SCALABILITY OF PARALLEL JOINS
ON HIGH PERFORMANCE
MULTICOMPUTERS

A. G. Dale,* F. F. Haddix,**
R. M. Jenevein,” and C. B. Walton™

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-89-17 June 1989

ABSTRACT

This paper focuses on parallel joins computed on a mesh-connected multicomputer. We propose
a cost-effective sort engine and a novel algorithm that combines hashing and semijoins. An ana-
lytic model is used to select hardware configurations for detailed evaluation and to suggest re-
finements to the algorithm. Simulation of our model confirmed the analytic results. Results indi-
cate that parallel joins scale very well. In some cases, synergistic effects lead to better than linear
speedup.

Keywords: scalability, parallelism, interconnection networks, wormhole routing, hashing,
semijoins, relational databases

* Department of Computer Sciences.
** Applied Research Laboratories.

1 Introduction

We are currently engaged in research investigating low-level relational database
processing in parallel machine architectures!. In particular, we have investi-
gated problems of effectively performing join operations on data distributed
over multiple storage nodes. Effective exploitation of parallelism for this ba-
sic operation is a key to high-performance processing of relational databases.
The research discussed in this paper focuses on the performance of join op-
erations mapped to a mesh-connected multicomputer?. In this paper, we
examine the performance of a particular distributed join algorithm over a
range of configurations. On the basis of these performance studies we in-
tend to implement a relational database management kernel on a specific
configuration to explore the use of general purpose multicomputers for high
performance database processing.

2 Configuration and Data Partitioning

2.1 Background

Our previous research has concentrated on the Kyklos architecture [Mene85].
The global architecture of Kyklos includes the following major components:

1. A binary tree-based interconnection network. The second and sub-
sequent trees are shuffled so that each tree has a unique connection
permutation to the common leaves.

2. A node mapper [Desa88], which is a specialized hashing processor used
to map relations to storage nodes. Conceptually, the node mapper(s)
is located at the roots of the binary trees.

3. Processing nodes (P-nodes) located at the interior nodes of the trees,
consisting of a general purpose microprocessor and network connec-
tions.

1This research was partially funded by the Applied Research Laboratories Independent
Research and Development Program.

*The system available to us is funded by a Facilites Improvement Grant from the Shell
Company Foundation to the Department of Computer Sciences, The University of Texas
at Austin.

4. I/O nodes located at the leaves of the trees. Each I/O node has one
connection to each tree. Major subcomponents of the I/O node include
the following:

e Processing element used to coordinate node activities and to han-
dle external and within-node communications.

e Sort /search/set engine [Bhat87] based on board-level integration
of CADM (Content Addressable Data Manager) chips developed
by Advanced Micro Devices and a Motorola MC68020 micropro-
Cessor.

e Mass Storage Device (MSD), including microprocessor, associative
disk cache, CADM disk index and conventional moving head disks.

The need for a platform to use in emulating Kyklos, our interest in the
potential effectiveness of “wormhole routing” schemes and the need for a
VME bus interface for each CPU turned us to the Symult 2010 architecture.
“Wormbhole routing” [Dall86] is a term coined to describe a communication
scheme that exploits specialized communications processors in the intercon-
nection network to avoid main processor interrupts. Although much of the
Kyklos research assumes a “store and forward” communication scheme, it is,
nevertheless, applicable in the new environment.

2.2 Configuration

The Symult 2010 [Symu89] is a mesh-connected multicomputer. The current
configuration includes computational nodes with and without disks and is
hosted by a Sun workstation. The Reactive Kernel operating system, a vari-
ant of UNIX, is resident on each computational node and provides memory
managment, message dispatching and receiving, process management and file
access.

Figure 1 illustrates a proposed node architecture, which is considered in
this paper. It includes the following major components:

1. Automatic message routing device (AMRD). Message traffic and rout-
ing within the network is handled by the AMRD’s without making any
demands on the resources of intermediate nodes along the path from
source to destination.

[SW]

Figure 1: Proposed Single Node Structure

— DISK

/AVIRD MPP DRAM CPU |

—SORTER

2. Message packet processor (MPP). The message packet processor trans-
fers message contents directly into main memory. This means that the
CPU is not interrupted by receipt of a message, while allowing the
interconnection network to be cleared for other traffic.

3. The main memory ranges from 1 to 8 megabytes of 32-bit dynamic
random access memory (DRAM).

4. The central processing unit (CPU) contains a MC68020 microproces-
sor unit running at 25 MHz, MC68881 floating point coprocessor, and
memory management unit.

5. One or more conventional moving head disks (DISK).

6. Sort Device (SORTER), including Content Addressable Data Manager
chips, and utilizing the CPU as a sort engine controller.

Note that in configuring a system, addition of MSD?® and SORTER* to a
basic processing node is optional. Components 1-5 above are available from
Symult.

3The Mass Storage Driver envisioned in the Kylklos architecture is not used here.

4A prototype of the sort engine is now under development, and we intend to mcorporate
this device into the node structure of the Symult 2010. The performance studies in this
paper assume that this sort engine is included in each of the sorting nodes and utilize the
timing data developed in [Bhat87].

2.3 Data Partitioning

No tuple clustering is assumed in this study, and no secondary indexes are
assumed. We do assume that the relations that comprise the database are
horizontally partitioned across the disks, with equal-size partitions, utilizing
the node mapper described above. In processing the join, the results are
delivered to the host machine, sorted on a key specified by the host, not
related to the join attributes. The overall join strategy used herein was
developed for Kyklos; the principal difference between the two instantiations
is in the heuristic for join site determination.

3 Parallel Join Algorithm

3.1 Environment

The parallel join algorithm is designed to operate in an environment such as
that described in Section 2. The proposed sort engine and wormhole routing
make the use of a sort-intensive distributed algorithm practiceable.

This algorithm considers the possiblity of software pipelining between
heterogeneous processing elements. Subject to the limitations described be-
low, if D is the order of magnitude of the relational tuple cardinalities and
P is the order of magnitude of processor cardinalities, join performance of
O(D * (logP + logD)) is claimed. If relation cardinalities are smaller than
optimal for the network and algorithm, then only part of the network (as
allocated by the distribution algorithm) is used.

A modified node mapper distribution algorithm [Desa88] is used. N is the
subset of disk nodes on which fragments of the large relation R are stored,
and M is the number of disk nodes on which fragments of the small relation
S are stored (M < N). The above-referenced node mapper algorithm has
been modified so that M and N are powers of 2, < P.

3.2 Logical to Physical Mapping

Physical nodes consist of a CPU, main memory, connections to other nodes (if
more than one node exists) and optionally, peripherals, such as conventional
moving head disks and specialized sort devices. One or more logical nodes
may be mapped to one physical node. Three types of logical nodes are

considered: sort nodes are assumed to have a specialized sort capability; disk
nodes are assumed to have disks; merge nodes are assumed to be general
purpose processors only, used for performing merge-joins. The number of
disk nodes is assumed to be N = 2", where n is a non-negative integer. The
number of merge nodes is assumed to be K,, N, where K,, = 27, where
—2 < m < 2 and m is an integer. The number of sort nodes is assumed to
K N, where K, = 2% where —2 < k < 0 and % is an integer.

A logical cluster has at least one of each type of logical processor. Cluster
is used here to mean the smallest partition of a machine into homogeneous
fragments, i.e., the smallest division such that each fragment contains an
identical set of components. If no such partition of a machine is possible, it
is composed of only one cluster. If the number of clusters is N/K,, where
K. =2°0<c<2and cis an integer, there are K, disk nodes, K, K, merge
nodes and KK, sort nodes per cluster. Within a cluster, the three logical
processor types may be mapped to one, two or three physical processor types.
If multiple functions are mapped to a single physical processor, intra-cluster
data communications are reduced.

3.3 Limitations

Within a limit of (Size.of CADM]/(sort_key+pointer_size+tag_size))?, lin-
ear sort performance is achievable with a sort engine using a modified off-line
sort algorithm [Bhat87]. For larger cardinalities, performance asymptotically
approaches NlogN.

Scalability is also limited by communications. The amount of data trans-
mitted is linear; however, the average distance over which the data is trans-
mitted is O(N3/2), due to the mesh topology used herein. Although per-
formance may be enhanced by use of a node mapper, attribute distribution
histograms or attribute based storage schemas, the absence of a correlation
between location of tuples between the two relations makes reducing the or-
der of average distances impossible. Within the instant topology, the distance
traversed element of communications cost is O(1077), which implies that the
O(N3/?) average distance® does not significantly influence performance for
networks where N < 2'2, The comparison of the effects of increasing net-

This is a limitation of the toplogy, not the technology [Flai87], which allows higher
dimensions and slower growth in average distance.

work size on time per message for wormhole and store-and-forward routing,
shown in Table 1, illustrates this.

Table 1: Expected Transmission Times (us) by Distance for a 208-Byte Mes-
sage

Number of Hops® 1 3 7 15 31 63
Size of Network® 4 16 64 256 1024 4096

Wormbhole Routing® || 276.2 | 276.4 | 276.8 | 277.6 | 279.2 | 282.4
Store-and-Forward® || 574 | 1473 | 3272 | 6869 | 14062 | 28449

“Hops is used here to mean the number of inter-node links traversed.

5Size of network is based on size for which a square mesh would vield the above number
of hops on the average for a corner (worst case) node.

¢Computed analytically, based on [Seit88], adjusted for typed message empirical results.

4Computed analytically, based on [Gust88].

3.4 Overview

A brief overview of the algorithm follows. Detailed pseudocode is included
in Appendix A. The algorithm may be segmented into five phases, each of
which is disjoint for pipelining purposes:

1. Retrieval of Input Relations. The disk nodes retrieve from disk storage
the local fragments of the two input relations, R[i] and S[7], applies se-
lection and projection predicates, and extracts keys (RK[i] and S KIi]),
including join attributes and pointers, The local sort nodes sort the keys
into join attribute order. The disk nodes then hash split the local frag-
ments of keys into N? hash® buckets (R[i : A] and S[i : A]) and store
them in main memory or on disk.

2. Construction of Semi-join Filters. The disk nodes retrieve the sorted
keys and dispatch them to the hash-value-determined merge sites. The

6The folded hash is based on a hash value length equal to the ceiling of the number of
bytes obtained by converting log, N2 bits to bytes. The hash value is then obtained by
adding successive lengths of the join attribute(s) until all is consumed. The hash filter is
the first log, N? bits of the hash value.

merge nodes join KK and SK to produce join filters. The filter frag-
ments, RK[ij : h] and SK[ij : k] are then dispatched to the source
cluster sort nodes, where the fragments are merged (within pipeline
stages) and sorted into input distribution attribute order. The resul-
tant sorted semi-join filters are returned to disk node ¢ for storage.

3. Construction of Semi-joins. Disk nodes retrieve the reduced tuple sets,
R[i] and S[i] and the semi-join filters, RK[ij] and SK[:j], merge the
(between pipeline stage fragments) and dispatch them to the local
merge nodes. The merge nodes perform a merge-join of the semi-join
filter and the reduced local relation fragment to produce the semi-joins
of the two relations, R[:j] and S[¢j]. The semi-joins are transmitted to
the sort nodes for sorting into join attribute order and then returned to
the local disk node ¢ for storage. The local disk node will have M frag-
ments of R[ij], N fragments of S[ij] or both, depending upon whether
the domains of R and S overlap.

4. Performance of Partial Joins. The semi-join fragments (based on origin
7 and origin of join partner j) are sent to a local (within cluster of
disk node 7) merge node for execution of the partial join R[:ij] and
S[j2]. The resultant fragment of T[i], after application of selection
and projection predicates is sent to the local sort node to be sorted
into result distribution attribute order. The fragments of 7'[;] are then
stored on disk node 3.

5. Creation of Output Relation. There are three alternatives in this phase:
e If T' is a temporary relation, the local fragments are retrieved,

merged and stored on node 1.

e If T'is a permanent relation, the local fragments are retrieved and
split according to distribution attribute and destination. After
transmission, the fragments received are merged and stored.

e If T is to be sent to the host, the local fragments are retrieved and
merged and then merged up the logical merge tree’.

"The merge tree is created using a low number of levels to reduce latency in initial
results by defining branches per node as equal to 2' where [is the level of the node.

4

4.1

Experimental Design

Issues

Given the architecture, several issues of interest present themselves:

e How best to configure a machine for processing databases?

e Which algorithms to use? and

e What is expected performance?

Significant to the issue of algorithm selection were the following consid-
erations:

1.

In the environment that we are investigating, the primary performance
determinant would be functioning of high-speed joins;

Given the high-speed sort capability described in Section 2 above, the
principal means of achieving joins would be through merge-based joins
of previously sorted tuples; and

Given the selectivity characteristics expected from relations based on
standard Wisconsin database relations [Bitt83], semi-join based join
algorithms would be practical.

With respect to the issue of machine configuration, recall from Sections 2
and 3 that physical processing nodes may optionally have disk(s) and/or
a CADM sort engine attached, and that three logical processing nodes are
identified — namely sort, disk and merge nodes. We therefore need to con-
sider the mapping of logical node functionalities to alternative combinations
of processor configurations.

We identify four physical node types:

1.

A required processor with disk, that is utilized for I/O processing, and
optionally for sort or merge processing or both. If utilized as a sort
node, it may have a SORTER. A Type 1 node must be included in any
configuration.

An optional diskless processor, that will be utilized for merge or sort

processing, or both, or simply as a passive communication node. If
utilized as a sort node, it may have a SORTER.

3. An optional diskless processor, utilized as a sort node, and attached
directly to a Type 1 or Type 2 node. (The other types are attached to
the interconnection network.) It may have a SORTER.

4. An optional diskless processor, without a SORTER, utilized only for
merge processing.

The mapping of logical node functionalities to physical processor types
in various configurations is illustrated in Table 2.

Table 2: Functionality of Network Components

“ Configuration | Type 1 | Type 2 | Type 3 l Type 4 ”

0 DMS
1 DS M
2 DM S
3 D S M
4 D MS
5 D S M
6 D M S
7 D C S M
Legend: D - Disk node

M - Merge node

S — Sort node

C - Communications only

In the following discussion, cluster is used to identify the smallest homo-
geneous partition of the network. As such, a cluster may contain one or more
physical nodes.

An original option space was described as follows:

1. The number of processors of a given type within a cluster were limited
to 0,1, 2 or 4 (1, 2 or 4 for Type 1).

2. Memory size options for type 1 processors were 4, 8, 16 and 32 Mb.

3. 1 to 3 disks per processor were possible.

N

5.
6.

Inclusion (or not) of SORTER with 16, 64 or 256 1-Kbyte CADM chips
on the sort node.

Networks with and without wormhole routing.

Clusters were limited to powers of 2 < 12.

Clearly, the methodology chosen must have an explicit or implicit means of
reducing this large option space.

4.2

Methodology

The methodology chosen was the following:

1.

Using a commercial spreadsheet, an analytic model of the problem was
created. This model is discussed in more detail in Section 5. Starting
with a basic uniprocessor configuration (single 4 Mb CPU with single
disk), alternative enhancements were considered. For the base case,
the effects of eight enhancements were considered: Adding a type 1,
2, 3 or 4 processor; Doubling or quadrupling main memory; Adding a
disk; or Adding a SORTER with 16 1-Kbyte CADM chips to the sort
node. The most effective of these alternatives then becomes Step 1 in
the stepwise enhancement of the processing engine.

The relations used in this study are based on the standard Wisconsin
benchmark relations [Bitt83]. A join of two 100,000 tuple relations
with result relation of 100,000 tuples was selected as being of general
applicability.

. Evaluation of the finite alternatives at each successive step utilized a

weighted criterion function, loosely based on component costs. Weights
used were the following:

e CPU — 1.000;

e Main Memory — .125 per Mb;
e Disk — 0.500;

sort Engine — 0.250; and

Wormhole Routing — 0.250 per node connected.

10

The selected alternative i for the next step is the one providing the
largest value (W * T3)/(Wy + To), where W is the weighted cost, T is
the elapsed time for the join and the subscript 0 refers to the base case.
Intuitively, this is seen to provide a weighted measure of scalability.

4. An interesting subset of alternatives was selected for further evaluation.
This subset was simulated for different network sizes. The simulation
model and simulation results are described in more detail in Sections 6
and 7. A by-product of the repetitive use of the analytic model was
refinement of the join algorithm as areas for potential improvement
manifested themselves. The algorithm described in Section 3 incorpo-
rates refinements suggested by the analytical modelling.

5. Results of the simulation would be used in drawing conclusions con-
cerning the scalability of parallel joins on high performance multicom-
puters.

5 Amnalytic Model

5.1 Design

The analytic model is organized into specification, mapping and pipelining
sections. The specification section is further broken down into the following
subsections: problem specification, hardware specification, network specifi-
cation and algorithm specification. The mapping section is concerned with
mapping all the system parameters and implicit work provided in the spec-
ification section into the pipelined results section. The principal function
of the pipelined results section is to convert the work mapped onto pipeline
components into elapsed time. The output of the model is of two forms:
work performed by component and elapsed time.

The problem specification subsection is concerned primarily with defining
the problem in terms of tuple sizes, key size, relation cardinalities, selection
and join specificities and disposition of join results (to host, temporary or per-
manent relation). The hardware specification subsection is concerned both
with component performance and component configuration; thus, it includes
cpu cycle times, disk RPM’s and latencies, transmission times, SORTER
size (and/or inclusion), network type (store-and-forward versus wormhole)

11

and number of disks per disk node. Network specification includes number
of processors of each physical type per cluster, number of clusters, memory
per processor by type and type of merge tree used for output. Whereas the
preceding sections are highly parameterized, the algorithm specification is
algorithm-specific, meaning that implementation of an alternative algorithm
would require a major rework of the model.

The mapping section may be broken down into several levels of aggre-
gation, culminating in the passing of work to be done and work performed
currently, by hardware component, to the pipelined results section. Map-
ping the algorithm steps against the hardware components included in the
instant configuration allows derivation of atomic operation times. Mapping
atomic operation times against the problem composition determines the total
amount of work to be done in terms of time and numbers of atomic oper-
ations. Network specifications are then compared with work to be done in
order to determine the amount of work per node.

In the pipeline results section, comparisons of work to be done by com-
ponent across a pipeline stage result in the pipeline granularity (number of
pipeline cycles to be performed). This allows work to be done across the net-
work to be converted into elapsed time. Byproducts of this process include
work done by component (disk, cpu, etc.) per node per cluster.

5.2 Analytic Results

Analytic results were useful in two areas:
1. Reducing the configuration option space.
2. Quickly analyzing issues as they arose.

Table 3 shows the configurations selected for simulation. Cases A, B, C
and D, correspond to the configuration of a cluster. Each was simulated for 1,
2,4, 8 and 16 clusters. An unexpected result was the absence of multi-node
clusters meeting our criteria for simulation8.

Early results indicated that configurations which included both T ype 2
and Type 4 nodes were efficient. However, in these earlier results, both sort
engine and disk were weighed as 1 (equal to the CPU). We later determined

8Case D was included so that one multi-node configuration would be reported.

12

Table 3: Configurations Simulated

Type 1 Type 4

Case | MM | SORTER | Disks | MM

A 8 no 1 N/A

B 8 ves 1 N/A

C 8 yes 2 N/A

D 8 yes 2 1
Legend: MM - Main Memory

in Megabytes
N/A — Not Applicable

that a sort engine weight of .5 was the point of indifference between the
addition of Type 4 nodes or additional Type 1 nodes as the network expands.
The selection of Cases A, B and C was based on their being important steps
in our navigation of the configuration option space, with Case C being the
most efficient.

Comparisons to previously published results, illustrated in Table 4, led us
to believe that we were following a productive development path, in spite of
the difficulties inherent in comparing performance between systerns with dif-
ferent configurations and levels of recovery protection. The metric Response
Time is the elapsed time to deliver the last tuple to the host, while Latency
refers to the elapsed time to deliver the first tuple to the host.

In analyzing scalability, it became apparent that many interacting factors
affect performance, including the following:

e Disk accesses decreasing as system-wide main memory increases;

e Merges of sort buckets decrease as the size of partitions decreases (as
network size increases);

e The effect of NlogN processes being applied to smaller partitions as
network size increases;

One way of balancing these effects is to increase the size of the relation
as network size increases. The results of this “Constant Tuples per Node”

13

Table 4: Results Comparison: T = R X S, |R]

1,000,000, |S|,|T| =

100, 000.
Processor Type Latency | Response
Machine | With Disks | Diskless [Control (sec) | Time (sec)
Case C 16 — 8 Mb none 1-8 Mb* 66 80
Case D 8-8Mb [8-1Mb| 1-8Mb 124 134
Terradata® | 20 — 4 Mb none 4-4Mb | N/A 3144
Gamma® 8-2Mb |8-2Mb|1-2Mb | N/A 2938
“This refers to the node mapper. An alternative configuration includes it as part of the
host software.
*[DeWisT]
*[DeWiss]

analysis, when applied to Case C, are shown in Table 5. The metric “Relative
Performance” is the ratio computed as the elapsed time for the base case (2
clusters and cardinality of 100,000) divided by the elapsed time for each
instance. The third column (Response Time) shows results which appear to
reflect poor scalability. However, when we look at the Latency metric, we
see good scalability characteristics. As would be expected, when we look at
the final merge® only, we see poor scalability. Indeed, the communications
work in the final merge is growing almost as fast as the number of tuples.
Another interesting result of this analysis is contained in the last col-
umn. The Latency Pipelining Effect metric compares execution time with-
out pipelining to execution time with pipelining. It is computed by taking
the difference in the two elapsed times and dividing by time without pipelin-
ing. The algorithm described in Section 3 provides for finer pipeline gran-
ularity as disk nodes increase. Thus, the expected result is to see savings
due to pipelining increase as the number of disk nodes increases. How-
ever, the granularity may become so fine that the overhead costs of par-
tially filled communications buffers, sort devices and disk tracks will offset
the benefits of having additional nodes. This column only applies to la-
tency; the final merge is excluded from this particular analysis. Within

°Final merge refers to Phase 5 in the Section 3 description and approximates the
difference in the response time and latency metrics.

14

the final merge, pipelining effects (as data moves up the merge tree) are
O(no-of merge levels/(noof -merge levels + 1)).

Table 5: Constant Data per Node Results: 7= R S, |R| = | S| = |T).

Number | Cardinality Relative Performance Latency
of of Response Final Final Merge Pipelining

Clusters | Relations Time | Latency | Merge | Communication Effect
2 100,000 1.000 1.000 | 1.000 1.000 13.5 %
4 200,000 951 .994 .821 556 13.7 %
8 400,000 .889 1.018 .605 294 14.1 %
16 800,000 761 1.011 .397 151 15.7 %
32 1,600,000 .598 1.025 .235 076 19.1 %
64 3,200,000 414 1.017 .130 .038 24.7 %

The use of the high-performance communications (wormbhole routing) has
two expected effects:

I. Improved general performance over store and forward technology.

2. Relative performance improvements for heterogeneous architectures.

Performance comparisons on the Latency metric for Case C and Case D, as
shown in Table 6, support these findings, with Case C exhibiting performance
gains in excess of 30 % for most network configurations when the “wormhole
routing” facility is installed. Case D performance showed greater than 50 %
gains by adding “wormhole routing.” It is expected that the communications
cost gain would be greater for case D, since both intra-cluster and inter-
cluster communications occur. For both cases, results appear to be scalable
upward. Response Time results were even more dramatic because of the
significant effect of communications time on performance during the final
phase. This was expected as noted in Section 3 and illustrated in Table 1.

6 Simulation Design and Implementation

Simulations were written in written in PAWS [Scie87]. PAWS is a specialized
language for simulation of computer systems. It models systems in terms of

15

Table 6: Effects of Wormhole Routing: T = R X S, |R| = |S]| = |T| =
100, 000.

I Percentage Reduction in Latency H

Number of
Clusters 1 2 4 8 16 32 64
Case C 0.0 | 30.0 133.5 | 48.8 | 51.1 |63.1 |68.2
Case D 55.3 | 53.1 | 58.5 | 62.0 | 64.9 | 66.8 | 69.6

transactions and servers. Servers may be active (disks or CPU), or passive
(memory). Transactions flow between servers, where they request or release
resources. In our study, transactions represent units of processing such as
disk tracks, sort engine bins (the number of tuples that can be sorted at one
time), and inter-node messages.

As an example of simulation design, consider message passing. This as-
pect was of particular concern, as timing experiments on the Symult had in-
dicated considerable operating system overhead for message passing. Trans-
mission of a message required less than 100 microseconds and was indepen-
dent of message length; it was not explicitly modeled. The time required to
receive a L-byte message is given by the following equation:

Trecv = 4L setup + mTpacket + LTbyie

where m = [L/256]. Timing experiments on the Symult indicated that, for
typed messages, Tyerup was 250 microseconds, Toacket was 22 ps, and Thye was
0.067 us.

This delay is split between the sending and receiving nodes. In the sim-
ulation, a transaction that represents a message passes through two servers.
First, it visits an AMRD server at the sending node; the service time is LTyyte.
This step represents the actual transmission of data through the AMRD. The
second step is a visit to the CPU at the receiving node; this represents the
operating system overhead of mapping the message into the address space of
the application process. The CPU service time is T setup + MT packet.

Simulation parameters were derived in several ways. Communication
costs were based on experimental results. CPU costs for each operation,

16

such as a join, were based on consideration of the number of basic steps (com-
parisons, pointer copies, etc) and the speed of these steps on the MC68020
processor. As with the analytic model, it was assumed that data were uni-
formly distributed initially, and that all subunits created during processing
(buckets, partial joins, and so on) are also of uniform size.

The disk model assumed a 32 Kbyte track size, a 28 millisecond seek time,
and a transfer time of 16.7 ms; it also was assumed that a seek occurred before
each track was accessed. Memory was modeled as 256 byte pages to reflect
the Symult memory architecture. Size requirements were rounded up to the
next page, in order to model internal fragmentation.

7 Simulation Results

The simulations assumed a join of two 100K tuple relations, each tuple being
208 bytes; the output cardinality was also 100K. The four cluster configu-
rations specified in Table 2 were simulated for 1, 2, 4, 8, and 16 clusters.
Table 7 lists response time, i.e., the elapsed time between the start of the
join and delivery of the last result tuple to the host. Table 8 lists latency,
i.e., the elapsed time until the first tuple arrives at the host. More detailed
results are reported in Appendix B. Separate simulations were written for the
first four disjoint phases of the algorithm (as described in Section 3). Ana-
lytical results are reported for Phase 5, merge of results and delivery to the
host. Since the goal of this paper is to investigate scalability and the effect
of cluster configuration on performance, the latency metric is used rather
than response time. Phase 5 elapsed time is an inconsequential component
of latency. For the configurations reported, Phase 5 latency is < .5 seconds,
as shown in Appendix B.

One potential objection to the choice of latency as a metric is that the
delivery of results to the host in phase 5, as described in Section 3 will
constrain the possible speedup. However, this constraint exists only if the
result relation is to be delivered to the host as a stream of merged tuples
and the host can consume data faster than the final merge node can produce
it. Even in this case, an analysis of latency is still valuable, as latency will
reveal performance differences between configurations, while response time
results may be dominated by host acceptance bandwidth.

In other situations, latency is closely related to response time. If phase

17

Table 7: Response Time Results: T'= RX S, |R| = |S| = |T'| = 100, 000.

Number Elapsed Time (seconds)
of Clusters | Case A | Case B [Case C [Case D
1 953.6 | 553.4 | 311.0 | 310.7
2 500.8 314.3 202.5 194.1
4 267.0 | 155.2 106.7 92.5
8 122.8 50.5 43.3 33.6
16 59.3 29.0 25.5 21.4

Table 8: Latency Results: T'= R X S, |R| = |S| = |T| = 100, 000.

Number
of Clusters

Elapsed Time (seconds)

Case A | Case B | Case C | Case D

1 896.7 496.5 282.6 282.3
2 454.6 268.0 156.3 156.8
4 239.4 127.6 79.0 73.9
8 107.2 34.8 27.6 24.4
16 47.0 16.6 13.2 11.9

18

5 produces a (temporary or permanent) new relation, then no single node is
a bottleneck and phase 5 should scale as well as the rest of the algorithm.
Another possibility is that phase 5 delivers an aggregate, such as a sum, to
the host. In this case, the time to compute that aggregate will be small
compared to the latency, so latency determines response time.

7.1 Scalability

Scalability is used here to mean the relationship between performance and
network size and can be examined by analyzing Table 8.

Before proceeding, it is useful to define the notion of linear speedup.
Assume a system with N clusters and an elapsed time ¢. If a larger system
with kN (k > 1) clusters has an elapsed time of #/k, then it has achieved
linear speedup. If the new elapsed time is less than #/k, then a superlinear
speedup has occurred. An elapsed time greater than /k indicates a sublinear
speedup.

For all four configurations, the following pattern may be seen: the speedup
between 1 and 2 clusters, and between 2 and 4 clusters, is sublinear. Then
the speedup between 4 and 8 clusters is substantially superlinear. Between
8 and 16 clusters, the speedup is slightly superlinear.

The use of latency removes host acceptance bandwidth from the mea-
surement of join performance. The assumption of equally distributed data
precludes the potential problem of uneven loads between clusters.

While the above characteristics make it reasonable to expect linear speedup,
they do not explain the superlinear speedups seen when N is increased to
8, which is caused by synergistic effects. As N increases, the total memory
in the system increases, and the number of tuples processed by each cluster
decreases. For NV < 8, inputs and outputs for phases 3 and 4 must be stored
on disk. For N = 8 and N = 16, all disk accesses except the initial read in
phase 1 can be eliminated, substantially reducing response time.

A similar, but less substantial, effect occurs when N = 16. Most of the
sorts performed during the join are multiple-bin sorts: data must be tagged
and split among several bins, which are sorted separately and then merged.
In the N = 16 case, many sorts require only one bin, eliminating the tagging
and merging stages.

Finally, several parts of the algorithm have time requirements that are
O(mlog, m), where m is the number of tuples. When N is doubled, m de-

19

creases to m/2 and these parts of the algorithm exhibit superlinear speedup.
The most prominent example of this effect is the heap sort used in Case A
(in place of the sort engine).

7.2 Comparison of Cluster Configurations

The benefits of adding hardware to a cluster can be evaluated by comparing
the columns of a single row in the Table 8 (since each row represents a fixed
number of clusters). There are three incremental improvements reported:
adding a sort engine to each cluster, adding a second disk, and adding a
merge node (CPU and memory).

Comparison of Cases A and B show the benefits of the sort engine. Even
in systems with 4 or fewer clusters, where the disk is often a bottleneck, the
sort engine reduces response time by about 40 percent. In the 8 and 16 node
systems, where tuples are buffered in memory and the sorts consume much
of the CPU time, the improvement is even more pronounced — close to 70
percent.

The benefits of adding a second disk to each cluster can be evaluated
by comparing response times for Cases B and C. For 1, 2 and 4 cluster
systems, which must save the results of each phase on disk, adding a second
disk reduces response time by about 40 percent. For the 8 and 16 node
configurations the 20 percent improvement reflects a faster phase 1 (initial
read and filter).

Comparing Cases C and D reveals that adding a merge node to each
cluster has little effect on response time. For the 1 and 2 cluster systems,
there is no improvement in response time. In this situation, processing is
disk-bound rather than CPU-bound, so making more CPU cycles available
does not improve system performance.

For 4 or more clusters, adding the merge node improves response time
by 6 to 12 percent. As these cases are reading tuples from memory rather
than disk, they are CPU-bound, so one might expect a larger improvement
in response time. The small amount of improvement is explained by the high
overhead of data communication: the communication cost is the same order
of magnitude as the processing cost. Thus, while the additional processor
off-loads the disk node CPU, much of CPU time thus saved is taken up by

message passing to and from the merge node.

20

8

Summary and Conclusions

The research presented here leads to the following conclusions:

Message passing multi-computers are a good environment for parallel
joins, provided the communication overhead is not excessive.

The proposed sort engine is a cost-effective way to substantially im-
prove performance for sort-merge join processing.

The algorithm presented and studied here is a novel approach to parallel
joins that combines the advantages of hashing and semijoins.

Analytic methods can be used both to select promising configurations
for further study, and to help refine the algorithm.

Simulation results confirm the analytic predictions.

The proposed architecture scales very well. Delivery of merged tuples
to the host is a bottleneck only if the host has a greater bandwidth
than the final merge node.

Increasing the number of clusters has a synergistic effect that can gen-
erate superlinear speedups.

Acknowledgments

The authors wish to thank Winn Biesele and Robert Van de Geijn for per-
forming the experiments that provided data on Symult message passing per-
formance.

References

[Bhat87] Bhat, Vivekanand, “Design of the CADM Based Sort/Search
Engine”, Department of Computer Sciences, Technical Report No. TR-87-
36, University of Texas at Austin, September, 1987.

21

[Bitt83] Bitton, D., D.J. DeWitt, and C. Turbyfill, “Benchmarking Database
Systems — A Systematic Approach”, Proceedings of the 1983 Very Large Data
Base Conference.

[Dall86] Dally, William J., “On The Performance of k-ary n-cube Inter-
connection Networks”, Caltech Computer Science Technical Report 5228:TR:86,
1986.

[Desa88] Desai, Ameesh Yogendra, “Node Mapper, an Indexing Structure
for the KYKLOS Database Machine”, M.S. Engineering Thesis, Department
of Electrical and Computer Engineering, University of Texas at Austin, Au-
gust, 1988.

[DeWi87] DeWitt, David J., Marc Smith, Haran Boral, “A Single User
Performance Evaluation of the Teradata Database Machine”, MCC Technical
Report Number DB-081-87, March, 1987.

[DeWi88] DeWitt, David J., Sharam Ghandeharizadeh, Donovan Schnei-
der, “A Performance Analysis of the Gamma Database Machine”, Proceed-
ings of the 1988 SIGMOD International Conference on Management of Data,
June, 1988.

[Flai87] Flaig, Charles M., “VLSI Mesh Routing Systems”, Caltech Com-
puter Science Technical Report 5241:TR:87, May, 1987.

[Gust88] Gustafson, J.L., G.R. Montry, and R.E. Benner, “Development
of Parallel Methods for a 1024-Processor Hypercube”, SIAM Journal on Sci-
entific and Statistical Computing, Vol.9, No.4.

[Mene85] Menezes, B.L., and R.M. Jenevein, “KYKLOS: A Linear growth
Fault-tolerant Interconnection Network,” Proceedings of the International
Conference on Parallel Processing, August, 1985.

[Scie87] Scientific and Engineering Software, “PAWS 3.0 Performance An-
alyst’s Workbench System User’s Manual”, Austin, Texas, 1987.

[Seit88] Seitz, Charles L., Jakov Seizovic, Wen-King Su, “The C Program-
mer’s Abbreviated Guide to Multicomputer Programming”, Department of
Computer Science, California Institute of Technology, Caltech-CS-TR-88-1,
January, 1988.

[Symu89] Symult Systems Corporation, “Programmer’s Guide to the Se-
ries 20107 System”, Monrovia, California, January, 1989.

22

Appendix A. Pseudocode for Join Algorithm

In this distributed environment the following notation is used:

Let X be one of R, the larger input relation; S, the smaller input relation;
or T, the result relation;

Then,

X[2] =the fragment of X stored at store node ¢;

X, =the remainder of X after selection (and/or projection) predicates are
applied;

X[ij] =the fragment of X stored at store node 7, joinable with the frag-
ment of ¥ (not X) stored at store node j. Thus, R[ij] would be the tuples
of R stored at ¢ joinable with S[j4]

X[: 8], X[ij : b] =the fragment hashed to bucket b.

h = number of _hash_buckets = N?

s = local number of _sort_buckets = local_fragment_cardinality/(cadm _sizex
K)

XK =the projection of keys and pointers of relation X

“*7 is used to indicate the range of a variable, for example, the set of
tuples from store node 4, assigned to joins with all other nodes is represented
as X[ix]. X[ix] = X, yX[ij]

The following pseudocode verbs are used in addition to commonly used
terms:

“parbegin Y T ... parend” indicates a sequence of operations performed
in parallel at Y nodes of type T (disk, sort or merge).

“pipbegin 7 ... pipend” indicates a pipelined sequence of operations.
These operations are subdivided into stages (see below) each of which is
executed Z times and which are executable as follows: stage 1 is executed by
itself in cycle 1; in cycle 2, stage 1 and stage 2 are executed; then cycle 3,
composed of stages 1, 2 and 3; etc.

“stage A” indicates the beginning of a pipeline stage. Statements follow-
ing are included until the current stage is ended by another stage statement
or a pipend. A is the stage number and is included for reading ease as
oppose to semantic necessity. ... stagend is used only when necessary for
unambiguous pseudocode.

comments are enclosed in quotes (“comments”).

begin “join”
“Phase 1-Retrieval of Input Relations”

“Pipelines 1 and 2 correspond to subphase 1A; pipelines 3 and 4 correspond
to suphase 1B. If the domain of disk nodes for R and S do not overlap,
subphases 1A and 1B can be executed in parallel.”

pipbegin |RK[i]'|/cadm size “1”
stage 1
parbegin N disk
retrieve local fragment of R, R[:], from disk
apply selection and projection predicates creating R[i]’
extract join atiributes from R[]’ creating RK [7)’
if R[7]' # R[] and memory full, store on disk
transmit RK[i]’ to local (within cluster) sort node
parend
parbegin K, * N sort
for lcv = 1 to 1/K begin
receive RK[i]'
tag sort buckets of RK[:)’
forend
parend
stage 2
parbegin K, * N sort
for lcv = 1 to 1/K, begin
sort buckets for disk node i
forend
parend
pipend
pipbegin |RK[i]'|/comm buf fer _size “2”
stage 1
parbegin K, x N sort
for lev = 1 to 1/ K, begin
merge sort buckets
transmit merged keys to local disk node

24

forend
parend
stage 2
parbegin N disk
receive sorted RK[¢]
using folded hash algorithm, hash RK[i]' to N? buckets,
RK[t:b]',b=0to N2 —1
store hash fragments
parend
pipend
pipbegin |SK|[i]'|/cadm size “3”

(pseudocode identical with pipeline “1”, except for substitution
of S for R and M for N, where appropriate)

pipend
pipbegin |SK[i]'|/comm_ buf fer size “4”

(pseudocode identical with pipeline “2”, except for substitution
of 5 for R and M for N, where appropriate)

pipend
“Phase 2—-Construction of Semi-join Filters”

pipbegin N/ K, “5”
stage 1
parbegin NV disk
for Iev =1 to K, * N begin
transmit fragments RK[i : h]’ to merge nodes A
forend
parend
parbegin M disk
for Iev = 1 to K, * N begin
transmit fragments SK[7 : h]' to merge nodes h
forend

parend
parbegin K, * N merge
forlev=1to N
receive RK[¢]' from disk node ¢
forend
forlev=1to M
receive a fragment SK[ij]’ from disk node ¢
forend
parend
stage 2
parbegin K, * N merge
perform merge join on M + N fragments RK[7 : b]' and SK[; : b,
resulting in M + N fragments of joinable keys: RK [i* : b]/
and SK[j* :b] at each merge node
forlecv=1to N
transmit joinable key fragment RK[ij : b}’
to cluster of origin sort node
forend
forlecv=1to M
transmit joinable key fragment SK:j : b)’
to cluster of origin sort node
forend
parend
parbegin K, x N sort
for lev =1 to K,, * N/ K,
receive fragments of RK[¢* : b)' from merge nodes
if needed then tag RK[i* : s : b)’
forend
parend
parbegin K x M sort
forlev =1 to K, * N/ K,
receive fragments of SK[i* : A’ from merge nodes
if needed then tag SK[i : bh]
forend
parend
stage 3

26

parbegin K * N sort
sort s buckets of RK[ix : b]/
merge buckets and transmit to node ¢
parend
parbegin K x M sort
sort s buckets of SK[ix : cev]’
merge buckets and transmit to node ¢ parend
parbegin N disk
receive RK [ix : ccv]
parend
parbegin M disk
receive SK[ix : ccv]
parend
stage 4
parbegin N disk
store RK[ix : cev]’
parend
parbegin M disk
store SK[vx : cov]’
parend

pipend

“Phase 3. Construction of Semi-joins”

“Pipeline 6 corresponds to subphase 3A; pipeline 7 corresponds
to suphase 3B. If the domain of disk nodes for R and S do not
overlap, subphases 3A and 3B can be executed in parallel.”

pipbegin |RK[ix]'|/cadm _size “6”

stage 1
parbegin N disk
retrieve and merge fragments of RK [ix]
transmit RK[i*]’ to local merge node
retrieve R[]/
transmit R[z]’ to local merge node
parend

27

parbegin K, * N merge
forlev=1to 1/K,,
receive RK [ix]" from local disk node
receive R[7)’ from local disk node
forend
parend
stage 2
parbegin K, * N merge
for lev = 1 to 1/ K, begin
perform a merge join of RK [1%]’ and R[], resulting
in sort bucket b of semi-join tuples, R[ix :]’
forend
parend
parbegin K, x N sort
for lev = 1 to 1/ K, begin
receive sort buckets, R[ix : 5]’
forend
parend
stage 3
parbegin K, * N sort
for lev = 1 to 1/ K, begin
sort buckets, R[i* : 5]’ into join attribute order
transmit semi-join tuples to node ¢
forend
parend
parbegin N disk
receive sorted fragments R[ix : 5]’
parend
stage 4
parbegin N disk
split sorted fragments into M partitions, R[ij : b]’
store the sorted fragments by join partner node,
Rlij: b
parend
pipend
pipbegin N/K, “1”

28

(pseudocode identical with pipeline “6”, except for substitution

of S for B and M for N, where appropriate)
pipend
“Phase 4. Performance of Partial Joins”

pipbegin M/K,, “8”

stage 1
parbegin IV disk
retrieve and merge the sorted fragments R[ij : %]’
into R[ij]
transmit (on request) R[i]’ to local merge node
parend
parbegin M disk
for lev = 1 to N/M begin
retrieve and merge the sorted fragments of S[zj : |’
into S[ij]
transmit, as requested S[ij]’
forend
parend
parbegin K,, * N merge
forlev =1 to 1/ K,
receive R[ij]’
receive S[jt]
forend
parend
stage 2
parbegin K, * N merge
forlev=1to 1/K,
merge-join R[¢j]’ and S[j:]’ to form the result
relation fragment, 7'[ij]
apply selection and projection predicates to 7'[47]
forming T'[i5)
transmit T'[¢7]" to the local sort node

3

29

forend
parend
parbegin K, x N sort
forlev =1 to 1/K,
receive T'[i7]
forend
parend
stage 3
parbegin K, * N sort
for lev =1 to 1/ K,
sort T'[¢7]" into result distribution order
transmit T'[75]’ to local disk node
forend
parend
parbegin N disk
receive T'[z7]
parend
stage 4
parbegin N disk
store T'[i7]
parend

pipend

“Phase 5. Creation of Output Relation”

if result relation T is temporary begin

parbegin N disk
retrieve all fragments T'[1x)’
merge into 7'[¢]
store T[7]

parend

elseif result relation is to be permanent begin

pipbegin |T'[¢]|/buf fer_size “9b”
stage 1
parbegin N disk
retrieve all fragments 7'[i*]

30

split T'[s*]' by distribution node into T'[ix : d]’
merge into T’z : d]
transmit 7'z : d] to distribution node
receive T'[* : d] at distribution node
parend
parbegin N disk
merge fragments T'[* : d] into T[1]
store T'[4]
parend
pipend
elseif result relation is to be sent to the host begin
pipbegin |T[:]|/buf fer_size “9¢c”
stage 1
parbegin NV disk
retrieve all fragments 7'[7x]’
merge into 7'[¢]
transmit to logical parent branch node

kl = 1
kg =1
k’s = 1
parend
stagend
while ky x ks < N
stage ks
parbegin %k, merge
k’4 = k’g * 2
kg == kl * k4
]Cs = k‘5 + 1
ifkh =1

receive tuples from 2 nodes
merge tuple streams
send to host
else
receive tuples from lsr(N, k3) nodes
merge tuple streams
send to parent

31

ifend

ki = ks
ke = ka
parend
stagend
whilend
pipend
ifend
end “join”

32

Appendix B. Detailed Simulation Results

This appendix provides more detailed results for the simulations described
in Sections 6 and 7. Separate results are presented for each of the first four
phases of the join algorithm, as described in section 3. The first subsection of
this appendix presents detailed latency and response time results. The other
subsections report utilization for the four servers: disk node CPU, disk, sort
engine and merge node CPU.

N refers to the number of clusters. For Cases A, B and C, this is the
number of nodes, as there is one disk/sort/merge node per cluster; for Case D,
there is one disk/sort node and one merge node per cluster. Times reported
are in seconds.

B—-1. Response and Latency Results

Tables 9 to 12 present the time required to complete each phase of the join
algorithm. The times for phases 1-4 are simulation results, while the time
for phase 5 was obtained analytically. Latency, or is the elapsed time for the
first tuple to reach the host, is approximated by the sum of the elapsed times
for phases 1-4. Response Time, or elapsed time for the last tuple to reach
the host, is the sum of the elapsed times for phases 1-5.

Table 9: Latency and Response Time — Case A

Phase | Phase | Phase | Phase || Total Phase 5 Total

1 2 3 4 1 -4 | latency | response || latency [response

314.08 | 202.55 | 193.66 | 186.31 || 896.60 0.09 56.97 396.69 953.57

158.06 | 87.69 | 100.64 | 107.93 || 454.32 0.21 48.30 454.53 502.62

77.29 | 76.16 | 54.06 | 31.64 | 239.15 0.22 29.52 239.37 268.67

36.65 | 32.80 | 19.77 | 17.78 || 107.00 0.15 17.36 107.15 124.36

g lo7a] IS VY (Y | -

17.02 | 13.79 | 9.88 6.06 46.75 0.16 14.03 46.91 60.78

33

Table 10:

Latency and Response Time — Case B

Phase | Phase | Phase | Phase || Total Phase 5 Total
N 1 2 3 4 1 —4 | 'latency | response [latency | response
1 || 145.18 | 32.87 | 193.10 | 125.28 || 496.43 0.09 56.97 496.52 553.40
2 78.77 | 18.61 | 100.13 | 70.30 | 267.81 0.21 48.30 268.02 316.11
4 || 40.19 | 7.10 | 53.64 | 26.39 | 127.32 0.22 29.52 127.54 156.84
8 19.63 | 4.70 4.74 5.57 34.64 0.15 17.36 34.79 52.00
16 || 9.51 2.10 2.40 2.43 16.44 0.16 14.03 16.60 30.47

Table 11: Latency and Response Time — Case C

Phase | Phase | Phase | Phase || Total Phase 5 Total
N 1 2 3 4 1 -4 | latency { response || latency | response
1 || 84.83 | 32.87 | 96.79 | 68.06 | 282.55 0.04 28.49 282.59 311.04
2 || 48.96 | 18.61 | 50.30 | 38.18 | 156.05 0.21 48.30 156.26 204.35
4 |1 25.63 | 7.10 | 26.82 | 19.23 | 78.78 0.22 29.52 79.01 108.30
8 || 12.48 | 4.70 4.74 5.57 27.49 0.15 17.36 27.64 44.85
16 || 6.02 2.10 2.40 2.43 12.95 0.16 14.03 13.15 26.98

Table 12: Latency and Response Time — Case D

Phase | Phase | Phase | Phase || Total Phase 5 Total
N 1 2 3 4 1 -4 | latency l response | latency | response
1 || 84.83 | 35.45 | 96.87 | 65.08 | 282.23 0.05 28.49 282.28 310.72
2 || 48.96 | 18.61 | 50.73 | 38.34 || 156.64 0.20 37.82 156.84 194.46
4 || 25.63 | 6.38 | 27.33 | 14.38 || 73.72 0.20 19.01 73.92 92.73
8 || 12.48 | 3.15 4.60 4.01 24.24 0.13 10.56 24.37 34.80
16 || 6.02 1.24 2.35 2.19 11.80 0.13 10.63 11.93 22.43

34

B—-2. Disk Node CPU Utilization

Tables 13 to 16 present simulation results for CPU utilization on the disk
node (type 1 node). The total utilization is the time-weighted average of
the utilization of each phase. If 7} is the duration of phase 7 and U; is the
utilization observed during phase ¢, then

TWU + 15Uy + T3Us + TyU,
T+ T+ 154+ T,y

Uiotal =

Table 13: Disk Node CPU Utilization % — Case A

[N] 1] 2 [3] & |Towl]
1 1623 |100.0 | 81.6 |59.6 | 74.4
2 163.0 | 51.1 | 785 |52.0 61.5
4 163.1 | 51.7 | 73.1 | 85.2 | 64.7
8 163.0 | 51.9 199.990.3 | 71.0
16 1639 51.4 199.9]90.2 | 71.2

Table 14: Disk Node CPU Utilization % — Case B

[N] 112134 [Tow]
1 11551883]19.4 321} 26.0
2 12311938 18.7|24.7] 26.8
4 1264 18451741343 | 275
8 127.2157.9199.3 922 51.7
16 128.4 1253 197.1 | 88.9 | 47.0

B-3. Disk Utilization

Tables 17 to 20 present disk utilization results. For cases C and D, where
there are two disks per cluster, the average utilization of the two disks is
shown. Total utilization follows the definition given previously. A utilization
of 0.0 indicates that the disk was not used during that phase.

35

Table 15: Disk Node CPU Utilization % — Case C

INJ] 1 [2 13T 4 [Total |
1 1265883]38.6[59.1] 45.7
2 1371938371 [45.1 | 45.8
4 14141845 3481470 44.4
8 142.8 157.9199.3]99.2] 66.6
16 144.7 {253 | 97.1 [83.9] 59.6

Table 16: Disk Node CPU Utilization % — Case D

” N | 1 ! 2 [3] 4] Total ”
1 1265 57.31 95 2691 24.6
2 |37.1186.6| 8.9 |145 | 28.3
4 141.4 1785] 9.8 1209 28.9
8 142.8 | 73.2 |1 24.8 | 52.4 | 44.9
16 | 44.7 | 27.6 1 24.3 129.0 | 35.9

Table 17: Disk Utilization % — Case A

INJ] 1T [273 [4 [Total
1 138.910.0]99.6[66.3] 48.9
2 1386 10.0[99.4 602 49.7
4 139.6 10.0/99.2 1803 45.8
8 141.7 /0.0 [0.0 [0.0 | 143
16 [45.0 [0.0 [0.0 [0.0 | 16.4

36

Table 18: Disk Utilization % — Case B

IN] 1 (273] 4 [Towl]
1 184.110.0]99.9|98.6 | 88.3
2 1775100999923 | 84.4
4 176.110.0199.9]96.2] 86.0
8 |77.8 0.0 0.0 | 0.0 | 44.1
16 180.5 0.0 0.0 | 0.0 | 46.6

Table 19: Disk Utilization % — Case C

IN] 1 [2] 3 T 4]Total]
1 [72.0 0.0 996 90.7] 77.6
2 1624]0.0]99.4 850 72.4
4 159.6 0.0 99.9 945 765
8 |61.110.0]0.0 |00 277
16 163.3 0.0 0.0 | 0.0 | 294

Table 20: Disk Utilization % — Case D

[N] 1 [2]3 [4 [Tow]
1 17201001995 1949 | 77.7
2 1624 10.0199.2 847 724
4 159.6 10.0]98.6 883 74.5

8 161.1 100 0.0 |00 315
16 163.3 0.0 0.0 | 0.0 | 32.3

37

B—4. Sort Engine Utilization

Tables 21 to 23 present results for sort engine utilization. Case A is excluded
since the sort engine is not part of that configuation. Note that the specialized
sort components are used in two ways: to sort bins (offline sort), and in
concert with the disk node CPU to perform merges of sorted bins. These

tables show the utilization of the sort engine for both tasks.

Table 21: Sort Device Utilization % — Case B

INJ 1] 2]3] 4 JTotal|

1 1521676 53 | 89 | 10.3
2 1491893 | 52 | 31 | 104
4 1491789 48 | 5.2 9.0
8 |54 628 |62.8|39.3] 26.5
16 1 6.0 | 51.5 | 62.0 | 46.1 | 25.9

Table 22: Sort Device Utilization % — Case C

[INJ 1] 23 4 [Towl]
1 1891676 19.1 172 21.2
2 1791893 119.4 1 5.7 | 20.8
4 1771789221 8.0 | 19.1
8 |85(62.8 |62.839.3| 33.4
16 19.4 | 51.5 162.0 | 46.1 | 32.9

B-5. Merge Node CPU Utilization

Table 24 shows utilization results for the merge node CPU, which is present
only in case D. Note that the merge node is not used in phase 1.

38

Table 23: Sort Device Utilization % — Case D

INJ1 [2 3] 4 [Total
1 1891627 [10.6 [17.0 | 18.1
2 179189389 |56 | 17.3
4 177187282 [9.1 [150
8 [85[93127.8[35.7] 27.7
16 | 9.4 [81.0 [27.2 [26.7 | 23.7

Table 24: Merge Node CPU Utilization % — Case D

[NI1] 23] 2 [Toul]
1 10.0(37.2137.046.4 | 28.1
2 10.010.6 {33.939.5] 21.9
4 100205315529 | 23.8
8 10.0]1521]97.3|944 1 36.1
16 1 0.0 | 13.5 1951 |86.3 | 36.4

39

