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Abstract

We present a solution strategy for N-process election in which a leader is chosen
based upon the results of a number of (N —1)-process elections. We show that the
existence of such a solution depends on the constraints that are placed on the (N —1)-

process elections.
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1 Introduction

We consider the problem of electing a leader from among a set of N > 2 processes; this
problem was first studied by LeLann in [5]. Our definition of the problem, which we call N
ary election, is adopted from {1}, and is similar to the distributed consensus problem defined
by Fischer, Lynch, and Patterson in [4]. We model election by requiring each process to
assign a value, either 0 or 1, to a private “decision variable” — a process is “elected” iff it
assigns 1 to its decision variable.

We propose to solve the N-ary election problem, where N > 2, by using (N ~1)-ary
election as a “primitive.” In our proposed solution, each process executes in two phases.
In its first phase, a process participates in a number of (N —1)-ary elections. In its second
phase, a process assigns a value to its N-ary decision variable based upon the values of its
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(N —1)-ary decision variables. We show in Section 4 that N-ary election cannot be solved
in this manner if the processes can randomly “choose” any outcome for the (N —1}-ary
elections. Our proof uses knowledge-based reasoning, and makes use of several results from
[2]. In Section 5, we give a solution in which some outcomes are prevented from occurring.

2 The N-ary Election Problem

We begin with some preliminaries. A concurrent program consists of two or more processes
that access a set of variables. We assume that each process consists of ordinary sequential
statements such as Dijkstra’s guarded commands [3]. A state of a program is an assignment
of values to the variables of the program; one state of a program is designated as its initial
state. The semantics of a program is defined by its computations. A compuiaiion is a
sequence of states sps - - - 5, such that so is the initial state of the program, and for each i,
where 0 < i < k, 541 is the result of executing some statement of the program at state s;.
The last state s is called a final state if 5981 - - - 85 is a proper prefix of no computation. A
computation is complete if it ends with a final state.

In the N-ary election problem, we are required to construct a concurrent program of
N > 2 processes. Each process has a variable, called its decision variable, that is accessed
by no other process. Each decision variable ranges over the set {1,0,1} and is initially L.
Each process assigns a value, either 0 or 1, to its decision variable so that the following

conditions are satisfied.

e Integrity: In each final state, one of the decision variables has the value 1 and the rest
have the value 0.

e FEgquity: For each process, there exists a final state in which that process’s decision
variable has the value 1.

We say that a process wins (respectively, loses) the N-ary election if it assigns the value 1
(respectively, 0) to its decision variable. Observe that if a process loses the N-ary election,
where N > 2, then based upon its decision variable alone, it cannot determine which process
wins. Thus, the N-ary election problem is not merely a restatement of the distributed

consensus problem.

3 Proposed Solution

We propose to solve the N-ary election problem, for N > 2, by a program in which each
process executes in two phases. In its first phase, a process participates in a number of
(N —1)-ary elections. For each process, an (/N —1)-ary election is held in which that process
does not participate; thus, the total number of (N —1)-ary elections is N. In its second

phase, a process assigus a value to its N-ary decision variable based upon the values of its
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(N —1)-ary decision variables.

Notation: The N processes are denoted 0,..., N—1. Unless otherwise stated, the variables
i, 7, and k have the range {0,..., N—1}. We call the (N —1)-ary election in which process
7 does not participate election j. We let d.i.j, where ¢ # j, denote the (N —1)-ary decision
variable for process 7 in election 7, and let d.i.7 denote the N-ary decision variable for process
7. O

In our proposed solution, process ¢ has the following structure.

/* Phase 1 %/

j =0

doj< N —
if i = j — skip
| i#5—dij:=ELECT{,j])
fi;
J=j+1

od;

/* Phase 2 %/
d.i.i:=decide(d.i.0,..., di(i—-1),d.i(i+1),...,di(N—1))

ELECT is a procedure that returns either 0 or 1; we assume that ELECT does not
modify the variable j or any component of the array d. decide is a function that ranges over
the set {0,1}. Corresponding to the two conditions of the (N —1)-ary election problem, we
require the procedure ELECT to be defined so that the following conditions are met.

e Phase 1 Integrity: In each final state, the following assertion holds.
(V5 (Fi:idj dij=1ANE k£i~ks£ dki=10))

We call an assignment of values to the (N —1}-ary decision variables valid iff it satisfies

the above assertion.

e Phase 1 Equity: For each valid assignment of values to the (N —1)-ary decision vari-

ables, there exists a final state in which that assignment occurs.

In the next section, we prove that the N-ary election problem cannot be solved as pro-
posed above. The proof is based on the fact that, according to the Phase 1 equity condition,
any valid assignment of values to the (N —1)-ary decision variables can be computed. In
Section 5, we propose weaker Phase 1 integrity and equity conditions, and show that under
these new constraints the N-ary election problem can be solved.



4 Impossibility Proof

Definition: For each valid assignment of values to the (N —1)-ary decision variables, we
define a vector X of N components, denoted X.0,..., X.(N—1), where for each j, X.j =1
iff i # j and d.i.j = 1. That is, the component X . denotes the winning process for election
j. We call such a vector an outcome. O

Observe that, by the Phase 1 equity condition, any vector ¥ of N components is an
outcome if for each j, 0 < Y.j < N and Y.j # J.

Two computations “look the same” to some process i if each of the variables d.i.0,...,
di(i—1),d.i.(i+1),...,d.i(N~1) is assigned the same value in both computations. We
formalize this notion by defining a relation [i] on the set of outcomes.

Definition: For outcomes X and ¥V, X[{]Y = (Vk 1k £i: X k=i VEk=1). O

Thus, two computations “look the same” to process ¢ if the outcomes that correspond
to the two computations are related by [i]. Note that [i] is an equivalence relation. The
following properties follow from the definition of [4].

Property 1: If outcomes X and Y differ only in the ith component, then X[{]Y. O

Property 2: If outcomes X and Y differ only in the 7 component, and j # ¢, X.j # i,
and Y.j # i, then X[7]Y. -

By the integrity condition for N-ary election, exactly one process assigns 1 to its N-ary
decision variable in each complete computation. Let f : {all outcomes} — {0,..., N—1} be
the function that identifies the “winning process” for each outcome.

According to the equity condition for N-ary election, the function f satisfies the following
restriction.

(Vi (3X : f(X) =1)) (1

If two computations of Phase 1 “look the same” to some process, then that process
either wins the N-ary election for both computations, or loses the N-ary election for both
computations. In other words, for any outcomes X and ¥ and each 1,

(FX) =) AX[EY) = fIY) =i (2)
The following expression is an immediate consequence of (2).
(FX) =) ANXEIAGE£T) = FY)# ] (3)

The next theorem shows that (N —1)-ary election cannot be used to solve N-ary election

as proposed in the previous section.



Theorem: There is no function f : {all outcomes} — {0,..., N—1} that satisfies (1) and

(2).

Proof: Suppose that f satisfies (1) and (2). We derive a contradiction by showing that
there exists an outcome X for which f is undefined, i.e., for each 7, f(X) # 1. We treat the
two cases N = 3 and N > 3 separately.

Case 1: Suppose that N = 3. By (1), there exist outcomes A4, B, and C such that f{4) =0,
f(BY=1, and f(C) = 2. Weuse 4, B, and C to define four other cutcomes I, E, F', and
(G. We then show that f is undefined for outcome G. The four outcomes are defined as

follows.
D0, D1, D2:= BO,ALAZ
EO,E1,E2 == B0,C1,B2
FO,F1,F2 = C0,C1,A2

(G.0,G.1,G2 = B.0,C.1,A2

Note that A and D may differ only in the 0" component; thus by Property 1, Af0]D.
Therefore, by (2) with X,Y,i := A, D,0, we have f(D) = 0. Similarly, we can show that
B[1]E and C[2]F; thus, by (2), we have f(E) =1 and FFY = 2.

Observe that F and G may differ only in the 0** component; thus, by Property 1, F[0]G.
Therefore, because f(F) = 2, by (3) with X,Y,4,j 1= F,G,2,0, we have f(G) # 0. We can
also show that D[1]G and E[2]G; thus, because f(D) = 0 and f(E) = 1, by (3), we have
F(G) #£ 1 and f(G) # 2.

Case 2: Suppose that N > 3. Let A be the outcome where for each i, A = i1 (6 denotes
modulo-N addition). We show that for every ¢, f(A4) # i ® 1. This implies that for every ¢,
F(4) #i.

To prove that f(A) # i@ 1, we show that there exists an outcome E such that the

following assertion holds.
Ei=i®l A Vj:j£i:Ej#i®l) A f(E)=1

Note that in both A and E, only the i** component equals i & 1. Therefore, E[i @ 1]A.
Thus, by (3) with X,Y,4,j := E,A,i,i® 1, we have f(A4) # i ® 1. We show that E exists
by considering three other outcomes B, €', and D.

By (1), for each i there exists an outcome B such that f(B) = i. Suppose that B.j = i®1
for some j, where j # i. Because N > 3, there exists m, where 0 < m < N, such that
m# j, m#i, and m# i@ 1. Let C be the outcome defined as follows.

Ci=mAnN (Nk:k#j.Chk=Bk)

Note that B and C differ only in the j'* component and that B.j # ¢ and C.j # i. Thus,
by Property 2, B[i]C. Therefore, by (2) with X,Y,4:= B, (¢, we have o) =1



By repeating this argument, we see that there exists an outcome D such that f{(D) = 1,
and for each j, where j#£ ¢, D.j # & 1. Let F be the outcome defined as follows.

Ei=i®1l AN {Vj:j#£i:Ej=Dj)

Observe that D and F may differ only in the i*" component; thus, by Property 1, D[i]E.
Therefore, by (1) with X, Y,i:= D, E,i, we have f(E) = i. |

The fact that we had to split the proof of the theorem into two cases is somewhat
disconcerting. However, this dichotomy is the result of a fundamental difference between
2-ary election and N-ary election, where IV > 2. In a 2-ary election, the process that loses
can conclude that the other process wins. In an N-ary election, where N > 2, a process that
loses cannot determine, based on its decision variable alone, which of the other processes
wins. As a result of this difference, it seems necessary to treat separately the two cases
N = 3 {in which case 2-ary election is used in the solution) and N > 3 (in which case
(N —1)-ary election, where N—1 > 2, is used in the solution).

5 Making it Solvable

We now show that N-ary election can be solved as proposed in Section 3 if we weaken the

Phase 1 integrity and equity conditions as follows.

o Phase 1 Integrity: In each final state, the following assertion holds.
Vi,jii#jdij=1=> Nk k#iNk+£j:dkj+ 1))

e Phase 1 Fquily: For each 7 and j, where i # j, there exists a final state in which
digj=1.

In our solution, the processes share N variables 2.0,...,2.(N—1}; each z.j ranges over
the set {0, 1} and is initially 1. We define the procedure ELECT as follows.

procedure ELECT(i, j) returns z

begin
HVE:0<k<jnk#i:dik=1)—2,2j:=2340
I Gk:0<k<jnk#iidik#1)—z:=0
fi

end

Thus, if a process loses some (N —1)-ary election, then it is “forced” o lose all subsequent
elections. The function decide is defined as follows.

1 (Ve 0<k<3Ark#£idik=1)
0 otherwise

decide(-- ) = {



In order to verify the correctness of our solution, we find it convenient to re-write process

1 as follows.

/* Phase 1 %/
j=0;
doj< N —
if i = j — skip
li#£j ANV O0L<k<jAk#i:dik=1)—dijzj:=2]0
li#i A Gk:0<k<jAk#i:dik#1)—dij=0
fi;
ji=j+1
od;

/* Phase 2 x/

i (VE:0<k<3Ak#i:dik=1)—dii:=1
| Qk:0<k<3Ak#i:dik#1)—dii=0
fi

To prove that our solution is correct, we first show that it satisfies the new Phase 1
integrity and equity conditions defined above, and then show that it satisfies the integrity
and equity conditions for the N-ary election problem. The Phase 1 integrity condition is
satisfied since, as the reader can check, the following assertion is an invariant.

(Vivzj+(Biti#FjAndij# L :dij)=1)

To see that Phase 1 equity is satisfied, observe that if some process finishes executing before
any other process starts executing, then it assigns the value 1 to each of its (N ~1)-ary
decision variables. By the definition of decide, this also establishes the equity condition for
the N-ary election problem.

We can prove that the integrity condition for the N-ary election problem is satisfied by
proving that in every complete computation of the program (i) at most one process wins the
N-ary election, and (ii) at least one process wins the N-ary election. For brevity, we merely
sketch the proofs for (i) and (ii}, and leave the formal details to the reader.

Proof of (i): Given any two processes, there exists an election j, where 0 < j < 3, in which
both processes participate. Therefore, by the definition of decide and Phase 1 integrity,
both processes cannot assign the value 1 to their N-ary decision variables.

Proof of (ii): Because the assertion (Vk : 0 < k < 1Ak # 0:d.0.k) is vacuously true, process
0 executes the assignment d.0.1, 2.1 := 2.1, 0 in every complete computation. Thus, in every
complete computation, some process wins election 1. Observe that process 2 wins election
1 only if it wins election 0. Thus, by the definition of decide, if process 2 wins election 1,

then it wins the N-ary election.
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If, on the other hand, some process 4, where ¢ # 1 and ¢ # 2, wins election 1, then it
establishes the assertion (Vk: 0 <k < 2Ak #1{:d.ik = 1); consequently, it executes the
assignment d.4.2, 2.2 := 2.2, 0. This implies that some process wins election 2. Observe that
a process wins election 2 only if it wins each lower numbered (N —1)-ary election in which
it participates. Thus, by the definition of decide, the process that wins election 2 also wins
the N-ary election.

6 Concluding Remarks

The original Phase 1 integrity and equity conditions given in Section 3 are satisfied iff every
(N —1)-ary election outcome can be computed. We have shown that this requirement is
too strong, making it impossible to solve the N-ary election problem as proposed. On the
other hand, the weaker Phase 1 integrity and equity conditions given in Section 5 allow
us to coordinate the (N —1)-ary elections, thereby preventing some outcomes from being
computed. We have shown that in this case it is possible to solve the V-ary election problem
as proposed. In the solution given, for example, no outcome in which process 2 loses election
0 and wins election 1 can be computed.

The impossibility proof of Section 4 can be generalized by allowing any number of (N —1)-
ary elections in Phase 1. Although no major changes are required for the proof, the notation
becomes a bit cumbersome. For example, in the general case each component of an outcome

is a set of values instead of a single value.
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