y2 — ¥1)¥s + Yaysa =0 AD L CB.
hs = ysyr — Ya¥s = 0 E, A and C are collinear.
ha = yoyr + Ys¥e — Y12 = 0 EB 1L CA.
hy = 2ys —th =0 M is the midpoint of A and B.
he = (297 — 2y2)Y10 + 20s¥s — ¥7 — Y5 +¥5 =0 NF=NE.
Ry = (2ys — 2¥2)¥10 + 20a%s — Y2 — Y5 +y3 = 0 NF=ND.
81 = 11ys # 0 A, B, C are not collinear.
So =yl 4+Ys — Yy #0 Line AC is not perpendicular to line C'B.
S5 = y1y2 # 0 Line BA is not perpendicular to line AC.
Sa=yi1Ys — Y #£0 Line AB is not perpendicular to line BC.
g=(2ys —2y2)y10 — Y2 + 5 =0 Conclusion: NF = NM.

Again, Zero(5/G) has only one component (in 11.9s) whose corresponding ascending chain
ASC, is just the one obtained from the polynomial set 5 using Ritt-Wu’s principle. Since
prem(g; ASCy) = 0 (in 0.3s), the theorem has been confirmed.

Here s, # O A s, # 0 A s3 # 0 means that triangle ABC is not a right triangle. If we
drop them, then Zero(G/{ss}) has 4 components (in 37.3s) and g = 0 is valid only on the
first component (in 0.4s). Thus they are all necessary even in Euclidean geometry. For this
theorem, one can still argue that only s; # 0 is necessary if we don’t introduce point N and
change the conclusion to be “D, E, F and M are on the same circle.” Now we give another

“trouble” example.

Example (6.4). Let ABC be a triangle. Three equilateral triangles A, BC, AB,C and
ABC, are erected (either all outside or all “inside” the triangle) on the three respective sides
BC, CA and AB. Show that (i) lines AA;, BB; and C'C, are concurrent at a point, say, O;
(ii) £B,0C, = LC,0A, (Figure 4).

We can let B = (ybe)v A= (070>7 C= (y27y3)7 Cy = (?}539’4)7 B, = (yh ?Js), Ay = (997 ?Js%
and O = (911, ¥10). Then the problem can be algebraically specified as follows:

hl =2y1y5—yf=0 ClAEC’lB
hz:y§+y§—y§=0 AC, = AB.
hs = (y1UsYs — Y1Y2¥a)yr — (Y192Ys + Y1Y3Ya)ys = 0 tan(C1 AB) = tan(CAB,).
ha = 2yayr + 2ysys — Y5 —y3 =0 B,C = B, A.

hs = (y1ys¥s + (Y192 - Y2 ya)ye + ((—y1y2 + 47 )ys + 11 YsYa)ys — Yiysys + (—y2y2+ 43 )ya = 0
tan(C1 AB) = tan(A; BC).

he = (202 — 2y1)Yo + 2ysys — 3 — Y3 +y7 =0 A,B= A, C.
he = ysth1 — YoY1o =0 O, A; and A are collinear.
hs = Yot + (=¥7 + ¥1)%10 — %1% = 0 O, By and B are collinear.
s$1 =1y #0 A, B, C are not collinear.
Sy = yf + 0 Line AR is non-isotropic.
ss =y +yE =2y +y; #0 Line BC is non-isotropic.
sa=yi 4y #0 Line AC is non-isotropic.

g1 = (ya — Y3)¥11 — (¥s — Y2)Y10 + Y3¥s — ¥2¥s =0
Conclusion 1: €1, C and O are collinear.

— 3 2 —no
go = G3Yi, + G2Yi; T Q1Y + o = 0

 We omit the explicit forms of the huge polynomials as,as, @1, and aq.
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Conclusion 2: tan(B,0C;) = tan(C1O0 Ay ).
Zero(S/G) has only two components (in 101.9s) whose corresponding ascending chains are:

4yi — 3y7

2ys — %1

291 Ys + 2Y2Ys — Y1 Y3

2ysyr + 2YsYs — Y3 — U5

2y, ys + (—2v2 + 21 )Ys — 1¥Ys ASC,
(25 — 291)Yo + 2ysYs — Y3 — Y5 + Ui

(Ysys + (—y7 + Y1)¥s)¥10 — Y1Ys¥s

yey11 + (—y7 + ¥1)¥10 — Y16,

and
2y2 — U1
4y3 — 3y3
Ya — Y3
2ys — 1
Yr — Y1
Ys
Yo .

Since prem{gi; ASCy) = 0 and prem(gy; ASC,) = 0 (in 0.2s), conclusion 1 has been con-
firmed. Thus we would think that the non-degenerate conditions s, #0,...,84 # 0 are enough.
However, prem(gs; ASC1) = 0 (in 0.1s), but prem(go; ASCs) # 0 (in 21.2s). Is conclusion 2
not valid? Obviously, ASC, corresponds to the case when triangle ABC is equilateral, A = A4,
B = B,, and C = C;. This is certainly a degenerate case. In that case, the conclusions “A A,
BB;, and C'C; are concurrent” and “.B,0C; = LC;0A,” become meaningless. (Question:
why g1 = 0 is still true in this meaningless case 17)

We can give more examples with hidden degenerate cases hard to find even for geometry
experts. How can one exclude such kinds of hidden degenerate cases without enormous human
offorts? The answer was already in Wu’s work: to introduce the notion of “generally true”.
For details, see [5]. For example, 1, y» and y3 can obviously be chosen as parameters. Thus,
Zero(PD(ASCy)) corresponds to a degenerate case because the parameters are algebraically
dependent on it. We only need to check whether g; and g, vanish on non-degenerate case
Zero(PD(ASC:)), but not on Zero( PD(ASCy)).

7. Experimental Results

We have implemented Method (5.3) in our prover [1]. More than 500 theorems have been
proved in this way. In particular, we have experimented with the same set of 512 theorems
in [2] (using the same coordinates and equations). The prover described in [1] is based on
approach (1.1) and can generate non-degenerate conditions in geometric forms for a large class
of geometry statements. For 413 of the 512 theorems, the prover can generate non-degenerate
conditions all in geometric forms. For most of those 413 theorems, we use such machine
generated non-degenerate conditions in geometric forms as the inputs to our new method. We
have paid particular attentions to a few problems among these 413 theorems, specifying non-
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degenerate conditions manually. For example, we proved Feuerbach’s theorem under the only
non-degenerate that “the vertices of the triangle are not collinear.”

For the rest 91 theorems, some non-degenerate conditions in polynomial inequations were
generated by our previous method. First we simply deleted these algebraic inequations, using
the rest machine generated non-degenerate conditions in geometric forms as inputs. About half
of these 91 theorems were confirmed this way. We have to pay more attentions to the rest half,
adding more non-degenerate conditions in geometric forms manually.

In this way, we have proved 493 of the 512 theorems.” Among the 493 theorems proved,
471 were proved within 300 seconds; 12 within one hours. We list the following typical timing
samples (besides the four examples in Section 6.)

Theorem Sources Decomp Redu Total Time

Parallelogram Section 2 [4] 0.23 0.02 0.25
Theorem of Centroid Ex1 in [4] 0.33 0.02 0.35
Simson’s Theorem Ex2 in [4] 0.6 0.1 0.7
Brahmagupta’s Theorem |Section 4 [4] 38 0.1 3.9
Butterfly Theorem Ex5 in [4] 56.5 0.3 56.8
Pappus’ Theorem Ex6 in [4] 2.5 0.2 2.7
Pappus Point Theorem | Ex7 in [4] 8.0 1.9 9.9
Isosceles Midpoint Ex8 in [4] 3.7 0.1 3.8
Gauss’ Theorem Ex9 in [4] 0.15 0.05 0.2
Gauss Point Theorem | Ex10 in [4] 5.7 0.6 6.3

Gauss Conic Theorem | Ex17 in [2] 101.3 1502.1 1603.4
Feuerbach’s Theorem |Ex204 in [2] 27.3 1.0 28.3

The timing is specified in seconds. Here “Decomp” means the time spent on decomposition;
“Redu” means the time spent on checking whether prem(g; ASC;) = 0. The Pappus point
theorem was not proved by the program in [7]. It was easily proved by our program, under
nondegenerate conditions that each of the following pairs of lines have a normal intersection:

A, B and CCy, AC; and BBy, A;C and BB;, AA, and BC,, AC, and A, C, AB, and A B,
and EF and GH.

Here the theorem of parallelogram, the theorem of centroid, and Feuerbach’s theorem were
proved under the only non-degenerate condition that “points A, B and C are not collinear.”

9 We had trouble with the rest 19 theorems within the time or space limit of the computer.
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The authors still have difficulty understanding why the non-degenerate condition that “the
three sides of the triangle ABC are non-isotropic” is necessary for Morley’s theorem, Simson’s
theorem, but not for Feuerbach’s theorem.

&. Related Weork

Now let us first sum up Wu’s method as we understand. Let §, G and g be the same as in
Section 5. If Zero(5) C Zero(g), then g = 0 follows from hy =0 A --- A h, = 0. However, this
is usually not the case because some nondegenerate conditions are missing. We can decompose
Zero(S) according to theorem (4.2):

Zero(S) = | Zero(PD(ASC;)).

1<i<k

Some components Zero( PD(ASC;)) correspond to degenerate cases, and others to nondegen-
erate cases. Of course, g = 0 does not have to be valid on degenerate components. How to
identify these non-degenerate components?

Approach (1.1) is to use parameters and can identify non-degenerate components easily. Then
one only needs to check whether g = 0 is valid on those non-degenerate components. If it is,
then one says the geometry statement is generally true.

Approach (1.2) is to specify a set of degenerate conditions (its algebraic form is the polynomial
set G) manually. In the context of Wu’s method, Zero(S/G) is expected to contain only non-
degenerate components, hopefully, no more no less. As we have seen in Section 6, this task is
sometimes very difficult.

Though people knew at the very beginning that Wu’s method could prove theorems with
approach (1.2), no attempt was ever made at that time, because people (including the first
author) thought it tended to be much slower than the method based on approach (1.1). Wu,
Chou, Gao and others proved hundreds of theorems based on approach (1.1).

The first author experimented with approach (1.2) during 19841985 using the Grobner basic
method. He was able to prove about 10 theorems and found it very slow [4]. The hardest one
proved by him was perhaps Simson’s theorem.

D. Kapur, on the other hand, was successful in proving more and harder theorems using
the same approach. By careful arrangements of the order of production and reduction of S-
polynomials, he proved about 25 theorems [7]. The hardest perhaps were Pascal’s theorem
and the Butterfly theorem. However, he was unable to prove harder theorems such as Pappus
point thoerem in [4], which was easily proved by our Method (5.3) in about 10 seconds. With
our method/program, we can prove much harder theorems such as Morley’s trisector theorem,
etc. Tt does not need factorization with the Grobner basis method. According to Kapur, this
is an advantage of using that method. Our program cannot do factorization over algebraic
extensions other than quadratic successive extensions. Thus it is incomplete. Incompleteness
does not bother us very much so long as the program can prove much more and much harder
theorems than other programs. We could implement a factorization (over extension fields)
algorithm (but not necessarily efficient) in our program and still use current program mainly,
thus making the program complete.
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H. P. Ko [8] was the first to use Ritt-Wu’s method to prove geometry theorems according
to approach (1.2). She was able to prove at least 25 theorems. The hardest were perhaps
also Pascal’s theorem and the Butterfly theorem. Our work is in the same direction as Ko’s
work and has similarities and differences with her work [8]. Our method/algorithms/program
are faster than hers. Especially, we establish a deep theorem (Theorem (4.4)) which makes the
proof procedure faster and much clearer. For example, in Example (6.1) (Pascal’s theorem), Ko
produced four components with ascending chains Ty, T3, T5, and 74.*® According to Theorem
(4.4), Zero(T;/I; UG) C Zero(PD(T1)/G) (for i = 2,3,4; here the /; are the initial sets of
ascending chains T;) and Zero(S/G) = Zero(PD(T1)/G)."* So we only need to check whether
prem(g;Ty) = 0, or in the terminology of approach (1.1), to check whether g vanishes on non-
degenerate components. Another example: in Appendix C of [8], Ko listed 6 ascending chains
Ty,...,Ts for Zero(S/G) of Simson’s theorem. According to our Theorem (4.4), only 13,73,
and T are necessary simply because length(T;) > 7 for i = 4,5, 6.

Appendix

9. Properties of Irreducible Ascending Chains

Let ASC = fi,..., [, be an ascending chain, not consisting of a constant. After a suitable
renaming ' of the y;, we may assume that class(fi) = d+1 and m = d+r = class(f, ), where
d > 0. We distinguish the y; for 7 < d by calling them u; and use z; to denote [v(f;). We call
{uy,...,ug} the parameter set of the ascending chain ASC.

Thus AS5C has the following “triangular” form:

filwr, ..., g, 1)

foluy, ... ug,z1,22)
(9.0)

foltn, oo g, @y, 00,2 ).

(9.1)~(9.4) can be found in Ritt-Wu’s original work; (9.5)-(9.7) are new.

Definition (9.1). An ascending chain fi,..., f, of the form (9.0) is called irreducible if
each f; is irreducible in the polynomial ring K (u)[zy,...,%;]/(f1,..., fi—1). Thus the sequence
Fy = K(u), Fi = Folz)/(f1)s ooy Fr = Foq2.]/(f,) = Folz]/(f1, -, fr) is a tower of field
extensions.’”

10 See pp110-112 of [8]. We use exactly the same coordinates and equations and inequations as
Ko’s. Her T, is equivalent to our ASC; in Example (6.1). If we didn’t use Theorem (4.4), our
program produced two ascending chains.

W Zero(T: /I, UG) is a proper subset of Zero(5/G). This is the advantage to introduce the
notation PD(T1) and the zero set Zero(PD(T1)/G).

12 This renaming changes the ordering of the y in a way that the variables y; not occurring in
ASC are less than the variables occurring in ASC. The ordering among the variables occurring
in ASC are the same as before; The variables not occurring in ASC' can be in any order.

13 Here (f1,..., fr) etc. denotes the polynomial ideal of K(u)[z] (not of K[u,2]), generated by
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Theorem (9.2). Let ascending chain ASC of the form (9.0) be irreducible, g be a polyno-
mial. Then PD(ASC) is a prime ideal and the following are equivalent:

(i) g € PD(ASC), ie., prem(g; ASC) = 0.

(ii) Zero(PD(ASC)) C Zero(g), here the zeros are taken from an algebraically closed ex-
tension of the field K.

Proof. See lemma 3, page 234 in [12] and Theorem (3.7) on page 31 of [2]. i

Theorem (9.3). Let ascending chain ASC be irreducible and g be a polynomial. If
prem(g; ASC) # 0 then there exist a polynomial p and a non-zero polynomial h € K[u] such
that pg — h € Ideal(ASC).

Proof. By (9.2), polynomial g, considered as an element in the filed F,, is non-zero. Thus
there exists a polynomial p’ in F, such that p’g = 1. Considered as polynomials in K [u,z]
and clearing the denominators we have pg — h € Ideal(ASC) for some polynomial p and some
non-zero polynomial polynomial 2 € K[u]. i

Theorem (9.4). Let fi,..., f, be an ascending chain. Suppose that f1,...,fi_1 (0 <k < 7)
is irreducible, but fi,..., f; is wweducible. Then there are polynomials g and A in Klu,z]
reduced with respect to fi,..., f, such that class(g) = class(h) = class(fir) and gh € the ideal
generated by fi, ..., fi.

Proof. See Theorem (3.6) on page 30 of [2]. Furthermore, by (9.3), if we wish, we can chose
g and h in such a way that the initials of ¢ and h contain parameters only. This fact will be
needed in (9.7). i

The following theorems can help us remove certain redundancy in decomposition (4.4.2).

Theorem (9.8). Suppose irreducible ascending chains ASC; and ASC, have the same
parameter set. If prem(g; ASCy) = 0 for all g in ASC,, then PD(ASC,) = PD(ASC,).

Proof. Since ASCy and ASC, have the same parameter set, they have the same length. Let
it be r; let ASCy = fi,...,f, and ASCy; = g1,...,9,. Then lo(f;) = lv(g;) (1 = 1,...,7). We
use the abbreviation PD; = PD(ASC;), ID; = Ideal(ASC;) for i = 1,2 and use J; and J
to denote any power products (changed in different contexts) of the initials ASC; and ASC,,
respectively.

First, suppose g € PD,. We have Jog € 1D, for some J;. Thus by the hypothesis of the
theorem, there is a J; such that J,Jog € ID; C PD;. Since J; ¢ PD, and PD, is a prime
ideal, we have

(95}) J2g S P.D;

Since Jo ¢ PDs,, by (9.3) there are a polynomial p and a non-zero polynomial & € K[u] such
that pJ,—h € ID,. Thus, there is another J{ such that J{(pJo—h) € ID;. ThuspJo—h € PD,.
Since h ¢ PD,, pJy is also not in PDy, thus J, ¢ PD,;. Since PD; is a prime ideal, by (9.5.1)
we have g € PDy. Thus PD, C PD;.

Suppose g ¢ PD,. We can use the same argument after (9.5.1) to infer that ¢ ¢ PD,. Thus
PD, C PDs. i

.fla'”)fr'
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Remark. Actually, it is not hard to prove that deg(fi,z;) = deg(g;,z;). Furthermore, the
converse of (9.5) is also true.

Theorem (9.6). Let ASC, = fiyees fr and ASCy = g1,...,9s be two ascending chains
and ASC, be irreducible. Suppose that prem(g;; ASCy) = 0 for all g; (i = 1,..,5) and
prem(I;; ASCy) # 0 for all initials I; of g; (i=1,..,5). Then PD(ASC:) C PD(ASCy).

Proof. We use the same notation as in the previous proof. Suppose g € P D,. We can use the
same argument in the second paragraph of the previous proof to get (9.5.1): i.e., Jog € PDy
for some J,. From the hypothesis, J; ¢ PD,, thus g € PD; and PD; C PD;. i

(9.7) Proof of Lemma (4.5).
Proof. We use induction on m — 7.
(1) Base case: m—r =0.In that case, the parameter set of ASC is empty.

Case (1.1) ASC is not in weak sense, i.e., prem(l;; fi,..., fj—1) = 0 for some j > 1, then
Zero(ASC[J) is empty.

Case (1.2) ASC is irreducible. Then Zero( ASC/J) is contained in the (irreducible) variety
Zero(PD(ASC)), the dimension of which is m —r = 0. The theorem is true.

Case (1.3) ASC is reducible. Suppose fi,.., fr—1 is irreducible, and fi,.rs fr 1s reducible
(1 < k). For simplicity and without loss of generality, we can assume f; has only two irreducible
factors, i.e., there are two polynomials fi and f with the same class as class( fy) such that
fiyen fioand fi, ..., fi are irreducible, fifi € Ideal(fi,--fi) prem(fi; fi, . fi) = 0 and

prem( fi; fio-or fi) = 0. Furthermore, we can chose f/ and fi in such a way that the initials

It =lc(fy) and I} = le(f') contain parameters only. Thus

Zero(ASC/J) = Zero(ASC' [T U{L N Zero(ASC" [T U{L})

(4.5.1) | Zero(ASC U {IL}/ ) Zero(ASC U {I{}/T),

where

ASC = fl,m,fk»-lvfi:;vfk-%-l?"‘?f"’
ASCY = fla-~-7fk-17f}lelvfk+17"‘7f?“'

In this base case, since parameter set is empty, I; and I}/ are constants. Thus (4.5.1) actually
is

(4.5.2) Zero(ASC /) = Zero(ASC'|J UL Zero(ASC" [T ULL}).

For quasi ascending ASC’ (or ASC") we have three cases:

Case (1.3.1) ASC’ is not in the weak sense, i.e., prem(l;; ASC") = 0 for some j > k, then
Zero(ASC'[J U {I;}) is empty. We can delete it from the union (4.5.2).

Case (1.3.2) ASC' is irreducible. Then
(4.5.3) prem(f;; ASC') =0foralli=1,..,7.
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Thus PD(ASC) C PD(ASC’) by Lemma (2.3) below. Hence
Zero(ASC'[J U{IL}) C Zero(PD(ASC")) C Zero(PD(ASC)).

Zero(PD(ASC")) is a variety of dimension m — 7.

Case (1.3.3) ASC” is reducible. We recursively repeat the same procedure of Zero(ASC/J) as
for Zero( ASC’/J’), until either case (1.3.1) or case (1.3.2) happen, here J' = {1, ..., [}, ... I. }.
When case (1.3.2) happens, (4.5.3) is still valid.

Thus we conclude that Zero( ASC/J) is contained in the union of those components of the
algebraic set Zero( PD(ASC)) whose dimension is m —r = 0.

(2) Induction case: suppose the theorem is true for quasi ascending chains g¢i,...,g4 with
m—d < m — r. We want to show it is also true for fi,..., f,. We can use the same argument
as in the base case.

Case (2.1) ASC is not in weak sense, then Zero(ASC/J) is empty.
Case (2.2) ASC is irreducible. Then as before, the theorem is true.

Case (2.3) ASC is reducible. We can repeat the same argument as in case (1.3) and also
have 3 cases for each of ascending chains ASC’ and ASC”. Here we emphasize that I} and I
contain only the parameters of ASC. Decomposition (4.5.1) is valid, but (4.5.2) is no longer
valid. Instead, we can decompose (using Algorithm (4.1) or (4.3)), say, Zero({I}}), into

Zero({I,}) = | ] Zero(ASC{/I; ;).

Here for each i, If ; is the initial set of the ascending chain ASC]. Then

Zero(ASC U{IL}]J) =] Zero(ASC; U ASC/[I} ; U J).

2

Note that ASC! U ASC forms another quasi ascending chain since ASC! involves only the
parameters of ASC. For each Zero(ASC] U ASC/I; ; U J), we now can use the induction
hypothesis to conclude that it is contained in the union of varieties (with dimension < m—7r+1)
C Zero( PD(ASC] U ASC)) C Zero(PD(ASC)). Thus the proof is completed. i '
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