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We study here the recursion theoretic complexity of the perfect (Herbrand) models of stratified logic pro-
grams. We show that these models lie arbitrarily high in the arithmetic hierarchy. As 2 byproduct we obtain
a similar characierization of the recursion theoretic complexity of the set of consequences in a number of
jormalisms for non-monotonic reasoning. We show that under some circumstances this complexity can be
prought down 10 recursiveness and recursive enumerability. To this purpose we study a class of recursion -
{ree programs.

1. INTRODUCTION

A substantial amount of the recent research in logic programming concentrated on the “safe” use of
negation. This research led to an identification of a subclass of general logic programs, called strarified
programs, which restrict the ways in which recursion and negation can be combined. Intuitively, the
use of negation is restricted by only applying it to already known relations. Thus, in defining a collec-
tion of relations some of them are first defined, perhaps recursively in terms of themselves, without
the use of negation. New relations may then be defined in terms of themselves without using negation,
and in terms of the previously defined relations and their negations. The process can be iterated until
all of the relations in the collections have been defined.

Stratified programs were introduced in APT, BLAIR and WALKER [ABW88] and VAN GELDER
[VG88]. They form a simple generalization of a class of database queries introduced in CHANDRA and
Harer [CHB85].

Stratified programs have a natural semantics associated with them in the form of a specific Her-
brand model. The special character of these models was captured by PRZYMUSINSKI [P88] who intro-
duced the concept of perfect models. The designated model of a stratified program is its unique per-
fect Herbrand model. In this paper we study the recursion theoretic complexity of the perfect (Her-
brand) models of stratified programs. We show that they lie arbitrarily high in the arithmetic hierar-
chy. We also show that under certain circumstances their complexity can be brought down to recur-
siveness and recursive enumerability. To this purpose we study a class of recursion-free programs. We
prove that Clark’s [C78] completions of recursion-free programs together with a first order domain
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Given an operator T, we define its powers by
o) = I
T + DO = T(TnNY (D)
) = Y (Tn(Din <w}.
We call an operator T finitary if for every infinite sequence
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holds.

We call an operator T growing if for all IJ M
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implies
() CTM)-

Thus “growing” is a restricted form of monotonicity- The following temma will be aeeded in Section
5.
Lemma 2.1 Let T be a finitary and growing operator For all A,1 and n=1
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iff there exists @ finitely branching ire€ of depth <n such that

e A is its roob ‘

e for every node B with direct descendants B, - - ,Bu k =0, we have BeT(IU{By - By}
o every leafisan element of T

prooOF. FOf all ] and n2 1, TAn(D is countable and includes I, so for some sequence SoCS1& of
finite subsets of TAn(l)
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TNV (TUUSHK <@}
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o(rausok<e)y T ()
Thus
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Hence for all A,J and n= i,
A eT(Tnd)

3ff for somme By, --- , By eTin), k=0, we have AeTUY {Bys--- B}
From this the claim follows by 2 simple jnduction on 7-




My = () (M\M is supported model of P1}s
M, = N {M&M is supported model of P2 and Mme‘:Mi},

M, = (MM is supponed model of Pr and MNBpu. VP, ;M,,,l},
Mp = M,.

iv) Mpisa model of comp(P) CLARK’s [C178] completion of P.
v) When P has no function symbols, there is @ backchaining interpreter for P which combines negation
as failure with loop checking to test for membership in M. On each inference cycle the interpreter
Sully instantiates @ clause.

—
Lo

Other propcrties of stratified programs were proved in [VG88].
When P is 2 program, Mp= Tpte(D) and Mp coincides with the least Herbrand model of P intro-
duced in VAN EmpEN and KowalLsKl [VEK76].

2.4. Perfect model semantics

Further characterization of the model Mp was provided by PRZYMUSINSKI [P88] who introduced the
concept of perfect models. The essence of his approach can be summarized a5 follows.

Consider 2 general program P.let <bea well founded ordering on the Herbrand base Bp of P. If
A <B then we 53y that A has 2 higher priority than B.

Let M,N be interpretations of P. Wecall N preferable 1o M if M#N and for every B eN\ M there
exists A €M \ N such that A<B. Wecalla model of P perfect f no other model of P is preferable t0
it.

Intuitively, ¥ is preferable to M if itis obtained from M by possibly adding/Temoving some atoms
and an addition of an atom to N is always compensated by the simultaneous removal from M of an
atom of higheT priority. This reflects the fact that we are determined 10 minimize higheT priority
atoms even at the cost of adding atoms of lower priority-

The above definitions ar¢ parameterized by the well founded ordering <. We now consider a fixed
stratified program p and a well sounded ordering o0 B, obtained by first, putting for two relation

symbols
<9 iff there is 2 path from g top in Dp with a negative a1t
and then putting for two ground atoms A.B
A<Biff p<4g where p appears in A and g appears in B.

Note that if p<4 then in any stratification of P,pis defined in a lower stratum than g is- Thus < 18
well founded. This implies that the latter ordering < 18 indeed a well founded ordering on By. In
this ordeniag ground atoms with a relation symbol from a lower stratum have & higher priotity.

The following theorem from [P88] characterizes the model Mp of P-

THEOREM 2.4. Let P bea stratified progrom Then Mp is the unique perfect model of P.




3.2 Computability over the H erbrand universe

Our task 1s 10 adapt the entire previous discussion of computability over the natural pumbers 10 com-

putab'ﬂity over Herbrand umniverses. Of course {his can be done in one stroke by effectively identifying

the ground terms Wi the natural aumbers. However, if we want 10 characterize what general pro-

ams compute in recursion—theoretic terms, the correspondence between the Herbrand universe and

N is delicate. This point can be brought out vividly by reflecting O the following task: write 2 PTo”
am P such that for 2 ground term 1, «riD) succeeds iff 1 is a constant. Note that this cannot be

done if, for example, the underlying Herbrand universe contains infinitely many constant symbols and

infinitely many functions symbols. 1t follows that if the Herbrand universe is generated by an infinite
alphabet then not €very computable relation ovet such 2 Herbrand universe can be computed by 2

We now analyse what logic programs compute in recursion«theoretic terms under the assumption
that the underlying Herbrand universe is finitely generated. We assume 2 fixed finitely gencrated Her-
brand universe U, with at Jeast one constant and one function symbol. All general programs P com-
sidered in this paper are such that their Herbrand universe Up coincides with Up. _

A program P computes @ relation R over U, using 2 relation symbol 7 if for all sequences ¢ of ele-
ments from UL

7 <R iff there exists an SLD-refutation of PU {er(;)}.

A program P defines 2 relation R over U, using 2 selation symbol 7 if for all sequeﬂces—f of ele-
ments from UL

7TeR iff per().

Here and elsewhere W€ assume that R and r have (he same afity which also coincides with the
length of the sequence & ,

The following theorem Hnks computability and definability and the least Herbrand model of a pro-
gram, and is fundamental in logic programming (cf APT and VAN EMDEN [AVES2]. se€ also Theorem

4.1in APT (AD-

THEOREM 3.3 Let P be a program R a relation over U, andra relation symbol. Then
H P computes R using r iff P defines R using -
W P defines R using T iff for all sequences ! of elements from Up

7eRiff rG)eMP. !

This theorem allows us 0 identify computability with definability and reduce the latter tO definability
over the least Herbrand model. Note that this theorem also holds when U 18 finite and ponempty,
which arises when UL consists of 2 finite set of constants.

The iden ification of U, with N is obtained via the next theorem.

THEOREM 34. (Enumcration Theorem) 4 prograrm successor which defines the successor relation on UL
using the pinary relation symbol succ can be constructed. More precisely, an ordering < o1 U, of order-
type @ can be constructed such that for all terms spely, tisan < - SUCCEssor of s iff successor
csuce(s, -

]

The enumeration theorem above is due 10 ANDREKA and NEMETL [ANT8]. BLAIR [B86] gives @ version
in which the successor program satisfies additional semantic constraints celated to finite failure of
goals.

This theorem allows us 10 identify 2 finitely generated Herbrand universe U, of the form assumed

at the beginning of this section with natural aumbers. This jdentification allows us 10 transfer the




