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ABSTRACT
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1. Introduction

In [9], a method for finding geometry formulas was given. The method was used to find several
formulas in geometry difficult for humans to derive [9]. However, the method is incomplete, and
in many occasions it can lead to some spurious relations (formulas) irrelevant to the original
geometry problem. Furthermore, some relations cannot be found by this method. For example,
the relation among the variables z; and u determined by {22 = 0,252, + &1 — u = 0} is
z; —u = 0, but it cannot be derived by the method in [9]. In [2], another method for formula
derivation in geometry was given, but it is also not complete in general cases. In this paper, we
give a precise formulation for the relations among certain variables under a set of polynomial
equations and a set of polynomial inequations (to exclude certain special cases which cannot
be excluded by the selection of parameters alone). Three methods for deriving such relations
are given. The first two are based on the Groébner basis method. The other one is based on
Ritt-Wu’s characteristic method.

Our methods can be used to find geometry formulas as well as geometry loci equations.
About 120 non-trivial problems have been solved by the methods.

2. The Formulation of the Problem
First we use two examples to give the motivation of our formulation of the problem.

Example 2.1. Find the formula for the area of a triangle ABC in terms of its three sides
(Heron’s Formula, Fig. 1).

Let a,b, and ¢ be the three sides of the triangle, B = (0,0), C = (,0), and A = (z1,2,).
Then the geometry conditions can be expressed by the following set of polynomial equations
HS:

hy = 2%+ 2} —2az; — b + 4> =0 b= AC
ho =242 -2 =0 ¢c=AB
hs = axs — 2k =10 k = the area of ABC.

Here the variables a, b, and ¢ can be considered parameters in the sense that they can
generally take any values. Once they are fixed, the values of other variables are determined
by the polynomial equations h; = 0,hy = 0, and Az = 0. Our task is to express the area
k in terms of the parameters a, b, and ¢, i.e., to find a polynomial equation expressing the
relationship among a, b, ¢, and k& which can be derived from a set of polynomial equations
(under certain parameter selection). For this example, non-degenerate (exceptional) conditions
can be determined solely by the the selection of parameters. This is usually the case, especially
for geometry theorem proving. Almost all 512 theorems proved in [3] belong to such case (for
a theoretical discussion see [6]). But we have also encountered several problems in geometry
formula derivation some of whose exceptional conditions need to be excluded by inequations.
Following is such an example.

Example 2.2. Let [ be a line passing through the vertex of M of a parallelogram M N PQ)
and intersecting the lines NP, PQ, and N@Q in points R, 5, and 7. Find the relation among
MT/MR and MT/NS if there is one ( Fig. 2).

Let M = (0,0), N = (u1,0), P = (us,u3), @ = (z1,u3), § = (x2,u3), B = (23,24), and
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T = (2s,%¢). The geometry conditions can be expressed by the following set of polynomial
equations H 5

hy = uszy + (—ug + 1 )us =0 M@ is parallel to N P
ho = (@7 — u1)%e — usTs +urus =0 Tison QN
hs = (uy — U1 )T4 — UsTz + uruz =0 Rison NP
hy = Bo2s — Usls = 0 Tison MS
hy = 224 — uzzz = 0 Mison RS
h6:$5~?"1$3:0 'f’l:MT/MR
hy = 25 — ToTg = 0 ro = MT/NS.

However, in specifying 71 = MT/MRand r, = MT /NS, we usually have to add the following
set of polynomial inequations DS = {z, # 0 A z3 # 0} to exclude certain special cases which
sometimes cannot be excluded by the selection of parameters alone. We want to find a relation
between MT/MR and MT/NS (if there is one), i.e., between r; and r,. Usually, the above
algebraic conditions HS and DS do not imply a polynomial equation between r; and 7, because
the dimension (the number of parameters) of the problem is 4. We can select uy, uq, uz and
as the parameters. Then HS and DS imply (as in this problem) a polynomial equation among
Uy, Ug, ug, 11 and ro. If this equation contains r; and 7, only, then problem has a solution.
Otherwise, the problem does not have a solution or is not proposed correctly.

Remark. Without DS = {z; # 0,73 # 0}, HS alone does not satisfies Criteria 2.3 below,
considering u;, us, us and r; parameters. Thus it cannot lead to the result desired. Let
A= (21,%), B = (22,12), C = (23,ys), and = (x4, ys) be four points with lines AB and CD
being the same or parallel. Then AB/CD = (23 — z1)/(z4 — 3) if 4 — 23 # 0. In general, we
have to add an inequation z4 — 23 # 0 to exclude that special case which sometimes cannot be
excluded by the selection of parameters alone.

We will solve these two problems using methods presented in Section 4. But we first formulate
precisely the problem we want to solve. Let K be a computable field with characteristic zero
(in practice, K = Q). Unless stated otherwise, all polynomials mentioned in this paper are
over K. Suppose for a geometric problem, after adopting an appropriate coordinate system,
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the corresponding geometric configuration can be expressed by a set of polynomial equations
HS = {hy(ty, ey Ugy T1y ey Tp) =0 A+ A B (U oy Uy, @1y ey Tp) = 0F

and a set of polynomial inequations

DS = {d (U1, ey Ug s T1y ey Tp) F OA - Adi(Uyy ey iy, Try ey Tp ) # O}

Here we use DS to exclude some special cases in which the problem or specification of the
problem become invalid. For most cases, DS consists of those inequations that were mentioned
in the remark after Example 2.2. Of course, DS can contain non-degenerate conditions which
can be excluded by the selection of parameters (for the use of parameters to exclude non-
degenerate conditions see [6]). This flexibility can be used to speed up Method 4.6 (see Remark
4.7). Here we divide the variables occurring in HS and DS into two groups: ui,...,u, and
%y,...,%, in the sense that in this problem the u can generally take any value and the z can
be determined as some functions of the u. We call the u and the z the parameters and the
dependent variables of the corresponding geometric problem. For a given geometric problem,
the selection of parameters is not unique, but is determined by the geometric problem itself.
Depending on the context, HS and DS sometimes also denote the polynomial sets {hq,...,h; }
and {di,...,d; }, respectively. Let

HD = {hl,...,hs,21d1 - 1, ...,Z{dz ad 1},

where 2,,...,7 are distinct new variables. A necessary algebraic criteria for ui,...,u, to be
parameters is:

Criteria 2.3. (1) The u are algebraically independent wrpt HD, i.e., no non-zero polynomial
containing the u only is in the ideal generated by HD. (2) Each z; is algebraically dependent
on the u wrpt HD, i.e., there is a polynomial containing the u and z; only in the ideal generated
by HD.

Thus we can formulate our problem as follows:

The Formulation of the Problem 2.4. Let HS, DS, the u and the z be the same as
before. Furthermore, suppose that the u satisfy Criteria 2.3. Let z;, be a fixed dependent
variable. The relation set among the u and z;, is a set of polynomial equations ri(u,zi, ) = 0,
ek (8,25, ) = 0, all containing zi,, but not other dependent variables such that: (1) All
ri(u,z;,) are irreducible; (2) There is a non-zero polynomial U contain the u only ( We will call
such a polynomial a u-polynomial.) such that U - r1(u,e;,) - -me(u, 24, ) is in the radical ideal
generated by HD; (3) The set {ry,...,7} is minimal to satisfy (1) and (2), i.e., it is impossible
to delete any of its element while still keeping (1) and (2) valid.

3. The Properties of Relation Sets

We now first prove that the relation set {ri(u,s,),...,7s(t, %)} exists and is unique, as-
suming that the parameters u satisfy Criteria 2.3. Let M be the set of all polynomials in
Kluy, ..., g, %i,] N Ideal( H D) with positive degrees in z;,. Since the u satisfy Criteria 2.3, M
is non-empty. A polynomial P in M with minimal deg(P,z;,) is called a minimal polynomial
in z;,. The following simple lemma is crucial for our further development.
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Lemma 3.1. Let the notations and the conditions are the same as in the previous paragraph,
P be a minimal polynomial in z;,, and ¢ be another polynomial in M. Then there is a
u—polynomial U’ such that P divides U'QJ.

Proof. Pseudo dividing @ by P in variable z;,, we have
UQ=AP+D

where U’ is some power of the leading coefficient of P in the variable z;,, thus is a u—polynomial;
D is the pseudo remainder with deg(D,z;,) < deg(P,z;,). Since D € Ideal(HD), by the
minimal property of deg(P,z;,), deg(D,;,) = 0. Thus D contains only the u and has to be
zero by (1) of 2.3. This proves the lemma. i

The Existence and Uniqueness Theorem 3.2. Let the notations be as before. Suppose
the parameters Ui, ..., %, satisfy Criteria 2.3. Then the set of the relations 71,...,7; defined in
2.4 exists and is unique.

Proof. Let P be a minimal polynomial in z;, and
P=U-r(u,zi,) -y (4, 24,)

where U is a u-polynomial and deg(r;,z;,) > 1 for all i = 1,...,k, and the r; are distinct
irreducible polynomials. Then R = {ry(u, @i, ), - 7% (% z;, )} is the set of polynomials satisfying
conditions (1)~(2) in 2.4. From Lemma 3.1, it is clear R is the minimal to satisfy (1)-(2) of
2.4, i.e., it is impossible to delete any of its elements while still making it to satisfy (1) and (2)
of 2.4. Thus, R is the relation set among the u and z;,.

Let R = {7 (w, iy )y--,75 (1, T, )} be another relation set satisfying (1)—(3) of 2.4. We want
to show R = R'. By Lemma 3.1 and (1)-(2) of 2.4, it is clear that R is a subset of R’. By the
minimal property (3) of 2.4 for R/, R’ cannot contain other elements not in R, thus R = R'.
This proves the uniqueness property of the relation set specified in 2.4. i

Proposition 3.3. Let the notations and conditions be the same as before and F' be an extension
of the field K. we have

VQZUEF{(HS/\DS/\U#Q)——)(Tl:OVH-V?“;C:U}], (3.3.1)
where U is the u—polynomial in (2) of 2.4.
Proof. From (2) of 2.4 we have
Vour € FI(HS Adyzy —1=0A---ANdizn—1=0AU# 0) — (ry -7 = 0)). (3.3.2)
Because the z is free in 7y -+~ 75, the above formula is equivalent to
VmueF[BZEF{HS/\dlzl—1:(}/\'~Ad;z;—1=0/\U¢G)—> (ry -+ = 0)].

Since Jz;(diz — 1 = 0) are equivalent to d; # 0, (3.3.1) is equivalent to (3.3.2). This proves the
proposition. B

The condition U # 0 is usually connected with nondegeneracy. Or wecansay ry---75 = 0
is generally true under HS and DS (for a more detailed discussion of the notion of “generally
true”, see [6]).
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Proposition 3.4. Let F be an algebraically closed field containing K and r(u,z;,) be a
polynomial containing the parameters u and z;, only. If there is a u—polynomial U such that

quEF[(HS/\DS/\U#O)—‘,T:O], (3.4.1)

then 7y - - 73 divides 7.

Proof. As we see from the proof of Proposition 3.3, Formula (3.4.1) is equivalent to
VYezuz € F[(HS Adyz —1=0A---Adizi—1=0AU#0)—r=0].

Since F is algebraically closed, it is equivalent to Ur € Radical(H D) by Hilbert Nullstellensatz,
i.e., there is some positive integer n, (Ur)* € Ideal(# D). Thus the proposition is clear from
Lemma 3.1 and Theorem 3.2. i

In the following sections we will give several methods for obtaining such relation set {r1,...7% }.
The methods have been successfully used in solving many geometry problems. Especially,
the method based on Ritt—Wu’s decomposition (Method 4.6) has solved about 120 geometry
problems (see the Collection [5]).

4. Methods for Finding Relation Sets

For simplicity, let z;, = z; and we want to find the relation set among the u and z, given
HS and DS. According to Theorem 3.2, it is enough to find a minimal polynomial in ;.

Theorem 4.1. Let the notations be the same as before and GB be a Grobner basis of HD 1
in the polynomial ting K[t1, ..., Ug, T1,s .00y Tp, 21, -, 21 i 2 compatible ordering v < 2, 1 < %;
for 1 <%, and z; < z. Then

(1) The u is algebraically independent iff GB does not contain any u—polynomial.

(2) GB contains 2 minimal polynomial in z, if z, is algebraically dependent on the parameters
u under HD.

(3) HD with u algebraically independent satisfies (2) of Criteria 2.3 iff for each v € {21, .., %,,
#1,...,z1}, GB contains a polynomial whose leading monomial is some positive power of v
multiplied by a u—monomial.

Proof. Because of the ordering « < z and u < z, GB contains a u~polynomial iff the ideal
generated by H D contains a u-polynomial. This proves (1). Also because the ordering z; < z;
for i # 1 and z; < z, GB contains a polynomial containing the v and z, only with a positive
degree in z; iff ; is algebraically dependent on the u. Let P be such a polynomial in GB with
with deg(P,z;) minimal. Since each minimal polynomial in z; can be reduced to zero by GB,
P must be a minimal polynomial in z;. This proves (2).

(3) Suppose the u are algebraically independent wrpt HD. By the well known result (Method
6.9 in [1]) the condition (3) is equivalent to that # D has finitely many solutions for the = and
z over K (u), which is in turn equivalent to condition (2) of 2.3. i

1 Tn this paper we assume the reader is already familiar with the Grobner basis method. The
paper [1] is an excellent review of the sub ject.



This theorem immediately gives the following method.
Method 4.2 For Finding the Relation Set R.
Step 1. Compute the Grobner basis GB as stated in Theorem 4.1.

Step 2. If GB contains a u—polynomial, then give the answer: “the parameters u are not
algebraically independent.”

Step 3. Suppose GB does not contain a u—polynomial. If it also does not contain a polynomial
containing the u and z; only, then give the answer: “z; is not algebraically dependent on the
parameters u”.

Step 4. Otherwise, let P(u, ;) be the onein GB with deg(P, z; ) minimal, then P is a minimal
polynomial in z;. Thus, according to theorem 3.2, the set of distinct irreducible factors of P
containing z, is a relation set among u and 2.

Step 5. We can use (3) of theorem 4.1 to check whether Criteria 2.3 is fully satisfied, i.e.,
whether variables z; other than z; are all dependent on the parameters u. i

This method, though simple in theory, is inefficient in practice. The reason is that to com-
pute the corresponding Grébner bases is very slow, and for many problems in practice the
computation is often beyond reasonable time and space limits.

If we work on the polynomial ring K (w1, ..., Ug )[T1, s Tps 215 -0 7] instead of Ku,z, 2], we gen-
erally can benefit from the following two facts: (1) The corresponding Grébner bases generally
have fewer elements; (2) Common factors of u—polynomials can be removed, thus polynomials
in the computation have less sizes.

Theorem 4.3. Let notations be the same as above and GB a Grobner basis of HD in the
polynomial ring K (us, -, Ug)[@1; s Tp, 215 .,7z] in a compatible ordering z; < z; for 1 < 7 and
xy < z Then

(1) The u is algebraically independent iff GB does not contain 1, i.e., HD does not generate
the unit ideal in K (u)[z,z].

(2) The variable z; is algebraically dependent on the v iff GB contains a polynomial contain-
ing z; (and the u) only. Let P be such one with deg(P,z;) minimal, then U - P is a minimal
polynomial in z; for some u~polynomial U.

(3) HD with u as parameters satisfies (2) of Criteria 2.3 if and only if for each v € {1, .., Zp,
Z1, ..., 21}, GB contains a polynomial whose leading monomial is some positive power of v.

Proof. Let I and I, be the ideal generated by HD in Klu,z,2] and K (u)[z,z] respectively.
We have the following simple fact:

(4.3.1) A polynomial P is in I, iff there is a u—polynomial U such that UP € 1.

As a particular case, 1 € I, iff there is a u~polynomial U such that U -1 €I, i.e., I contains
a u-polynomial. This proves (1).

(2) Let P’ be a minimal polynomial in z;. Then deg(P',z:) = deg(P,z;) because P re-
duces P’ to zero. On the other hand, there is a u-polynomial U such that UP is in the
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ideal of K[u,=,z] generated by HD. Thus, deg(P,x) = deg(UP,z,) < deg(P',z,). Hence
deg(UP,z1) = deg(P’,z,) and UP is a minimal polynomial in z;.

(3) The proof is similar to that of (3) of Theorem 4.1. i
Theorem 4.3 gives the following method.

Method 4.4 For Finding the Relation Set E.
Step 1. Compute the Grdbner basis GB as stated in Theorem 4.3.

Step 2. If GB contains 1, then give the answer: “the parameters u are not algebraically
independent.”

Step 3. Suppose GB does not contain 1. Tf it also does not contain a polynomial containing
the u and z, only, then give the answer: “z; is not algebraically dependent on the parameters

u”.

Step 4. Otherwise, let P(u,z:) be the onein GB with deg(P,z,) minimal. Thus, according
to theorems 3.2 and 4.3, the set of irreducible factors of Pin K[u,z;] containing z; is a relation
set among v and z.

Step 5. We can use (3) of theorem 4.3 to check whether Criteria 2.3 is fully satisfied, i.e.,
whether variables z; other than z; are all dependent on the parameters u. i

For most of our problems, method 4.4 is much faster than method 4.2. However, We have
also encountered some problems which could not be solved by method 4.4 within reasonable
time and space limits. One reason for this is that for some problems (see Examples 5.2 and 5.6),
there are more than one relations in the relation set {r1,ey i}, 1o, B > 1 Methods 4.2 and
4.4 work on some power of products of all 71,...,7%, which could result in very big polynomials in
the intermediate steps. The following method based on Ritt—Wu’s decomposition, works with
each relation 7; separately, thus can solve some problems which were beyond space and time
limits of methods 4.2 and 4.4.

According to Ritt-Wu’s decomposition algorithm 2 we have the following decomposition in
the variable ordering v < 21 < @z < -+ < Zp:

Zero(HS[DS) = u?_,Zero(PD(ASC})/DS) U Ub_,Zero(PD(ASC;)/DS), (4.5.1)
where all ascending chains ASC; and ASC; are irreducible such that (1) All ASC} does not con-
tain any u-polynomials and all ASC; contains at least one u—polynomial; (2) prem(dy, ASC} ) #
0 and prem(d;,ASC;) # 0 for all & € DS, i and j. Here we use PD(ASC) to denote

PD(ASC) = {g | prem(g; ASC) = 0}.

The zeros in Zero(HS/DS) = Zero(HS) — Zero(DS) are taken from an algebraically closed
extension F of K.

Theorem 4.5. Let the notations be the same as in the previous paragraph. Then

2 In this paper we assume the reader is already familiar with Ritt-Wu’s method. The reader
can find the details of the method in [7], [8], [3] and [4].



(1) The parameters u are algebraically independent wrpt HD iff a > 0.

(2) In that case, each z; appears as a leading variable in each ASCY , iff each z; is algebraically
dependent on the u.

(3) Assume that HD and the u satisfy Criteria 2.3. Let r;(u,21) (i = 1,...,k) be distinct
polynomials appearing as the first elements in all ASCy. Then {r(u,z1), ey Te(u, 1)} is the
relation set defined by HS and DS.

Proof. First we state the following repeatedly used fact:

For a polynomial P in the v and z, Zero(HD) C Zero(P)iff Zero(HS/DS) C P. This can
be seen from the proof of 3.3.

(1) Suppose a = 0, then according to decomposition (4.5.1), there is a u~polynomial U such
that Zero(HS/DS) C Zero(U). Thus Zero(HD) C Zero(U). Therefore, U is in Rad(H D);
hence for some k, U¥, which is also a u—polynomial, is in Ideal(H D). The u are algebraically
dependent. Now suppose that the u is algebraically dependent, i.e., Ideal( H D) contains a u—
polynomial U. Then Zero(H D) C Zero(U), which is equivalent to Zero(HS/DS) C Zero(U).
Since Zero(U) does not contain each Zero(PD(ASC})/DS), a must be zero.

(2) Each x; appears as a leading variable in each ASC; iff Zero(HS/DS) has only finitely
many solutions in K (u). This is equivalent to that Zero( H D) has only finitely solutions. This
proves (2).

(3) From decomposition (4.5.1), there is a u—polynomial U such that Zero(HS|DS) C
Zero(U-ry -+ 7). Thus Zero(HD) C Zero(U -y ---r;). By Hilbert Nullstellensatz, U-ry - - - 7
is in Rad(H D). If we remove any of 71, ..., 7%, 5a¥, Ts, then Zero(HS/DS), hence Zero(H D) is
not contained in U -7y -+-7;_1 for any u-polynomial U. Thus U -ry -+ -751 is not in Rad(H D)
for any u—polynomial U. Thus {ry,..,rz} is minimal to satisfy (1)—(2) of 2.4, hence is the
relation set of HD in the v and z;. i

Method 4.6 For Finding the Relation Set R.

Step 1. Use Ritt-Wu’s method to decompose Zero(HS/DS) as stated in the paragraph
preceding Theorem 4.5.

Step 2. If @ = 0, then give the answer: “the parameters u are not algebraically independent.”

Step 3. Suppose a > 0. If the first element of one ASC} does not contain the u and z, only,
then give the answer “z; is not algebraically dependent on the parameters u”.

Step 4. Suppose a > 0 and the first elements of each ASC} (i = 1,...,a) contain the u and
2, only. Then we can use (3) of Theorem 4.5 to obtain the relation set among the v and z;.

Step 5. We can use (2) of Theorem 4.5 to check whether Criteria 2.3 is fully satisfied, i.e,
whether each z; is algebraically dependent on the u. g

Remark 4.7. In the real implementation, we do not have to give degenerate part
Ub_,Zero(PD(ASC;)/DS)

explicitly. During the decomposition process, whenever a u—polynomial appears in a polynomial
set. We can delete that polynomial set, adding that u—polynomial as a factor of the polynomial
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U in formulation 2.4. Also add more degenerate conditions to DS can prevent the growth
of number of branches in the decomposition. This leads to the speedup of the process. TFor
Methods 4.2 and 4.4 based on the Grobner basis method, adding more degenerate conditions
to DS generally slow down the process or even lead to exceeding reasonable time limits (see
Example 5.7 below).

Remark 4.8. In certain sense, Step 5 of Methods 4.2, 4.4 and 4.6 is not necessary as far as
we are only concerned with the relation set among the u and z,, which is unique even if for
some z; (4 > 1) u1,...,u, and z; are algebraically independent. In that case, one might add
z; (renaming it to u,41) to the parameter set u,..,u,. Because of the Uniqueness Theorem
3.2, the relation set among i, ..., %41 and z; will be the same. Since Criteria 2.3 should be
satisfied if we understand the geometric problem and specify the parameters correctly, Step 5
serves at least as a warning to the user of a possible misunderstanding or incorrect algebraic
specification of the geometric problem.

5. Applications

We have implemented Methods 4.2, 4.4 and 4.6. The methods have been used in deriving
formula, finding theorems and locus equations. Below we give several examples to show how
various geometric problems can be solved by our methods.

5.1. Deriving Formulas
Example 5.1. The solution to Example 2.1 (Heron’s Formula).

H S is the same as in Example 2.1, DS is empty. Considering a, b and ¢ as the parameters,
we want to find the relation set among a, b, c and 4.

Using Method 4.2, GB of HS in Qa,b,c, k,z1,25] is

16k2 + c* + (=207 — 2a%)c? + b* — 2a%H* + o*
20z, — ¢ +b% —a?

axq — 2k

(2 = b%)zy — 4k, + 20k

8kzy + (2¢% — 2b*)x; — 3ac® — ab® + a®

22 + 37 - .

The first polynomial gives the relations we want, i.e., k = ++/5(s — a)(s — b)(s — ¢) where
s = (a+ b+ ¢)/2 (Heron’s formula).

Using Method‘é}.z;, we find GB of HS in Q(a,b,¢)[k,z1,2,] is

16k% + ¢* + (=26 — 2a%)c? + b* — 2a%0% + o*
20z, — & + b% — a®

azxs — 2k,
which gives the same result.

Using method 4.6 (in the ordering k < z; < %3), we have found one non-degenerate compo-
nent of HS with the corresponding ascending chain:
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16k2 + c* + (—20% — 2a®)c® + b* — 2a°0% + a*
2az, — ¢ + b2 — d?
ax, — 2k,

which gives the same result.

The following problem is beyond a reasonable time limit using Methods 4.2 or 4.4.
D
c

Fig. 3
Example 5.2. (Brahmagupta’s Formula) ABCD is a cyclic quadrilateral. Determine the

signed area of oriented quadrilateral ABCD in terms of its four sides (Fig. 3).

Let A = (0,0), B = (u;,0), ¢ = (z1,2;), and D = (z3,%4). Then the geometry conditions
can be expressed by the following set of polynomial equations H.5 with D5 empty:

hy = 2 4+ 2% — 2ui@y —ui +u3 =0 uy = BC
hg:a:ﬁ—2x2x4+x§-—2:c1$3+:v§+xf-—u%:() us = CD
hy =22 +al—uf=0 uy = DA

hy = w1222 + (w2l — uef + ulzy)zy + ur1z27E — uizaz3 =0 A, B,C, D are cocyclic
hs = 124 — T2%3 + U122 — 9k =0 kis the sum of the signed areas of ABC and ACD.

Selecting s, Ua, s, and ug to be parameters, we want to find relations among ui, Usa, U3,
u,, and k. Using method 4.6 (in the ordering k < z; < T3 < &3 < Z4), With certain human
interactions on the computer, we have found two non-degenerate components of HS with the
corresponding ascending chains:

ASCr =

ry = 16k + 1l + (=202 — 203 — 2uf)ujf — SusUsUsUa + ud + (—2ud — 2u?)ud +uf — 2uiud +ul
azy + b

(W2 + ul — ud — u])zy — dkay + 4wk

(222 + 2z%)23 + (—21 — 2uy )zl + dkay — 23 + (—ud + u3)m

T1Ta — ToTs + U1 Ty — 2k,

ASCy =

ry = 16k% +ul + (=202 — 2uj — 2ui)uj + BusUpUstia + ud + (—2u} — 2ud)ud +uf — 2uiul + )
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azy + b

(U2 + uf — ud — ui)zs — 4k +4urk

(202 + 223)35 + (-1 — 2u1)z] + 4kws — 28 + (—ul + u3)7:
2,24 — T2Ts + u1z2 — 2k

In the above polynomials, ¢ and b are some polynomials in the variables w1, Uz, Us, Us, and
k. Thus the relation set is {ry,72}.
c

N

C

Fig. 4 Fig. 5

The area k satisfies 7y = 0 or 75 = 0. To decide which one is the real case is generally beyond
the scope of our methods. This is typical in the original method developed by Wu for unordered
geometry. Actually, we even don’t know whether wu,, us, us, and uy are positive or negative.
However, for this simple case, we can use a special ezample to solve the problem. Taking ABCD
to be a unit square and assuming all uy, 42, us and u, are positive, we find that r, leads to
k? —1 = 0, while 7 leads to k% = 0. Thus r, is the real relation we want. It is the well-known
Brahmagupta’s formula: & = /(5 = u1)(s — ts)(s — us)(s — ua) Where s = (uy + us + us +
14)/2. The second relation 7, = 0 leads to k = ++/5(s — ug —us)(s —us — s (8 — up — ua)
which is a “reflection image” of the first one: when the number of positive variables among the
u are even, then 7, leads to the real result; when the number of positive variables among the
u are odd, then 7y leads to the real result. In either case, the formula is not only valid for the
case that ABCD is convex, but also for the cases as shown in Fig. 4 and Fig. 5. In Fig. 4, k is
the sum of the signed areas of oriented triangles AABO and ACDO. In Fig. 5, k is the sum
of the signed areas of oriented triangles ABCO and ADAO.

5.2. Discovering Theorems

One may guess by intuition that there is some relation or property among certain quantities
(denoted by variables) for a given geometric problem. If we know the exact relation, we can
use theorem provers (based on, e.g., Wu’s method or the Grobner basis method) to prove it.
However, if the exact relation is unknown, we might use the methods developed in this paper
to derive it.

Example 5.3. Solution to Example 2.2.
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Selecting us, 2, us, and 71 toO be parameters, we want to find the relation set among .,
Us, Us, Ty and 7o, Using Method 4.6 (in the ordering 73 < 1 < Z3 < T3 < Ty < I5 < Zs),
we have found Zero(HS/DS) has only one non-degenerate component with the corresponding
ascending chain ASCT =

e+ 1y — 1

us®y + (—ug + u1)us

Toy — T2%1 + Ui1T2 — U1
T1%3 — T2d2

(ug — 1 )Ty — UzTs + UslUs
%5 — 123

(21 — w1 )T — Uss + UrUs.

Thus, 7o + 71 — 1 = 0 is the relation among r; and 7, (and uy, Ug, Us )

A

Ia
Fig. 6

Example 5.4. Let I and I; be the two tritangent centers of triangle ABC, D be the intersection
of AT with BC. Find the cross-ratio (AD, II;) (Fig. 6).

Let B = (O,Q), C = (’lii,O), A= (Ug,ﬂg), Ii= ($4,$5), D= (33678), and 11 = (S:«',.Tg). Then
the geometry conditions can be expressed by the following set of polynomial equations H S with
DS empty:

hi = ulz? 4+ 2uusTaTs — uizi =0 LCBI=(IBA
hy = udzd + (((2uz — 2uq Juz)2s + (—2usus + 2u? Yus)ws — uiri+

2uiuiz, — uiud =0 LABI = LIBC
hs = (25 — Us)Te — UzTs + uzZs =0 Dison AT
hy = (24 — us)zs + (=25 + u3)Tr + UaTs — UzTa = 0 I, ison AT
hs = 2528 + z477 =0 BI L BI
he = (rzg + (=1 +1)Ta — s )T7 + (—Ta — Ul + U2 )To + UsT Ty = 0 r={(AD,I1).

Selecting wu;, uz and us to be parameters, we want to find relations among uy, ug, Uz, and
r. Using method 4.6 (in the ordering r < z4 < o5 < Tg < T7 < zg) we have found only one
non-degenerate component of Zero(H S) with the corresponding ascending chain ASCT =

r+1

Azt — 8w x5 + (—4uj — 4u2 + dugus + 4ud)al + (4uyu? + duguj — 4uiug)Ts — u?ug



(224 + 2uz — 2uy )Ty — 2usTy + ULl

(25 — ug)Te — U2Ts + UsTy

(rze + (=7 + 1)2a — u2)T7 + (=24 — 2T + Ug )T + UsT T4
(x4 — uz)zs + (25 + u3)Tr + U2®5 — UsTy.

The relation 7 + 1 = 0 tells us that the two tritangent centers divide the bisector they are
located harmonically.

D1

Bi Cy

Fig. 7

Example 5.5. (Menelaus’ Theorem for Quadrilaterals) If the sides AB,BC ,CD,DA of a
quadrilateral ABCD are cut by a transversal in the points Ay, B, C, D, respectively, Find the
relation among the ratios AA; /A, B, BB; /B,C,CC,/C: D, and DD, /D, A (Fig. 7).

Let A = (0?0), B = <u170), C = (ug,ug), _D = (%4,5{72), A} = (&/’“370)3 Bg = ($4,’,£’$5)’
¢, = (zg,27), and D; = (zs,29). Then the geometry conditions can be expressed by the
following set of polynomial equations HS with DS empty:

hy = UuaZg — T2Tg = 0 D, isonAD
hg:(ﬂg—-%;)@5-—l&3$4+%&1’i£3:{) B, ison BC
hs = (ug — U2)z7 + (=22 + Us)Te + Usy — Usla = 0 Cyison CD
hy = (24 — 3)T7 — T52s + T3Ts = 0 Ay ison B Oy
hs = (24 — T3)Ts — T5Tg + 325 =0 Ay ison By Dy
he = (r1 + )2z —uiry =0 r = AA, JA, B
hy = (1o + 1)24 — Ty — Uy =0 ry = BB, /B, C
hS:(Tg'}—l)&/"g-‘Uz;Tg—-UQZO Tg’:-ccl/ch
he = (ra + 1)zs —ua =0 rs = DDy /D A.

Selecting uy, Uz, Us, Ua, T1, T2, and rs to be parameters set, we want to find relations among
the parameters and r4. Using Method 4.6 (in the ordering 74y < 23 < 23 < T4 < %5 < ¥s <
2. < zg < Zgy), we have found only one non-degenerate component of Zero(HS) with the
corresponding ascending chain ASCT =

7yToTTy — 1

(((ug — u1)r: + U )T + U1 )T + UL U3T1T2Ts T ((—usus + urug)rs — Ug%a)T2
(r1 4+ 1)@s — uir

(rg + 1)zg — uaTy — U1
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(ug — uy)Ts — UzTs + U1 U3

(r3 + 1)zg — usTs — Us

(ug — uz)xr + (—22 + Ug)Tg + UsTo — Usls
(ra + 1)zs — ug

UsTg — ToTg.

The relation ry7o7374 — 1 = 0 is a well-known result. Using Method 4.4, we have found the
Grobner basis of HS = {hy, ha,hs,ha, s, he, hr, hs, ho} in Qug, ooy Ua, 71,72, 73)[Ta, Ty eeey To:

Ty TaTaTy — 1
(((ug — uy)71 + Uy )Py + U1 )T3T2 + ((—uzus + Uy Uz )T — Uzla )ToTs + U1 Us
(r1 + 1)z —ugms
(12 + 1)xg — uaT2 — U
(re + 1)xs — usrs
(r3 + 1)ze — uaTs — Us
((((ug —u1)rs + ug 7o + ur)rs + (U — Yry + ug)Te + Uy )27
+(((~usus + vy us)ry — ugtg )72 )73 + (((—u2 + Uy YU )Ty — UsUs )T2
(rirars + 1)Tg — UaT1T2rs
((((ug — uw)ri + UpTy )72 + uyrima)Ts + (U2 — )Ty + Uz Yry 4 uy)Te
+(((—usua + wrus)r? — usuary)T5)7T3 + ULUST1T2,

which gives the same result.

E
Fig. 8

Example 5.6. Let D be the intersection of one of the bisectors of LA of triangle ABC with
the side BC, E be the intersection of AD with the circumcircle of ABC. Find the relation
among AB,AC,AD, and AE (Fig. 8).

Let A = (0,0), C = (z1,22), FF = (21,33), B = (z4,25), D = (u1,0), and E = (u3,0). Then
the geometry conditions can be expressed by the following polynomial equations HS:

hi =xz3+2: =0 F and C are symmetric w.r.t the x-axis
ho = x5 — 2374 =0 Fison AB
hy = (21 — U1 )T5 — T3Zg + U122 =0 Dison BC
ha = s @22 + (—ua? — us2? + uday )25 + UgTa Tl — UsToTs =0 A, B,E,C are cyclic

hy =z224+zi—-ui=0 us = AB
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he =22 +2?—uj=0 ug = AC,
together with the following set of polynomial inequations DS5:

di =z, #0 Cisnoton AB
dy, =22 #0 C is not on A3,

Selecting u;, Uz, and ug to be a parameters of the problem, we want to find relations among
Uy, Us, uz and ug. Using method 4.6 (in the ordering uq < 71 <23 <3 < T4 < z5), we have
found two non-degenerate components of Zero(HS /DS) with the corresponding ascending
chains ASCT =

Ty = UzlUg — UglUsg
Qo — UL — Usly
&} + a3 - g

T3 + @9

UgTg — Uzl

T1Ty — T3T4a,

and ASC) =

Ty = UzUg + Uil
Qupy — U5 + Usls
22+ azd — u?

T3 + 2o

UgZy + UsTy

1Ty — L34

Thus we have the relation set {r,,7;}. As in Example 5.2, 75 is a “reflection image” of ;.
Assume all u;, ug, usz and us to be positive, 73 #£ 0, thus the real relation should be r; = 0.

5.3. Locus Problems

The algorithms described in this paper can also be used to find geometry loci. A locus of a
point is actually the relation between the coordinates of this point and some other quantities
(coordinates, lengths, etc) which are given (and fixed) in the problem. So if we take one of
the coordinate of the locus point and the given quantities as parameters, then the relation set
among the parameters and the other coordinate of the locus point found by the methods in
Section 3 are the locus equations for that point.

Example 5.7. (Peaucellier’s Linkage) Links AD, AB, DC and BC have equal length, as do
links EA and EC. The length of F'D equals the distance from E to F. The locations of joints
E and F are fixed points on the plane, but the linkage is allowed to rotate about these points.
As it does, what is the traces of the joint B? (Fig. 9)

Let F = (0,0), E = (1,0), C = (z3,92), D = (z1,%1), and B = (2,y). Then the geometry
conditions can be expressed by the following set of polynomial equations H.S

hy =y +2i—7r"=0 r=FD
h2:y§—2y1y2+$§-zﬁixz+y5—§—x§—-n2-—m2:6 CD =n?+ m?
h3:y§—nyg+$§~2$x2+$2-§—y2——%2—m2:0 CB =n? + m?

h4:y§+x§——27’:62—~n2——4rn——m2—-37“2:8 EC =(n+2r)* + m?
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Fig. 9

h5:<$__:r)y1_yxl+ry:0 EiSOIlDB,

together with the following set of polynomial inequations DS 3
d1:$1~x¢0 B#D

Selecting m, n, 7, and y to be the parameters of the problem, we want to find the relation
among m, n, 7, y and z. Using Method 4.6 (in the ordering z < z1 < 31 < T2 < Y2 ), We
have found Zero(HS/DS) has only one non-degenerate component with the corresponding
ascending chain ASCT =

z+2n+7
(2% — 2ra + y* +77)ey + 12’ - 2r%z - ry? +1°
(z —7)ys — Y21 + 7Y
4z? — 8rg 4+ 4y? +4r2) 2l +(—4z% +4ra® + (—4y® — 167n — 127z —4ry® + 16720+ 1273 )zo +
2
2t + (297 + 8rn + 672)z? + y* + (—4n® — 8rn — 4m? — 6r2)y? + 167°n? + 24730 + 9r*
Y
2y, + (22 — 21)T2 — z? — y? — 4rn — 3r%.

The relation = = —2n — 7 tells us that the locus is a line parallel to the y-axis.

Example 5.8. (M. Paterson’s Problem). Three similar isoceles triangles, 4, BC, AB,C, and
ABC, are erected on the three respective sides, BC, CA, AB, of a triangle ABC, then AA,
BB,, and CC; are concurrent. Find the locus of the points of concurrency as the areas of the
three similar triangles are varied between 0 and infinity (Fig. 10).

Tet A = (O,O), B = (ul,()), C= (u’ZauS)a 0= (33719), Cl - (15271'1), Bl = (IE4,$3), and
Ay = (zg,2s). We will find the locus of the intersection points of CCy and BB;. The geometry
conditions can be expressed by the following set of polynomial equations H S with DS empty:

3 The Grobner bases method is sensitive with the choice of the set DS. For this example, if
we use {BD = (z1 — z)? + (y. — y)* # 0} as the set DS, the problem is beyond the time limit
using Methods 4.2 and 4.4. But Method 4.6 based on Ritt-Wu’s decomposition does not have
a similar problem. Actually, the more polynomials in DS, the less (degenerate) components
will be in the Ritt—-Wu’s decomposition process. Hence the less time it takes generally. Thus
we can add some non-degenerate conditions, which, though can be excluded by the selection of
parameters, are geometrically reasonable, to DS to speed up Method 4.6.
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By
C
Ay
s}
A B
Ci
Fig. 10
hy = (2 — ug)zs + (¥ + Uz )&y + Uy — usT = 0 i ison OC
h2:2x2—u130 ClAEClB
hs = (z — u1)%3 — YTa + Wy =0 B, ison line OB
hy = 2uzx3 + 2UsT4 — ul—-u2=0 BiA= B, C

hs = (Uus®i — Uiyl )T3 + (uy ey + U1 U3Z2) T4 + (—uiud — wud)z, =0

tan(BAC;) = tan(AC By).

Selecting uy, us, us, and = to be parameters of the problem, we want to find the relation
among u;, us, Us, z, and y. Using Method 4.6 (in the ordering y < z» < 21 < Z4 < Z3),
we have found one non-degenerate component of Zero(HS) with the corresponding ascending
chain: ASCY =

((2un —ug Yus )y +((—2u3 +2u3 —2us uy +2ud )z +uyuld —uy ud —udus )y + (= 2us +uy Jug )2 +
((2uyug — ul)us)z

232‘2 - 1

(z —us)zy + (—y + U3)Ty + Uy — Us®

(2usy + 2us® — 2u Uy )Ta — 201 sy + (—ud —ud)z + ugud + usud

: 2 2
Q2UsZg -+ 2UZT4 — Uz — U

The locus is a hyperbola.

6. Experimental Results

We have used Methods 4.2, 4.4, and 4.6 to solve the eight problems in Section 5. The timing
is shown in the following table.

The time is specified in seconds (on a SUN-3/280). For examples 5.1, 5.3, 5.4, 5.5, 5.7 and
5.8, the three methods gave the same results. Examples 5.2, 5.4, and 5.6 were beyond the time
limit using Methods 4.2 and 4.4. With some human interactions, we have solved Example 5.2
using Method 4.6.

We have used Method 4.6 to solve about 120 problems [5], among which four have been
solved with certain human interactions; the remaining have been solved automatically by the
program. 14 among the 120 problems were beyond the time limit using Method 4.4. Method
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Examples Method 4.2 Method 4.4 Method 4.6
5.1 1.450 0.733 3417
5.2 > 3600 > 3600 *ok
5.3 34.550 5.517 11.833
5.4 > 3600 > 3600 27.267
5.5 > 3600 17.217 13.517
5.6 > 3600 > 3600 28.217
5.7 > 3600 25.183 45.100
5.8 91.500 6.017 5.583

4.9% is much slower and could solve less problems than Method 4.4. The reader can find more
detailed information in the collection [5].

[7]
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