RANKERS: A PANACEA FOR
SYNCHRONIZATION

Ambuj K. Singh™ and Mohamed Gouda'
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-89-15 May 1989

* Work supported in part by ONR Grants N00014-86-K-0763 and N00014-87-K-0510.
T Work supported in part by ONR Grant N00014-86-K-0763.

Rankers: A Panacea For Synchronization

Ambuj K. Singh* and Mohamed G. Goudal
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Abstract

The variety of synchronization problems in the computing science is im-
mense: dining philosophers, FCFS doorway, producer-consumer, mutual exclu-
sion, atomic register construction etc. We develop the abstraction of rankers
in order to compare the synchronization requirements of these problems and
solve them modularly. Rankers have two mandatory properties — responsiveness
and precedence and three optional ones — acyclicity, comparability, and stability.
Adding the three optional properties one after another we obtain a chain of four
rankers. Each ranker in this chain is best suited to solve a particular class of syn-
chronization problems and together, the four rankers are sufficient to solve most
synchronization problems in the literature. We devise a general strategy to solve
synchronization problems using rankers and illustrate this strategy by solving
some of these problems. In each solution, we only use the properties of the par-
ticular ranker chosen and not to how the ranker is implemented, thus separating
the two concerns of what a ranker’s properties are and how these properties are
achieved. Finally, we present implementations for the four rankers mentioned
above.

*Work supported in part by ONR Grants N0O0014-86-K-0763 and N00014-87-K-0510
'Work supported in part by ONR Grant N0O0O014-86-K-0763

1 Introduction

Synchronization is at the heart of concurrent computation. Any study of synchronization
usually begins by focusing on a domain of interest and by abstracting the significant aspects
of the domain into a suitable synchronization problem. The problem is then studied and
solved by an algorithm. The variety of these synchronization problems and their solutions
is immense. To name a few of these problems, we have, atomic register construction [15],
dining philosophers [7], drinking philosophers [3], FCFS doorway [12], mutual exclusion
[6], producer-consumer [2], readers-writers [5], resource allocation [9], etc. Each of these
problems has been solved in a variety of ways. For example, the mutual exclusion problem
has been solved by time-stamps, semaphores {weak and strong, binary and n-ary), tokens,
tickets, trees, and acyclic graphs. In fact new solutions are being continually designed for
these problems.

Given the multitude of synchronization problems and their solutions, one is led to search
for a unifying framework, a framework in which the problems can be stated and solved
modularly at a high level. Such solutions should focus on the synchronization requirements
of the problem at hand and identify the properties that are required to solve the problem.
Once these properties have been isolated and a solution that relies on these properties
has been designed, implementations that achieve these properties can be defined. Such an
implementation along with the high level solution constitutes a complete solution to the
problem. Besides the obvious advantages of modularity and separation of concerns, this
approach allows us to study and compare the various synchronization problems. The need
and the usefulness of such a unifying framework that permits us to define the interface
between the properties that are required to solve a synchronization problem, and how they
are achieved by an implementation is the underlying idea behind this work.

Given that a unifying framework is both needed and useful, how should one go about
designing it?7 We recognized that every solution to a synchronization problem necessarily
involves some form of arbitration among the processes wishing to synchronize, and that the
basis for this arbitration is usually some value associated with each process. We call this
value the rank of a process. Any solution to a synchronization problem is thus separated
into two phases: computation of a rank, and arbitration based on the computed rank.
Depending upon the particular synchronization problem and its solution these two phases
may be done in a number of different ways. For example, consider a time-stamp based
solution to the mutual exclusion problem [13]. In such a solution every process that wishes
to enter its critical section first obtains a time-stamp thus executing the first phase. Next,
the processes compare their time-stamps and the process with the lowest time-stamp enters
its critical section. This is the second phase. As another example, consider a solution to
the dining philosophers problem [4] in which a hungry philosopher sends out requests for
forks which establishes its place in an acyclic graph, thus executing the first phase. Next,
the hungry philosophers compare their places in the graph and the philésopher at the top

of the graph eats. This is the second phase.

In order to separate the two phases of computation of ranks and arbitration based on
the computed ranks, we propose a program module called the ranker that carries out the
first phase of computation of ranks. {This module need not be implemented as one central
process; a distributed implementation in which there is one submodule per process is the
one we envision.) When a process wishes to synchronize, it requests a rank from the ranker
and waits until this rank has been computed. After that the process compares its rank
with the ranks of other competing processes and proceeds accordingly. (The exact mode of
comparison of ranks depends upon the particular synchronization problem. For example,
in the mutual exclusion problem, a process compares its rank with all other processes and
enters its critical section if it has the highest rank.) When the process no longer needs its
rank, it returns the rank to the ranker.

The idea of rankers has its roots in the bakery algorithm [12] that Laraport proposed as
a solution to the mutual exclusion problem. In this algorithm, every process that wishes to
enter its critical section first obtains a ticket (a natural number) by examining the tickets
of other processes. Then, it compares its ticket with those of other processes and proceeds
if it has the lowest ticket (i.e., the highest priority). Though this algorithm hints at a
general abstraction of ranks and the separation of the two phases of computation of ranks
and comparison of ranks, however, the author’s definition of ranks is specific to the problem
being solved. As a result, the interface between the implementation of rankers and their
application is not defined. In fact, in order to obtain a total order on the ranks, the author
constrains them to be natural numbers, thus overlocking synchronization problems that can
be solved without a total order on the ranks.

More recently, the bounded time-stamps algorithm of Israeli and Li [11] and the colored
tickets algorithm of Fischer et al [9] use a notion of ranks. Israeli and Li define a sequential
time-stamp system and a concurrent time-stamp system and use the latter to construct
a multi-writer atomic register. Fischer et al solve the resource allocation problem (also
called the K-mutual exclusion problem) using colored tickets, a generalization of tickets
used in the bakery algorithm. In both these algorithms, the authors concentrate on defining
specific ranker implementations using bounded variables and not on delineating the interface
between ranker implementations and ranker applications. As a result, their definitions
remain specific to the particular problem that they solve and they do not achieve the desired
modularity.

The idea of eventcounts and tickets proposed by Kanodia and Reed [21] was an earlier
attempt at classifying synchronization problems. The authors solve the producer-consumer
problem and the readers-writers problem problem using this abstraction. However, they do
not gtate the properties enjoyed by eventcounts and sequencers; as a result the interface
between the application and the implementation of these abstractions is not clear. Thus,
eventcounts and sequencers appear to be implementations rather than specifications.

Since the presentation of an idea and the illustration of its usefulness is done best in

a formal framework, and there are more than one formalisms available, we had to make a
choice. We chose UNITY [4] mainly because of our familiarity with it and partly because
it is amenable to formal manipulation. We present a brief overview of this formalism in
Section 2. In Section 3 we present the specification of rankers and in Section 4 we present
the classification of rankers. We illustrate how synchronization problems are solved using
rankers by considering the FCFS doorway problem in Section 5, the dining philosophers
problem in Section 6, and the resource allocation problem in Section 7. In Section & we
present implementations for the rankers classified in Section 4. Section 9 contains concluding
remarks.

2 The Formalism

In this section we present a brief introduction to UNITY; this presentation is somewhat
simplified as we discuss only those aspects that we use.

A program consists of a predicate describing the initial values of the variables and a
set of assignment statements. The set of assignment statements is written down either by
enumerating every statement and using | as the set constructor, or by using a quantification
of the form { [| war : range : statement). Symbol | is called the union operator.

Program properties are expressed using four relations on predicates — unless, invari-
ant, ensures, and leads-to. The first two are used for stating safety properties whereas
the last two are used for stating progress properties.

For any two predicates p and ¢, the property p unless ¢ holds in a program iff for all
statements s in the program

{pA—g} s {pVagl}.
Informally, if p is true at some point in the computation, then either ¢ never holds and p
holds for ever, or ¢ holds eventually and p continues to hold until ¢ holds. As an example
consider z = k unless z > k which states that 2 is monotonically increasing. As another
example consider thinking.u unless hungry.u which states that philosopher u remains
thinking until becoming hungry.

For any predicate p, the property invariant p holds in a program iff

initially p A p unless false.
Informally, p holds initially and the program never falsifies p. As an example consider
invariant eating.u = hasfork.u which states that an eating philosopher v has all the
required forks.

For any two predicates, p and ¢, the property p ensures ¢ holds in a program iff p
unless ¢ holds in the program and there exists a statement s in the program such that

{pA—q} s {g}.
Informally, if p is true at some point in the computation then ¢ holds eventually and p
continues to hold until g holds.

The relation leads-to is denoted +, and is defined to be the strongest relation satisfying

the following three rules.
e (p ensures g} = (p s q),

e (p—9)A(gr—7)) = (pr—r), and

e For any set W,
(Ym:meW pm—gq)=(Em:meW:pm)— q).

The first two rules imply that — includes the transitive closure of ensures and the third rule
allows us to induct over sets. As an example of this property consider hungry.u — eating.u
which states that a hungry philosopher u eventually eats. As another example consider
send.m — receive.m which states that if a message m is sent, it is eventually received.

Programs are composed by taking the union of their assignment statements. The union
of two programs ¥ and G is denoted F | G.

3 Specification of Rankers

In this section we specify the properties of the user processes and the program ranker that
computes the ranks for the user processes. For convenience, we assume that all the user
processes are grouped together in a program called user. Program user is specified in
Section 3.1 and program ranker is specified in Section 3.2.

3.1 Specification of Program user

Program user consists of a set of processes {u,v,..}. Associated with every process u is a
variable state.u that can take any one of three possible values — white, grey, or black. Ini-

tially, state.u = white, for each u. For convenience, we define the following three predicates.

white.u = state.u = white

i

grey.u
black.u

stale.y = grey

i

state.u = black

Variables stafe.u cycle through the values, white, grey, and black in that order; the
transitions from white to grey and from black to white occur in program user while the
transition from grey to black occurs in program ranker.

Informally, program user consists of some processes that may wish to synchronize with
one another. The state of each process is initially white. When a process wants to syn-
chronize with other processes, it sets its state to grey. The ranker then computes a current
rank for this process. When the rank has been computed, the ranker sets the state of the
process to black. The process can then compare its rank with the ranks of other processes
and proceed accordingly. When it no longer needs the rank, the process sets its state to
white. And the cycle continues.

3.2 Specification of Program ranker

Program ranker has a set of distinguished variables {r.u,7.v,..} representing the ranks of
the user processes. These variables are read by the user processes and read and written by
the ranker. The ranker can modify variable r.u only when the state of the corresponding
process u is grey.

The ranker defines an irreflexive relation < on the above variables. This relation deter-
mines the relative rank of two processes; r.u < r.v denotes that process u has a lower rank
than process v. One constraint on the definition of < is that for all u, v,

=(ru<rov A re<ru).

The ranker is required to maintain certain temporal relationships among the ranks of the
processes and their states. This is stated in terms of five properties, Responsiveness, Prece-
dence, Acyclicity, Compaerability, and Siability, which the ranker must maintain in the
composite program user || ranker.

Responsiveness: This property states that if a process requests a rank, then the ranker
eventually responds by computing a rank, i.e., every grey process eventually becomes black.
Formally, for every process u,

grey.u +— black.u .

Observe that this progress property is local to a user process. It is required of all rankers
because, for a ranker to be of any use in any application, it must eventually compute ranks;
otherwise, a process that wishes to synchronize may starve forever.

Precedence: This property relates the relative rank of processes u and v to the order
in which the variables state.u and state.v change; if the last granting of a rank to process
u precedes the last request of a rank by process v, then process u has a higher rank than
process v. This property is stated as follows: for every distinct u, v,

invariant black.u A black.v A precedes.u.v = ru < r.u

where precedes.u.v is an auxiliary boolean variable that captures the order in which pro-
cesses u and v change their states; it is defined shortly. The predicate (black.u A black.v A
precedes.u.v) is true iff both processes v and v are black and process u transits from from
grey to black before process v transits from white to grey (i.e., the last granting of a rank
to process u precedes the last request for a rank by process v). The condition of precedence
states that, in that case, process u has a higher rank than process v.

Observe that precedence is a safety property on pairs of processes. It is required of all
rankers because it is the only property that relates the ranks of two processes to their state
transitions and therefore, is the only property that requires the ranks of processes to change.

In its absence, trivial ranker implementations in which the rank of a process never changes
can be defined.

Like all auxiliary variables, variable precedes.u.v is not implemented; it is used only in
the specification and the proof of correctness. It is defined by the following two assertions.
(The definition of auxiliary variables by logical assertions on the underlying variables was
proposed by Misra in [16].)

initially —precedes.u.v , and

state.u = z A state.v = y A precedes.u.v = b unless

—(state.u = & A state.v = y) A (precedes.u.v = black.u A (white.v V b)) .
The first assertion states that precedes.u.v is false initially and the second assertion defines
how precedes.u.v changes with each change in the states of processes u and v. It is set to
true if process v becomes white while process u is dlack. Once true, it continues to remain
irue until process u becomes non-black and then it is set to false.

Acyclicity: 'The two properties of rankers that we have stated so far are either local or
pairwise over processes. For a number of synchronization problems, this is insufficient as
some global properties on the ranks of the processes are required. The acyclicity condition
imposes such a global constraint by requiring that the relation < be acyclic at all times. It
is stated formally by requiring that the transitive closure of <, denoted by <*, be irreflexive,
i.e., for all u,

invariant —(r.u <* r.u) .

Acyclicity is a weaker condition than transitivity. This is because transitivity implies acyclic-
ity (for a proof, note that by the irreflexivity of <, —(r.u < r.u); consequently, on account
of tramsitivity, =(r.u <* r.u)), though acyclicity does not imply transitivity (for a proof,
consider three processes u,v and w with r.u < r.v and ».v < r.w but no relation between
the ranks of u and w). As a result, acyclicity of ranks is a weaker condition than the re-
quirement of a partial order on ranks. Though partial orderings have nice mathematical
properties, we found acyclicity to be a more natural requirement for solving synchronization
problems.

Comparability: For some synchronization problems like the mutual exclusion problem, a
total order on the ranks seems essential. In order to achieve such a total order, we introduce
the property of comparability, which along with acyclicity gives us an irreflexive total order
on the ranks. Comparability states that the ranks of any two processes can be compared,
i.e., for every distinct u, v,

invariant ru < rv V ro < ru .

The proof that this property together with acyclicity implies an irreflexive total order is as
follows. Let u,v, w be any three distinct processes such that r.u < r.v and r.v < r.w. On
account of comparability, 7.u < r.w or r.w < r.u. But, because < is acyclic, =(r.w < r.u);
therefore, r.u < r.w. This means that < is transitive, and therefore an irreflexive total
order.

Stability: The property of precedence relates the ranks of the processes to the order in
which their states changed. However, if the interval of greyness of one process interleaves
with the interval of greyness of another, precedence does not impose any constraints on
the ranks of the two processes. For some problems this turns out to be insufficient as we
need some property about the ranks of the processes even when their greyness intervals
interleave. (An example of such a synchronization problem is one in which a process can
timeout and make a transition from a state in which it is waiting to synchronize to a state
in which it does not wish to synchronize.) The property of stability allows us to make such
an assertion. It states that if a dlack process u has a higher rank than another process (no
matter what the state of the other process is, white, grey, or black) then it continues to
have a higher rank until © becomes whife. Formally, for every distinct u, v,

black.u A r.v < r.u unless whiteu .

4 Classification of rankers

In this section we present our classification of rankers which is obtained by examining the
synchronization problems in the literature and identifying the collection of properties that
are required to solve each of them. On the basis of this evidence, we obtain a chain of four
rankers. The first ranker in this chain, ranker &, satisfies the responsiveness and precedence
properties; other rankers in this chain are obtained by adding an optional property to the
preceding ranker. We add the optional properties in the order — acyclicity, comparability,
and stability to obtain ranker A (for acyclicity), ranker C (for comparability), and ranker
S (for stability). This chain of rankers and the class of synchronization problems that they
solve is shown in the following figure.

precedence producer-consumer
D : .
Ranker responsiveness 2-process mutual exclusion
acyclicity FCFS doorway
Ranker A precedence
concurrent producer-consumer
responsiveness
comparability mutual exclusion
acyclicity , dining philosophers
Ranker C
precedence
. drinking philosophers
responsiveness
stability resource allocation
comparability
Ranker S acyclicity mutual exclusion with timeouts
precedence dining philosophers with timeouts
responsiveness

Figure 1: Classification of rankers and synchronization problems

As shown in the figure, the four rankers form a chain. As we proceed from the top of
the chain to the bottom, the rankers become stronger, i.e., they satisfy more properties.

However, their implementations also become more difficult. Therefore, though ranker S can

be used to solve any problem the others can solve, the problem at hand may not require all
the properties of ranker 5. So, we may be better off using another ranker that is weaker
than ranker S, and easier to implement. Given a particular synchronization problem, it
is possible to associate it with the weakest ranker that can be used to solve it. Such a
classification of synchronization problems and the ranker associated with each such class
is discussed next. Parts of this classification have also been observed by other researchers
[11, 21].

4.1 Ranker @

This ranker solves synchronization problems that do not require any properties involving
the ranks of more than two processes. This is because the properties satisfied by this ranker,
responsiveness and precedence, are, respectively, local and pairwise properties on process
ranks. Examples of problems that are solved by this ranker are the the producer-consumer
problem [2] and the 2-process mutual exclusion problem [17]. Observe that if the requests
for ranking by the processes are serial, i.e., precedes is a total order, then precedence
alone guarantees a total order on the ranks of the black processes. As a result, this ranker
corresponds to the “sequential time-stamp system” discussed by Israeli and Li [11]. The
implementations that they propose for sequential time-stamp systems, therefore, can also
be used for this ranker.

4.2 Ranker A

Acyclicity, a global property over all processes, guarantees the absence of cycles on the ranks
of the processes. However, it allows any number of processes with maximal ranks. Therefore,
this ranker solves problems that require global properties over the ranks of the processes
but do not limit the number of processes that are performing the critical action at any time.
Examples of such problems are the the first-come, first-served doorway problem [9, 12,
14], the concurrent producer-consumer problem [24], and the atomic register construction
problem [15, 20, 23]. This ranker corresponds to the mechanism of “eventcounts” proposed
by Kanodia and Reed [21]. Though eventcounts satisfy the stronger condition of a partial
order, the class of problems that eventcounts can solve appears to be the same as that
can be solved by this ranker. This ranker also corresponds to the abstraction of “bounded
time-stamps”, discussed by Israeli and Li [11], which is used to solve the atomic register
construction problem.

4.3 Ranker

As seen earlier, the property of comparability along with acyclicity makes < an irreflexive
total order on all ranks. Therefore, this ranker solves problems that require a total order
on the processes. Examples of such problems are the mutual exclusion problem [6] (requires

a total order on all processes), the dining philosophers problem [7] (requires a total order
on neighboring processes), and the drinking philosophers problem [9] (requires a total order
on neighboring processes with conflicting requests). Because this ranker guarantees a total
order on the ranks of the processes, it corresponds to the abstraction of time-stamps [13]
and the mechanism of “sequencers” proposed by Kanodia and Reed [21].

4.4 Ranker S

None of the previous three rankers allow for a meaningful comparison of ranks between
processes when one of them is grey. This is because the rank of a grey process may change.
For some synchronization problems like the mutual exclusion problem, this is not a hindrance
as a grey process eventually turns black and ranks of black processes can be compared.
However, in some other synchronization problems like the resource allocation problem, it
is possible for processes to be continuously cycling through their states, and thus, some
process may always find the state of another process to be grey and wait forever. (This is
also true of synchronization problems where a process may time out or fail in the state that
it is waiting to synchronize, and make a direct transition to a state in which it is not waiting
to synchronize, thus bypassing the state in which it synchronizes or performs the critical
action). In order to solve these problems we use ranker S because the property of stability
in conjunction with the property of precedence ensures that if a process v continuously
cycles through its states while another process u is waiting, then eventually v has a higher
rank than v (due to precedence) and it continues to have a higher rank (due to stability).
Examples of problems that are solved by this ranker are the resource allocation problem, the
mutual exclusion problem with timeouts, the dining philosophers problem with timeouts,
and the drinking philosophers problem with timeouts. This ranker. appears to be new and
does not correspond to any of the proposed abstractions in the literature.

5 The FCFS Doorway

The FCFS (First-Come-First-Served) doorway, first proposed by Lamport as a part of the
Bakery algorithm [12], has been used in a number of different mutual exclusion algorithms
[14]. Its usefulness stems from the fact that it can be combined with a mutual exclusion
solution that achieves global progress, to yield a composite solution that achieves individual
progress. In other words, suppose we have a mutual exclusion algorithm that guarantees
mutually exclusive access (i.e., no two processes are in their critical section at the same
time) and global progress (i.e., if there are some processes waiting to enter their critical
section, then some process eventually enters its critical section). Then, we can compose this
algorithm with a FCFS doorway so that the composite program ensures individual progress
(i.e., every waiting process eventually enters its critical section) in addition to mutually
exclusive access. We present the specification of the problem in Section 5.1, discuss our

solution using rankers in Section 5.2, and sketch a proof of its correctness in Section 5.3,

5.1 Problem Specification

We have a set of processes {u,v,..}. Associated with every process u is a variable mode.u
that can take any one of four possible values — out, at, wait, or enter. Initially, mode.u = out,
for each u. For convenience, we define the following four predicates.

out.u = rodewu = out

at.u = modeu = at
wait.u = mode.u = wait
enter.yu = mode.u = enter

Variables mode.u cycle through the values, out, at, wait, and enter in that order; the transi-
tions from out to at and from enter to out are determined by the process while the transitions
from at to wail and wait to enter are determined by the solution. The intuition behind the
four states is as follows. If the state of a process is ouf then the process is not interested in
entering the doorway; if the state of a process is at then the process is interested in entering
the doorway (the transition from out to at is made internally by the process); if the state
of a process is wait then the process is waiting to enter the doorway (the transition from
at to weit is made by the solution and corresponds roughly to the few lines of code that a
process typically executes in order to “enter” the doorway in the FCFS mutual exclusion
algorithms); if the state of a process is enter then it has entered the doorway (it is in this
state that a process typically participates in mutual exclusion).

It is required that the composite program satisfy the following three properties. For all
distinct u, v,

e {no waiting} at.u — wait.uy,
e {no deadlock} (Fu :: wait.u) — (Ju : enter.u), and
e {FCFS} invariant —(before.u.v A enter.v),

where before.u.v is an auxiliary boolean variable that captures the order in which processes
u and v change their states. It is frue iff process v transits from at to wast before process
v transits from out to at.

The no waiting condition states that a process that is at the doorway, eventually transits
to the wait state. This transition corresponds to the few lines of code that a process typically
executes in existing solutions to the problem. The no deadlock condition states that if there
exists some waiting processes then eventually some process will enter the doorway. The
FCFS condition states that if the predicate before.u.v holds, i.e., process u completed its af
to wait transition before process v completed its out to at transition, then process v does
not enter the doorway until process u goes out of the doorway.

Auxiliary variable before.u.v is defined by the following two assertions.

11

initially —before.u.v
mode.u = & Amode.v = y Abeforeuv = b unless
—(mode.u = z Amode.v = y) A (before.u.v = (wait.u V enter.u) A (out.v V b))

The first assertion states that before.u.v is false initially and the second assertion defines
how before.w.v changes with each change in the states of processes u and v. It is set to true
if the predicate wail.uVenter.u holds simultaneously with the predicate out.v (i.e., the state
of process u is wait or enter while the state of process v is out). Once true, it continues to
remain true until process u goes oui of the doorway, and then it is set to false.

5.2 Solution

In order to satisfy the FCFS condition, we design our solution so that if the predicate
before.w.v holds then so does the predicate precedes.u.v, i.e., if process u transits from at to
wait before process v transits from out to at (thus, setting before.u.v to true) then process
u also transits from grey to black before process v transits from white to grey (thus, setting
precedes.u.v to true). We ensure that process v does not enter the doorway if its rank
is less than the rank of any other process. Then, on account of precedence, and because
before.u.v = precedes.u.v, if processes u and v are black and before.v.v holds, then the rank
of v will be less than the rank of u, and consequently, process v will not enter the doorway
until process u goes out of the doorway.

Now, in order to satisfy the no deadlock condition, there should always be at least one
black process with a maximal rank. This implies that the ranks of the black processes should
be acyclic. Therefore, we solve this problem using ranker A (ranker & does not suffice as it
places no global constraints on the ranks of the processes).

Process u manipulates variables state.u and mode.u as follows. When it sets mode.u to
at, it also sets stale.u to grey (to request a rank). Then, it waits for stafe.u to become dlack
(this happens eventually due to responsiveness) and sets mode.u to wait. Then, it compares
its rank with all other processes and sets mode.u to enter if no other black process has a
higher rank. Finally, when it sets mode.u to out, it also sets state.u to white. Predicate
high.u.v is defined to be =(black.v A r.u < r.v). The program for process u is as follows.

initially white.u A out.u

assign

mode.u, state.u = at, grey if outu

I mode.u = wait i atuAblacku

[mode.u = enter if wait.uA(Yv:v#u: highu.v)
I mode.u, state.u = ouf,white if enier.u

end

i2

5.3 Proof of Correctness

A formal proof of correctness for this solution is detailed in [24]; we present a sketch of
this proof. Recall that ranker A satisfies the properties of responsiveness, precedence, and
acyclicity. These three properties are used to prove that our solution satisfies the no waiting,
no deadlock, and FCFS properties. The proof of no waiting is based on responsiveness, the
proof of no deadlock is based on responsiveness and acyclicity, and the proof of FCFS is
based on precedence.

Our solution satisfies the no waiting condition because of the following reason. A process
which is at the doorway sets its state to grey and waits for this state to becomne black. This
happens eventually because of responsiveness of ranker A. Once the state becomes black,
the process makes the required transition to the wait state.

To see why our solution satisfies the no deadlock condition consider the processes which
are in the wail state at any time. Because of the responsiveness and acyclicity properties
of ranker A, eventually one of these processes has a rank no smaller than all other black
processes, i.e., for some process u, the predicate high.u.v holds for all other v. Therefore,
either this process makes a transition to the enter state or some other process starts waiting
with a higher rank replacing u as the process with a rank no smaller than all other black
processes. But, events of the latter kind are bounded by the number of processes. Therefore,
some waiting process will eventually go to the enter state, thus satisfying the no deadlock
condition.

Qur solution satisfies the FCFS condition because of the following reason. If before.u.v
holds, i.e., a process u transits from af to waif before another process v transits from out
to at, then process u also requests and obtains a rank before v. As a result, because of
precedence, process v has a lower rank than process u, i.e., r.v < r.u. Therefore, when
process v starts waifing, the predicate high.v.u will be false (as process u is black and
r.w < r.u) and consequently, it does not enter the doorway until before.u.v becomes false,
i.e., process u goes oul of the doorway.

Observe that our solution uses a coarse grain of atomicity because process u computes
the predicates high.u.v for all other processes in one step. This is solely for expository
reasons. It is possible to compute these predicates asynchronously one after another. The
resulting low atomicity solution appears in [24].

6 The Dining Philosophers

The dining philosophers problem is a paradigm for conflict resolution [7]. The problem
consists of a number of processes placed on the vertices of a graph that may wish to enter
their critical section from time to time (if this graph is fully connected, we have the mutual
exclusion problem) . We have to design a solution that ensures mutual exclusion (i.e., that
no two neighboring processes are in their critical sections at the same time) and freedom

13

from starvation {every process wishing to enter its critical section eventually gets to enter
it). We present the specification of the problem in Section §.1, discuss our solution in Section
6.2, and sketch a proof of its correctness in Section 6.3. Finally, in Section 6.4 we consider
a variation of the problem in which & hungry process may timeout and fransit directly to
the thinking state.

6.1 Problem Specification

We have a set of processes {u,v,..} and a symmetric, irreflexive relation N defined on this
set. Processes u and v are said to be neighbors iff N.u.v is true. Associated with every
process u is a variable mode,u that can take any one of three possible values — ¢ (thinking),
h (bungry), or e {eating). Initially, mode.u = ¢, for each u. For convenience, we define the
following three predicates.

tu = modeu =1
h.u

eu = modeu=e

mode.u = h

i

Variables mode.u cycle through the values, ¢, b, and e in that order; the transitions from ¢ to
h and from e to ¢ are determined by the process while the transition from b to e is determined
by the solution. It is given that all eating periods are finite, i.e.,, (Yu :: e.u v L.u).

It is required that the composite program satisfy the following two properties. For all
distinct u, v,

e {muiual exclusion} invariant —(e.u A e.v A N.u.v), and
e {no starvaiion} haur— e,

The mutual exclusion condition states that no two neighboring processes may eat at the
same time. The no starvation condition states that every hungry process eventually eats.

6.2 Solution

We use ranks to arbitrate between competing philosophers: a hungry process u eats only
if it has a higher rank than all its competing neighbors. Thus, in order to satisfy the
mutual exclusion condition, the ranks of any set of neighboring processes should be acyclic
{otherwise, two neighbors may be in their critical section at the same time). Also, in order
to satisfy the no starvation condition, the ranks of any two neighboring processes should
be comparable (otherwise, neither of the processes has a higher rank than the other and
consequently, locked in a deadly embrace, they will wait for each other forever). Due to the
above two requirements of acyclicity and comparability, we solve this problem using ranker
C.

Process v manipulates variables state.u and mode.u as follows. When it sets mode.u to

h, it also sets state.u to grey (to request a new rank). Then, it waits for state.u to become

14

black (this happens eventually due to responsiveness). After that, it compares its rank with
all neighboring processes and sets mode.u to e if every neighboring process v is either white
(in which case, on account of precedence, process v will have a lower rank than process u
when it becomes hungry) or is black and has a lower rank. If process u finds a neighboring
process to be grey, then, because the rank of a grey process may change, it waits until
that process becomes non-grey. (However, due to responsiveness, a grey process eventually
becomes black and hence, process u is eventually able to proceed.) Finally, when process u
sets mode.u to 1, it also sets state.u to white. The program for process u is as follows.

initially white.u A t.u

assign
mmode.u, state.u = h,grey if tu
| mode.u = e if huAdlackuA(Vv: Nouw: highuv)

]

I mode.u, state.u t,white if ewu

end

6.3 Proof of Correctness

Recall that ranker (' satisfies the properties of responsiveness, precedence, acyclicity, and
comparability. These four properties are used to prove that our solution satisfies mutual
exclusion and no starvation. The proof of mutual exclusion is based on precedence while
the proof of no starvation is based on all four properties — responsiveness, precedence,
acyclicity, and comparability.

Our solution satisfies the mutual exclusion condition because it satisfies the following
invariant (due to precedence of ranker C)) — an eating process is black, and has a higher
rank than all its black neighbors. It follows from this invariant that for two neighboring
processes to be eating at the same time, each has a rank higher than the other, a condition
that is prohibited on account of the definition of ranks. Therefore, two neighboring process
do not eat at the same time.

To see why our solution is free from starvation, consider any process u that is hungry
and let v be any neighboring process. Because of the responsiveness and comparability
properties of ranker C, eventually either the predicate high.u.v holds (in which case process
u does not wait for process v) or process v becomes black and has a higher rank than u (in
which case process u waits for process v). In the latter case, consider the directed wait-for
graph rooted at u. Because of acyclicity of ranker C, this graph is acyclic, and therefore,
has some leaf nodes. Eventually, each process at a leaf node will start eating and will later
start thinking (because all eating periods are finite). This reduces the size of the wait-for
graph (due to the precedence and responsiveness properties). It follows by induction on the
size of this graph that it eventually contains no edges, i.e., process u is not waiting for any
other process. When this happens, process u will make a hungry to eating transition, thus
ensuring no starvation.

15

Observe that our solution uses a coarse grain of atomicity because process w computes the
predicates high.u.v for all neighboring processes in one step. This is so solely for expository
reasons. 1t is possible to compute these predicates asynchronously one after another. The
resulting low atomicity solution appears in [24].

6.4 Dining Philosophers with Timeouts

In the dining philosophers problem we discussed earlier, a hungry process cannot make a
direct transition to thinking without eating first (as /.u unless e.u). In some situations, this
may be undesirable and we may want to allow a hungry process that has waited long enough
to timeout, and make a direct transition to the thinking state. Such a direct transition is
also desirable if we are modeling process failures and assume that a failed process returns
to its initial state, the thinking state. These two considerations motivate the problem that
we discuss next.

As before, we have a set of processes {u,v,..}, a symmetric and irreflexive relation NV
that defines neighborhood, and a variable mode.u associated with a process u. The set of
values that this variable takes and the order in which these values are assumed are as before.
Once more, all eating periods are assumed to be finite. It is required that the composite
program satisfy the following two properties for all distinct «, v,

e {mutual exclusion} invariant —(e.u A e.v A N.u.v), and
e {no starvation} huwr euViu,

The mutual exclusion condition is same as before; however, the no starvation condition has
been weakened in order to allow the possibility of a timeout.

Contrary to the previous version of the problem {where processes do not timeout), this
problem cannot be solved by ranker C. To see why, consider any two neighboring processes
v and v. Assume that process u is hungry and black and is waiting for the predicate
high.u.v (defined to be white.vV (black.v Ar.v < r.u)) to become true in order to enter its
critical section. Also, assume that process v is continuously timing out, i.e., cycling through
the states 7 and h. Then, it is possible that each time process u attempts to compute
the predicate high.u.v, the state of process v is grey, and consequently, high.u.v is false.
Therefore, process u may remain hungry forever and thus, the no starvation requirement is
not met.

The problem arises in the above scenario because of the definition of the predicate
high.u.v as by this definition, high.u.v is false if process v is grey. So, we need to redefine
this predicate so that if process v continuously times out, then the predicate is set to true
and remains frue until process u eats. Consequently, we use ranker S, and redefine the
predicate high.u.v to be white.v V rv < r.u (in other words, the predicate is true iff

process v is not interested in its critical section or if it has a Jower rank than process u).

16

Then, if process v continuously times out, then this predicate will be set to irue (due to
precedence) and remain ¢rue until process u eats (due to stability).

The solution is similar to the previous solution; the only difference being that a process
that is hungry and black can now make a direct transition to the thinking state without
eating first. Predicate high.u.v is now defined to be white.v Vr.v < r.u . The program for
process u 1s as follows.

initially white.u At.u

assign

mode.u, state.u = h,grey if t.u

| mode.u = e if hauAblackwA(Vo: Nuw: highuwv)
| mode.u,state.u := t,white if eu V (hu A black.u)

end

The proof of correctness of this solution is similar to the proof of correctness of the
previous solution. The proof of mutual exclusion is based on the precedence and stability
properties while the proof of no starvation is based on all the five properties of ranker S

— responsiveness, precedence, acyclicity, comparability, and stability. The proofs appear in
[24].

7 Resource Allocation

The resource allocation problem (or the K-mutual exclusion problem [9]) is a generalization
of the mutual exclusion problem [6]. In this problem, there are K identical copies of some
resource, and a set of processes that contend for a copy of the resource. We are required
to design a solution that ensures mutual exclusion (no more than K processes are accessing
the resource at any one time) and no starvation (if a process wants a resource, it eventually
gets one).

This problem can be easily solved using a solution to the mutual exclusion problem by
maintaining a global queue of all the processes that desire to obtain a copy of the resource.
Once a process wishes to obtain a copy, it places itself at the rear of the queue; once it comes
within K of the head of the queue, it obtains a copy and when it is finished, it removes itself
from the queue. All manipulations of the queue are carried out in exclusion by using the
solution to the mutual exclusion problem. However, the above solution suffers from three
drawbacks. The first drawback is the use of a global data structure. The second drawback
is the loss of concurrency as there may be be a lot of unnecessary contention for the queue.
The third drawback is that even if one process fails in its critical section, the whole system
comes to a halt. In this chapter, we present a solution with none of these drawbacks.

We present the specification of the problem in Section 7.1, discuss our solution in Section
7.2, and sketch a proof of its correctness in Section 7.3.

17

7.1 Problem Specification

The specification of this problem is similar to the specification of the dining philosophers
problem. However, now the neighbors relation N is complete, i.e., any two processes are
neighbors. The definition of variable mode.u and the values it takes — ¢, &, and ¢, is as
before. Once more all eating periods are finite, i.e., (Vu :: e.u t.u).

It is required that the composite program satisfy the following two properties. For every

U,
e {mutual ezclusion} invariant (#u e.u) < K, and
e {no starvaiion} s e,

The mutual exclusion condition states that at any time at most K processes are accessing
the shared resource. (The notation (#u :: e.u) denotes the number of processes for which the
predicate e.u holds.) The no starvation condition states that every process that is waiting
t0 access a resource eventually obtains a copy of the resource. Observe that when K = 1,
we have the usual mutual exclusion problem.

7.2 Solution

We solve this problem by using ranker S for the following reason. First, recall that the
mutual exclusion problem is solved using ranker C; therefore, as the resource allocation
problem is a generalization of the mutual exclusion problem, the resource allocation problem
is solved by a ranker at least as powerful as ranker C. Next, we argue the need for stability,
and hence the need for ranker S. Assume to the contrary that we solve this problem using
ranker C' (i.e., a ranker without stability). Consider a process u that is waiting to access a
copy of the resource. Because of the absence of stability, process u can make no assertions
about the rank of another process if the state of the other process is grey. Therefore, process
u has to wait until it observes the state of the other processes to be white or black. But,
because up to K different processes may be accessing the resource at any given time, it is
possible for all other processes to be continuously cycling through the states ¢, h, and e and
therefore, it is possible that process u always observes the state of other processes to be grey
(i.e., when they are obtaining a rank). When this happens, process u waits forever, thus
violating the no starvation condition. It is due to the above reason that we require stability
(and hence, ranker S) to solve this problem. The above scenario does not occur if we use
ranker S because if another process v continuously keeps cycling through its states while
process u is walting, then eventually process u will have a higher rank than process v {(due
to precedence) and will continue to have a higher rank (due to stability) until it accesses
the resource.

Process u manipulates variables state.u and mode.u as follows. When it sets mode.u
to h, it also sets state.u to grey (to request a new rank). Then, it waits for state.u to

become black (this happens eventually due to responsiveness). After that, it compares its

18

rank with all other processes and sets mode.u to e if the number of non-white processes
with a higher rank is less than K. Finally, when it sets mode.u to 1, it also sets state.u to
white. Predicate high.u.v is defined, as in Section 6.4, to be white.v V r.v < r.u. In other
words, the predicate high.u.v is irue iff process v is not interested in accessing the resource
(i.e., it is white), or if it has a lower rank than process u. The program for process u is as

follows.

initially white.u A t.u

assign

mode.u, state.u 1= h,grey if tu

| mode.u = e if huAnblackuA (#v v #uA-highuv)< K
| mode.u,state.u = i, white if e

end

7.3 Proof of Correctness

Recall that ranker S satisfies the properties of responsiveness, precedence, acyclicity, com-
parability, and acyclicity. These five properties are used to prove that our solution satisfies
mutual exclusion and no starvation. The proof of mutual exclusion is based on the prece-
dence, acyclicity, comparability, and stability properties while the proof of no starvation
is based on all the five properties of ranker S — responsiveness, precedence, acyclicity,
comparability, and stability.

Our solution satisfies the mutual exclusion condition because of the following invariant
{due to precedence and stability) — an eating process is black, and the number of black
processes with a rank higher than an eating process is less than K. Now, due to the total
order on the ranks (ensured by acyclicity and comparability), if more than K processes are
eating at the same time, then one of them has a rank lower than K other processes. But,
this contradicts the invariant, and therefore, at most K processes can eat at any one time.

To see why our solution is free from starvation, consider any process u that is hungry
and let v be any other process. Because of the responsiveness and comparability properties
of ranker S, eventually either the predicate high.u.v holds (in which case process u does
not wait for process v) and continues to hold (due to stability), or process v becomes black
and has a higher rank than u (in which case process u waits for process v}. In the latter
case, consider the directed wait-for graph rooted at u. Because of acyclicity of ranker S ,
this graph is acyclic, and therefore, has some leaf nodes. Eventually, each process at a leaf
node will start eating and will later start thinking (because all eating periods are finite).
This reduces the size of the wait-for graph (due to precedence). It follows by induction
on the size of the wait-for graph that it eventually contains no edges, i.e., process u is not
waiting for any other process. When this happens, process u will make a hungry to eating
transition, thus ensuring no starvation.

Observe that our solution uses a coarse grain of atomicity because process u computes

19

the predicates high.u.v for all other processes in one step. This is so solely for expository
reasons. It is possible to compute these predicates asynchronously one after another. The
resulting low atomicity solution appears in [24].

8 Implementation of Rankers

In this section we present implementations for the four rankers — @, A, C, and S, discussed
earlier. In all of these implementations program ranker is designed to be a composition
of submodules ranker.u, one for every process. The submodule ranker.u is responsible for
ranking process u and it does not modify the interface variables, state.v and r.v, of any
other user process. The implementations that are presented here are highly concurrent as
they use a fine grain of atomicity (i.e., every statement reads or writes at most one shared
variable) and are “wait-free” (i.e., the ranking of a process is done within a bounded number
of steps [1, 10]).

8.1 Implementation of Ranker @

Recollect that ranker @ is required to satisfy two properties — responsiveness, a local prop-
erty over processes, and precedence, a pairwise property over processes. Thus, this ranker
is not required to satisfy any global properties and consequently, this ranker composes, i.e.,
given two ranker implementations for m and n processes, we can compose them to obtain
a ranker implementation for m + n processes. Based on this observation, we define an im-
plementation for 2 processes; the implementation for any arbitrary number of processes is
obtained by repeated composition.

Let u and v be two user processes. As stated earlier, we design program ranker to be the
composition of two submodules, ranker.u and ranker.v, which we define next. Variables
r.u and r.v take on integer values and the ranking relation < is defined as follows:

ru < ry = ru<ry,
where < is the less-than relation on integers. Because < is a total order, < is irreflexive and
does not contain cycles of length two.

The design of program ranker.u is simple — when process v turns grey, variable r.v is
assigned a value less than r.u, and then stafe.v is set to dlack. Observe that if precedes.u.v
holds and processes u and v are black, then variable r.v contains a value less than r.u,
and consequently, r.v < r.u, thus satisfying the precedence condition. Program ranker.u
is given below (program ranker.v can be obtained by a simple substitution). Variable b.u
is a program counter, variable t.u stores intermediate values, and variable checked. v is a

boolean and is true iff the intermediate value for process v has been computed.

initially ».u = 0 Abw = 0 A ~checked.u.v
assign
bou =1 if bu=0Agreyu

20

} t.u, checked.uw = pov— 1, irue if bu= 1A —checkedu.v

|ru,bu = tu,2 if bu=1Acheckeduw
[state.u,b.u,checkeduy = black,0, false i bu=2
end

Program ranker.u sets b.u to 1 if state.u is grey. Then, it reads the rank of process v
and sets variable t.u to the value r.v — 1. After that, the rank of process r.u is set to f.u.
Finally, the state of process u is set to dlack, and variables b.u and checked.u.v are reset.
Observe that we have used a very fine grain of atomicity as each statement reads or writes
at most one shared variable. Also, the above program is “wait-free’ as the ranking of process
u is completed within four steps.

When the above implementation for two processes is extended to an arbitrary number
of processes, variables 7.u and {.u become arrays with one component per process, and the
definition of < is changed to

ruy<re = ruay << roy,
where r.u.v denotes the component of 7.u corresponding to process v.

8.2 Implementation of Ranker A

Because ranker A satisfies acyclicity, a global property over processes, this ranker does not
compose. However, the implementation is similar to that for ranker ® presented earlier.
Variable r.u takes on integer values and the ranking relation is defined as before:
ru-<ryv = ru<ro.

When process v turns grey, variable r.v is assigned a value less than the rank of all other
black processes. Comsequently, if predicate precedes.u.v holds, then variable r.v is assigned
a value less than r.u (note that precedes.u.v = black.u) during the ranking process. Thus,
when process v turns black, the rank of process v is less than that of process u, as required
by the precedence condition. The proof of acyclicity follows due to the acyclicity of relation
<.

In the code for ranker.u presented below, variables b.u, f.1.v, and c.u.v are all local vari-
ables; variables b.u and c.u.v are program counters and variable f.u.v stores the intermediate
value with respect to process v. When process u turns grey, variable b.u is set to 1. Then,
the state of all other processes is checked; if the state of v is non-black then t.u.v is set to
0, otherwise, T.u.v is set to r.v — 1 (this takes place in two steps in order to use a fine grain
of atomicity). After all the intermediate values ¢.u.v have been computed, r.u is set to the
minimum of those values. Finally, the state of u is set to black and all program counters
are reset. In the program below, variable v ranges over all processes distinct from u and the
value (min i :: z.1) refers to the minimum value among the z.i’s.

initially ru=0Abu=0A (Vv i cuv=0)
assign

by =1 if bu= 0Agreyu

21

T {lvecuviuvy = 2,0 i bu=1Acuv=0A=-blackv

c.u.v = 1 if bu=1Acuv=0Ablackw
e, tuw = 2,rv—1 if cuv=1
)
§bu,ru = Z,{minvituyy H bu=I1AMvicuv=2)
[b.u, state.u = 0, black if bu=2
[OB RIR = 0 if bu=2)

end

Once more, we have used a very fine grain of atomicity (as each statement reads or
writes at most one shared variable), and program ranker.u is “wait-free” (as the ranking
of a process is completed within 3n steps where n is the number of processes). The proofs
of responsiveness and precedence are similar to the proofs in the previous implementation
and as stated earlier, the proof of acyclicity follows from the acyclicity of the relation < on
integers.)

8.3 Implementation of Ranker C

The programs for this implementation are as in the last implementation; only the ranking
relation < is defined differently. It is now defined to be the lexicographic ordering of the
previous ranking relation and some fixed total order g, i.e., for all distinct =, v,

ru<ry = rua<lre V (ru=roAguy)

The proofs of responsiveness and precedence are as in the previous implementations.

Properties acyclicity and comparability follow from the total order of <.

8.4 Implementation of Ranker §

This implementation is similar to the previous implementation. The ranking relation and
the program variables are exactly the same; the only difference is that variable r.u is now
ensured to be monotonically decreasing (in order to satisfy stability). The program is as
follows.

mitially ru=0Abu=0A (Y cuv=10)

assign
bu = 1 if bu= OAgrey.u
T {lv:cuvtuv:= 2,0 if bu=1Acuv=_0A-black.v
couw = 1 if bu=1Acuv=20Ablack.v
cuv,tuy = 2,ry~—1 if cuv=1
)
[bou,ru = 2,min(ruy, (min v ctwv))if bu=1A (Vv :cuwv =2)
[b.u, state.u = 0, black if bu=2
v = cuw = 0 if bu=2)

22

end

The proofs of responsiveness, precedence, acyclicity, and comparability are as in the
previous implementation. The proof of stability follows from the fact that each variable r.u
is monotonically decreasing.

9 Concluding Remarks

QOur aim is to study synchronization problems by defining the interface between ranker
implementations and ranker applications. For this purpose, we identified five properties of
rankers — responsiveness, precedence, acyclicity, comparability, and stability, and obtained
a hierarchy of four rankers based on these properties. We have showed that such a separation
of concerns leads to simple and modular solutions to various synchronization problems.

The first evidence of modularity comes from the fact that we solve all synchronization
problems by the same strategy; as a result seemingly different problems have similar solu-
tions. As stated earlier, any solution consists of the following three steps. First, a process
that wishes to synchronize sets its state to grey and waits for a new rank. Then, on obtain-
ing a rank (signaled by the state of the process becoming black) the process compares its
rank with those of competing processes and proceeds accordingly. Finally, when the process
completes its critical action, it informs the ranker by setting its state to white. We used
the above strategy to solve a number of problems in Sections 5, 6, and 7.

Another evidence of modularity comes from the fact that small modifications in the
problem description lead to only minor modifications in the solution. For example, when we
added timeout to the dining philosophers problem (Section 6.4), the resulting solution was
very similar to the original problem; in fact, the only difference was that now we used ranker
S instead of ranker C, and we added a disjunct to the condition under which a philosopher
makes a transition to the thinking state.

Finally, the modularity of our solutions is also reflected in the modularity of the proofs;
solutions to similar problems share a considerable amount of proof effort. For example, the
proofs of mutual exclusion for the dining philosophers problem without timeouts and the
dining philosophers problem with timeouts are almost the same. The same assertion can
also be made about the rest of the proofs. In summary, the abstraction of rankers allows us
to design simple modular solutions to synchronization problems.

We examined alternative formulations of the property of precedence and discovered that
it is impossible to implement rankers that satisfy some of those formulations; we discuss
two of these next.

Suppose we require a process to have a higher rank if it turned grey before another
process, i.e., if process u turned grey before process v then process w has a higher rank.
Such a ranker cannot be implemented because the state transitions from white to grey occur
in the user processes asynchronously with the ranker and therefore, it is not possible for a

23

ranker implementation to detect every occurrence of a state in which one process is grey
and the other is white.

Consider a different formulation of precedence. Suppose we require that a process has
a higher rank if it turned black before another process. In other words, if process u turned
black while another process v is not black, then process u has a higher rank. Also suppose
that we require the ranker programs to be wait-free and use a fine grain of atomicity. Such
a ranker cannot be implemented because it can be used to solve the binary election problem
which has been shown to be impossible in [1]. These experiments have led us to the current
formulation of precedence which is both useful and implementable, as demonstrated in
Section 8.

Acknowledgement: We are grateful to Edsger W. Dijkstra, Jay Misra, and members of
the Distributed Systems Discussion Group at UT Austin for reading earlier versions of this
paper. Our presentation has improved considerably from their comments.

References

[1] Anderson, J. H., and M. G. Gouda. “The Virtue of Patience — Concurrent Program-
ming With and Without Waiting,” work in progress.

[2] Brinch Hansen, P., “Concurrent Programming Concepts,” ACM Computing Surveys,
5, 1973, pp. 223 — 245.

[3] Chandy, K. M., and J. Misra, “The Drinking Philosophers Problem,” ACM Transac-
tions on Programming Languages and Systems, 6:4, October 1984, pp. 144 — 156,

[4] Chandy, K. M., and J. Misra, Parallel Program Design: A Foundation, Reading, Mas-
sachusetts: Addison-Wesley, 1988.

(8] Courtois, P. J., F. Heymans, and D. L. Parnas, “Concurrent Control with ‘Readers’
and ‘Writers’,” Communications of the ACM, 14:10, October 1971, pp. 667 — 668.

[6] Dijkstra, E. W., “Solution of a Problem in Concurrent Program Control,“ C.ACM,
8:9, Sept. 1965, pp. 320 — 322.

[7] Dijkstra, E. W., “Hierarchical Ordering of Sequential Processes, Operating Systems
Technigues, eds. C. A. R. Hoare and P. J. Perrott, London: Academic Press, 1972, pp.
72 - 93.

[8] Fischer, M. J., N. Lynch, J. E. Burns, and A. Borodin, “Distributed FIFO Allocation
of Identical Resources Using Small Shared Variables,” ACM Transactions on Program-
ming Languages and Systems, 11:1, January 1989, pp. 90 - 118.

24

[9] Herlihy, M., “Wait-Free Implementations of Concurrent Objects,” Proceedings of the
Sixth ACM Symposium on the Principles of Distributed Computing, 1988, pp. 276 —
290.

[10] Israeli, A., and M. Li, “Bounded Time-stamps,” Proceedings of Twenty-eighth Annual
Symposium on Foundations of Computer Science, 1987, pp. 371 — 382.

[11] Lamport, L., “A New Solution of Dijkstra’s Concurrent Programming Problem,” Com-
munications of the ACM, 17:8, August 1974, pp. 453 — 455.

[12] Lamport, L., “Time, Clock, and the Ordering of Events in a Distributed System,”
Communications of the ACM, 21:7, July 1978, pp. 558 — 565.

[13] Lamport, L., “The Mutual Exclusion Problem: Part II — Statement and Solutions,”
Journal of the ACM, 33:2, July 1986, pp. 327 — 348.

[14] Lamport, L., “On Interprocess Communication, Parts I and II,” Distributed Comput-
ing, Vol. 1, 1986, pp. 77 — 101.

[15] Misra, J., “Specification of Objects: An Example,” unpublished manuscript.

[16] Peterson, G. L., “Myths About the Mutual Exclusion Problem,” Information Processing
Letters, 12:3, June 1981, pp. 115 ~ 116.

[17] Peterson, G. L., and J. E. Burns, “Concurrent Reading While Writing II: The Multi-
writer Case,” Proceedings of the Twenty-eighth Annual Symposium on Foundations of
Computer Science, 1987, pp. 383 — 392.

[18] Reed, D. P., and R. K. Kanodia, “ Synchronization with Eventcounts and Sequencers,”
Communications of the ACM, 22:2, Feb. 1979, pp. 115 — 123.

[19] Singh, A. K., J. H. Anderson, and M. G. Gouda, “The Elusive Atomic Register Revis-
ited,” Proceedings of the Sixth ACM symposium on Principles of Distributed Comput-
ing, 1987, pp. 206 - 221.

[20] Singh, A. K., “Ranking in Distributed Systems,” Ph.D. Dissertation, in preparation,
The University of Texas at Austin, Austin, Texas.

