OPPORTUNISTIC ALGORITHMS FOR
COVERING WITH SUBSETS

Paul Pritchard”
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-89-12 May 1989

* On leave from the Department of Computer Science, University of Queensland, Australia.

Opportunistic Algorithms for Covering with Subsets

Paul Pritchard”
Department of Computer Sciences
The University of Texas at Austin

Abstract

The main problem tackled in this paper is that of finding each set in a given collection that
has no proper subset in the collection. Starting with a solution that uses a quadratic (in the
size of the collection) number of subset tests, solutions are developed which are opportunistic in
the sense of running significantly faster for certain classes of input (such as when most sets are
small). They are based on an opportunistic algorithm for the fundamental problem of finding an
element common to two ordered sequences. Methodological issues are emphasized throughout.

1 The Problem

(Readers who are unfamiliar with propositional logic may go directly to Problem 1.) Suppose we
are given a formula in a restricted conjunctive normal form: it is the conjunction of one or more
subformulae, where each subformula is the disjunction of one or more propositional variables. {There
are no other connectives or any quantifiers.) Then the formula may be maximally simplified (whilst
retaining the normal form) by perfoming the following operations.

1. Remove each repeated occurrence of a propositional variable in each conjunct (using the asso-
ciativity, commutativity, and idempotence of V).

2. Remove each conjunct that has a repeated set of propositional variables (using the assoclativity
and commutativity of V, and the idempotence of A).

3. Remove each conjuct that has a strict superset of the propositional variables in another (using
the associativity and commutativity of V, and PA(PV Q) = P).

The first two operations may be dispensed with by modeling the formula as a set S of sets. A set
z belongs to S if and only if it is the set of all propositional variables in some conjunct of the formula.
However, in order to obtain the representation of the simplest formula of the same normal form that
is equivalent to the given one, we must solve Problem 1, which models the third operation above,
and which is the subject of the rest of the paper. (We encountered the propositional form of the
problem in the context of constraint-satisfaction—see [5]. A propositional variable here corresponds
to the assertion that a particular variable does not have a particular value.)

Problem 1 Given ¢ set S of subsels of a finite set U, find cover(S) such that cover(5) C 5,
(Vz:z €8 :(3y:y&cover(S) 1y C 2)), and cover(S) has minimal cardinality.

(Note: z C y means every member of is a member of y; & C y means ¢ C y A # y.) We think of
each set in S as being covered by a subset in cover(S).
The mathematical version of Problem 1 is easily solved—cover(S) is uniquely given by

*On leave from the Department of Computer Science, University of Queensland, Australia

cover(S) = (Setof z:2 € SA(Vy:y€S:y ¢ z)). (1

(We employ a consistent notation, due to E. W. Dijkstra, wherever bound variables are involved.
The general form for a set-constructor is

(Setof x: D.x :t.x)

which denotes the range of the term ¢.z when the domain of z is characterized by D.z. However,
t.z is commonly z, and in such cases we omit the second colon and term, giving a form very close
to traditional mathematical notation; this abbreviation is also used with Max and Min.)

The algorithmic version of this problem—computing cover(S)—is not so easily disposed of. In
order to simplify matters, we can index the universe and work with sets of indices, for which we
introduce the following notation.

[a,8] = (Setof i :a <iAi<b), [a,b) = [a,b] — {b}, (a,8] = [a,8] - {a}.

We henceforth assume that U = [0, M), (0 < M). The cardinality of a set s is denoted |s|; hence
M = |U|. We employ the following convention: a, b, c,d are integers (in U, unless stated otherwise);
w, z,y, z are sets of integers (subsets of U, unless stated otherwise); n, m are cardinalities of subsets
of U; 8, X,Y are sets of subsets of U; M, N are cardinalities of sets of subsets of U, or lengths of
sequences. The conventions also apply to primed and subscripted variables.

Problem 1 as stated does not exclude the cases S = @ (for which cover(S) = 0) and § € S
(for which cover(S) = {0}). Although these cases do not occur when modelling formulae (they
correspond to the empty formula and the conjunct false respectively), they are legitimate cases in
Problem 1, and should be handled correctly by our algorithms.

2 A High-Level Solution

Our prototypical high-level algorithm exhibits the computational content of equation (1). Our
algorithms are expressed in the language of guarded commands used in [4], extended with if and
forall commands. The command

if b then S
is an abbreviation of
ifb— 5] —b-— skip &

The forall command was introduced in [7] to denote iteration over a fixed finite set in unspecified
order. We briefly recapitulate. Term taken denotes the set of values of the loop-variable for which
the loop’s command has been executed. Initially, taken = (); on termination, taken is the specified
set. Our convention for specifying the result of a function is by pseudo-assignment to the function-
name, as in Pascal.

Algorithm 1
C = filter(S,5)
{C = cover(S)}
where
function filter(X,Y) is
{post filter = (Setof vz € X A(Vy:y €Y 1y ¢ z))}
F .= X,
{invariant F = (Setof z:z € X A (Vy : (2,y) € taken : y ¢ z))}
forall (z,y) in X x Y do
fyCaothen Fi=F —{c} fi
od;
filier == F

We say that filter(X,Y’) is the result of filtering X by Y. _
Algorithm 1 minimally constrains the order of evaluation of the expressions y C @, which is
why we prefer it to the alternative algorithm which determines for each z in turn the truth-value of

Vy:y€eY :y g).

3 Filtering With Smaller Sets

Tt is apparent from Algorithm 1 that there is a solution which uses a number of subset tests which
is quadratic in N, N = |5].

The most fundamental way to speed-up Algorithm 1 is to have it avoid considering certain pairs
(z,y). A simple way to do so is to exploit the obvious fact that

y Cz = |yl <zl

To do so, S is first partitioned according to the cardinality of its members:
K=(Maxs:s€S:|s]) (2)
(Vn:n €[0,K]: L, = (Setof s : 5 € S As| = n)) (3)

A non-member of cover(S) in L, must have a subset in L,,, for some m less than n. Le., L, need
only be filtered by L, if m € [0,7n).

To avoid multiple consideration of members of L,, which are eventually deleted, i.e., not in
cover(S), Ly, should be completely filtered before filtering by it. Furthermore, it is preferable to
filter a given L, by taking the sets L, in increasing order of m, on the presumption that the cost
of evaluating y C z is a non-decreasing function of lyl-

There are two natural algorithms consistent with the partial order on filterings thus defined. The
first, given below as Algorithm 2, takes each Ly, in increasing order of m, m € [0, K), and does all
filtering by it. In the interest of Dirty Realism, S, which is represented implicitly as the union of the
L,’s, is modified, progressively shedding members until only cover{ S} remains. e, since the result
of function filter is always assigned to its first argument, filter is reformulated as a procedure.

S is a constant needed to formulate the postcondition in terms of the original value of 5. The
notation P(x := t) means P with all free occurrences of replaced by 1, with renaming of bound
variables if necessary to avoid capture of free variables in ¢. The () operator has highest precedence.

Algorithm 2

{8 = So}

“Partition § by cardinality”;

{(2) A(3))(S = %o}

m = 0;

{invariant (Vn :n € [0, K]: L, = (Setof s :s € So Als|=n A
(Vy :y € (Union m/ :m’ € [0,m): L) 1y € 5)))}

dom < K —
{invariant (Vn : n € taken : L, = (Setof s : s € So A[s| = n A

(Vy:y € (Unionm' :m/ €[0,m]: L) 1y €)}

forall n in (m, K] do filter(L,, L) od;

m:=m-+1
od
{(Unionn:n€[0,K]: Ly) = cover(So)}
where

procedure filter(X,Y) is

{pre X = Xy}

{post X = (Setof z:z € Xo A(Vy:y €Y 1y z))}

Note that in presenting an invariant for a loop—which obligation is always met—we sometimes
omit conjuncts which are implied by the invariant of an enclosing loop or a preceding assertion by
virtue of the fact that the variables concerned are unchanged. When buttressed with such missing
conjuncts, the invariant supplied should be strong enough to support the postcondition.

The second algorithm takes each L, in increasing order of n, n € (0, K], and does all filtering of
it. Because this algorithm imposes a total order on the filterings (to be consistent with our partial-
order), whereas Algorithm 2 doesn’t, we proceed in our development with the latter, because the
extra freedom it affords may prove useful.

4 Algorithms for Filtering

It remains to implement procedure filter(X,Y). Just as before, there are two sweetly reasonable
approaches.
In the first approach—given as Algorithm 3 below—for each member x of X, a search is performed
for a member y in Y such that y C z, and z is removed from X if the search is successful.
Function “oneof” returns an arbitrary member of its argument, which must be a non-empty finite
set. In conjunction with Y”, which accumulates the values over which y ranges, it is used above to
implement a search over ¥ in unspecified order.

Algorithm 3 (implementation of filter(X,Y))
{X = Xo}
if ¥ # 0 then
X' =10
{invariant Y £ 0A X' C XoAX = (Setof z:z€ X’ A(Vy:y €Y 1y € 2)) U(Xo—X)}
do X € X/ —
x,y = oneof(X — X’), oneof(Y');
Y= {yk
{invariant (V¢ :y/ €Y' —{y} : ¢ € z)}
doy @ e AY #Y —
y:= oneof(¥Y —Y');
Y=Y u{y}
od,;
if ¥y C z then X = X — {2} f;
X =X U{z}
od
fi
{X =(Setof z:ze€ XoAN(Vy:yeY 1y)}

On termination, X C X', so (from the invariant) X’ = X, and the postcondition holds.

In the second (and dual) approach, for each member y of Y, all members = of X are removed for
which y C z. At this stage of the development, there seems little reason to prefer this to Algorithm
3, or vice-versa. Therefore, we arbitrarily proceed with Algorithm 3 in the starting lineup, keeping
the dual approach on the bench in case the former gets into foul trouble.

5 Refining the Filtering Algorithm

In seeking to improve the efficiency of Algorithm 3, we now exploit our freedom to impose a total
order on set S (because it is finite), and thereby on its subsets X and Y. We choose to investigate
lexicographic order, which presupposes that the members of S can be regarded as sequences rather
than sets. We do so by {notionally) arranging the members of each set in .S in numeric order.

We use T (read as “is a (strict) prefix of”) for the irreflexive prefix relation, and < {read as
“precedes”) for lexicographic order, restricted in each case to finite sets of integers. We first define
two operators (having higher precedence than all logical operators and relations): for all sets z of
integers and integers ¢, z before ¢ (resp. z after c) is the set of all elements in z that are less than
(resp. greater than) c. Then for all finite sets z, y of integers,

yCz=(3b:b€z:y=1xbeforebd)
y~<xEy[:{:\/(ﬂa,b:aéy/\bez:ybeforea:xbeforeb/\a<§))

We leave it to the reader to check that these definitions accord with the familiar ones for sequences,

and in particular that < is a total order.
There is a neat relationship between the three relations C, T and <:

Theorem 1 For all finite sets x,y of integers,
y<xhyCer=ylz
Prooft: Let z,y be finite sets of integers. Then

y<zhyCz

= {definition of <}
(yExV(Ea,b:aeyAbEx:ybeforea:xbeforeb/\a<b))/\yCx

= {yC =y C z; predicate calculus}
y[xV((Eia,b:aEy/\be:ybeforea:xbeforeb/\a<b)/\yC z)

= {(ybeforea =z beforebAa <b)=>adz}
yCzV((Ba,b:acyAdbex:ybeforea=zbeforebAa< bAhagaz)yAyCe)

= {(Ha:a€y:agz)=>yd z; predicate calculus}
yC 2V false

= y[C e 0

Suppose that y C @. Then y # z, and, from Theorem 1, y <z =y C 2. ScyZae=az<y,
because < is a total order. We have established a corollary: if y C z, then either y C z or z < .
We exploit this fact in two stages. In the first, before any filtering is performed as in Algorithm 2
(or its alternative if that is under later consideration), S is pre-filtered by Algorithm 2.init, which
rernoves all members of S that have a prefix in 5.

The algorithm employs functions “min”, “max” and “next”, which may be applied to a totally
ordered set V of any type. Along with function “prev”, which is used later, they are defined as
follows. The implicitly associated total order is denoted <. To make the functions total, top
and bottom elements (written T and L respectively) are introduced, and the total order extended
appropriately. When V is a subset of U, we choose T and L to be M and —1 respectively; when V
is a set of subsets of U, we choose T and L to be {M} and {—1} respectively.

min(V)=Min v:v € VU{T})
max(V)=(Maxv:ve VU{l})
prev(V,v) = (Max v/ : (¢v/ € VAV <wv) V' = 1)

next(V,v) = (Min v/ : (v e VAv <) V' =T)

n this proof format, which we learned from E. W. Dijkstra, hints are enclosed in curly braces.

Y

Algorithm 2.init
{5=25"}
“Remove all members of § which have a prefix in 5”:
y = min(5);
{invariant S = 5 — (Setof ¢ : 2 € §' Az < next(S,y) A
By ey 2yny Ca)}
do y < max{5) —
z 1= next(S, y);
fyCe—8:=5~{z}
lygde—y==
fi
od
{S=8ANS=58—(Setof z:ze€S"ANEFy:yes 1 yTa))}

Since no member is ever added to a set L, it is henceforth assumed that the following assertion
is invariantly and globally true:

(Vn,m,z,y:{n,m} C[0,K]Ae €L, AYy€E Ly, y [).

When the composition of Algorithm 2.ini¢ and Algorithm 2 terminates, therefore, the desired set
cover(S’) has been computed, because

(Union n:n €[0,K]: L,) = cover(Sy) A cover(Sp) = cover(S’).

The second stage of exploiting (the corollary of) Theorem 1 involves only procedure filter:
in searching for a member y of Y for which y C =z, attention is restricted to values y which z
(lexicographically) precedes. '

Algorithm 4 (implementation of filter(X,Y))

{X=Xen(Ve,y: 2 € XANyeY :y 2)}

z =

{invariant X = (Setof 2’ : 2’ € Xy rha' <zA(Vy:yeY :y g2) U
(Setof 2’ : 2’ € Xo Az < 2')}

do z # max(X) Anext(X, z) < max(Y) —
z = next{X, z};
if covered(z,Y) then X := X — {2} &

od
{X=(Betofz:2 € XoN(Vy:yeY 1y ¢ z))}
where

function covered(z,Y) is
{prez <max(Y)A(Vy:y €Yy L z)}
{postcovered={Jy:y €Y :yCa)}
y := next(V, z);
Ainvariant (V¥ : ¢ €Y Ay <y ¢ ¢ o)}
doy ¢ x ANy # max(Y) — y:= next(S, y) od;
covered .=y C

Advantage may be taken of the fact that the sequence of values assigned to y by the first command
in function covered is non-decreasing. A variable ¢ is introduced in filier which obeys the invariant

Yy e YU{T}Aprev(V,y) < 2.
It is initialized to min{Y"}, and updated with

doy <z —y :=next(Y,y) od

before being passed to covered as the value with which to initialize y.

With X and Y implemented as (singly-) linked lists of their members, the worst-case complexity
of Algorithm 4 is O(|X| x [Y]) set-inclusion tests. (It can be expected to make about half as many
tests as does Algorithm 3.) With the members of each L, implemented as arrays or linked lists
of their members in ascending order, a straightforward set-inclusion test takes time linear in the
cardinality of the larger set. (Unless stated otherwise, our measure of complexity is number of
operations on a RAM with cells capable of containing integers of size O(N max M).)

The cost (in RAM operations) of Algorithm 2 (using Algorithm 4 for filter) is therefore linear
in :
(Summ:me[0,K): (Sumn:n€(m, K] :|Ln|x|La|xn))
(Summ:me[0,K):|Ly|x (Sumn:n&[0,K]: L] x n))
(Summ:m€e[0,K):|Lyn|x(Sumz:2z €S :|z]))

Nx(Sumz:z€S5:|z])
K' x N?

i

IA

il

where K’ is the average cardinality of a member of § (which, in general, is a function of N).

A set S of subsets of U can be put in lexicographic order in O((Sum z : ¢ € 5 : |z]) + M)
RAM operations (see [1])—knowing this was an incentive to investigate this choice of order. This
dominates the cost of Algorithm 2.init. Finally, the command “Partition S by cardinality” can be
implemented using a bucket-sort in time O(N + K), so the total cost of our solution to Problem 1
is therefore O(K’' x N2+ M).

In the applied problem from [5] which motivated the abstract Problem 1, the members of .S are
small sets; specifically, their cardinalities are bounded by a small constant. Our solution does not
exploit such input; we would like to transform it to do so.

Consider function covered. It potentially examines each y in Y such that z < y, and on average
there are ©(]Y']) such sets. Let each member of X have cardinality n, n > 0, and of Y cardinality m,
m € [0, n)—a fact which is not exploited by function covered. Let zom denote the set of m-element
subsets of z: for all m, m € [0, |z]],

zom={(Setof z:zC zAlz]=m).

Now there is a subset of # in Y if and only if ¥ contains a member of z o m, which has cardinality
C7 .2 1f this number is sufficiently small, it may be more efficient to explicitly search for an element
common to zom and Y. ‘

Although we shall later exploit the special nature of # om, it is instructive to regard the problem
of implementing this search as an instance of the problem tackled in the next section.

6 Digression: Finding an Element Common to Two Or-
dered Sequences

Consider the following problem:

Problem 2 Given {wo finite non-decreasing sequences of elemenis from o fotally ordered universe,
determine whether they conlain ¢ common element, and if so repori two respective positions that
witness that facl.

Problem 2 is both simple and natural, and we suppose that it surfaces in many contexts. Gries
sets it as exercise 8 in [4, §16.3], and proceeds to generalize it—by having three sequences—to

2The least member of z o m is a prefix of z, and thus cannot be in Y. But its exclusion would be unnatural.

a problem (due to Feijin) that he gives a William F. Buckleyesquesetting as the Welfare Crook
problem. .
Gries presents a neat solution to the Welfare Crook problem that is linear in the sum of the
sizes of its (three) sequences, and we presume he had a similar solution in mind to our Problem 2.
But note that if the smaller sequence has sufficiently few members, repeatedly using Binary Search
for each of these over the larger sequence is faster. In the extreme case where the sequences have
lengths 1 and N, the latter solution is O(log NV), while the former is O(N) in the worst-case. Yet
the linear solution is certainly preferable when the two sequences have lengths of the same order.

There is a market for a solution with a complexity that varies smoothly from logarithmic to
linear as the length of the smaller sequence varies from 1 to that of the larger. We characterize
such an algorithm as “opportunistic”, because it exploits special properties of its input without
compromising good worst-case performance. Perhaps the best-known opportunistic algorithm is the
formidable Smoothsort ([2]), which may explain our feeling that opportunism has been somewhat
neglected (in the realm of algorithms).

A solution is given below as Algorithm 5. It enjoys the property of being completely symmetric
in its two sequences, viz. A., i € [0, N), and B.j, j € [0, M), and their associated variables. Note
that for a sequence C of length L, we define C.L to be T and C.(—1) to be L.

The idea is to use Doubling Search followed by Binary Search—incorporated in function loc—to
locate an element in a sequence, alternating in the main loop between the two sequences. Opera-
tor cand is non-strict left-to-right conjunction; it guards against its right hand argument being
undefined.

Algorithm 5
(N>0AM>0AMii€[-1,N): Ai< A+ 1))A (Y j€[-1,M): Bj < B(+1)}
t,5:=0,05
{invariant (37,5 : 7 € [0,]A 7 €[0,5]: A = Bj)y= Ai=Bj)Ai€[0,N]A
[0, M]A(Bj<Ai= A(i—1)< Bj)A(Ai<B.j= B.(j—1) < Ad)}
doj<MAMAi<B.j—i:=loc(BjiA N)
[i< NABj<Ai—j:=loc(Ad,j, B M)
od
{(<NAj<MAAi=Bj)=(3,j:i€l0,N)AjeE [0,M): Adi= B.j)}
where
function loc(v, k,C, L) is
{pre k=koNCk<vAv<CLANi:i€k,L):Ci<C(i+ 1))}
{post loc € (ko, L] A C.(loc — 1) < v Av < Clloc}
d =1,
{invariant d+2 € [0, L—k) A C.(k + (d + 2)) < v}
dod< L—kecand C(k+d)<v—d:=2xdod;
khi=k+(d+2),(k+d) min L;
{invariant C.k <vAv < C.hAk € [ko, L) A € (ko, L]}
dok+1#£h—
mid = (k+h) +2; {k < mid Amid < h}
if Cm<v—k:=mid
l v<Cm— h:=mid
f
od;
loc .=k

We measure the complexity of Algorithm 5 as the number 7" of all comparisons involving a
member of each sequence. Suppose without loss of generality that M < N. Since variable j is
(strictly) increasing, it is incremented at most M times. Since variables 7 and j are incremented
alternately, variable 7 is also incremented at most M times. Hence the number of comparisons

exclusive of those occurring in evaluations of loc is O(M). The cost of evaluating loc is O(1 +logé),
where § is the result minus the value of the second argument. Let AJ (resp. AT) be the bag (i.e.,
multiset) of all increments of § (resp. i). Then since there are O(M) evaluations,

T=0(M)+(Sumé: 6§ AJ :logé)+ (Sum é:6 € Al :logé). (4

To bound the second term of (4), we can use the appealing theorem that for M > 1, the product
of a bag of natural numbers summing to M is maximized when all members are either 2 or 3 (and
there are at most two 2’s). A proof of this may be found in [3]. It immediately follows that the
second term is O(M). Since there are at most M members of A, and they sum to at most N, the
third term is O(M log(3 max (N/M))), i.e., O(M log(1l + N/M)), which dominates the complexity
of Algorithm 5.

Although Doubling Search is crucial to Algorithm 5, so also is Binary Search. The Binary Search
can be eliminated by tail-recursively applying Doubling Search with new starting index k. There are
two reasons for not doing so. The first is that the guard of the loop would be more expensive. The
second is that whereas the given method has complexity ©(logd), where the given value is located
d positions along the sequence, the contemplated one has complexity O(log2 dj!

When M = O(1), T = O(log N); when M = O(N), T = O(N). The complexity of Algorithm
5 varies smoothly between the complexities of the best algorithms for the extreme cases. But
Algorithm 5 exploits its input in another way: whenever one sequence has a group of elements that
fall between successive elements of the other, the whole group will be skipped at logarithmic cost,
in contrast to the linear cost of the approach in [4].

Algorithm 5 is truly opportunistic. It is made from fast, simple components with low overheads.
Furthermore, it can be parameterized so that all pairs of respective positions with matching values
can be obtained one at a time by making repeated calls, and without increasing the worst-case com-
plexity. (In this extended problem, it is natural to assume that each sequence is strictly increasing,
to avoid the possibility of @(N x M) output pairs.) While not lobbying for its induction into the
Algorithms Hall Of Fame, we do think it worthy of a place in the Useful Box.?

7 Opportunistic Filtering

Returning now to Algorithm 4, we transform function filter so as to exploit Algorithm 5. Because
the latter requires random-access to its input, ¥ is viewed as a sequence Y4, ¢ € [0, Y]}, by making
the following definition:

. [min(Y), ifi=0A0<|Y]
Yi= { next(Y,Y.(i-1)), ifie[L[Y]). (®)

The transformation of code and assertions is as follows. The version of Algorithm 4 used incor-
porates the code to maintain variable ¢ (as Y'k); the only other change is to strengthen the precon-
dition to include information about the lengths of the members of X and Y. Function covered is
now implemented with Algorithm 5: in the latter, A.{, i € [0, N) becomes Y.4, ¢ € [k, |Y]), and B.j,
j € [0, M) becomes z o |Y.z].

Of course, @ o |Y.i| must not be explicitly generated—doing so would destroy the point of Algo-
rithm 5. Fortunately, neither is it necessary to be able to efficiently generate an element given its
index in the lexicographic ordering. {That is a challenge which we are willing to forego here.) It
suffices to be able to locate Y.¢ in x o |V.4|. This capability is provided by function lub, which given
y such that |y| < |z], returns the minimum w in z o |y| U {T} such that y < w, i.e., the least upper
bound of y in = o |y| U { T}, which mathematicel function is written lub(y, z).

Variable z plays the role of B.j in Algorithm 5. Note that we have unfolded the loop of function
covered in order to initialize z, exploiting the fact that

3 An aptly-named resource featured in the A(ustralian)BC’s children's TV program Play School

z < Y.k = min(zom) < Y.k

Algorithm 6 (implementation of filter(X,Y))
(6= Xo A Ve, 0t 20} € XA (00} Y sl = I Al = YAl <l Ay 2 2)
z,k:=0,0
{invariant X = (Setof ¢’ : ¢’ € Xop At/ Kae A(Vy:y €Y 1y g ') U
(Setof 2/ 12’ e XoAe <2)Ake[0,|[Y)AY.(k—-1) <z}
do z # max(X) Anext(X,z) < max(Y) —
z = next{X, z);
doVYk<z—Fk:=k+1 od,
if covered(z,Y, k) then X =X — {2z} fi

od
{X=(Setof z:2€ XoA(Vy:y€Y 1y ¢ z))}
where

function covered(z, Y, k) is
{pre z <max(Y)A (Vy, ¥ {y, ¥} CY |yl =V Ayl <|zl|AyZ z) A
kel0,)]YDAY.(k—-1) <z Az <Yk)}
{post covered = (dy 1y €Y 1y C &)}
N,m, i,z = |V], |oneof (Y}, k, lub(Y.k, z);
{invariant (3¢, 2 : ¥ € [0,iA2z €rxom: 2/ < 2AY iV =2)=Yi=)Aic [k, N A.
z€xomU{TIA(z<Yi=Y.(i+1) < 2) A(Yi<z=previz,zom) < Y.(i))}
doz < TAYi<z—i:=loe(z,i,Y,N)
[i<NAz<Yioz:=glh(Yi,z)
od;
{i<NAz<TAYi=2y= G,z i€k, N)Aze€rom Y.i=2z)}
covered = Yi =z
where
function lub(y, z) is
{pre |y| < |z]}
{post lub = lub(y, z}}
function loc(v, k,C, L) is as in Algorithm §

Computing lub(y, z) is a pretty problem. We prepare for a solution by looking for a formal
characterization. Suppose |y| < |z| and I = lub(y,2). Then y < I, and applying the definition of <
gives

yCIvV(da,b:acyAbel:ybeforea =1beforebAa<bh).
Sincel=TVi€zoly,and l|=]y|= v L]

Il=TVi=yv{€ae,b:acyAbcz ybeforea=1beforebha<bA
y before a C z A |y from o] < |z from b}).

Suppose that [# T and { # y, and let a be a witness to the existentially quantified formula above.
Then there is an upper bound I’ with

I after ¢ = (z after o) first |y from qf.
But I <7, 80 b = next(z,q), and

(Ja :a € y:{ = (y before a) U ((¢ after o) first |y from a|) A
y before o C z A |y from a| < [z after af). ' (6)

Finally, for [to be the least npper bound, a must be maximal, which completes the characterization
of [in this case.

10

Suppose we weaken the conditions on @ by only requiring ¢ € yU {—1, M} and y beforea C .
Then when [= T, a = —~1; and when I = y, a = M. Otherwise, a # M, and z # @ because |z} = 0
implies |y} = 0 implies [= y, and therefore a satisfies the conditions in (6) if and only if it satisfies
the weaker ones, because

(e € y Aybeforea C z Aly| = |z]) = y beforea C z.
We have now established our characterizing theorem.

Theorem 2 For all x,y such that |y| < |z|,

lub(y, z) = { gé/’ before a) U ({z after a) first |y from al), gz igiLl){M},)
where
' a=(Maxd:a €yU{-1,M}Aybefored C z A |y fromd'| < |z after a']). (8)

]

The case [ub{y,z) = y if a = M has been subsumed in the first clause of (7).

Equation (7) reduces the problem of computing {ub(y, z) to that of computing a. Let (8) have the
form a = (Max o : @Q(a'}). The second conjunct of § suggests that a should be found, if possible,
with a left-to-right scan of y, allowing y before ¢’ C z to be computed incrementally. This would
be consistent with computing a maximum if

Qa) = (Va' : a' € [-1,ad]: Q(d)),
because the search would then be for the minimum &” (if any) such that ~Q(a”). Unfortunately,

this equivalence does not hold. E.g., when z = {0,1,3} and y = {1,2}, a = 2 but =Q(1).
We therefore decide to compute a by first computing

(Max o’ :d’ € yU{—1,M} Ay befored C z)

with a left-to-right scan, and then completing the computation with a right-to-left scan. Gur high-
level solution 1s

a = min(y);

{invariant ¢ € yU {M} Ay beforea C z}

do a € z — a = next(y, a) od,;

{invariant a € yU {~1, M} Ay before a C z A (Max o' : Q{a')) < a}
do |y from a| > |z after a| — a := prev(y,a) od

{(&)}

It is straightforward to refine and extend this algorithm to obtain an algorithm that computes
lub(y, z) in O(]z|) RAM-operations, which is optimal in the worst-case. Nevertheless, it can be
needlessly inefficient. E.g., when z = [0,n) and y = (0, n], (n > 0), the first loop examines every
member of y, yet it is apparent at the start that a = —1, because

(a € yAybeforea C z Alz after a] < |y from a| — 1) = (Max a' : Q(c¢')) < a.
(To see this, observe that if a’ € yU {2/} and &’ > a, then
|z after '| — |y from o'| < |z after a| — |y from a| + 1,

with equality only if ¢’ € z, because every member of y between a and a’ exclusive must also be in

z.)
The upshot is that an opportunistic algorithm may be obtained by strengthening the guard of
the first loop by adding the conjunct

11

|z after a| > |y from a| — 1.

Furthermore, by maintaining the maximum a’ such that o’ < a AQ(a’), the need for the second loop
disappears.

This completes the high-level design of our algorithm for computing lub(y,). An implementation
is given below as Algorithm 7. It should be merely tedious to verify its correctness from the supplied
assertions.

Algorithm 7 (implementation of lub(y, z))

{lyl < |21}

a,b.4,j,a = min(y), min{z), [y, |z|, - 1;

{invariant a E yU{M}AbezU{M}Ai=|yfroma|Aj=|zfromblAi<jA
y before a C z before b Aprev(z,b) < aAd = (Max o' : d’ <aAQ(d))}

dob<anl<iAi<j-—b,j:=next(z,b),j—-1

[b=an0<i— {Qa)=1i<j}

if i < j then d’ 1= a £
a, b, 1,7 = next(y, a),next{z,d),i— 1,51

od;

{i>0Ab<aA@®)a:=d)V({(i=0V(Ei>0Ab>a))A(8))}

ifi>0Ad <athena:=d fi

“Establish lub = right hand side of first clause of (7)”;

{lub = lub(y, z)}

1t is difficult to see how the problem of computing lub(y, 2} could be successfully tackled without
a formal postcondition like that afforded by Theorem 2 {and a methodology of algorithm design
capable of exploiting it).

In determining bounds on the complexity of our new solution, we shall assume that each L, is
implemented as an array of arrays or doubly-linked lists, so that most of the low-level operations cost
O(1) RAM operations (as does z < T). A set comparison v < w costs O(|v| min |w]), evaluation of
lub(y, z) costs O(|z]), and evaluation of loc(z,1,...) costs O((1+ 6) x |z]), where & is the difference
between the result and the given value of 1.

It follows that the cost of executing filter(X,Y) is dominated by the cost of the | X| evaluations
of covered(z,Y, k). Let ¢ € L, and ¥ = L,,. The analysis of the cost of evaluating covered is similar
to that used for Algorithm 5. But there are now two cases, corresponding to which of zom and Y4,
i € [k, |Y]) is larger, i.e., to which of C7, and [Y|—k —1 is larger. Suppose first that |Y| < CZ. Then
there are O(|Y]) iterations of the loop, at a total cost of O(n x |Y]}. Now suppose that |Y| > C72.
Then there are O(CP,) iterations of the loop, at a total cost of O(Ch, x {n + m x log({¥|/C2))),
which is also O{n x |Y]), because zlog(B/z}, B > 0, is an increasing function of 2, z > 0.

Summing over all executions of filter(X,Y) gives a total cost for Algorithm 6 of order

(Summ:m€[0,K): (Sumn:n € (m, K]:

ILm]
| min C7,

[Ln| % (|Lm| min CF,) x (n + mlog . 0 ©)

which is also O(K’ x N?). Algorithm 6 is never slower than Algorithm 2 (using Algorithm 4 for
filter) by more than a constant factor. But when most members of § are small, Algorithm 6 will
be considerably faster.

More precisely, consider expression (8). It is bounded by

(Summ:me[0,K): (Sumn:n € (m, K]:|L| x C} xn)) +

(Summ:me€[0,K):(Sumn:n € (m, K]:|Ly| x Cp, x m xlog|Lnl)).

12

Now the first summand

= (Sumn:n€[l,K]:(Summ:me[0,n):|L,] x C}, xn))

= (Sumn:n€[l,K]:|Lyjxnx (Summ:me0,n):C}))
{(Summ:me[0,n]:Cp)=2"; C}, =1}
(Sumn:ne [l K] |Lyxnx (2" —-1}))

< Kx28 xN.

And the second summand

(Sumn:ne[l,K]: (Summ:me[0,n):|L,] x C}, x m x logN))
logN x(Sumn:ne[l,K]:|Lyfx(Summ:me[0,n):mxCpL))
{Ch=Chom}

logN x (Sumn:ne[l,K]:|{Ly|x(Summ:me[0,n):nxCL))/2
= logN x(Sumn:n€[1,K]:|L.) xnx(2"71 - 1/2))

< Kx28-1x Nlogh.

i

Il

In the problem that motivated this paper, each member of S has cardinality bounded by a small
constant K. Therefore in this case the complexity of the solution using Algorithm 6 is O(N log N +
M), whereas Algorithm 2’s is O(N? + M). But the crudeness of the preceding estimates don’t do
justice to Algorithm 6: as shown by its complexity O((9) + M), it can take advantage of its input in
many sub-computations. For instance, it will also exploit input where almost all members of § have
cardinalities in a narrow range, because then almost all of the binomial co-efficients will be small.
Algorithm 6 is another opportunistic algorithm—one which we think is a satisfactory solution to
Problem 1.

8 Tinkering

Let us briefly explore some possibilities for speeding up our solution. On the micro-level, the reader
with an appreciation for the pervasiveness of Problem 2 will have realized that Algorithm 5 can
be used to implement an opportunistic subset test. But such a test is no longer used, having been
subsumed in function lub. However, the loop in the body of that function can be replaced by
repeated calls of Algorithm 5 (and a little housekeeping), provided set z is implemented as an array.
The upshot is that there is an opportunistic algorithm for computing lub(y, #) with complexity
O(lyl x log(1 + |=/ly})}. This is significant when |y| < |z|, but such cases are in the minority, and
furthermore, the opportunism of Algorithm 6 diminishes their importance, because the corresponding
binomial coefficients are relatively small. Although there are infinite classes of input for which the
resulting solution would have a lower order of complexity, they are unlikely to occur in practice, and
we are content to class this as a “theoretical” improvement.

An opportunity for a higher-level program transformation is provided by the fact that in Algo-
rithm 2, the order in which a set L,, filters the sets L,,, n € (mn, K], is not fixed. We can attempt
to exploit this by carrying out all these filterings together, interleaving execution so as to maximize
the sharing of computations. One way of doing so is to filter the k’th smallest elements of the L,,’s
together, maintaining the bag of corresponding values of z in Algorithm 6 as a priority queue. The
hope is that the cost of maintaining the queue will pay dividends in the form of a decreased total cost
of stepping through L, in all filterings (because steps will be smaller). However, when |L,| < CZ,,
the worst-case cost of filtering a member of L,, blows up to

O(IL] x (n + mlog(K — m))),

13

so the resulting algorithm may be a factor of O(log K) slower than our basic “guadratic” solution.
Since the decreased cost of stepping through L, will be manifested in a larger (than C2) denomi-
nator in the log-term of {9), and has to balance the multiplier log{ X — m), precise analysis is tricky
and depends on constant factors. Given all of this, this transformation is not justified.

Although Algorithm 6 filters the members of X in increasing order, it need not. (It does so for
the minor gain of maintaining Y.k.) So let us investigate filtering all the members of X in parallel
and interleaving the operations for our convenience. Let X = L, and ¥ = L,,,. When |L,] > cn,
each m-element subset of each member of L,, may be computed. A convenient arrangement is for all
of the j’th smallest m-element subsets to be processed together, for each j € [1,C%], because they
can be quickly bin-sorted and then batch-processed with Algorithm 5 (because Problem 2 emerges
vet again).

The total cost of filtering L,, with L,, in this manner is

O(CT. % (m % |Lp| + M + (|Lpm| min |L,]) x m x log(1 + W)))
= O(|Lp| x C} x m x (14 log(1 + |Lm|/|La]))) + O(C x M). (10)

Let us compare this new approach with Algorithm 6 by calculating the ratio of their respective
complexities; for the moment, we ignore the second term of (10), and divide its first term by the
innermost term of (9). When [L,,| < C%, the ratio is O({m x C%)/(n x |L.»|)), showing that the
new approach is inferior when L, is very small; conversely, when C? < |L,,]|, the ratio is

(1 + log(1 + ILmI/iLnD>
n/m+log(|Ln|/CRY]

showing that the new approach is superior in some circumstances, such as when m is small, n is
large, and L, is sufficiently large.

In isolation, the transformed algorithm is not opportunistic, because the worst-case complexity is
increased. But since its cost can be estimated accurately, it is possible to obtain a theoretically supe-
rior opportunistic algorithm by simply having it choose the faster of the two competing approaches
for each filtering step. However, our analysis ignored the second term of (10); if it is prohibitively
large, a factor of log|L,| must be introduced for the sorting, and this will effectively rule out the
contemplated transformation.

9 Closing Remarks

Two benefits of a parsimonious programming methodology are that the programmer can afford to
thoroughly understand his or her tools, and that he or she has maximum freedom at each stage
of refinement. We point to three examples in the text. The first is the use of a loop (the forall
loop) that iterates over a set in unspecified order—see Algorithms 1 and 2. The second is the use
of function “oneof”, together with a set which accumulates its values, to implement a search (which
may terminate early) over a set in unspecified order—see Algorithm 3. The third is the use of
function “next” in Algorithm 7, rather than using indices and thereby imposing 2 random-access
structure on the sets to which it is applied.

The freedom to exploit different time-orderings of operations is used in several places. Although
no outstanding gains are made as a result, this is not always the case—see [6] and, especially, [7].
When an essentially arbitrary choice of time-ordering is made, as in §§3,4, it is good practice to at
least document the alternative(s), so that they need not be rediscovered in later attempts to obtain
different solutions.

The problem tackled in this paper was new to us. Especially in such situations, it is incumbent
on the programmer to pay special attention to notation. We have tried to make it clear, natural,
and conducive to manipulation, and point to Theorem 2 as evidence of some success.

14

Finally, we point out that the theorem from which Algorithm 7 was developed was not a math-
ematical rabbit pulled out of a hat, but rather was itself developed from the relevant definition,
letting the symbols do the work. A fully mature and convincing methodology of program construc-
tion must include one of mathematical discovery, lest one mystery be explained away with another.
This is a challenging task which must be taken up by the Computer Science educator, both because
of the special nature of the mathematics, and because Mathematicians seem to have displayed little
enthusiasm for the task, for all sorts of reasons which we leave it to the reader to ponder.

Acknowledgements

In non-decreasing order of gratitude, I wish to thank the University of Texas at Austin, its De-
partment of Computer Sciences, the members of the Austin Tuesday Afterncon Club other than
myself (who ATACed part of an early version of this paper), Jay Misra, and Edsger Dijkstra, for
contributing toc an enjoyable and educational stay.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass., 1974.

[2] E. W. Dijkstra. Smoothsort, an alternative for sorting in situ. Science of Compuier Programming
1:223-233, 1982. .

[3] E. W. Dijkstra. To hell with “meaningful identifiers”! Epistle EWD 1044, Dept of Computer
Sciences, The University of Texas at Austin, February 1989.

[4] D. Gries. The Science of Programming. Springer-Verlag, New York, 1981.

[8] P. Pritchard. Algorithms for finding matrix models of propositional calculi. Submitted to Journal
of Auiomaied Reasoning.

[6] P. Pritchard. Another look at the “longest ascending subsequence” problem. Acta Informaiica,
16:87-91, 1981.

[7] P. Pritchard. Linear prime-number sieves: A family tree. Science of Compuier Programming,
9:17-35, 1987.

15

