The Elusive Atomic Register
(Updated Version)

Ambuj K. Singh* James H. Anderson'
Mohamed G. Gouda'

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-89-14 May 1989

Abstract

We present two constructions of a multiple-reader atomic register from single-reader
atomic registers. The first is a recursive construction; a two-reader construction defines
the base step, and a scheme to construct an M-reader register from (M — 1)-reader
registers defines the induction step. This construction, although simple to understand
and verify, has exponential complexity. Our second construction is also an extension
of the above two-reader construction. This construction, while more complicated, has
optimal complexity; it requires O(M 2+ MN } atomic single-reader bits for an N-bit
register.

Keywords: atomicity, atomic register, interleaving semantics, shared variable

CR Categories: D4.1, D.4.2, F.3.1

*Work supported in part by NSF Grant ECS 83-04734 and Office of Naval Research Contract N0OO014-

86-K-0182.
I Work supported in part by Office of Naval Research Contract NOOO14-86-K-0763.

1 Introduction

The currently accepted theory of concurrent computing is deeply rooted in the concept of
atomic registers. An alomic register is a data object that is read or written by one or more
processes according to the following assumption: If several read or write operations of the
register are enabled simultaneously in different processes, then these operations are executed
in some sequence, one after the other, and not concurrently. This assumption strongly
suggests the well-known interleaving semantics of concurrent computations. Therefore, the
validity of this assumption is a cornerstone in establishing the validity of the present theory
of concurrent computing.

One way to check the validity of this assumption is to start with a more realistic model
of a register — in particular, one that admits concurrent reading and writing by different
processes — and to then show that an atomic register can be constructed using these
registers. Such a construction consists of a set of “internal” registers, along with some
programs that access (read or write) them. A process reads or writes the constructed atomic
register by invoking one of these programs. Different programs can be invoked by different
processes concurrently; the net effect, however, resembles that of a serial invocation. The
programs are restricted to be wait-free, i.e., synchronization primitives, such as P, V, or
await, and unbounded busy-wait loops are not allowed. This restriction guarantees that a
process reads or writes the constructed register in a finite amount of time, regardless of the
activities of other processes. {This also means that the read or write of a process is immune
to the failure of other processes that also access the register.) The wait-freedom restriction
distinguishes the problem of constructing an atomic register from the classic readers-writers
problem [5].

Peterson [11] was the first to suggest the problem of constructing atomic registers from
safe registers. A safe register is a data object that can be read and written concurrently by
different processes; if a read operation overlaps a write operation, then it may return any
value from the value domain of the register. The leap from safe registers to atomic registers
is quite large; fortunately, it can be divided into a number of smaller steps. Figure 1 depicts
two chains of register constructions that lead from single-writer, single-reader, single-bit
safe registers to K-writer, M-reader, N-bit atomic registers. The notation K/M/N denotes
a register that can be written by K processes, read by M processes, and store an N-bit
value. Each step in the figure is labeled by a reference to the paper(s) in which the given
construction is presented.

Henceforth, we will concern ourselves only with single-writer atomic registers. The
problem of constructing a multiple-reader atomic register from single-reader atomic registers
was mentioned as an open problem by Lamport [8] and Vitanyi and Awerbuch [14]. The first
solution to the problem was presented in [2]. In this solution, we first defined a two-reader
construction, and then constructed an M-reader register recursively from (M — 1)-reader

registers. This solution, though easy to explain and understand, uses an exponential number

1/1/1 (8] 1N | 2,410,181 |iyayn| [312,14 |x/mgn
Safe Atomic Atomic Atornic

[2, 4, 10, 13] [11]
1/M/1

Atomic

Figure 1: Two Chains of Register Constructions.

of single-reader atomic registers. Subsequently, several solutions with polynomial complexity
have been presented [4, 10] including our polynomial construction [13]. This construction
has polynomial complexity, and is a generalization of our two-reader construction.

In this paper, we present two constructions, one based upon the solution in [2] and
another based upon the solution in [13]. The first construction is presented because of its
simplicity. By examining this construction, the reader should be able to gain some insight
as to why the second, more complicated construction is correct. The second construction
and its correctness proof are the main focus of this paper. The presentation of this solution
differs from that of [13] in two respects. First, the solution presented here is of optimal
complexity, whereas the one given in [13] is not. (Actually, an optimal solution can be
attained by combining the solution in [13] with constructions by Lamport [8] and Peterson
[11] — see [13] for details.) Second, the correctness proof presented in this paper is more
rigorous and formal (and, we hope, easier to understand) than the proof presented in [13].

The rest of the paper is organized as follows. In Section 2 we formally define the problem
of constructing an M -reader atomic register from single-reader atomic registers. In Section 3
we construct a two-reader register from single-reader registers and extend this construction
recursively to obtain an M-reader construction. In Section 4 we present our polynomial
construction. In Section 5 we prove that our polynomial construction is correct; the proof
makes use of several lemmas and propositions, which are stated and proved in an appendix.
Concluding remarks appear in Section 8.

2 Register Construction

Register constructions can be defined in a number of different ways. Our choice of defini-
tions is based on simplicity and convenience.

Terminology: In order to avoid confusion, we henceforth capitalize terms such as “Read”
and “Write” when they apply to the consirucied register, and leave them uncapitalized when
they apply to the internal shared variables of a construction. O

We view the Writer and each Reader of a construction as a program that is invoked by a
process in order to Write (Read) a value to (from) the register. The program for the Writer
has one input parameter indicating the value to be Written; similarly, the program for each
Reader has one output parameter indicating the value Returned. As an example, see the
constructions depicted in Figures 3 and 5.

Fach variable of a construction is read by at most one program — this restriction arises
since our aim 15 to construct a multiple-reader register from single-reader registers. We also
require that all variables are bounded in size. {There is a very simple solution if the variables
are unbounded [14].) As mentioned in the introduction, each program of a construction is
“wait-free,” i.e., synchronization primitives and busy-wait loops are not allowed. (For a more
formal definition of wait-freedom, refer to [1].) Because each shared variable corresponds
to a single-writer, single-reader atomic register, a statement of a program can either read a
single shared variable, or write a single shared variable, but not both; i.e., in each statement,
there is at most one occurrence of a shared variable.

Next, we define several concepts that are needed to state the correctness condition for a
multiple-reader construction. These definitions apply to a given construction.

Definition: A stafe is an assignment of values to the variables of the construction. One
state is designated as the initial siafe. O

Definition: An event is an execution of a statement of a program. 0

Definition: Let ¢ and u be any two states of a construction such that state u is the result
of executing some statement at state {. If e is the event corresponding to this statement
execution, then we write t->u. A history of a construction is a sequence tg—%¢;—> - - - where
1o is the initial state. O

Definition: Event e precedes another event f in a history iff e occurs before f in the history.
0

Definition: The set of events in a history corresponding to some complete program exe-
cution is called an operation. An operation p precedes another operation ¢ in a history iff
each event of p precedes all events of ¢. O

Observe that the precedes relation is a total order on events and a partial order on
operations.

For the proof of correctness of a construction, it is sufficient to consider only histories
in which an initial Write operation precedes all other operations, and that do not contain
any incomplete program executions (i.e., operations). From now on, we deal only with such

histories.

Notation: We denote the ith operation of the Writer, where ¢ > 0, by W:i. (Thus, W:0
denotes the initial Write.)]

Following Lamport [8], we define the correctness condition for a construction as follows.

Definition: Let » be any history of a construction. £ is said to be atomic iff there exists a
function ¢ that maps every Read operation in h to some natural number ¢, where W:iisa
Write operation in h, such that the following three conditions hold.

e Integrity: For each Read operation 7 in A, the value Returned by » is the same as the
value Written by W:é(r).

e Safety: For each Read operation r in A, r does not precede the Write operation W :¢(r)
and the Write operation W :¢{r)-+1 does not precede r.

e Precedence: For any two Read operations r and s in h, if 7 precedes s then ¢(r) < ¢(s).
0

Definition: A register construction is correct iff all its histories are atomic. 0

3 Recursive Construction

In this section, we first give a construction for a two-reader register, and then generalize
this construction to define an M-reader construction that uses (M — 1)-reader registers.
The two constructions together show how an M-reader register can be constructed from
single-reader registers for any M.

3.1 Two-Reader Construction

The architecture of the construction is depicted in Figure 2. In this figure, boxes denote
programs, circles denote variables, and arrows denote direction of communication; an out-
going arrow from a program to a variable indicates that the program writes the variable,
while an arrow in the reverse direction indicates that the program reads the variable. The
Writer is called W, and the two Readers are denoted K and S. The construction uses four
single-reader shared variables, which we denote WR, WS, RW, and RS. Notice that pro-
gram S does not write any shared variable — this fact is crucial, and is exploited in the
next subsection to recursively define an M-reader register from (M — 1}-reader registers.

The shared variable declarations along with the programs W, R, and 5 are depicted in
Figure 3. The field names appearing in the type definitions are as follows.

alt: A bit that alternates in value with each operation of W.

R

Figure 2. Architecture of the two-reader construction.

done: A bit that distinguishes the two values written by an operation of W to variable WS,

flag: A bit that indicates whether both values read by an operation of R from variable W R
are the same.

new: The “current” value of the constructed register. {valtype is the type of the constructed
register.)

old: The “previous” value of the constructed register.
seg: A modulo-3 integer “sequence number.” (& denotes modulo-3 addition.)

In the programs W, R, and 5, we use a special syntax in order to distinguish reads and
writes of shared variables from reads and writes of local variables. A program reads a given
shared variable ¥ by executing a statement of the form “read z from VY,” where z is a
local variable of the same type as Y. A program writes a shared variable Y by executing
a statement of the form “write z to Y.” If variable Y consists of m fields, then z is an
m-tuple; the ith component of z is a local variable whose value is to be stored in the ith
field of Y. We use similar names {sometimes identical) for the components of « and the
fields of Y, so the correspondence should be obvious.

As indicated in Figure 3, any state in which RS.flag is falge is a suitable initial state.
{But, recall that each history, by assumption, begins with the Write operation W:0.)

The two-reader construction is included in order to give the reader (of this paper) some
insight as to why the more-complicated polynomial construction described in Section 4 is
correct. We do not wish to be rigorous at this point, and therefore a formal correctness proof
has been omitted (refer to [2]). Instead, we now provide a rather brief, intuitive discussion
of our proof obligations of integrity, safety, and precedence.

type W Rtype = record
W Stype = record
RStype = record
W R . W Rtype;
WS : WStype;
RW :0..2;
RS : RStype
initialization

- RS.flag

seq : 0..2;
var

program W (val : valtype)
var old, new : valtype;
alt : boolean,;
g,seq: 0.2
begin
old, new, alt := new, val, —ali;
read ¢ from RW,;
seq =g B 1;

new : valtype; seq:0.2;
old, new : valtype;

alt : boolean;

alt : boolean end;

seq:0..2; alt,done : boolean end;

flag : boolean end

write (old, new, seq, alt, false) to WS;

write (new, seg, alt) to WE;

write (old, new, seq, ali, true) to WS

end

program R returns veltype

var z,y: W Riype;
flag : boclean

begin
read z from WR,;
write z.seq to RW;
read y from WR;
flag =z =y
write (flag, z.seq, z.alt) to RS,
return{z.new)

end

program S returns valiype
var xz,7: WStype;
v : RStype;
begin
read z from WS,
read v from RS,
read y from W5,
if ydoneV(z=y A v.flag A
z.seq = v.seq A z.alt = v.ali) then
return(y.new)
else
return(y.cld)
fi

end

Figure 3: Two-reader construction.

To prove that integrity holds, we are required to show that the value Returned by a given
Read operation is, in fact, Written by some Write operation. To prove that safety holds, we
must show that this Write operation either “overlaps” the Read operation or precedes it.
In the latter case, we have the additional proof obligation that no “later” Write operation
precedes the given Read operation.

As we shall see in Section 5, designing a construction that satisfies integrity and safety
is straightforward — in fact, integrity and safety turn out to be an almost immediate
consequence of our definition of ¢. The difficulty lies in satisfying precedence. Proving
precedence amounts to showing that no “new-then-old” conflicts occur; that is, if Read
operation r precedes Read operation r/, then r/ does not Return a value that is “older” than
the value Returned by r.

Since all variables of a construction are required to be single-reader, the Writer cannot
simultaneously make the new value available to both Readers. Instead, it must write the
new value to each Reader separately, which gives rise to potential new-then-old conflicts.
In our construction, W writes to S first — so, we must make sure that S Returns the new
value only when this value is already available to R.

Suppose that s is an operation of S, and that both values read by s from register W.S
are written by Write operation w. By the program for S, s Returns y.new only if y.done
is true or if £ = y, v.flag is true, z.seq = v.seq, and z.alt = v.alf. In the former case,
the second write by w to WS occurs before s reads from WS for the second time; thus,
w writes to W R before the occurrence of any subsequent operation of Reader R. In the
latter case, it can be shown that w writes to W R before s reads from RS (see Lemma 3
in the appendix); thus, in this case as well, w writes to W R before the occurrence of any
subsequent operation of Reader R. Therefore, new-then-old conflicts do not occur.

3.2 M-Reader Construction Using (M — 1)-Reader Registers

In the two-reader construction presented above, S does not write any shared variable. This
suggests a recursive construction for an A -reader register in which S is replaced by M — 1
Readers, and WS and RS are each replaced by an (M —1)-reader register. This construction
is illustrated in Figure 4. Bach register has the same fields as before, but now registers W.S
and RS are read by the M — 1 programs Sy, ..., Sau—1-

In order to construct an M-reader register, we apply the above scheme A{ —1 times. The
correctness of the construction follows from the correctness of the two-reader construction.
Unfortunately, there is a price to pay for this simplicity; the construction of a multiple-reader
register requires a number of bits that is exponential in the number of Readers [2].

WR
(w9 i

Figure 4: Architecture of the M-reader construction.

4 Polynomial Construction

Our second construction is depicted in Figure 5. Each shared variable is of the single-reader
kind. Variable WRJ[{] is written by the Writer and read by Reader ¢. Variable RW/]i] is
written by Reader ¢ and read by the Writer. Variable RR][{, j] is written by Reader ¢ and
read by Reader j, where 7 < j. Any state in which each RR[7, j].flag is false for each 7 and
4, where 1 < i < j < M, is a suitable initial state.

The Writer is a generalization of the Writer of the two-reader algorithm given in Figure
3. Instead of a single sequence number, we now have M different sequence numbers; each
sequence number is like a “token” that is circulated between the Writer and a specific
Reader. The Writer writes to the Readers in two passes; in the first pass the Writer writes
to the Readers in the order from M to 1, and in the second pass this order is reversed. The
value that the Writer writes to each Reader is the same as the value written by W to S in
the two-reader case, except that all M sequence numbers are included.

The Reader is obtained by “combining” the two Readers R and S of the two-reader
algorithm. Each Reader reads two values from the Writer, z and y. Between these reads, its
sequence number is written back to the Writer and a value is read from each lower numbered
Reader. The values read from the Writer and other Readers are used to compute the flag
bit, which indicates whether the old or new value from y is to be Returned. Note that flag
is assigned a value based upon the expressions pp,...,p;~1. These expressions have been

type W Riype = record old, new : vallype; seq:array[l..M] of 0..2; alt,done : boolean

RRiype = record seq:0..2; alt, flag: boolean end
var WR: array[l..M] of W Rtype;

RW : array[1..M] of 0..2;

RR[i]: array[i+1..M] of RRiype for each { in the range 1 < ¢ < M
initialization

(Vi,5:1<i<j<M:-RR[;) flag)

program Writer{val : valtype)
var old, new : vallype;
alt : boolean;
g, seq : array[1..M] of RW iype;
k:1.M
begin
0: old, new, alt := new, val, —alt;
1: for k =1 to M do read ¢[k] from RWI[k] od;
2: for k=1 to M do seqlk] = ¢[k]® 1 od;
3: for k= M to 1 do write (old, new, seq[1..M], alt, false) to WR[k] od;
4: for k =1 to M do write (old, new, seq[1..M], alt, true) to WR[k] od
end

program Reader(i : 1..M) returns valtype
var z,y: W Riype;
v : array[l..i — 1] of RRiype;
Fflag : boolean;
k : integer
always
{(po = y.done A z.seq[t] = y.seq[i] } A
(VE:0<k<iipp = 2
begin
0: read z from WR[];

1: write z.seqli] to RW]s];
2: for k=1 to{—1 do read v[k] from RR[k,:] od;
3: read y from WR[i];
4: flag:=(Fk:0<k<i:pp);
5: for k=141 to M do write (flag, y.seg[z], v.alt) to RR[:i, k] od;
6: if flag then return(y.new) else return(y.old) i
end

Figure 5: Polynomial multiple-reader construction.

=y A vkl flag A z.seqlk] = v[k].seq A z.alt = v[k].alt)

end;

introduced as a shorthand, and are defined in the always section. Before Returning a value,
the Reader writes a value to each higher numbered Reader. This value is the same as the
value written by R to S in the two-reader construction, except that we have y.seqli] instead
of y.seq.

The number of single-reader atomic shared bits used in our construction is as follows:

e WR[i], 1 <i< M, uses 2M + 2N + 2 bits.
o RWIi, 1 <i< M, uses 2 bits.
e RR[i,j7],1<i<j< M, uses 4 bits.

Thus, the complexity of our construction is 642 + 2MN. It is well known that the lower
bound for this problem is O(M? + M N) bits [7]; thus, our construction is optimal.

5 Proof of Correctness

We prove that our construction is correct by defining a function ¢ for a given history, and
by showing that the defined ¢ meets the three conditions of integrity, safety, and precedence
defined in Section 2. The following notations and definitions are used in the proof.

Notation: Let p be an operation, and « be any local variable of p. Then, plz denotes the
final value of variable 2 as assigned by operation p.

In order to avoid using too many parentheses, we define a binding order for the symbols
that we use. The following is a list of these symbols, grouped by binding power; the groups
are ordered from highest binding power to lowest.

[0

P

+7_)@
>7é><’>:gﬁ25'<75
, vV

> |l

U

3

Let p be an operation of program P and i be a label of a statement in P. If 7 is not a for
loop, then p:i denotes the event corresponding to the execution of statement 7 in operation
p. Otherwise, if { is a for loop, then p:i.j denotes the event corresponding to the iteration
of the loop in which the loop counter equals 7. o

Examples: Let w be a Write operation, and r be an operation of Reader 7. The following

events are referred to repeatedly in the proof.

10

w:li The Writer reads from RW/il.
w:3.4 The Writer writes to W R[] for the first time.
w:4.1 The Writer writes to W R][¢] for the second time.
r:0 Reader ¢ reads from W RJ[{] for the first time.
r:1 Reader ¢ writes to RW]i].

r:2.5 Reader { reads from RR[j, 1], where j < 3.

r:3 Reader ¢ reads from W R[¢] for the second time.

r:5.j Reader { writes to RR[, j], where 7 > 1. O
Notation: Let e and f be two events in some history. Then, e < f = e precedes f, and
exXf=(e<fyVie=1. O

Definition: Let e be the event corresponding to the execution of the statement read z
from Y in an operation p, where z is a local variable and Y is a shared variable. If the value

that p reads from Y is written by operation ¢, then we say that operation ¢ determines plz.
0

Observation: Let r and s be any two operations of Reader i and Reader j respectively
such that rly is determined by the Write operation W:m and sly is determined by the Write
operation W:n. If » precedes sand m > nthen m=n+1and i > j.

Proof:

W :m determines rly
= {Definition of determines}
(W:m):845<7:3
= {r precedes s}
(W:m):34<r:3<s:3
= {W:n determines s!y and definition of determines}
(Wim):34<7r:3<8:3<(W:n+1):3.5
= {Transitivity of <}
(W:m):34< (W:in+1):3.5
= {Write operations occur sequentially in a history}
m<n+l A (Wim):3i<(W:in+t1):3.5
= {m>n}
m=n-+1A (W:m):3i<(W:n+1):3.5

= {Predicate calculus}

11

m=n-+1A (W:m):34i<(W:m):3.j
= {Program for Reader}
m=n-+1Ai>j 0

Definition: Let r be any Read operation, and suppose that Write operation W :m deter-
mines rly. Then, ¢(r) is defined as follows.

if 1
6(r) = { m if riflag

m—1 otherwise

0

Proof of Integrity: Let r be any Read operation, and suppose that Write operation W:m
determines rly. If ¢(r) = m, then r!flag is true (definition of ¢) and r Returns the value
rly.new, i.e., the value Written by W:m. If ¢(r) = m—1, then r!flag is false (definition of
¢) and r Returns the value rly.old, ie., the value Written by W:m—1. 0

Proof of Safety: Let r be any Read operation, and suppose that Write operation W:m
determines rly. If ¢(r) = m, then because W :m determines r!y, r does not precede W:m
and W :m+1 does not precede r. If ¢(r) = m—1, then r!flag is false. Hence, rly.done is
also false, which implies that » does not precede W:m—1 and W :m does not precede r. O

Proof of Precedence: The proof of precedence is quite complicated and consists of a
somewhat lengthy case analysis. Most of the cases that must be considered are proved as
propositions and lemmas in the appendix.

Let r be any operation of Reader 4, and s be any operation of Reader j such that r
precedes s. Our proof obligation is ¢(r) < ¢(s).

Assume that Write operations W :m and W :n determine 7!y and s:y respectively. Ob-
serve the following.

¢(r) < 4(s)
= {m<n-1V m>n}
(m<n—1 = ¢(r) <é(s)) A (m>n = é(r) < ¢(s))
= {By definition of ¢, ¢(r) < m and n—1 < ¢(s). Thus, m < n—1 = ¢(r) < ¢(s)}
mzn = ¢(r) < ¢(s)
= {m>n = (m>n VvV m=n)}
(m>n = ¢(r)<é(s)) A (m=n = ¢(r) < ¢(s))
= {From previous observation, r precedess = (m>n = m=n+1 A i> I}

((m=n+l Ai>j) =2 ¢(r)<¢(s)) A (m=n = ¢(r) < ¢(s))

12

= {Lemma 6 in the Appendix}
m=n = ¢(r)<¢(s)
= {By definition of ¢, ¢(r) = m—1 V ¢(r) = m}
((@(r)=m=1 Am=n) = ¢(r) < ¢(s)) A
(((r)=m A m=n) = ¢(r) < é(s))
= {By definition of ¢, n—1 < ¢(s); thus, m=n = m—1 < é(s)}
(¢(r)=m A m=mn) = ¢(r) < ¢(s)
= {By definition of ¢, ¢(s) < n}
(p(r)=m A m=n) = ¢(s)=n
= {By definition of ¢ and flag, (¢(r)=m) = (Fk:k <i:rlp;) and
(¢(s) =n) = Gk k<j:sip)}
(Fkk<iirip) A m=n) = (3k:k<j:sp)
= {i<jVvi>j}
(GE<iANGk:k<i:rlpp) Am=n) = Gk:k<j:slp))A
(G>F A @Gkk<i:rlpy) Am=n) = Fk:k<j:slp))
= {Lemmas 4 and 7 in the Appendix}

irue O

6 Concluding Remarks

In order to prove the correctness of a construction, a function ¢ that meets the three
conditions of safety, integrity, and precedence has to be defined for every possible history.
This leads to long, and somewhat tedious proofs, mainly because we have to consider all
possible ways in which Reads and Writes can overlap. To keep the resulting case analysis
to a minimum, we chose the function ¢ to be very simple; it depends only on the boolean
variable flag. If our proof appears formidable, in spite of this simplification, then it is
because we have been very formal in our reasoning, so as to leave no doubt about the
validity of the proof.

Our definition of atomicity is equivalent to that given by Misra in [9]. His axioms for
atomicity in essence require that all read and write operations be shrunk to a point; such
a shrinking of operations is possible iff a function ¢ that meets the three conditions of
our definition exists. There has been a lot of discussion recently on the similarities and
differences between the conditions of atomicity and serializability. We refer the reader to
[6] for details.

Acknowledgements: We would like to thank Ted Herman and the UT Distributed Systems

13

Discussion Group for their comments on this paper.

Appendix: Propositions and Lemmas

We now prove Propositions 1 through 4 and Lemmas 1 through 7. But, first we present

some definitions.

Definition: Let p be an operation of program P in some history and { be a label of a
statement in P. If ¢ is not a for loop, then p at 7 is frue at a state of the history iff the
event p:7 is enabled; p before i is true at a state iff the state occurs before the event p:4;
p after i is true at a state iff the state occurs after the event p:i.

Otherwise, if 7 is a for loop, then p at i is true at a state of the history iff some event
p1i.3 of the loop is enabled; p before 7 is true at a state iff the state occurs before all events
of the loop; p after ¢ is true at a state iff the state occurs after all events of the loop. O

The following assertions are a consequence of the preceding definition; let p and 7 be as

given in the definition.

—(p at i) = p beforei V p afterq
~(p beforei) = pafteri V pati
-(p afteri) = pati V pbeforei

Definition: Let A and B be two state assertions. The assertion 4 unless B holds iff for
every pair of consecutive states in any history, if AA—B holds in the first state, then AV B
holds in the second state. O

Definition: Consider the history sg=3 - - - ngsi.,.l ---. We say that s; is the state prior o
the event e; and s;41 is the state following e;. Similarly, ¢; is the event prior fo the state
8441 - 0

Definition: The assertion Q{w, 4, j), where w is a Write operation and 1 < i< j < m, is
defined as follows,

Q(w,i,5) = RR[i, jl.flag A RR[i, j].seq = wlseq[i] A RRI[i, j].alt = wlalt |

Proposition 1: Let r be an operation of Reader ¢ and let w be the Write operation that
determines rly. Then,
Gk k<i:rlp) = (w:li<r:1) .

Proof: Assume that rip; holds for some k < 7. Our proof obligation is to show that
w:li<r:L

14

By the program for the Writer, w: 1.0 < w:3.4. Because w determines rly, w:3.i < r:3.
Therefore, by transitivity, w:1.4 < r:3. This implies that w!q[i] is determined by either r
or some predecessor of r.

We now show that r does not determine wig[i]. Because rlp;; holds, riz.seq[i] = riy.seq[i].
Because w determines rly, rly.seqli] = wlseq[i]. Therefore, by transitivity, we have

rlz.seqli] = wlseqli] . (1

If » determines wlq[i], then wlg[i] = rlz.seq[{]. As w assigns seq[i] := ¢[¢] @ 1, this implies
that wlseq[i] = rlz.seq[i] ® 1, contrary o (1). Therefore, r does not determine wlg[é].
Thus, we conclude that wlg[i] is determined by a predecessor of r, i.e,, w:1.i < r:1. O

Proposition 2: Let r be an operation of Reader i, let w be the Write operation that
determines rly, and let ¢ be the state prior to the event r:2.k. Then, for each %k, where
0< k<,

ripry = Q(w,k,¢) holds at %.

Proof: Assume that rlp; holds for some k in the range 0 < k < 7. Our proof obligation is
to show that Q{w, k,7) holds at state ¢, i.e., the state prior to the event r:2.k.
Because rlp; is true, the following assertion holds at state 2.

RR[k,t].flag A rlz.seqlk] = RR[k,i].seq A rlz.alt = RR[k,).alt

Because k£ > 0, we have, by the definition of p;, rlz = rly. Because w determines rly, this
implies that rlz.seqlk] = wlseq[k] and rlz.alt = wlalf. Thus, by transitivity, the following
agsertion holds at state ¢.

RRIk,i).flag A w!seqlk] = RR[k,i].seq A wlalt = RR[k,i].alt

Therefore, from the definition of @, Q{w, %,) holds at state . 0

Proposition 3: Let r and s be consecutive operations by Reader ¢. Then,
sle.seqli] = rla.seq[i] V slz.seq[i] = rlz.segli]la 1 .
Proof: We prove the lemma by first showing that the following assertion is an invariant.
B = WRIi].seq[i] = RW[i] Vv WR[i].seqi]= RW[i]® 1

To prove that B is an invariant, we consider the assertions B0,..., B4 defined below and
show that BOV ---V B4 is an invariant, In these assertions, we refer to the local variables
gl7] and seq[d] of the Writer and z.seq[i] of Reader i.

1l

B0 = RWI{] = qi]®1 = seq[i] = WR[i].seq[7] z.seqli]
Bl = REWJi] = gf] = seq[i] = WR[].seq[] = z.seqli]

15

B2 = RW[il®l = ¢i]l®1l = seqli] = WR[il.seqli]®1 = z.seqli]l® 1
B3 = RWial = ¢il®l = seqlid] = WR[i].seqli] = z.seq[i]®1
B4 = RWE®1 = qli]l®1 = seqi] = WRJi].seqli] = z.seqli]

To see that BO V ---V B4 is an invariant, observe the following.

e The only statement that can possibly falsify B0 is the read by the Writer from RW|z].
But, executing this statement when B0 is true establishes B1.

e The only statement that can possibly falsify Bl is assignment to seq[i] by the Writer.
But, executing this statement when Bl is true establishes B2.

e The only statement that can possibly falsify B2 is the first write by the Writer to
W R[7]. But, executing this statement when B2 is true establishes B3.

e The only statement that can possibly falsify B3 is the read by Reader ¢ from W RJ[i].
But, executing this statement when B3 is true establishes B4.

e The only statement that can possibly falsify B4 is the write by Reader ¢ to RW[i].
But, executing this statement when B4 is true establishes BO.

Thus, we conclude that BOV - .-V B4 is an invariant. This also implies that B is an invariant
since (BOV ---V B4) = B.
We now use B to show that the lemma holds. Our proof obligation is as follows.

slz.seqli] = rlx.seq[i] V slz.seqli] = rlz.seq[il® 1

Let ¢ denote the state prior to the event s:0. Because » and s are consecutive, the value of
RW([i] at state ¢ equals rlz.seq[i], and the value of WR[:].seq[i] at state ¢ equals slz.seq[d].
Since B is an invariant, either

o WR[i].seq[i] = RWI[i] at state ¢, in which case slz.seq[i] = rlz.seq[], or

o WRIi].seqli] = RW[i]® 1 at state ¢, in which case slz.seq[i] = rlz.seq[i] & 1. O

Proposition 4: Let r be an operation of Reader i, and let w be a Write operation such
that r:1 < w:1.i. Furthermore, let ¢ be any state such that w after 1.7 holds at ¢ and the
contents of register RE[{, j] (¢ < j) appearing at state ¢ is written by 7. Then, Q(w, 1, j) is
false at .

Proof: Let ¢ be any state for which w after 1.7 holds and 4, § be any indices such that i < 9.
Assume that r:1 < w:1.7 and that the value of RE[, j] appearing at state ¢ is written by
7. Our proof obligation is to show that Q(w, 1, j) is false at .

We first show that rlz.seq[i] differs from wlseq[i]. Let e be the event prior to state
t. Because w after 1.7 holds at ¢, w:1.4 < e. Thus, 7:1 < w:1.i < e. Therefore, wlg[i]

16

is determined by either r or some successor of r, namely s. In the former case, wig[i] =
rlz.seqli]. Asw assigns seqi] := ¢[i]®1, wiseq[i] # rlz.seg[i]. In the latter case, s:1 < w:1.4,
and therefore, s:1 < w:1.i < e. Because r writes the value appearing in RRJ[{, j] at state ¢
and 1 is the state following event e, » and s are consecutive. By Proposition 3, w!g[i] equals
rlz.seqli] or rlz.seq[i]® 1. Therefore, wlseqi] equals rlz.seq[i] D 1 or riz.seq(i]® 2. As @ is
modulo-3 addition, wlseg|i] # rlz.seq[i].

Because = writes the value in RR[¢, j] appearing at state ¢,

RRli, jl.flag = viflag A RR[i, j].seq = rly.seqli] (2)

holds at state ¢. Consider the two values rly.seq[i] and wlseg[{]. If they are equal then,
because wiseqli] # rlz.seqi], we have rlz.seq[i] # rly.seq[i] and consequently, rlflag is
false. Therefore, by (2), RR[¢, j].flag is false at ¢ and hence, Q(w, 1, j) is false at #. If on
the other hand, rly.seq[i] # w!seq[s] then by (2), RR[:, j].seq # wlseq[i] at ¢ and therefore,
G(w, 1, j) is false at ¢. O

Lemma 1: Let w be any Write operation and 7 < j. Then,
(Vi,j = w after 1.i Aw before 4 = —Q(w,1,j)) .

Proof: We prove the stronger theorem state below by induction on k. The proof of the
lemma then follows from the proof of the theorem.

(Vi,j,k:0<i<j<MAi<k<M:wafter 1.i Aw before4 = —-Q(w,1,J))
Base case: k = 0. Follows trivially because the range is empty.

Induction Step: £ > 0. Let ¢ be any state for which w after 1.i and w before 4 holds and
i, j, k be any numbers in the required range. Our proof obligation is to show that Q(w, 1, j)
is false at 1. Consider the value of the register RE[4, j] at state ¢. If it equals the initial value
of the register then RR[, j]. flag is false, and consequently, Q(w, ¢, j) is false. Otherwise, the
value in the register is written by some operation (of Reader i), namely r. Let e be the event
prior to state t. Consider the events w:1.7 and r:1. Either r:1 < w:lior w:li < r:1. If
r:1 < w:1l.i then, by Proposition 4, Q(w, ¢, j) is false at ¢ and we are done. So, assume that
w:1.i < r:1 for the remainder of the proof.

By the program for Reader ¢, r:1 < 7:3 < r:5.5. Because r writes the value appearing
in RR[i, j] at state ¢, 7:5.j < e. Because w before 4 holds at ¢, e < w:4.1. Thus, by
transitivity,

wili<ril<r3<ribji<e<w:4l . (3)

Therefore, rly is determined by w or the Write operation immediately preceding w. In
the latter case, rly.alt # wlalt, and therefore, Q(w,1,) is false at ¢. So, assume that

w determines rly. By (3), 7:3 < w:4.4, and therefore, riy.done is false. Hence, by the
definition of pp, ripg is false.

Next, we use the induction hypothesis to show that »!p; is false for all [in the range
0 < ! < ¢. This implies that r!flag is false, and therefore, Q(w, %,) is false at ¢, which is
our proof obligation.

Let 0 < I < ¢. From the program of the Writer, w:1.J < w:1.{. By assumption,
w:1.4 < r:1. From the program for Reader ¢, r:1 < v:2.1 < r:3. Thus, by transitivity and
3,

will=<w:ili<r:il<r:2d<r:3<ribj<e<w:4l . (4)

Consider the state prior to the event r: 2.0, From the above precedence assertion, w before 4
and w after 1./ at this state. By the induction hypothesis, Q(w, !,) is false at this state.
Therefore,

~{ rlv[l].flag A 7lv[l].seq = wiseq[l] A rlo[l].alt = wlalt) .

Because, wlseq[l] = rly.seq[l] and wlalt = rly.alt {(w determines riy), we have
= rlo[l]. flag A rlofl]l.seq = rlyseql] A rlvlilali = rly.alt) .

Therefore, by the definition of p;, rip; is false, which is our proof obligation. 0

Lemma 2: Let w be any Write operation and let 7 < j. Then,
(Vi,juwat 4AQ(w,4,5) unless w after 4) .

Proof: We prove the stronger theorem stated below by induction on k. The proof of the
lemma then follows the proof of the theorem.

(Vi,j,k:0<i<j<SMAMILESM watdAQ(w,i,j) unless w after 4)
Base case: k = 0. Follows trivially because the range is empty.

Induction Step: & > 0. Observe that the stated safety property is preserved trivially by
each event of the Writer and all Readers different from Reader i. We show that it is also
preserved by each event of Reader 1. Let s be any operation of Reader 7. Consider the event
s:5.5. This is the only event that may falsify the predicate Q(w,1,5). Let ¢ be the state
prior to the event and u be the state following the event. Our proof obligation is that if
w at 4 and Q(w, 1, 5) hold at ¢, then Q(w, ¢, j) holds at v (w at 4 holds at u trivially). By
the program for Reader ¢, this is equivalent to showing that if w at 4 and Q(w, 1, §) hold at
t, then

siflag A sly.seqli] = wlseq[i] A sly.all = wlalt . (5)

Because Q(w,1,j) is false initially (RR[?, j].flag is false), the value of RR[4, j] appearing
at state ¢ is written by some operation (of Reader ¢), namely . Consider the events w:1.¢

18

and r:1. By the contrapositive of Proposition 4, —=(w after 1.7) holds at t or w:1.4 < r: 1.
But, by assumption, w at 4 holds at ¢. Therefore, w after 1.7 holds at {. Consequently,
w:li<r:l

Now, we show that w determines rly. By the program for Reader ¢, r:1 < r:3 < 7:5.7.
Because 7 writes the value appearing in RE[Z, j] at state ¢, :5.5 < 5:5.5. Because w at 4
holds at ¢, 5:5.5 < w:4.M. Thus, by transitivity,

wili<r:l<r:3<r:bj=<s:bj<w:4M . (6)

Therefore, rly is determined by w or the Write operation immediately preceding w. In the
latter case, rly.alt # wialt, and therefore, RR[i, jl.alt # wlalt at t. Consequently, Q(w, 1, 5)
is false at ¢. This is contrary to our assumption. Therefore, w determines rly.

From the program for the Writer, w:0 < w:3.i. Because w determines rly, w:3.4 < r:3.
Because » precedes 5, r:3 < 5:0 < 5:3 < 5:5.7. Because w at 4 holds at ¢ and £ is the state
prior t0 5:5.7, §:5.7 < w:4.M. Therefore,

w0 <w:3i<r:3<s5:0<s:3<s:5.j<w:4M . (7)

Therefore, w determines both slz and sly. Consequently, sly.seq[i] = wiseq[i] and sly.alt =
wlalt. This meets two out of three of our proof obligations (5) and we are left with the
proof obligation that s!flag holds. This is proved next.

Because Q(w, 1, j) holds at ¢, and r writes the value appearing in register RRE[, j] at state
t, riflag holds, i.e., rip; holds for some ! in the range 0 < ! < i. We meet our remaining
proof obligation by showing that rlp; tmplies slpy V slp;, for every [in the range 0 <1 < 4.

We split the proof into two parts: [= 0 and 0 < I < 4. If rlpg then rly.done. Be-
cause w determines all the three values, rly, slz, and sly, we have slz = sly and sly.done.
Consequently, slpg holds. This completes the first part of the proof.

For the proof of the second part, assume that »!p; holds for some [in the range 0 < [< 1.
Because w determines r!y and r!p; holds, by Proposition 2, @(w,,7) is true at the state
prior to the event r:2.0. Let us call that state /. By the contrapositive of Lemma 1,
~(w after 1.I) V —(w before 4) holds at #. By the definitions of after and before,
w before 1.l V wat 1.1 V wat4 V w after 4 holds at ¢'. But, from the program for
the Writer, w:1.0 < w:1.{; thus, w before 1./ V w at 1.l = w before 1.4. Therefore,
w before 1.4 V w at 4 V w after 4 holds at t'. From (6), w before 1. and w after 4 is
false at all states in the interval r:1 to r:3. Therefore, w at 4 holds at /. We have shown
earlier that Q(w,l,7) holds at ¢. Therefore, by the induction hypothesis and (1), Qw,1,9)
holds for all states in the interval »:2.0 to s:5.5. In particular, Q(w, !, i) holds at the state
prior to the event 5:2.1. Therefore,

stll]. flag A slo[l].seq = wiseq[l] A shv[ll.alt = wlalt . (8)

Because w determines both s!z and s!y (shown earlier), either sly.done is true (and slz.seqi] =
sly.seq[i]) or slz = sly. In the former case, slpg is true. In the latter case,

slz.seqll] = wiseq[l] A slz.alt = wlalt .

19

Therefore, using (8) and the definition of p;, sip; is true. This means that in either case
slpe V s!p; holds, which is our proof obligation. 0

Lemma 3: Let w be any Write operation and ¢ < j. Then,
(Vi,j mwat 4AQ(w,i,j) = wafter 4iVvV(3k:k<i:Qw, k7)) .

Proof: Assume that w at 4 A Q(w,4,7) A ~(w after 4.7) holds at some state ¢. Our proof
obligation is to show that Q(w, k, 1) holds at state ¢ for some k& < 4.

Since RR[:, j].flag is false in the initial state, Q(w, 4, §) is initially false. Therefore,
assume that the value appearing in RR[7, j] at state ¢ is written by operation » {of Reader
7). Because Q(w, %, j) holds at state ¢,

riflag A rly.seq[i] = wlseq[i] A rly.alt = wlalt | (9
Since rlflag is true, rlz.seq[i] = rly.seqi]. Thus, by {9), the following assertion holds.
riz.seqli] = wiseqli] (10)

We now show that w:1.f < r:1. Assume to the contrary that r:1 < w:1.4. This
implies that wig[i] is determined by either r or by a successor of r. In the former case,
wlg[i] = rlw.seqli]. As w assigns seqli] 1= ¢[{] @ 1, this implies that wiseq[i] = rlz.seq[i] ® 1,
which contradicts (10).

Now, consider the case in which w!g[7] is determined by a successor of r. In this case,
the immediate successor of r, call it s, exists. Let e be the event prior to state {. Because
w at 4 holds at state {, w:1.4 < e. Because r writes the value appearing in RR[{, j] at state
t, e < $:5.j. Therefore, w:1.1 < s:5.j. This implies that wlg[i] is not determined by a
successor of s; thus, it is determined by s. By Proposition 3, wlg[i] equals either riz.seq[é]
or rlz.seqli] ® 1. As w assigns seg[i] := ¢[¢] @ 1, this implies that wiseq{i] equals either
rlz.seq(i] @ 1 or riz.seq[i] ® 2. Thus, because @ is modulo-3 addition, wiseq[i] # rlz.seqld],
which contradicts (10). Therefore, we conclude that w:1.4 < r:1.

By the program for Reader ¢, »:1 < r:5.5. Because r writes the value appearing in
RR[i, j] at state ¢, r:5.§ < e. Because —{w after 4.7) holds at ¢, e < w:4.7. Therefore,

wili<r:l<ribj<e<w:idi . (11)

Therefore, riy is determined by either w or the immediate predecessor of w — but, the
immediate predecessor of w does not determine rly since, by (9), we have rly.alt = wlalt.
So, w determines rly.

From (9), riflag holds. By the program for Reader 4, this implies that rip; is true for
some k where k < i. We now show that & > 0. Observe that assertion (11) implies that
r:3 < e < w:4.4. Thus, becanse w determines rly, rly.done is false, which implies that »ipg
is false. Thus, k& > 0.

20

Because k < 1, w:1.k < w:1.4. By the program for Reader 4, 7:1 < v:2.k < r:5.j. Thus,
by (11), we have

wilk<w:ili<r:l<r2hk<r:bj<e<w:41 . (12)

Let u denote the state prior to the event r:2.k. Because r!p; holds (£ > 0), by Proposi-
tion 2, Q(w, k, %) holds at state u. Thus, by the contrapositive of Lemma 1, —~(w after 1.k) v
—(w before 4) holds at u. But, by assertion (12), w after 1.k holds at u. Consequently,
—(w before 4) holds at u, i.e, w at 4 or w after 4 holds at . But, by (12), w after 4
does not hold at u. Thus, w at 4 holds at w, which implies that w:3.1 < r:2.%k. Thus, by

assertion {12), we have,
w:3l<r:2k<rbj<e<w:di .

Observe that w at 4 holds for all states between r:2.k and w:4.Z. Thus, by Lemma 2,
Q(w, k, i) holds for all states in this interval. In particular, it holds at state ¢ (the state
following event ¢), which establishes our proof obligation. 0O

Lemma 4: Let r be any operation of Reader ¢ and s be any operation of Reader 7 such
that 7 < j and » precedes s. Assume that both rly and sly are determined by the same
Write operation. Then,

Gkik<iiripy) = @l:li<jsp).

Proof: Assume that Write operation w determines both rly and sly and that rlp; holds
for some & < i. Our proof obligation is to show that slp; for some I < j.

We first establish that w determines both sz and sly. Because i < j, we have w:3.5 <
w:3.4. Because w determines rly, w:3.4 < r:3. Because » precedes s, 7:3 < 5:0. By the
program for Reader j, 5:0 < s:3. Therefore, by transitivity, we get,

widj<w:3i<r:3<s:0<5:3 . (13)

Because w determines sly, by (13), w determines both slz and sly.

Now, consider the events w:4.j and s:3. Either w:4.7 < s:3 or s:3 < w:4.5. We first
dispose of the former case by showing that slpg is true. Because w determines both slz and
sly, sla.seq[f] = sly.seq[j]. Moreover, since w:4.5 < 5:3, sly.done is true. Therefore, by the
definition of pg, slpp is true. In the remainder of the proof, we assume that s:3 < w:4.5.
By transitivity on (13}, we have,

w3 j R w:i<r:3<s:0<35:3<w:4j . (14)

By assumption, rlpg holds for some k < 7. Thus, by Proposition 1, w:1.{ < #:1. From
the program for Reader ¢, r:1 < r:3. Therefore, by (14),

wili<ril<r:3<s:0<5:3<w:idy . (15)

21

Next, we show that @{w,, j) is true at the state prior to s:2.] for some ! in the range
0 <1< j. As a result, the following assertion holds.

stolll.flag A sWll].seq = wiseqll] A sw[l].alt = wlalt
Observe that, by (14), slz = sly, slz.segll] = wiseq[l], and slz.alt = wlalt. Therefore,
sle = sly A sW[l].flag A sW[l].seq = slz.seq[l] A slv]l].alt = slz.all .

By the definition of p, slp; is true, which is our proof obligation.
We show that Q(w, !, j) is true, for some I, in the state prior to s:2.1, by considering the
two possiblities { = j and { < j separately.

i = j: In this case, we show that [:= k, i.e., Q(w, k, j) is true prior to the event 5:2.k. By
M?!y.done is false, which implies that rlpg is also false. Because r!p; is true for some k,
we have k > 0. Let ¢ be the state prior to r:2.£. By Proposition 2, Q(w, k,7) holds at .
Thus, by the contrapositive of Lemma 1, =(w after 1.£) V —~(w before 4) holds at ¢.

Because k < ¢, we have w:1.k < w:1.4. By the program for Reader i, r:1 < r:2.k < r:3.
Thus, by (15},

wilk<w:li<rl<r2k<r:3<s:0=<s5:3<w:4: .

Therefore, w after 1.k holds at state {. Consequently, —(w before 4) holds at ¢, i.e., w at 4
or w after 4 holds at . But, by the above precedence assertion, w after 4 does not hold
at t. Thus, w at 4 holds at ¢, i.e,, w:3.1 < r:2.k. Therefore,

w:3.1<r:2k<5:0<85:3<w:41i .

Observe that w at 4 holds for all states between :2.k and s:3. Thus, by Lemma 2, Q(w, k, i)

holds for all states in that interval. In particular, it holds in the state prior to s:2.k.

¢ < j: In this case, we show that { := ¢, i.e.,, Q{w, 1,) is true prior o the event s:2.4. Let
t be the state following the event r:5.7. Because rlp; holds, r!flag is true. Therefore, the
following assertion holds at state ¢.

RR[i,j].flag A RRI[i, j].seq = rly.seq[i] A RR[i, j].alt = rly.alt

Because w determines rly, rly.seqli] = wiseq[f] and rly.alt = wlalt. Thus, the following
assertion holds at state ¢.

RR[3,j].flag A RR[, jl.seq = wiseq[i] A RR[i, j].alt = w!alt

Therefore, Q(w, i, j) is true at state {. Thus, by the contrapositive of Lemma 1, ~(w after 1.7)
V —(w before 4) holds at state ¢.

22

By the program for Reader ¢, we have r:3 < r:5.5. Since r precedes s, we have r:5.5 <
5:0. Thus, by (15),

w:l.z’<7=:1-<r:3-<r:5.j—<s:0<s:3~<w:‘4.j .

Therefore, w after 1.1 holds at state . Consequently, ~{w before 4) holdsat ¢, i.e., w at 4
or w after 4 holds at . But, by the above precedence assertion w after 4 does not hold at
t. Thus, w at 4 holds at 1, i.e., w:3.1 < r:5.j. Therefore,

w:dl<r:b5j<s:0<s:3<w:4.j

Observe that w at 4 holds for all states between r:5.5 and s:3. Thus, by Lemma 2, Q(w, 1, j)
holds for all states in that interval. In particular, it holds in the state prior to s:2.i. o

Lemma 5: Let w be any Write operation and 7 < . Then,
(Vi,jmwat dANQ(w,4,7) = (Ve:i<k<j:Qw,i,k))).

Proof: Assume that w at 4 A Q(w,, j) holds at some state ¢. Let i < k < 5. We show
that Q(w,, k) holds at state £.

Because RR[i, j].flag is false in the initial state, Q(w, 1, j) is initially false. Therefore,
assume that the value appearing in RR[i, j] at state ¢ is written by operation r {of Reader

Observe that if r writes the value appearing in RR[7, k] at state ¢, then because Q(w, 1, 7)
holds at ¢, Q(w, %, k) also holds at . Thus, in the remainder of the proof assume that a
succeeding operation (of Reader i), call it s, writes the value appearing in RE[i, k] at state
{.

Let e denote the event prior to state . Because k < j, r:5.k < r:5.5. Because r precedes
s, 7:5.j < 5:5.k. Because s writes the value appearing in RR[i, k] at state ¢, 5:5.k < e.
Because r writes the value appearing in RR[i, j] at state £, ¢ < 5:5.7. Therefore,

r:bk<r:Bj<s:bk<e~<s5:57 . (16)

Because r writes the value appearing in RR[¢, j] at state ¢, (16) implies that s is the
immediate successor of . Because Q{w, 1, j) holds at ¢,

riflag A rly.seqli] = wiseqli] A rly.alt = wlalt . (17}
Since r!flag holds, rlz.seq[i] = rly.seq[i]. Thus, we have
rlz.seqli] = wiseqli] . (18)

We now show that w:1.4 < r:1. Assume to the contrary that r:1 < w:1.5. Because
w at 4 holds at state #, w: 1.4 < e. Thus, by (16), wehaver:1 < w:1.4 < s:5.5. This implies

23

that w!g[i] is determined by r or by s. Thus, by Proposition 3, wiqli] equals either rlz.seq(i]
or rlz.seq[i] ® 1. As w assigns seg[i] := ¢[i] @ 1, this implies that w!seq[i] equals either
rlz.seqli] @ 1 or rlz.seqli] @ 2. Thus, because @ is modulo-3 addition, w!seq[i] # rlz.seq[i],
which contradicts (18). Therefore, we conclude that w:1.2 < r:1.

By the program for Reader ¢, 7:1 < r:5.k. Since w at 4 holds at ¢, e < w:4.M. Thus,
by (16), we have

wili<r:l<rbk<r:bj<s:bhk<e<w:4M . (19)

Thus, rly is determined by either w or the immediate predecessor of w — but, the
immediate predecessor of w does not determine rly since, by (17), we have rly.alt = wlalt.
Therefore, w determines r!y. This implies that w:3.i < r:3. By the program for Reader 1,
r:3 < r:5.k. Hence, by (19), we have

w:3i<r:3<r:bhk<rbi<s:bh<e<w:4M .

Because r precedes s, this precedence assertion implies that w determines sly.
Because Q(w, 1, j) holds at state ¢, r!flag is true. Furthermore, as established above,
w determines both rly and sly. Hence, by Lemma 4, slflag is true. Therefore, because w

determines sly, we have the following assertion.
slflag A sly.seqli] = wiseq[d] A sly.all = wlalt

Therefore, because s writes the value appearing in RR[:, k] at state ¢, by the definition of
Q, Hw,i,k) is true at state 1. 0

Lemma 6: Let » be any operation of Reader ¢ and s be any operation of Reader j such
that 7 > j and r precedes s. Assume that rly and sly are determined by Write operations
W :m and W :n respectively where m = n + 1. Then, ¢(r) < ¢(s).

Proof: We meet the proof obligation, ¢(r) < ¢(s), by showing that ¢(r) = ¢(s) = m~1L.
Let w denote W :n and w’ denote W :m. {Because n < m, w precedes w’.) Because w’
determines rly, w’:3.4 < r:3. Because r precedes s, :3 < s:0. By the program for Reader
4, 5:0 < 5:3. Because w determines sly and w precedes w’, 5:3 < w':3.5. Therefore, by
transitivity,
w:3i<r:3<s:0=<s:3<w:3.j . (20)

Hence, rly.done is false, sly.done is true, and slz.seq]j] = sly.seq[j]. Thus, by the definition
of pg, ripg is false and slpy is true. Because slpg is true, from the definition of ¢, ¢(s) =
n = m—1. In the remainder of the proof, we show that ¢(r) = m—1. Since ripg is false, by
the definition of ¢, our proof obligation is to show that rlpy is false for each £ in the range
<k <i

24

Because w’ determines rly, w': 1.7 < r:3. Consider the two events r:1 and w’: 1.4. Either
r:1 < w:ldorw:l.4<r:1. In the former case, by the contrapositive of Proposition 1,
rip is false for each &, which is our proof obligation.

We now show that rlp; is false for each &, where 0 < k < 1, for the other alternative,
ie., w:14 < r:1. Because k < 4, w': 1.k < w':1.4. By the program for Reader ¢, r:1 <
r:2.k < r:3. Thus, using (20), we have

wilk<w:li<r:l<r:2k<r:3<s:0<s5:3<w:3.7 .

Note that w’ after 1.k A v’ before 4 holds at the state prior to r:2.k. From Lemma 1,
—Q(w', k,) holds at that state. Therefore, by the contrapositive of Proposition 2, rip; is
false, which is the required proof obligation. o

Lemma 7: Let r be any operation of Reader ¢ and s be any operation of Reader j such
that ¢ > j and » precedes s. Assume that both rly and sly are determined by the same
Write operation. Then,

Gk:k<iiripy) = 3Q:i<yiisip).

Proof: Assume that Write operation w determines both rly and sly and that r!p; holds
for some k < i. Our proof obligation is to show that slp; for some I < J.

Consider the two events w:4.4 and r:3. Either w:4.4 < r:3 or r:3 < w:4.4. We first
dispose of the former case. Because j < 4, we have w:4.§ < w:4.7. Because r precedes s,
r:3 < s:0. By the program for Reader 7, 5:0 < s:3. Therefore,

widj<widi<r:3<s5:0<s5:3 .

Thus, since w determines sly, sly.done is true and slz.seq[f] = sly.seq[j]. Therefore, by the
definition of py, slpp is true, which establishes our proof obligation.

In the remainder of the proof, assume that r:3 < w:4.7. Because rip; holds, by Propo-
sition 1, w:1.4 < r:1. By the program for Reader 1, r:1 < r:2.k < r:3. Therefore,

wili<r:l<r:2k<r:3<w:4: .

Let ¢ denote the state prior to the event r:2.k. We now show that w at 4 holds at 7.
Because rlp; is true, by Proposition 2, Q(w, %, ¢) holds at state ¢. By the contrapositive of
Lemma 1, =(w after 1.k) V —{w before 4) holds at t. Because, k¥ < i, we have w: 1.k <
w:1.4. Thus, by the previous precedence assertion, we have the following.

wilk<w:li<r:l<r2k<r:3<w:ds

Therefore, w after 1.k holds at state t. Consequently, —{w before 4) holds at ¢, i.e, w at 4
or w after 4 holds at . But, by the above precedence assertion, w after 4 does not hold
at 1. Thus, w at 4 holds at 1.

25

Because i > j > 1, we have w:3.i < w:3.j < w:3.1. Since w at 4 holds at state ¢, we
have w:3.1 < r:2.k. By the program for Reader ¢, r:2.k < r:3. Therefore,

wiBi<w:3j<Lw:3l<r:2k<r:3 . 21)

Consider the two events w:4.j and s5:3. Bither w:4.j < s:3 or s:3 < w:d.j. We
first dispose of the former case. Because r precedes s, by {21), we have w:3.j < s:0.
Since w determines sly and w:4.j < 5:3, sly.done is true. Moreover, since w:3.j < s:0,
slz.seq[j] = sly.seq[j]. Therefore, by the definition of po, slpo is true, which establishes our
proof obligation.

In the remainder of the proof, assume that s:3 < w:4.j. Because r precedes s, 7:3 <
5:0 < s:3. Thus, by (21), the following assertion holds.

wiSi<w:dj<w:31<r:2k<r:3<s:0<5:3<w:dj (22)

Therefore, slz = sly.

As we show below, there exists ¢/, where ¢’ < j, such that Q(w,?, j) holds at state ¢ (the
state prior to the event r:2.k). By assertion (22), w at 4 holds for all states between r:2.k
and s:3. Thus, by Lemma 2, @(w, ¢, j) holds for all states in this interval. In particular, it
holds in the state following the execution of the event s:2.¢. Therefore,

slli'].flag A slv[i'].seq = wlseq[i'] A sl[i'].alt = wlalt

Because w determines sly, sly.seq[i’] = wlseq[¢’] and sly.alt = wlalf. Since slz = sly,
stz seq[i’] = sly.seq[i’] and slz.alt = sly.alt. Therefore,

sle = sly A sWwli'].flag A slz.seq[i’] = slv[i'].seq A sle.alt = slv[i'].ali .

Consequently, by the definition of py, slp; is true, which is our proof obligation.

We now prove that the i/ mentioned above exists; this is our last remaining proof obli-
gation. As established above, w at 4 A @(w, k,9) holds at state ¢. Thus, by repeated appli-
cation of Lemma 3, there exists a strictly decreasing sequence of Reader indices 0g,...,0¢
such that:

e op =1, and o1 = k.
e For each m’, where 0 < m’ < L, Q(w, 041,04) holds at state £
e w after 4.0 holds at state £.

The existence of this sequence depends upon the fact that the set of pairs of Reader indices
is well-founded; thus, Lemma 3 cannot be repeatedly applied “forever.”

By the program for the Writer, w:3.7 < w:4.0z. Since w after 4.07 holds at 7, we have
wid.op < r:2.k. Thus, by (22), we have

w:dj<widor <r:2k<r:3<s5:0=<s:3<wid.j .

By the above precedence assertion, w:4.0r < w:4.j; this implies that oz < j. Therefore,

because j < i and i = oq, we have o < j < 0. Thus, there exists n' such that opipq <

J S O
Observe that w at 4 A Q(w,on41,0n) holds at state 1. Thus, by Lemma 5, (Vm/ -
Onigr < m' L op o Q(w, 0nigr, m')) also holds at state ¢. Hence, because opni1 < J < o,

Q(w, opr41,) holds at state ¢. Thus, we take i/ 1= oprpq; this establishes our final proof

obligation.]

References

(1

[2]

(3]

[11]

J. Anderson and M. Gouda, The virtue of patience: concurrent programming with and
without waiting, unpublished manuscript.

J. Anderson, A. Singh, and M. Gouda, The elusive atomic register, Technical Report
TR.86.29, Department of Computer Sciences, University of Texas at Austin, 1986.

B. Bloom, Constructing two-writer atomic registers, IEEE Transactions op Compulers,
Vol. 37, No. 12, December 1988, pp. 1506-1514. Also appeared in Proceedings of the
Sizth Annual Symposium on Principles of Disiributed Computing, 1987, pp. 249-259.

J. Burns and G. Peterson, Constructing multi-reader atomic values from non-atomic
values, Proceedings of the Sizth Annual Symposium on Principles of Distributed Com-
puling, 1987, pp. 222-231.

P. Courtois, F. Heymans, and D. Parnas, Concurrent control with readers and writers,
Communicaiions of the ACM, Vol. 14, No. 10, Oct. 1971, pp. 667-668.

Herlihy, M. and J. Wing, Axioms for Concurrent Objects, Technical Report CMU-CS-
86-154, Computer Science Department, Carnegie Mellon University, 1986.

A. Israeli and M. Li, Bounded time-stamps, Proc. of 28ith IEEE Symposium on Foun-
dations of Compuier Science, 1987, pp. 371- 382.

L. Lamport, On interprocess communication, parts I and II, Disiribuied Computing,
Vol. 1, pp. 77-101, 1986.

J. Misra, Axioms for memory access in asynchronous hardware systems, ACM Trans-
actions on Programming Languages and Sysiems, Vol. 8, pp 142-153, 1986.

R. Newman-Wolfe, A protocol for wait-free, atomic, multi-reader shared variables, Pro-
ceedings of the Sizih Annual Symposium on Principles of Distributed Computing, 1987,
pp. 232-248.

G. Peterson, Concurrent reading while writing, ACM Transaclions on Programming
Languages and Systems, Vol. 5, pp. 46-55, 1983.

27

[12] G. Peterson and J. Burns, Concurrent reading while writing II: the multi-writer case,
Proceedings of the 28th Annual Symposium on Foundations of Computer Science, 1987.

[13] A. Singh, J. Aunderson, and M. Gouda, The elusive atomic register, revisited, Proceed-
ings of the Sizth Annuel Symposium on Principles of Distribuied Compuiing, 1987, pp.
206-221.

[14] P. Vitanyi and B. Awerbuch, Atomic shared register access by asynchronous hardware,
Proceedings of the 27th Annual Symposium on Foundations of Computer Science, 1986,
pp- 233-243.

28

