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ABSTRACT

Methods of automated reasoning in mechanics have been presented and implemented on comput-
ers. The paper consists of two parts. In part I, a mechanical method developed by W.T. Wu on
the basis of the work of J. F. Ritt has been used to prove theorems in mechanics. In particular,
a mechanical study of the complete logical relationship between Kepler’s laws and Newton’s
gravitational laws has been given. Wu’s work on the same topic has been extended in several
ways. Many other examples from mechanics are also given. In part II, a method of mechanical
derivation of formulas from a set of differential polynomials has been presented. The method has
been used successfully to some problems in mechanics. In particular, a mechanical derivation of
Newton’s gravitational laws from Kepler’s laws has been given without knowing Newton’s
Laws in advance.

Keywords: Mechanical theorem proving, mechanical derivation of formulas, Wu’s method,
differential polynomial, Ritt-Wu’s decomposition algorithm, mechanics, Newton’s gravitational
laws, Kepler’s laws.

f The work reported here was supported in part by the NSF Grant CCR-8702108.
7 On leave from Institute of Systems Science, Academia Sinica, Beijing.



Part I. Mechanical Theorem Proving in Plane Mechanics

1. Introduction

In [WU2], Wu Wen-Tsiin gave a mechanical proof of the theorem that Kepler’s laws implied
Newton’s gravitational laws using a method developed by him on the basis of the work of J.
F. Ritt [RI2]. In our opinion, this interesting paper marked a beginning of the automated
reasoning in mechanics.

We follow the same direction, but using the complete decomposition method of Ritt-Wu, to
explore mechanical reasoning in mechanics. The reason for using the complete decomposition
algorithm instead of simple generation of the first characteristic set (as Wu did in [WU2]) is
that there are some complications in proving theorems involving differential polynomials (see
Section 2). In Part I of this paper, we concentrate on proving physics theorems of equation type,
i.e., theorems whose hypotheses and conclusions can be represented by differential polynomial
equations with universal quantifiers. Many examples from kinematics and dynamics are given.
In particular, we extend Wu’s work on the Kepler-Newton problem (i.e., K1, K2, N1, N2; see
below), giving a complete, mechanical solution of the logical relationship between these laws.
The results on computer show that

(1) K1 and K2 imply N1 and N2 (originally given by Wu [WU2].)
(2) K2 is equivalent to N2.

(3) N1 and N2 imply K1.

(4) K1 and N1 do not imply K2.

Statement (3) involves the existential quantifier. In order to get rid of the existential quanti-
fier, in Section 3 we introduce a general technique which will be useful for study of mechanical
theorem proving in differential geometry and mechanics. In Section 2, we briefly review Ritt-
Wu’s method for mechanical theorem proving involving differential polynomials, emphasizing
our observation that there are some essential differences between proving theorems involving
(ordinary) polynomials and proving theorems involving differential polynomials (e.g., theorems
in differential geometry and mechanics). In section 4, a mechanical treatment of Newton-Kepler
problem is presented. In section 5, more examples in kinematics as well as dynamics are given.

2. An Introduction To Ritt-Wu’s Method

In this section, we will briefly introduce Ritt-Wu’s Method, clarifying several key points.
We find some essential differences between proving theorems involving differential polynomials
(abbr. d-pols) and proving theorems in elementary geometry, in which only ordinary polyno-
mials are involved.

First, in elementary geometry the use of general form of Ritt-Wu’s zero decomposition the-
orem is not necessarily needed because subsidiary conditions produced by the method auto-
matically are connected with nondegeneracy and can be converted to their geometric forms for
a large class of geometric statements [CH1]. Alternatively, we can use the notion of “gener-
ally true” to justify the addition of subsidiary conditions to the set of hypothesis equations.



But in the case of proving theorems involving differential polynomials, the physics or geometry
meaning of the subsidiary conditions obtained from the characteristic set of the hypothesis set
is often not clear, and can change the meaning of the original statement to be proved com-
pletely.* Thus, the complete decomposition theorem is necessary to implement a prover which
can be used to deal with complicated problems. Second, in the case of differential polynomials,
the notion of “generally true” should be modified. Our preliminary investigation of this notion
shows that the description of the nondegenerate components needs two numbers: the dimension
and the differential order of the related differential algebraic sets.

Now we give a brief introduction to Ritt-Wu’s method with our modifications in the d-
pol case. A full description of the method can be found in [WU1] or in [CG1] which is our
improvement and clarification of Wu’s original method in [WU1].

Let K be a field of characteristic zero, all differential polynomials (abbr. d-pols) in this
paper are considered in K{zi,...,2,}, the differential polynomial ring in variables z,...,z,
[RI2]. Differentiations are considered w.r.t the variable ¢ representing time in mechanics. For
an ascending chain ASC [RI2], denote the set of the d-pols with zero pseudo remainders w.r.t
ASC by PD(ASC). PD(ASC) is an important notion introduced by us [CG1]. The following
Ritt-Wu’s zero decomposition algorithm is the basis of the method.

Theorem 1. There is a mechanical procedure that can decide in a finite number of steps
whether Zero(PS/R)** is empty (or equivalently R is in the radical ideal generated by PJ5)
for a given finite d-pol set PS and a d-pol R, and in the non-empty case give a decomposition
of the following forms:

Zero(PS[R) = U}, Zero(ASC; [ R;)

Zero(PS/R) = U], Zero(PD(ASC;)/R),

where each ASC; is an irreducible ascending chain and FE; is the non-zero pseudo remainder of
J;R wat ASC;; here J; is the product of the initials and separants of the d-pols in ASC;.

For an irreducible ascending chain ASC = {44, ..., 4, }, we make a renaming of the variables.
If A; is of class m;, we replace z,,, by z;, the other variables are denoted by u1,...,u,, ( ¢ =
n—p). The v and the z are called the parameters and the leading variables of ASC respectively.
For each A;, denote the maximal number of differentiation of z; effectively occurred in A; by
ORD(A;). We define DIM(ASC) = ¢ = n — p as the dimension of ASC and ORD(ASC) =
.7 ORD(A;) as the order of ASC w.r.t to the parameter set u;,...,u,. For the legitimacy
of the definitions, the reader is referred to [RI2].

We only consider the physics statements of equation type, i.e., statements whose hypotheses
and conclusions can be represented by differential polynomial equations with universal quan-
tifiers. Let HY P = {H, = 0,...,H, = 0} and G = 0 be the hypotheses and conclusion of
a physic statement respectively, where the //; and G are d-pols. At first we shall divide the
variables occurred in H; and G into two groups: #i,...,u, and 1,...,%, in the sense that in
the statement the u generally can take any values, and once the wu are given, all the z are
determined as functions of the u. We call the v and the z the parameters and the dependent
variables of the statement respectively.

*  The similar phenomenon can also happen with inappropriate choices of parameters. See
[CK1]
** Here the zeros are considered in all possible extension of K in the sense of Ritt [RI2].
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To decide whether G = 0 follows from HY P generically w.r.t the u, we first apply Theorem
1to HY P:

Zero(HY Py = U_,Zero(PD(ASC})/R)U U, Zero(PD(ASC;)/R) (1)

j=1
where each ASC} does not contain a d-pol with the u only and each ASC; contains at least
one d-pol with the u only. Let r = maz]_,ORD(ASC}). A component Zero(PD(ASC})/R)
is said to be the main (or non-degenerate) component of HY P w.r.t the parameters u, if
DIM(ASC?) = q and ORD(ASC}) = r. All others are said to be degenerate components.
Note that the main components of HY P are uniquely determined by the parameters [CG1].
The following is our clarification of Wu'’s notion of a theorem to be generally true.

Definition 1. A physics statement with hypotheses HY P and conclusion & is said to be
generally true if for all main components C = Zero(PD(ASC})/R), we have C C Zero(G),
i.e., the pseudo remainder of G w.r.t the ascending chain of each main component of the
statement is zero.

We have proved:

Theorem 2. For a physics statement of equation type, once its parameter and dependent
variables are given, there is a mechanical procedure that can decide whether this statement is
generally true in a finite number of steps.

Remark 1. To reduce the number of the components occurring in the decomposition, we can
first give some nondegenerate conditions By # 0,...,B; # 0 for the d-pols B;, and then use
the general form of theorem 1 for R = Hi.:l B; to prove that the statement is true under the
nondegenerate condition R # 0.*

Remark 2. Another method can also be used to reduce the number of components. For
variable z, if only some power of z, say 2", occurs in the equations, then we may use a new
variable to represent 2. To do 80, we can avoid the occurrence of the separant of z™.

Remark 3. In theorem proving in the d-pol case, if a variable ¢ is an arbitrary constant, i.e., ¢
only satisfies the condition ¢’ = G, then ¢ may be treated as a parameter in the sense that when
differentiating a d-pol we always assume ¢ = 0. This kind of parameter is called a constant
parameter.

3. An Algebraic Lemma

As we will see later in Sections 4 and 5, in the case of d-pols, a geometric or physical statement
is usually represented by more than one equations, i.e., a main d-pol equation and some simple
equations which mean that certain variables in the main equation are constants. For this kind
of statements, the existential quantifier is involved. K1 in Section 4 is such an example. We
can represent K1 as VaVyVrdpdedf(r —p—ex — fy=0Ap =0A€e =0A f/ = 0). We must
eliminate the existential quantifier, otherwise Wu’s method cannot be used in this case, because
Wu’s method can only used to prove statements involving the universal quantifier.

We distinguish two cases. In the first case, the existential quantifier is in the hypothesis
of a statement, but not in the conclusion. In the second case, the existential quantifier is in

* This is actually another approach of mechanical theorem proving. For details, see section 3
[CG1].



the conclusion. The first case is only a problem of formulation and can be solved easily using
the simple logic rule (Jz(f(z)) — g) <= Va(f(z) — g) where g is free of 2. Thus we
have a statement with the universal quantifier only. But in the second case, the logic rule
(f — Jzg(z)) <= Fz(f — g(z)) (here [ is free of z) tells us that we cannot eliminate the
existential quantifiers only by logic transformation. A general solution for this kind of problems
is given below. At first we define a function D LR recursively as follows:

DLR(y1) = %
DLR(y1,y2) = y192 — va
DLR(yla -~'7yr) = DLR(DLR(yl,y2)7 neny DLR(yl s yr))

‘We have:
Lemma 1. For variables z,,...,2,, there exist a4, ..., @, such that:

[ ’
ay =0,...,a, =0

a121 + ...+ a,z, =0
if and only if DLR(zy,...,z,) = 0.

Proof. We prove it by induction. For n = 1, as a; is an arbitrary constant then we have
a,z; = 0 if and only if 2, = 0. For n = 2, @121 + a2x, = 0 can be written as z;/z, =
as/a,. This formula is true if and only if (z1/2,) = 0 or equivalently, DLR(z,,z,) =
zhzy — 72y = 0 as 122 # 0. Now assume the lemma for » = k. DLR(zy,..,2541) = 0
means that DLR(DLR(z1,%3),..., DLR(21,%441)) = 0 or equivalently, by DLR(z;,z5) + ... +
by DLR(z;,234+1) = 0 for some arbitrary constants by,...,b;. The last equation is actually
(byzo/zy + oo + bp2py1/z1) = 0 or equivalently byzy/xy + ... + bppp1 /21 = bg for a constant
by. This proves our lemma.

Lemma 2. For variables z,,...,2,, there exist ag, ...,a, such that:

7. 7
ay =0,...,a, =0

11 + ...+ 4,2, = ag
if and only if DLR(1,2¢,...,2,) = 0.

Proof. ayz1 + ... + anz, = ao for some constants ag, ...,a, if and only of @y} + ...+ a2, =0,
which is equivalent to DLR(z',...,2),) = DLR(1,2,...,z,) = 0.
Remark 4. DLR(2;,...,2,) is actually the relation among z, ...,z, defined by

ay =0,..,a, =0

a1z, + ...+ a,z, =0

In Part II of this paper, we give a general solution of this kind of problem. This method can
be used to the following more general case: for a polynomial P find a d-pol DN R(zy,...,z,)
such that P(as,...,a,,21,...2, ) = 0 for constants ay,...,a, if and only if DNR(z,,...,z,) = 0.

Summing up, if a statement involving the existential quantifier like K1 is in the hypotheses
then we can use either (2) or DLR(1,2,y,r), but if such statement is the conclusion then we
must use DLR(1,2,y,7).



4. Mechanical Treatment of the Newton-Kepler Problem

We formulate Kepler’s first and second law and Newton’s gravitational laws as follows.
K1. Fach planet describes an ellipse with the sun in one focus.
K2. The radius vector drawn from the sun to a planet sweeps out equal areas in equal times.

N1. The acceleration of a planet is inversely proportional to the square of the distance from
the sun to the planet.

WN2. The acceleration vectors of planets are directed towards the sun.

For the convenience of representing the physical laws, we use a mixed coordinate system with
the center of the force (i.e., the sun) as the origin point. The differential polynomial equations
corresponding to K1, K2, N1, and N2 are (2), (3), (4), and (5), respectively:

p=0
e =0 (2)
f=0

Ki=r—-p—ex— fy=20

W=0 ()
ve—yr' —h=0

¢ =0 (4

ar’ —c=0

x!!y_y!!a:zo (5)

where a is the magnitude of the acceleration of the planet; r is the length of the radius vector
drawn from the sun to the planet, so we have

7‘2—372—-3}2:0 (6)

a2 - ZE“E _ y//2 =0

As a simple application of lemma 2, we can infer that K2 and N2 are equivalent, for by lemma
2, (3) is equivalent to DLR(1,(2'y — y'2)) = 2"y — y"z, which is exactly the d-pol representing
N2. So we need only to consider the relations among N1, N2 (or K2), and K1.

4.1. Mechanical Proof of N1 Under K1 and K2 (or N2)

By lemma 2, we only need to prove DLR(1,ar*) = ¢'r* + 2ar'r = 0 under (2), (5), and
(6). Here we shall adopt a simplification: considering a special coordinate system such that the
center of the ellipse is on the x-axis. In this coordinate system, K; becomes K3 = r — p — ex.
Using theorem 1 to K1 = 0, (5) and (6) under the variableorder: p< e< f<a2z<y<r<a
with p, e, and f as constant parameters, our computer program found two components under
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the non-degenerate condition ¢ # 0 meaning that the acceleration and hence the force is zero.
In that case, the conclusion is obviously true.

((e® — 1)2® + (3e® — 1)pa® + 3epz + p*)a” + pza’ = 0 (7)
y? — (e? = 1)2? — 2pex — p* =0
r—p—ex =0

a? . y1/2 . xi;Q =0

p=0
¥+ (e +1)2* =0 (8)
r—er =20

aZ _ yuz _ :13”2 =0

The pseudo remainder of DLR(1,ar?) w.r.t (7) is zero. But the remainder of DLR(1,ar?)
w.r.t (8) is not zero. According to section 2, (7) is the main component with dimension 3 and
order 2, and (8) is a degenerate component. The physical meaning of (8) is that the ellipse
becomes two lines passing the origin point. For a particle moving along such lines condition (5)
is always true. Thus there are no restrictions for the velocity and acceleration and hence the
conclusion cannot be true. We have proved mechanically that N1 can be deduced from K1 and
K2 under the non-degenerate condition ap # 0. The CPU time for calculating the remainder
of DLR(1,ar?) w.r.t (7)is 7.9 secs and the largest d-pol occurred in the process has 204 terms.

4.2. Mechanical Proof of K1 Under N1 and N2 (or K2)

Note that we cannot adopt the simplification used in section 4.1 in this case, because from
N1 and N2 we can only know that the planet is on an ellipse with its focus on the origin point
but its center does not necessaryly lie on the x-axis. By lemma 2, K1 is equivalent to

DLR(l x’y) ,r) — T”I(y” 4 yfxl/) + TH( yllixl + y CEHI) + Tl(ylh' i yl/xlli) {9)

and the hypotheses are DLR(1,ar?) (N1), (5) and (6). The variables are z < y < r < @ with no
parameters. Using theorem 1, our program found three components under the non-degenerate
condition a # 0.

9331//// !l2$3+x111/( 45$1// //xs + 183”21‘/@2)-{-4056/”3 3

- goxm2$/;x/x2 61/“ "2 1923 + 18:13”4 /$18 i13$/3 — 0 (10)
Y (3$”“ f/ 2 — 4z 1412 z _%_sz ”$1$+§$”3£‘C+2$”2$12)

+ me 4 "i‘ 4$m lfz.‘}JS —{—4&"‘) 72 2 =0

?"2 - iL’ - ‘y

2
{?,2 . $:/d _ yiiQ =0

o + 222" =0
2y —2'y=0 (11)

2
P g? g =0



az _ $i:2 _ 3]”2 = 0

z =0
yy//i + leyil — 0 (12)
TZ . 5122 _ yz =0

a? - $”2 _ y//fz =0

The pseudo remainders of (9) w.r.t to (10), (11) and (12) are all zero which means K1 can
be deduced from N1 and N2 under the degenerate condition a # 0. The CPU time used to
compute the remainder of (9) w.r.t (10) is 1630.85 secs and the largest d-pol occurred in the
process has 13708 terms. For (11), the CPU time is 6.06 secs and the largest d-pol occurred
has 36 terms. For (12), CPU time is 0.217 secs and the largest d-pol occurred has 6 terms.

In this problem, (10) is the main component with the dimension zero and the order five
which representing an ellipse orbit. The physical meaning of the order is the number of the
initial values to determine the motion of the system. In case (10), we need five such values: the
initial position (two), velocity (two), and the initial value of the force. (11) and (12), with the
dimension zero and the orders four and three respectively, are degenerate components. (11)
means the planet moves on a straight line, in this case we need four initial values: the direction
of the line, the position (one), the velocity (one), and the value of the force. (12) is a special
case of (11).

4.3. Mechanical Proof That N1 and K1 Do Not Imply K2 (or N2)

Naturally we will ask whether K2 or N2 can be deduced from N1 and K17 In physics this
means that if a particle moves in an ellipse orbit and is under a force whose magnitude is
inversely proportional to the square of the distance from the focus of the ellipse to the particle,
we ask whether the force must toward the focus. The answer is negative. Now the conclusion
is (5) and the hypotheses are K, (here again this simplification can be adopted), (4), and (6).
The variables are under the following order p < e < h < ¢ < y < r < a with p, e, and h
as constant parameters. The d-pol ascending chain representing the main component of the
hypotheses is

2+ e’ +es=0

y? — (e = 1)2? — 2pex —p* =0

r—p-—ex =20 (13)

r’a—h=0

where ¢;,¢s, and cg are polynomials of p,e,h,z, and . The pseudo remainder of (5) w.r.t
to (13) is not zero. Note that the degree of the leading variables of the d-pols in (13) are not
greater than two, for which Chou’s prover can be used to prove that (13) is irreducible [CH1].
We still need to prove that the differential equation system (13) (here we need only consider
the last equation) exists real solutions provided the initial values z(0),2’(0) are given. This is
guaranteed by the existence theorem for differential equation, e.g pl66, [BC1]. Now we have
proved that N2 or K2 is not a logic consequence of K1 and N1.

4.4. The Equivalence of N1 and K1 Under Condition K2 (or N2)
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We know from section 4.1 and 4.2 that N1 and K1 are equivalent under the condition of K2
(or N2) and some non-degenerate conditions. In this section, we give a direct proof for this
using a simple technique presented in p17 [GA1] which can be stated briefly as below. To prove
the equivalence of H; and H, under an ascending chain ASC, let R, and R, be the pseudo
remainders of H; and Hy w.a.t ASC respectively. If B, and R, satisfy DRy = Dy Ry then we
may say that H; and H, are equivalent under the non-degenerate conditions: D; # 0, D, # 0,
I, # 0, and S; # 0, where I; and §; are the initials and separants of the d-pols in ASC
respectively.

Here the ascending chain which represents K2 (or N2) is
x/ly _ ylim — 0
P2 g% _y? =0 (14)

0,2 _ Z‘HZ _ y”2 =0

Let R, and R, be the pseudo remainders of DLR(1,ar?) (N1) and DLR(1,z,y,7r) (K1) w.r.t
(14) respectively, then we have: ;

Rl — 7’3?“(372 + yz)(?)m:”yy' + Q?Jﬁmyg _ :L,Ixf/yQ + $3$/// + 2$2$/$H)

Rz — .’L'CL'/(y’.’L’ . x'y)(?»xm"yy’ + $.ZC”,y2 . m’x”y2 + 113351?"l + 2$2m/$/f)
Hence N1 and N2 are equivalent under the non-degenerate conditions: a # 0, r # 0, 2" # 0,
z # 0,y # 0, and ¥z — 2’y # 0. The physical meaning of these conditions are clear: a = 0
means the acceleration and hence the force is zero; r = 0 means the orbit of the planet becomes
a point; ” = 0 means the planet has no x-acceleration, by (5) and = # 0 this implies " = 0 or
the acceleration is zero: at last z = 0 and y = 0 are special cases of 2’y — ¢’z = 0 which means
that the planet sweeps zero area per secs and hence must be in a line passing the center of the
force.

The total CPU time to calculate the pseudo remainders and to factorize the remainders is
7.817 secs which is even a little faster than the proof of N1 under condition K1 and X2. The
reason is that to prove the equivalence we need only to eliminate a,r, and ¥, but to prove N1
or K1 separately we need to eliminate more variables: a,r,y, and z. So it is more complicated.
But the second method is more general.

5. More Examples Mechanically Proved in Plane Mechanics

Lots of theorems in mechanics can be proved mechanically in this way especially those whose
conclusions are about certain properties of an object such as the velocity, the acceleration, or
the orbit of the object. Those whose conclusions are about the time or the length of orbits in
which integration is needed, are beyond the scope of the tools developed by us. Here are some
of the examples mechanically proved in plane mechanics.

Using rectangular coordinate system, To describe a motion we always have:
a? - x!l? . yIIQ — G

where v and ¢ stand for velocity and acceleration of the motion respectively.

5.1. Problems in Plane Kinematics
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Example 1. Asin figure 1, a bar AB slips on a wall OB. The point A moves with a constant
velocity ¢. Show that the velocity and the acceleration of point M are

v= C\/l —2sin®(p) +sin*(), a= Eﬂ sin®(¢)v/1 + 3cos3(p

respectively.

Let A = (2,0), M = (z,y), then we have:

" =0
cos(yp)d — sin(p)z =0
sin?(¢) + cos’(¢) — 1 =0
z —(z—cos(p)d) =0
y —sin(p)d =0

(16)

The conclusions are
Cy =" — 2*(1 - 2sin®(p) +sin*(p)) = 0
Cy = a’d? —sin®(¢)2"*(1 + 3cos®(¢)) = 0

By remark 2, we can treat v? and @® as new variables. Using theorem 1 to (15) and(16) under
the following variable order: d < sin(¢) < cos(¢) < 2z < ¢ < y < v < a with d as constant
parameter, our program found three components under the non-degenerate condition a # 0.
The main component is

(sin®(g) — sin(p)) sin(p)” + (—3sin®(p) + 2) sin(p)* = 0

cos?(p) +sin*(p) -1 =0

sin(p)z — cos(p)d = 0

z—(z~—cos(p)d)=0

y —sin(p)d =0

v~z —y? =0

9
a? — 113”2 - yu2 =0
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The pseudo remainders of C; and C, w.r.t the three ascending chains are all zero. Thus, the
results are true under the non-degenerate condition a # 0.

Example 2. Asin figure 2, in a central slider-crank mechanism, the bar OA rotates around
point O with angular velocity w. Show that the velocity of point C' is

v = %é—@-\/cos%sa} + 4sin(p) cos(?) sin(¢ + @)

Let C = (z,y). We have:

w? — sin(p)”? — cos(p)? =0

sin®() + cos®(p) — 1 =10

sin?(¥) + cos®(¢p) — 1 =10 (17)
rsin(yp) — 2asin(y) = 0

z —rcos(p) —acos(yp) =0

y—asin(¢) =0

The conclusion is
Cs = 4v? cos® () — r?w?(cos®(¢) + 4sin(¢) cos(¢) sin(p + ¥)) = 0

By remark 2, we can treat v?, ¢ and w? as new variables. Using theorem 1 to (17) and (15)
under the following variable order: r < a < sin(¢) < cos(¢) < sin(¥)) < cos(9¥) < z < y <
w < v with 7, a, and sin(w) as parameters in which r and a are constant, our program found
ten components under the non-degenerate condition ra # 0. The main component is just (17).
The pseudo remainders of C3 w.r.t the ten ascending chains are all zero.

Example 3. A bar rotates in a plane around the focus of an ellipse in the same plane. The

2
equation of the ellipse is » = ﬁ%—lc—;—s% Show that the velocity of the intersection point of the

bar and the ellipse can be represented as v = ”g’l -v/7(2a; — 1), where b is the short radius of

the ellipse and w is the inclination of the radius to the z-axis.
We have:

rPw — a2y +2'y=0

efa —al+0°=0

sin(w) + cos’(w) =1 =0 (18)
r(1+ ecos(w)) —a;(1 — €)= 0

z —rcos(w) =0

y — rsin(w) =0

The conclusion is

Cy = 0?0 —r*w'*(2a, —7) =0

The first d-pol of (18) is the relation between the velocity and angular velocity a mechanical

derivation of which can be found in Part II of this paper. The variables are under the following
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order: e < a; < b <sin(w) < cos(w) < r <z <y < w < v with e, a; as constant parameters
and sin(w) as ordinary parameter. Treat v® as a new variable. Using theorem 1 to (18) and
(15), our program found three components under the non-degenerate condition a;b # 0. The
main component is

b2+a‘r{"62—af =0

cos?(w) + sin®*(w) -1 =0

(ecos(w) + 1)r + are* —a; =0

z —cos(w)r =0

y —sin(w)r =0

w’ + sin(w) cos(w)’ — sin(w)’ cos(w) = 0

vz_xfz_y&:@
The pseudo remainders of Cy w.r.t the three ascending chains are all zero.

Example 4. A particle moves on a circle with radius 7. The angle between its velocity and
acceleration is a constant.

(a). Show that 1/v = 1/vy — f-c-ff(—ail where vy is the initial value of the velocity and 8 is the
angle between the velocity and acceleration of the particle.

(b). Show that v = voel¥ =wo) ot () where w is the inclination of the radius to the z-axis.

We have:
w'? — sin(w)? — cos(w)? =0
sin?(w) + cos®(w) — 1 =0
z—rcos(w) =0 (19)

y— rsin(w) =0
COSQ<9)U2¢12 - (Q?’QZ” + y:yu)z =0

The conclusions are
Cs = v?r?(1 = cos?(6)) — v* cos?(§) = 0
Ces = v'*(1 — cos?(8)) — v? cos®*(H)w® = 0

The equivalence of Cs and Cs to (a) and (b) comes from lemma 1. The variables are under the
following order: r < cos(8) < sin(w) < cos(w) < ¢ < y < w < v with r and cos(f) as constant
parameters. Using theorem 1, our program found two components under the non-degenerate
condition v # 0:

((cos?(8) — 1)sin*(w) + (—2 cos?®(8) + 2) sin’ (w) + cos* () — 1) sin(w)"?

+ (((—2cos?(8) + 2) sin®(w) + (2 cos?(8) — 2) sin(w)) sin(w)?) sin(w)"”

+ (=sin®*(w) + cos?(8)) sin(w)* = 0

cos?(w) + sin*(w) — 1 =0

z—rcos(w)=0

y — rsin(w) =0

i2



w? — cos(w)? — sin(w)? =0

2 2
v”—~y’2—x":0

cos(f) =0

(sin®(w) — 1)sin(w)” — sin(w) sin(w)? = 0
cos?(w) + sin®(w) =1 =0

z —rcos(w) =0

y — rsin(w) =0

w? — cos(w)”? — sin(w)? =0

2
112—y’“——m'2:0

The pseudo remainders of Cy and Cs w.r.t the two ascending chains are zero.

Example 5. The y-axis projection of the velocity of a particle moving within a plane is a
3
constant ¢. Show that ¢ = = where p is the curvature radius of the orbit of the particle.

By a formula for curvature in differential geometry, we have:

a-z" =0
v —a2? =0 (20)
p202$”2 _ (y/2 + xi2>3 =0

The conclusion is

Cr =ad’c?p®* —v° =0
Fix an order for the variables: ¢ < 2 < v < a < p with ¢ as constant parameter. Using theorem
1 to (20), our program found three components of which the main component is just (20). The

pseudo remainders of C; w.r.t the three ascending chains are zero which means that the result
is unconditionally true.

5.2. Problems About the Motion Under a Central Force

We use the same coordinate system as section 4. The equations describing a motion under a
central force can be formulated as below

a::’ly . yllx — 0
T2_£2_y2:0 (21)
h—zy +2y=20
rPw —h =0
where h and w stands for the angular momentum per unit mass and the inclination of the

radius to the z-axis respectively. In example 6, 7, and 8, the variables are under the following
order z < y < 7 < h < w < v < awith z as parameter.

Example 6. The orbit described by a particle under a central attractive force is an ellipse
with its center at the center of the force if and only if the force is varying directly as the
distance.

13



The two conclusions are

Cs = DLR(a,r) = 0
Co = DLR(1,2%,2y,y*) =0

By lemma 1, Cs is equivalent to ¢;2® + cozy + esy? + 1 = 0 for arbitrary constants ¢1,c¢z, and
¢3. The pseudo remainders of Cs and Cy w.r.t (15) and (21) are

{zlux . x”z’)(y'x . xfy)y/xu =0
(:me _ wlfxl)(xﬁ + yz)x” =0

Hence Cg and Cg are equivalent under the non-degenerate conditions: y'z — 2’y # 0,z" #
0,y’ # 0, and 7 # 0 the physical meaning of which have been given in section 4.4.

Example 7. (Binet’s formula) The differential equation of the orbit of a particle moving
under a central force P per unit mass is h?u?( d?u/ dw® 4+ u) = P, where u = 1/r.

By changing the differential w.r.t w to the differential w.r.t time, Binet’s formula becomes

010 — azwfs _ h4u4(u//w/ - w”u’ + uwls)z

Suppose u > y. Using theorem 1 to (15), (21), and ur—1 = 0 under the on-degenerate condition
a # 0, our program found two components of which (15), (21), and ur — 1 = 0 consist of the
main component. The pseudo remainders of Cyp w.r.t the two ascending chains are zero.

Example 8. For a particle under a central force, the magnitude of the force per unit mass is
P=1/2.h*dg™?/dr

where q is the distance from the force center to the tangent line of the orbit.

By simple calculation, we have:
Hy =gzy —y2')? — (27 +9y?) =0
where g = ¢~%. The conclusion is
Ci1 = (2ar’)? — (W*¢'’ =0

Suppose g > y, then (15), (21), and H; form a triangular form already. Using theorem 1, we
know this triangular form is the only component of the decomposition under the nondegenerate
condition @ # 0. The pseudo remainder of Cy; w.r.t (15), (21), and H; = 0 is zero.

Example 9. If the orbit of a particle moving under a central force is r* = ¢* cos(2w), show

that the force per unit mass is p = ’B:jh2

2 = ¢? cos(2w) is equivalent to

T
Hy =7 — (227 — r?)

The conclusion is

14



Ciy = (ar”)? — (3c*A?)?

The variables are under the following order: ¢ < 2 < y < 7 < w < h < a with ¢ as constant
parameter. Under the non-degenerate condition a # 0, our program found one component for
(15), (21), and Hy = 0:

(6427 — 48c%a® ~ 15c*a® — Pr)a” + ((—48%2* — 30¢"2” — 3¢%)a"®)a” 4 9c*za’™ =0

((24:1:4 +11cf2? + ¢*)a” — 3c2$x”2)y2 + (82° — 7c?zt — c*2?)a” + 3z 322 =0

oy —2?=0 (22)

h—ay +2'y=0

r*w —h =0

W —y? 2 =0

-y —2" =0

The pseudo remainder of Cy, w.r.t (22) is zero.

Example 10. If the magnitude of the velocity of a particle under a central force is inversely
proportional to the distance from the force center to the particle, show that the orbit of the

particle is
NS
111(7‘/7‘0) = i—g—k—h— - w

where ¢ = vr is the proportional constant and rq is the initial value of r.

The conclusion is equivalent to
013 — hQT/Z _ (62 _ h2>,r2,w/2 "

Fix an order for the variables: ¢ < 2 < ¥y < r < w < h < a with ¢ as constant parameter.
Using theorem 1 to (15), (21), and »r — ¢ = 0, our program found 12 components under the
non-degenerate condition a # 0, of which the main component is

Atz —ac’aPa'z" 2" 4 (6422 + 32c22°)2"® + 672?272 ? )2

+ (=2562°2'2"® + (1282%2"® — 64c% 22" )a"* — 4c’22®2"?)2" + 2562°2"7

+ (—2562%2" + 256¢%2%)2"® + (64z°2" + 3272 )2"® + P22 = 0

(xzx”’Q 2zz'z"z" + 16z2"® + 222" )y 4+ 2*2”""? + 62322 2" + 927222 = 0O

T? — y —_ :C =0

h—zy +2'y=0

rPw —h=0

ro—c=0

2
a? . yuﬁ — 2" =0

The pseudo remainders of Cy3 all the ascending chains are zero.

The most difficult one of the ten examples is example 9. To calculate the pseudo remainder
of Cy5 w.r.t (22), the CPU time used is 669.4 secs, and the largest d-pol occurred in the process
has 5597 terms.
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Part II. Mechanical Formula Derivation in Plane Mechanics

1. Introduction

In [WU3], Wu Wen-Tsiin introduced a method of mechanical derivation of formulas in el-
ementary geometries which was successfully used to solve quite a few difficult problems in
Euclidean and Non-Euclidean geometries. In our opinion, this kind of method is more impor-
tant in mechanics, for unlike in elementary geometries where we usually need to give proofs for
some known results and conjectures, in mechanics most problems are about how to find some
unknown formulas. But unfortunately, there are some difficulties when extending the method
to mechanics, or more generally, to the problems involving differential polynomials. As shown
in the appendix of [WU2], the relations we want do not generally occur in the final ascend-
ing chain obtained by Ritt-Wu’s well ordering algorithm. Instead, they occur in the process.
Therefore, more human assistance has to be involved. The problem is that we often want to
find a relatively simple formula instead of a complicated one, though the two are equivalent. In
this paper, we present a method which can be used to find such a simple relation mechanically.
The method is used for plane mechanics and is quite successful for certain problems. As a
particular result, we give a mechanical derivation of Newton’s square inverse gravitational law
from Kepler’s laws in the sense that the formula representing Newton’s law occurs as the first
element of the ascending chain of the non-degenerate component.

In formula derivation, another difference between problems involving differential polynomials
and problems involving ordinary polynomials is that the relations we find are generally some
differential equations, but what we really want is the solution of these equations. So, to make the
algorithm complete, we need a method to solve the multivariate algebraic differential equation,
which is still an open problem as far as we know. In this paper, we give a partial solution
to decide whether the solution of a multivariate algebraic differential equation is a polynomial
equation.

In section 2, we give a precise description of the differential version of Wu’s method of
mechanical formula derivation. A uniqueness theorem is proved. In section 3, we shall show
the defect of the method when we try to derive Newton’s laws from Kepler’s laws and give a
solution to this problem. In section 4, we give a refined method of mechanical formula derivation
based on the idea of section 3. In section 5, more examples are given.

We assume the reader is familiar with Ritt-Wu’s zero decomposition theorem for d-pols, a
brief description of which may be found in Part I of this paper. For the full theory, the reader
is referred to [WU1] or [CG2] with our improvement.

2. An Algorithm of Mechanical Formula Derivation (I)

Suppose a geometry-mechanics problem can be given by a set of d-pol equations DPS in
variables uy, ..., %y, %1, ...,z With the u as parameters, and for a particular variables among the
z, say x,, we want to find the relations between z; and the u determined by DPS.

The problem can be divided into two subproblems:

Problem 1. Find the formulas (in the form of differential equations) between z; and the u.
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Problem 2. Find the general form of the solution of these differential equations.

Rit-Wu’s zero decomposition algorithm can be used to give a solution to the first problem.
The second is still an open problem as far as we know. We give a partial solution to this problem,
i.e., to decide whether the solution of the differential equations is a polynomial equation.

As an instance, let us consider the relations between the % and z; defined by DPS. Applying
theorem 1 of Part I to DPS under the variable order u; < ... < u, < z7... < z,, we have

Zero(DPS) = U;_, Zero(PD(ASC})) U;_, Zero(PD(ASC}))

where the Zero(PD(ASCY)) are the main components. Then the first d-pol of each ASC}, A; 1,
must be a d-pol of the u and z; and the set of the prime ideals RS = { PD(A; 1),..,PD(A, 1)}
is defined to be the relation between z; and the u determined by DPS. Note that the set RS
is not uniquely determined. But we have the following property.

Theorem 1. Let RS, and RS, be two relation sets derived from the same d-pol set DPS, then

we have
Urers, Zero(I) = Ujers, Zero(J)

Proof. Let ASC;,i=1,...,5s and ASC},j = 1...,¢ be the asc chains which give the main compo-
nents in the two decompositions respectively. By the uniqueness of the manifold decomposition

N, PD(ASC;) = ni_, PD(ASCY)
Restricting the ideals in the above formula to K {u,...,%,,2; }, We have
Ni_ PD(A; 1) =N, PD(A4] ;)
which proves the theorem. Q.E.D

The following result provides a method to delete some of the redundant d-pols in the relation.

Lemma 1. Let ASC, and ASC, be two ascending chains of which ASC; is irreducible. If
the pseudo remainders of the d-pols in ASC; w.r.t ASC, are zero and the pseudo remainder
of the product of the initials and separants of the d-pols in ASC; w.r.t ASC, is not zero, then
PD(ASC,) C PD(ASC,).

Proof. As ASC, is irreducible, PD(ASC,) is a prime ideal. According to the definition of
PD(ASC,), we have ASCy C PD(ASC,) and J ¢ PD(ASC;) where J is any product of the
separants and initials of the d-pols in ASC;. Let P € PD(ASC}), then there exists a product
J; of the separants and initials of the d-pols in ASC such that

le =0 {,ASC;J
From which we have J; P € PD(ASC,). Hence P € PD(ASC,) as J; is not in PD(ASC,).

Here is our algorithm.

Algorithm 1. For a d-pol set DPS € K{u,21,...,,} find the relations between the u and z;
defined by DPS.
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Step 1. Apply theorem 1 in Part I to DPS, we have:

Zero(DPS) = Ui_, Zero(PD(ASC})) Ui, Zero(PD(ASC}))

j=1
where the ASC] are the main components.
Step 2. Let RP = {Ry,..., R, } be the set of the first d-pols of the ASCY".

Step 3. For each pair R; and R; in RP, if the pseudo remainder of B; w.r.t R; is zero and the
pseudo remainder of the product of the initial and separant of R; w.r.t R; is not zero, then
delete R; from RP.

Step 4. At last, we have RP = {R},..., R}}. The relations are {PD(R}),..., PD(R})}.
We consider a special form of problem 2:

Problem 3. If uq,...,u, satisfy an algebraic differential equation: P(uq,...,u,) = 0 for a d-
pol P, decide whether the u satisfy R(ai,...,apn,u1,...,%,) = 0 for a polynomial R and some
constants @y, ..., 4m.

Here we only have a partial solution to this problem: If such a relation exists, our method
can find it in a finite number of steps, but we cannot prove there are no such relations.

Algorithm 2. A partial solution to problem 3.

Step 1. For n = 1 to infinite, decide whether uy,...,u, satisfy a polynomial equation of degree
n with some constants. This is equivalent to whether the pseudo remainder of P wart DL R,
= DLR(1,uy,us,...,u} ) is zero.

Step 2. Let no be the first number such that the pseudo remainder of P w.r.t DLR, is zero,
then the u satisfy a polynomial equation of degree ng with some constants.

Step 3. By lemma 1 in Part I, we can go further to decide the particular form of polynomial
equation of degree ng, for which w4, ..., u, are satisfied.

3. Mechanical Derivation of N1 From K1 and K2 (or N2)

We use the same coordinate system and differential equations for Newton’s laws and Kepler’s
laws as the first part of this paper. Our task is to derive N1 from K1 and K2 (or N2) using
algorithm 1 without knowing N1 in advance. The hypotheses are

N, :x“y-y”x:()
Ky =DLR(1,z,r)=2"" —¢r"2' =0
hi=rf—-2"—4*=0

532 — (ZQ __xuz __yuz —_

The ascending chain representing the main component under the variableorder r <a <z <y
is
TZTI?,‘!!H + (_?473! —%~ 6?"?“;2)?‘”! + 6Ti3?,/f =0

g -’ =377 =0 (

Yo
N
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2
(7_!266 . T’I’il? i/)l, + 7,3 (L - 0

yQ_{_Z.Q_TQ:O

But from (1), we cannot obtain any relation between @ and r easily. The problem is that the
simplest relation between a and r is DLR(1,ar?) = r(a’r+2r'a) = 0 in which the highest order
for @ and r are one. But in (1) the highest order for r is four. This suggest that if only a, &', 7
and 7' are allowed during the computation, we may hopefully get the relation we want.

Note that 77 occurs in K;;. We may eliminate it by taking the pseudo remainder of #;,
w.r.t hy. The remainder is

Iflz — (x/yB +Z‘233/y)y 4z iE’yn +( x// 3 +( ! . Q:EQZ’?)y)y, + xt3y2 =0
which invelves ¢ and y alone.

‘e adopt a slightly different viewpoint from the method described in section 2 for the prob-
lem: N, and K, decide the motion completely by giving the differential equations for z and y,
and our problem is actually find the relation between two d-pols of z and y: 7% = 2% + y? and
a® = 2" +4"? under the condition of N, and K,,. To do this, our first step is to determine the
relation among z and y determined by N, and K;,. This can be done by applying algorithm
1 to Ny and K;5. The ascending chain representing the main component is

31‘256,1’”:13”” 42:2 i ///2+( 3.272 ”2+2$$,2 /!)$iil+2$/3 2 =0 (2)

3$:‘12y2+$2$1$1/1+2$$12 //_0

The pseudo remainders of hy, b}, ho, and kY w.r.t (2) are
xz 7 11/+( 33/ +3’12)$”9+2$Q?f2 !/_0
xzm;xmz + (—-3$2$N2 + wxiQ ;'/):Lm + (332:5‘ - 97,7, )Q;II?) $i3$li2 =0 (3)
xx/xm . //2 + 255’2 2" + 361 7 =0

2
2£2 t m +( 6$2 N“-%—QLLQZ’IQ ”)58’”"?6231‘! 113 4@’3:6!/2-%*90&!5621‘” = 0

Applying algorithm 1 to (3) in the sense of ordinary polynomials under the variable order:
r<r <a<d <z<a <zl <z, our computer program produced two ascending chains
representing the main components. They are
ra +2r'a =0
2raz’? + ra'za’ — 2a%2? + 2r%a° = 0 (4)
re’ —ax =0
zie’a"” + (=327 +3r%)2"” + 222"%2" = 0

ra 4+ 2r'a = 0
re’? — ez’ +az? —r?a =0 (5)
ra’ +az =0

2 / i!i+( 3@ +3r2)x”2—§—2wx'q 1/_0

The first equation of (4) and (5) actually means that a is reversely proportional to 7*. Hence
we have derived N1 from K1 and K2 mechanically., The crucial point is that we only allow
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7, @ occurring in the process and all higher orders are forbidden. We do this by treating the

elements in (3) as ordinary polynomials for the new variables: a,a’,r, 7'z, 2’, 2", and 2.

4. An Algorithm of Mechanical Formula Derivation (II)
Based on the idea of section 3, we formulate our problem as below.
Problem 4. Given two groups of d-pols.
Pl(xi,...,xp) =0

(6)
P(z1,.,2p) =0

Ql(uiaxlv'"axp) =0

Qu(ug, x1,..,2,) =0

find the differential equations satisfied by uy,...,u, with the lowest order for the u.
Algorithm 3. A solution to problem 4.

Let VS = {ul,..,,uq},PSO = {Qla"')Qq}

Step 1. Apply algorithm 1 to (6) and (7) in the sense of d-pols under the following variable order:
U < v < Uy < Xy < -o- < Zp With wg, .., U1 as parameters. If there exist no nondegenerate
components containing d-pols involving the v alone, then there exists no relation among the
u at all. If there exists one d-pol of the u in some non-degenerate components, then these
relations are the relations we want. For the non-degenerate components involving more than
one d-pols of the u, do step 2.

Step 2. Apply Ritt-Wu’s decomposition algerithm to (6) in the sense of d-pols.

Zero((6)) = UL, Zero( PD(ASCY))

Step 3. For each nondegenerate component Zero(PD(ASC;,)), let PS5, be the set of the pseudo
remainders of the d-pols in PS5, w.r.t ASC;,.

Step 4. Use Ritt-Wu’s decomposition algorithm to PS;, ASC;, and (6) in the sense of ordinary
polynomial under the following variable order: u; < -+ <y <2 < 2} < -3, <z, --- for
the variables occurred in PS, ASC;,, and (6).

Step 5. If there exists a polynomial involving variables in V S alone in some non-degenerate
components, then this relation is what we want.

Step 6. Otherwise, fori = 1to ¢, j = 1 toinfinite, do as follows: adding w; ; (the j-th derivation
of u; wr.t t) to VS, adding Q; ; (the j-th derivation of Q; w.r.t £) to Sy, and repeating step
3, 4, and 5 for the new V.5 and PS,. As there are actually some relations among u4, ..., u,, the
process must terminate at a finite number of steps.
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In algorithm 3, by treating the d-pols as ordinary polynomials, we can get the relation among
the u with lowest order. This algorithm only fits to those problem in which such relation is
exactly the one we want. Fortunately, most of the problems we encountered belong to this kind
of problems as shown by the examples in section 5 below.

5. More Examples in Plane Mechanics

In Part I of this paper, ten formulas in mechanics have been mechanically proved. Actually,
most of these formulas can be mechanically derived using algorithm 3. For convenience, we use
the same example number with a prime here to show its corresponding example in Part 1.

5.1. Problems in Plane Kinematics

Example 1, 2, and 3 in Part 1 of this paper belong to the same class of problems: in a mech-
anism, the velocity and acceleration of one point are given, find the velocity and acceleration
of another point. This kind of problems is a class of typical examples which can be solved by
algorithm 3.

Example 1°. Asin figure 1, a bar AB slips on a wall 05. The point A moves with a constant
velocity ¢. Find the velocity and acceleration of point M.

Let A = (2,0),M = (z,y). The two groups of hypotheses are

Z'=0

cos(p)d — sin(p)z = 0 (8)
sin?() + cos®(p) ~ 1 =0

z—z+cos(p)d =10

y —sin(p)d = 0

c—2 =0 (9)

v2_$f2“y/2:0

Applying theorem 1 in Part I to (8) under the following variable order: d < sin(p) < cos() <
z < z < y with d as the constant parameter, our program found the following ascending chain
which represents the main component.

(sin® () — sin()) sin()” + (=3sin®(¢) + 2)sin(¢)” = 0

cos?(p) +sin*(¢) —1=10

sin(p)z — dcos(yp) =0

z—z+cos(p)d =0 (10)

y—sin{p)d =0

The pseudo remainders of the d-pols in (9) w.r.t (10) are
sin(¢)? (sin®(p)d® — sin®()d® — sin(p)d® — d*) + sin’(p)v® + sin(@)4v® = 0 (11)
cos(y) sin®*(p)c + sin(p)d = 0
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Applying theorem 1 in Part I to (8), (10) and (11) in the sense of ordinary polynomials under
the variable order d < ¢ < sin(p) < v <sin(p) < cos(¢) < z < z < y < 2", we have:

v? + sin*(@)e® — 2sin®(p)c® —c? =0

d? sin(p)"? + sin®()c® — sin*(p)c? = 0

csin® () cos(p) + sin(p)d = 0

sin(p)z — cos(p)d =0

z — (2 —cos(p)d) =0

y — sin(p)d = 0

2 =0

The first polynomial is just the velocity formula of example 1. To find the formula for acceler-

ation, we only need to replace (9) by:
c—2 =0
a[? . x/iz — y1!2 — 0

and repeat the above process. The relation obtained by algorithm 3 is a®d?® + 3sin®(p)c* —
4sin®(p)c? = 0 which is exactly the acceleration formula of example 1.

1
|

o v eNA
SO ITI77 777770 ¢

Fig. 2

Fig. 1

As in figure 2, in a central slider-crank mechanism, the bar O A rotates around

Example 2°.
O with angular velocity ¢’. Find the velocity of C.

Let C = (z,y). The two groups of hypotheses are

sin() + cos?(p) —1 =10
sin() + cos’(¢) — 1 = 0 (12)
rsin(e) — 2asin(¢) =0
z —rcos(p) —acos(y) =0
y—asin(y)=0
(13)



sin{¢)’ — cos{p)y’ =0

Applying theorem 1 in Part I to (12) under the following variable order: r < a < ¢ < v <
cos(¢) < sin(¢) < cos(yp) < sin(p) < = < y with r and @ as the constant parameters, our
program found the following ascending chain which represents the main component.

sin(1) + cos®(¢p) —1 =10

r? cos? () + 4a® sin®(¢) — 7> = 0

rsin(@) — 2asin(y) =0 (14)

z — rcos(p) —acos(y) =0

y—asin(¢) =0

The pseudo remainders of the d-pols in (13) w.r.t (14) are

rsin(1)) cos(@)y’ — 2a cos(t) cos(¢) =0

(4a® cos* () + (r* — 8a®) cos? () — r? + 4a®)v°

+ ((~8a3r cos® () + 8a®r cos(7))) cos(9)?) cos(y) (15)
+ (—16a* cos®(¢) + 20a* cos®(¥) + a’r® — 4a*)cos(y)? = 0

Applying theorem 1 in Part I to (12) and (15) in the sense of ordinary polynomial under the
variable order: r < cos(®) < sin(¢0) < cos(p) < sin(p) < e <z <y < ¢’ < v < cos(¢)’, our
program produces the ascending chain representing the main component

S0 ()07 + ((—4r? cos®() + 1) sin’(p) — 4r* cos(1) sin(¥) eos(p) sin(p) — r*)g#* = 0
2a cos(tp) cos(p) — rsin(tp) cos(p)¢’ =0

The polynomial involving v is equivalent to the result of example 2. Use the above method, we
can also find a formula for the acceleration under the condition ¢” = O.

16a? cos® (1)a’ + ((—32a%r cos” () + (—8ar® + 32a°r) cos®()) cos(p) — 64a” cos®(¢)

+ (—16a%r? + 48a*) cos® () + (—8ar? + 32a*) cos*(¢) — r* +8a%r? —16a*)¢* =0

This formula is not given in example 2.

Example 3°. A bar rotates in a plane around one focus of an ellipse in the same plane.

The equation of the ellipse is r = % Find the relation between the velocity of the

intersection point of the bar and the ellipse and the distance from the intersection point to the
focus.

Let w be the inclination of the bar to the z-axis, and let b be the short axis of the ellipse.
We have
e?a? —a?+b0*=0
sin®(w) + cos*(w) —1=0
r(1+ecos(w)) —a(l—e*)=0 (16)

z —rcos(w) =0
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y—rsin{w) =0

U?__'ajlz_yIZ:O

sin(w)’ — cos(w)w’ =0 (17)

Applying theorem 1 in Part I to (16) under the following variable order: a; < b < e < r <
sin(w) < cos(w) < & < y with a;, b as the constant parameters, our program found the following
ascending chain which represents the main component.

a2 +b* —al =0

e*r? sin®(w) + (—e? + 1)7% + (2a1€* — 2a,)r + ale* ~ 2ale” + a4} =0

ercos(w)+r+ae® —a; =0 (18)

z —rcos(w)=0

y— rsin(w) =0

The pseudo remainders of the d-pols in (17) w.r.t (18) are
((0* — a®)r*)w')sin(w) + a1 b%er’ = 0 (19)
(r* —2a:r + b )v? + (=r* +2a;7)r"* =0

Applying theorem 1 in Part I to (16), (18) and (19) in the sense of ordinary polynomial under
the variable order: a; < b <7 < w < v < e < ¢ <sin(w) < cos{(w) < & < y, our program
produces the ascending chain representing the main component

b7 + (r* = 2a;7%)w” =0

aZe’ +b7 —al =0

(—r? + 2a,7)r? + (r® = 24,7+ *)0* =0

(6% — a?)r*)w')sin(w) + a1 b%er’ = 0

ercos(w) + 1+ a1’ —a; =0

z—rcos(w)=0

y—rsin(w) =0

The first polynomial is the result of example 3. Use the above method, we can also find a
formula for the acceleration under condition w” = 0.
(b*r — 2a,8*)a® + (=17 + 6a17° + (=07 — 12a7)r® + (4a,b” + 8ad)r* — 3ai0*r®)w'* = 0

This formula is not given in example 3.

Example 4°. A particle moves on a circle with radius r. The angle between its velocity and
acceleration is a constant.

(a) Find the velocity of the particle.
(b) Find the relation between the velocity and the inclination of the bar to the z-axis.
For (a), the hypotheses are
cos’(q) — cot*(¢)(1 ~ cos™{q)) = 0
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COSQ(Q)(Q],? + y12)($i12 + y1/2) = {zlei + yiy//)Z =0 (20)
$2 + yz . 7,2 =0

/U?__x/z—yIZZO

To find the velocity actually means to find a formula of the velocity as a function of the time
or the differential equation of the velocity. For this kind of problem algorithm 1 or the first
step of algorithm 3 is enough. The non-degenerate components of (20) under the variable order
r < cot(g) < v < cos(g) < & < y with r and cot(g) as the constant parameter are

rv’ & cot(q)v® =0

(cot?(g) + 1) cos*(g) — cot’(q) =0

r2z’? +v?2? —rP? =0

y2+x2_7,2:0

We have two solutions: 1/v —1/vy = -i:fi‘)%(—“—’l. We cannot decide the sign by our method. For
(b), let the inclination of the bar to the z-axis is w. The two groups of hypotheses are

sin®(w) + cos*(w) —1 =0

z —rcos(w) =0

y — rsin{w) =0 (21)

cos’(g) — cot’(g)(1 — cos*(g)) = 0

22yt =12 =0

cost(@)(a +y)(&" +y") ~ (20" + 'y =0

v —a? -y =0 (22)

sin{w) — cos(w)w’ =0

Applying theorem 1 in Part I to (21) under the following variable order: 7 < cot(q) < cos(q) <
sin(w) < cos(w) < z < y in the sense of d-pols, our program found the following ascending
chain which represents the main component.

(cot®(q) + 1) cos’(g) — cot’(g) =0

((cos*(q) — 1)sin*(w) + (=2 cos*(¢) + 2) sin®(w) + cos?(¢) — 1) sin(w)"?

+ (((—2cos?(q) + 2)sin®(w) + (2 cos?(q) — 2)sin(w)) sin(w)"?) sin(w)”

+ (= sin®(w) + cos?(g))sin(w)* = 0

cos?(w) + sin’(w) —1=10 (23)

z —rcos(w) =0

y— rsin(w) =0

The pseudo remainders of the d-pols in (22) and (v — 2’® — y?)" w.r.t (23) are
w' cos(w) — sin(w) =0
2 sin(w)? + v? sin®(w) — v* =0 (24)

((r? sin®(w) — 77 sin(w)") sin(w)” — 72 sin(w) sin(w)"
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+ vv’ sin® (w) — 200 sin*(w) + vv’ =0

Applying theorem 1 in Part I to (21), (23) and (24) in the sense of ordinary polynomial, our
program produces four non-degenerate components:

v’ £ cot(glw'v =0

wrtv=0

(cot?(g) + 1) cos?(g) — cot*(q) = 0

sin(w)? + w? sin®(w) — w”? =0

((r?sin®(w) — r?)sin(w) ) sin(w)” — 7* sin(w) sin(w)”

+ oo’ sin*(w) — 200" sin?*(w) + v’ =0

w’ cos(w) —sin(w) =0

y — rsin(w) =0

z—rcos(w)=0

The first element gives v = Fce? %) for a constants ¢, which is the second result of example
4.

Example 5°. The y projection of the velocity of a particle moving in a plane is a constant c.
Find the relation among the acceleration, the velocity and the curvature radius of the orbit.

The hypotheses are

y —c=0 (25)

@ — " — y"? =0
v —2? —y? =0 (26)
PP — (yf? 4 2P =0
(25) is an ascending chain obviously. The pseudo remainders of the d-pols in (26) w.r.t (25) are
ApPa? — g% —3c%2™ —3c* 2 - =0
22—+ =0 (27)

' —a =10

Applying theorem 1 in Part I to (27) in the sense of ordinary polynomial under the variable
orderc < p<v<a<z<z <z, our program produces two main components:

cap+v® =0

2% —v* 4+ c? =0

zf—a=20

We have two solutions cap = v® and cap = —v* of which the later one is impossible.

5.2, Problems About the Motion Under a Central Force
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Similarly as section 5.2 of Part I of this paper, we use a mixed coordinate system with the
center of the force as the origin point. The following equations fit for all examples in this
section.

Noy=2"y—y"2=0

hlzrz—x2~y2=()
h2:a2—w”2~y"2:0
hs=h—-vz+z'y=0
hy =yrw — 'z +r2’ =0

)
hs =12 —2” —y? =0

Example 6°. If a particle under a central attractive force describes an ellipse having its center
at the center of the force. Find the relation between the force and the radius drawn from the
particle to the force center.

We adopt a simplification, i.e., assuming the equation of the ellipse is bz? + ¢y> — 1 = 0 or
DLR(1,2%,y?) = 0. Applying theorem 1 in Part I to N, and DLR(1,2%,y*) = 0, our program
found the following ascending chain which represents the main component

2"z ~2"2' =0 (28)
ylxl _ :!/QE” =0

The pseudo remainders of hy, A}, hy, and A w.r.t (28) are

g2’ 1 2"g? 2% = 0

ny// + CEIEIL’ e =0 (29)
2

2
yQCEffs-F;E"?.Z?!‘:E——&“IQ? _a!a:()

P ra?—r2=0

The variables are under the following order: e < ¢’ < r< 7 <z <2’ <2’ <2 <y < v <
y"”. The ascending chains representing the non-degenerate components of (29), (28), N> and
DLR(1,z%,y%) in the sense of ordinary polynomials are

rla—ra =0

22 bxr—2'rr? —2%a+ 2rla =0

2'r —za=0

a}i!lx - xii:{:! — D

yz - 2?2 72 =0

ysxf _ ym” =0

{Eylf _ xiiy =0

r'a —rad =0
2
22t er -2+ 20— erla =0

z2'r+za=0

28



jSy’ix _zila;l — 0
e —r2=0
y}‘xl—ywll :G
:Uy”"x“y: O

The first d-pol of both ascending chains are DLR(a,r) = a'r — ', i.e., a is proportional to r
by algorithm 2.

Example 7°. (Binet’s formula) For a motion under a central force, Find the relation among
a, h, w', and u, where ur — 1 = 0.

In this example, we cannot find a unique solution which is exactly the formula we want, for
there exist relations among every three of the four quantities.

(a). The relation among h, w’, and u. Applying theorem 1 in Part I to Ay, A3, ha, and ur — 1
under the variable order h < u < h < r < 2 < y, our program found the following ascending
chain which represents the main component

wh—w' =0
ur —1=20
3
r2a'? — 2rr'za’ 4+ (¢ + w'?r?)2? — wPrt =0

wry+rs —r'z =0

The first d-pol gives the well known formula among u, 2, and w. Note that we do not need the
fact of the central force to get this relation. So this relation is generally true.

(b). The relation among a, w’, and k. Applying theorem 1in Part [ to Ay, hs hs, and h4 under
the variable order ¢ < w < h < ¢ < y < r with h as the constant parameter, our program
found the following ascending chain which represents the main component

(4w w"? + (=120 w"? + 16w )w"” + 9w — 24w w"? + 16w )h — 166w = 0
4wz 4+ dw'w’zz’ + (W' +4w')2? —4wPh =0

2wty + 2w’ +w'r =0

r?_z?—y?=0

The first d-pol gives the relation among «/, A, and a.

(c). The relation among a, u, and k. The ascending chains representing the non-degenerate
components for Ay, hy Az, ha, and ur — 1 under the variableorder 2 < v < A < 7 < 2z < y with
h as the constant parameter are

wCh? +un’ — 20 +av® =0
ur — 1 =10
riz’? — 203 zx’ + (PP B2 — RPrP =0

hy+riz —rrz =0
The first d-pols give the relations among u, £, and a.

29



(d). The relation among a, u, and w'. In this case the general form of algorithm 3 must be
used. The condition is NV;. The pseudo remainders of hq, A7, AY, he, ur — 1, (ur—1),(ur — 1)",
hy, and b} w.r.t N, are

ru—1=0

Pu4+u'r =0

ru+ 20y +ru” =0

4zt —rP=0 (30)
vYy+a'z—-rr=0

vz +y'2” + 2”2 + 2%z - z(rr +7?) =0

yiz"? +2"%2% — 2%a® =0

yrw' —r'z+ra’ =0

yrw” + (yr+ 'y’ — "z +r2" =0

Now apply theorem 1 in Part I to (30) in the sense of ordinary polynomials under the variable
ordera<a <u<v <u <r<r<r<z<a <z’ <y<y. Our program produces two
ascending chains which represent the main components

ww'? +un” —2u? L au® =0

ru—1=20

Put+ry =0

w427y 4 ru’ =0 (31)

crl4 e =0

et g =0

2'r —2za =20

yrw' —r'z+rz’ =0

vy +zz' —rr' =0
where ¢y, ¢1, €2, and ¢z are some d-pols. The first polynomial of (31) is equivalent to Binet’s
formula h?u?( d*u/ dw® + u) = a under the relation w’ = hu?.

Example 8. For a motion under a central force, find the relation among f, h, and the
distance from the force center to the tangent line of the orbit.

We have
hé‘ — (Cﬂyl - y:c/)z —}}2(;7}!2 + :’;’/2> — 0

where p stands for the distance from the force center to the tangent of the orbit. The pseudo
remainders of hy, b, ks, hs, he, and hf w.r.t Ny are
2 4y? —12 =0
2z’ +yy —rr’ =0
2yt 2% — et =0 (32)
2y —yz' —h=20
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p‘,?g/? +p2$;2 _ h? =0
pp/xyi‘_) +p2:13"yyi +p2xx’a:”’ +§3}9l$37i2 =90

Applying theorem 1in Part I to (32) in the sense of ordinary polynomials of under the variable
ordera < p<p <r<r <z<z <z’ <y <y, our program produces the following
ascending chain which represents the main component

(p*a? — p?h2)r? — pia? = 0

pPar’ + p'h? =0

pPrie’? — 2pPrr'an’ + WPt —p*hP =0 (33)

ra’ —az =0

hy+riz’ —rr'z =0

zy —2'y—h=0

We have two relations for ¢ and p, the second is equivalent to the original result:a = 1/2 -
h? dg=?/ dr.

Example 9°.  If the orbit of a particle moving under a central force is r? = ¢? cos{2w). Find
the relation among a, r, and h.

72 = ¢? cos(2w) is equivalent to
hr =yt + (222 + )y + 2t - e’ =0

Applying theorem 1 in Part I to Ny and hr in the sense of d-pol, our program produces the
ascending chain which represents the main component
(6427 — 48¢°z° — 15¢*2° — Sz)a"? + ((—48c%z* — 30c*a” — 3c%)z)a" + 9ctza™ =0 (34)

((242* + 11c%2% + *)2” — 3ctza?)y? + (82° — TcPa* — ¢*2%)a” 4+ 3c%2%2? =0

The pseudo remainders of %, ho, and hs w.r.t (34) are
(162° + (—2477 +18¢%)a* + (=11c7% + 2¢)2? — ¢*r?)z” + (=6c72° + 3c7r*z)a? = 0
iy F ey =0 (35}
sz’ +ec, =0

Applying theorem 1in Part I to (35), ki, and k7 in the sense of ordinary polynomial under the
variable order e < a < r < z < &' < 2" < y, our program produces two ascending chains which
represent the main components
ar’ £ 3c*R7 =0
2¢2z% —rt = cFr? =0
szt 46 =0 (36)
(162° + (=247 + 18¢%)z* + (=117 + 2c¢t)z? — )z 4+ (=6c22° + 3P r*2)a’? = 0
cy+e=0

where ¢; (i = 1,...,6) are some d-pols. We have two results: ar”—3c*h? = 0 and ar”+3c*h? =0
of which the later is impossible.
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Example 10°. The magnitude of the velocity of a particle under a central force is inversely
proportional to the distance from the force center to the particle. Find the orbit of the particle.

Let ¢ = vr be the proportional coefficient. We have equivalently:

hs - C? _ (582 + 92)(:1;;2 +y12) =0

This example can be solved by algorithm 1. The ascending chain representing the main com-
ponent of Ny, hy, hs, and hg under the variable order: r < z < y is

P22 L B2 o = 0

iz’ — 2%z’ + Pt 4t Pt =0 (37)

hy + 1Pz’ —ri'z =0

The first d-pol of (37) gives:
r? :r§+2\/62-«h2-i
where 7y is the initial value of 7. Use h = r?w’, we can get the original formula of example 10:

hZTfQ = (62 . h?)TwaE =0

or equivalently:
2 2

In(r/ro) = i——h—— W

Reference.

[CH1] Chou, S.C., A Method for Mechanical Derivation of Formulas in Elementary Geometry,
Journal of Automated Reasoning, 3(1987), 291-299.

[CG1] Chou, S.C., and Gao, X.S., Automated Reasoning In Mechanics Using Wu’s Method, Part
I. Mechanical Theorem Proving In Plane Mechanics, This technique report.

[CG2] Chou, S.C., and Gao, X.S., Mechanical Theorem Proving in Differential Geometry, I. Space
Curves, TR-89-08, Computer Sciences Department, The University of Texas at Austin, March
1989.

[RI1] Ritt, J.F., Differential Equations From the Algebraic Standpoint, Amer. Math. Soc., (1932).
[RI2] Ritt, J.F., Differential algebra, Amer. Math. Sco., (1950).
[SG1] Synge, L., and Griffith, B.A., Principles of Mechanics, Mcgraw-Hill, 1959.

[WU1] Wu Wen-Tsiin, A Constructive Theory of Differential Algebraic Geometry Based on Works
of J.F.Ritt with Particular Applications to Mechanical Theorem Proving of Differential Ge-
ometries, DD6 Symp., Shanghai, 1985.



[WU2] Wu Wen-Tsiin, Mechanical Derivation of Newton’s Gravitational Laws From Kepler’s Laws,
MM - preprints, No. 1, 1987.

[WU3] Wu Wen-Tsiin, A Mechanization Method of Geometry and Its Applications, I. Distances,
Areas and Volumes, J. Sys. Sci. & Math. Sci. 6(3) (1986), 204-216.

33



