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ABSTRACT
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nature, and involve relating the conversion system to existing protocols. The third approach,
which is new, is “top-down:” the desired global properties of the conversion system are used in
deriving the converter. An example is used to illustrate each method. We discuss more general
forms of the abstract problem in the context of layered network architectures.
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1 Introduction

Computer communication networks today practically span the globe. Yet achieving useful
communication between programs residing in different computer systems remains a nontriv-
ial problem. Often this is because the systems are designed to communicate using different
protocols: the form and meaning of the messages they send are governed by different sets
of rules and procedures. In Figure 1, system Py is designed to communicate with system
P1 using protocol P, while Qo and Q,; are designed to use protocol Q. When Py needs to
interact with Qq, a protocol mismatch exists.

The existence of different protocols to perform the same function is a fact of life that is
unlikely to change. One reason for this is the large installed base of systems from various
manufacturers, whose different protocol architectures were developed prior to the definition
of adequate “open system” standards.! Another reason is that communication protocols
evolve with technology. In other words, we are still learning how to build networks, and
we will continue to learn. As new protocols replace old ones, several “generations” of ar-
chitecture may coexist at any time, and upward compatibility may eventually be sacrificed
for superior performance. Still another reason, noted in [12], is the desirability of having
different protocols for the same general purpose, to serve the needs of different user commu
nities. For example, a protocol optimized for transfer of bulk data over long-haul networks
will differ from one intended for transfer of interactive terminal session data over the same
networks [7]. For these and other reasons, convergence to a single protocol architecture is
likely to take a long time, if indeed it ever occurs.

The most obvious solution to the problem of Figure 1 is to modify Py or Q, or both,
to achieve compatibility. This may in fact be the best solution in some cases. However, in
general it is tantamount to convergence to a single architecture, and therefore we seek other
solutions. If we cannot modify Py or Q,, some form of translation between protocols would
seem to be the best alternative. Figure 2 shows an intermediary called a protocol converter,
which translates messages sent by Pg into messages of protocol Q, forwards them to Q;, and
performs a similar translation in the other direction. Protocol converters of this kind have
been mentioned in the literature, where they are sometimes called “gateways” [10, 14, 35].
We use the term protocol conversion to refer to the general approach of using translation to
solve protocol mismatch problems.

Green [13] considered the general problem of protocol conversion and thoroughly exam-
ined many of its practical aspects. He pointed out that no general solution methodology
is known, and suggested that the formal methods used in specification and verification of
protocols might form the basis for “a deeper and more systematic calculus of conversion.”
Since then, some approaches based on formal methods have been proposed [21, 31]. In this
paper, we consider the application of formal methods to the problem of finding a protocol
converter. After formalizing the problem, we discuss and compare three methods that might
constitute part of a “calculus of conversion.” The approaches of Lam [21] and Okumura [31]
can be seen as “bottom-up,” heuristic methods; the third, a new approach, is “top-down”

Indeed, some might say that adequate standards do not yet exist.



and algorithmic, but computationally hard.

Note that it is not our intent to advocate protocol conversion as the preferred solution or
only solution to protocol mismatch problems. Rather, it is our hope that a precise definition
of the problem and experience with various solution methods will enable classification of
protocol mismatch problems according to whether conversion is a reasonable solution.

The rest of this paper is organized as follows. In Section 2, we formalize the problem
and introduce a simple example. In Sections 3, 4, and 5 we present three solution methods,
and apply each to our example problem. In Section 6 we consider the problem as it may
actually arise in the context of layered network interconnection. Section 7 contains some
conclusions.



2 Formalizing the Problem

For the purposes of this paper, a formal method for specification and verification of a protocol
system has three parts:

e A way of precisely describing the components of an implementation of the protocol and
how they interact. In the context of a layered network architecture, the components
of an implementation include the protocol “peer entities,” and the lower-level services
they use.

e A way of defining the correct behavior of the protocol system. For a protocol in a
layered architecture, its desired correct behavior is often specified in the form of a
service to be provided to the users of the protocol system.

e A definition of what it means for a specified implementation to satisfy a correctness
specification, i.e., a semantics.

If there is to be any systematic and general approach to protocol conversion, we must ab-
stract from details of the protocols and their function. Exploring the problem within a
formal framework of this kind enables us — indeed, forces us — to take intuitive notions
such as “achieving useful communication” and “protocol incompatibility” and make them
precise and rigorous. Formal methods are also advocated as a way of managing the inherent
complexity of concurrent systems; because they involve multiple protocols, conversion prob-
lems are likely to be even more complex, and formal methods may in fact be a necessity.
Finally, because specifications are represented in a precise mathematical form, there may be
classes of systems for which automatic generation of converter specifications is possible (we
shall see that this is indeed the case).

It must be noted that few (if any) of the protocols and services in wide use today have
been formally specified as described above. A systematic approach based on a particular
formalism can be applied to existing implementations and services only after they have been
specified in that formalism. This is likely to be a nontrivial task, and there is generally
no way to prove that such a post hoc specification adequately captures the behavior of an
implementation. Nevertheless, it is instructive to investigate what can be accomplished
given the requisite formal specifications. By solving problems using formal models, we may
obtain fundamental results, which can then be applied to real problems.

2.1 Conversion Problem

Referring again to Figure 1, suppose protocols P and () provide services that are similar,
but differ in certain details. The protocol P implementation consists of the peer entities Py
and P;, while Q consists of Q¢ and Q. (This is a simplified view of the problem; an imple-
mentation may, of course, have more than two components, including services implemented
by lower-level protocols. We consider some of these cases in Section 6.) Now, suppose Pg
and (; are able to exchange messages. We would like to use Pg and Q; to provide a service
similar to that provided by P and (. We are given formal specifications of Py and (J;, and
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a specification S¢ of the desired service. We want to specify a converter, C, which will help
Py and Q1 to implement the service defined by S¢ (Figure 3). There may be any number of
converters satisfying these requirements. A general solution method for this problem would
enable us to produce a correct converter, or an indication that no such converter exists, from
specifications of P and Q, and Sc.

It is important to realize that the notion of incompatibility of protocols — which we
equate with the nonexistence of a converter in the problem just defined — only makes sense
relative to a given required service. Any converter will suffice if the conversion system only
has to satisfy the trivial specification “true.” The idea is that the service specification S¢
defines the minimal properties required by the users of the conversion system. The notions
of “hard mismatch” and “soft mismatch,” discussed by Green in [13], can be interpreted
in this context. When protocols are not compatible with respect to any useful service, a
hard mismatch exists. In a soft mismatch, no converter can give the full functionality of the
original protocols, but a converter exists for a less powerful, but still useful, service. Thus,
Sc defines the boundary between a “hard” and “soft” mismatch.

Our assumption that a formal specification for the correctness of the conversion system
is part of the problem input is a significant one. Even if specifications of the services
implemented by P and Q are available, S¢ will, in general, differ from both of them. (For
example, the user interfaces of Py and Qo may differ.) Techniques for deriving S¢ from
existing service specifications are of interest as an alternative to constructing S¢ “from
scratch,” i.e., by formalizing the functional requirements of the users. We consider the
problem of obtaining S¢ to be separate from the conversion problem, however.

2.2 Specifications

While the above formulation of the problem is independent of any particular formalism, a
solution method may require that specifications be given in a particular notation. In this
section, we briefly discuss the formalisms to be encountered in the methods described later.
The reader is assumed to be familiar with the basics of protocol specification and verification.

For each of the methods we describe, protocol components are specified as interacting
state machines. The Lam and Okumura approaches assume a message passing model. In
this model, components interact and change state asynchronously, by sending and receiving
named messages over unidirectional channels. Each event (sending or receiving a message)
occurs under the control of exactly one component, and the channels form the interface
between components. The approach presented in Section 5 is based on a “rendezvous” model,
in which interaction between two components occurs synchronously, via named actions. Such
an action can take place only if both components are “ready” for it, and the resulting state
changes happen simultaneously in both components. In this model, communication channels
are specified as separate components of the system.

A state machine is defined by a state set, including a distinguished initial state, and a
set of state transitions. The state transitions tell how the state of the specified protocol
component changes through interaction with its environment. (By “environment,” we mean
the users of the protocol, or other components of the protocol implementation.) If s and s’



are states, and there is a transition from s to s’ associated with event e, we write s = s'.
(The term “event” refers to the kind of interaction appropriate to the context: sending or
receiving messages in the message passing model, or synchronized actions in the rendezvous
model.) When the state machine reaches state s in the course of its execution, we say the
transition to s’ and the associated event are enabled. The behavior of the component is
modeled by the possible sequences of state transitions and associated events beginning in
the initial state. If we regard a state machine as a directed graph, with states as nodes and
transitions as directed edges, then the behaviors of a component correspond to the paths in
this directed graph beginning in the initial state.

The behavior of a collection of interacting protocol components is modeled by a global
state machine, formed from the state machines of the individual components. The state of
this global system is a tuple comprising the state of each component (and each channel).
Each transition of the global state machine comes from one of the component state machines;
global state transitions occur instantaneously and indivisibly. A behavior of the global
system is a linear sequence of states and transitions corresponding to a path through the
global state space; concurrency is modeled by the possibility of events occurring in arbitrary
order.

A correctness specification defines aspects of the desired global behavior that ensure that
any implementation provides the desired service. It tells the users of a system what kind of
behavior to expect, while leaving unspecified the details of how that behavior is achieved.
Safety properties define the system’s allowed behavior. If we think of a behavior as a
sequence of interactions between the protocol system and its users, then a safety property
can be viewed as prohibiting certain “bad” sequences or states. Progress properties, on the
other hand, define required aspects of system behavior, e.g., that some response is generated
for each input. Safety and progress properties of a global state machine can be defined using
formulas of temporal logic [27, 25, 23, 3], or in terms of another global transition system
having the desired properties [19, 22, 26].

We represent component specifications (state machines) pictorially in the form of directed
graphs, as described above. The initial state is represented by node 0. The label “~m” on an
edge indicates that message m is sent when that transition occurs; “+m” denotes receipt of
the message m. Other labels denote other kinds of interactions besides sending and receiving
of messages, e.g., timeouts. Where multiple labels appear on a single edge, a transition is
associated with each of the indicated events.

In what follows, we shall not be too fussy about distinguishing between components
and their specifications: the phrase “the component A” can be understood to mean “the
specification of component A.” Similarly, “finding a converter” can be read as “finding a
specification for a converter.”

2.3 An Example

In the next three sections, we describe and compare three methods for solving the problem
defined above. As an aid to understanding and comparison of the methods, we pose a simple
example problem and apply each method to it. The example involves a mismatch between



the venerable Alternating-Bit (AB) protocol and a protocol that does not use any sequence
numbers, called the non-sequenced (NS) protocol. Both provide delivery of data from a
Sender to a Receiver in spite of possible message losses by the transmission medium. For
the example problem, it is desired to transfer data from an AB Sender to an NS Receiver.

The protocol specifications are shown in Figures 4 and 5, respectively. The “acc” and
“del” events model interaction with the user, denoting acceptance of a data unit from the user
at the Sender end and delivery of a data unit to the user at the Receiver end, respectively.
To distinguish between the messages of the two protocols, AB messages have all-lower-case
names, while those of NS are capitalized.

The AB Sender (Ay) attaches a one-bit sequence number to each data unit transmitted;
the data messages are thus represented as “d0” and “dl.” The Receiver (A;) uses this
number to synchronize with the Sender and determine whether a received data message has
already been delivered; this mechanism ensures that each data message is delivered ezactly
once. An acknowledgement message, containing the sequence number of the last-delivered
data message (“a0” or “al”), is returned for each data message received.

The NS protocol has no sequence numbers; a data message is represented by “D.” The
Receiver (N;) simply delivers every received data message, and returns an acknowledgement
message “A.” The Sender (Ng) repeatedly transmits the data until an acknowledgement is
received; if an acknowledgment is lost, the same message may be delivered several times
by the Receiver of the NS protocol. The service implemented by the NS protocol is thus
“weaker” than that of AB.

Both protocols use the standard technique for detecting losses, namely timeouts. Because
our simple specifications do not include an explicit notion of time, we use other techniques to
represent loss/timeout behavior. In the message-passing model, “virtual messages” model
the causal relationship between lost messages and subsequent timeouts, as introduced in
[5]; these messages and their associated transitions are not part of the protocol itself. We
assume there are no premature timeouts. Whenever a timeout occurs (represented by receipt
of a “4em” or “Tm” message), it is the result of losing a data or acknowledgement message
(represented by sending “Is” instead of data, or “tm” instead of an acknowledgement). This
way of modeling losses and timeouts is not always valid; it works here because of the stop-
and-wait nature of the protocols. In Figures 4 and 5, the virtual messages are parenthesized
because they are part of the protocol specifications in the message-passing model, but not
the rendezvous model. In the rendezvous model, losses and timeouts are represented directly
in the specification of the transmission media (section 5.5); the AB Sender has a “tm” action
corresponding to each “+tm” in Figure 4, and similarly for NS. Again, a timeout occurs
only after loss of a data message or an ack message.



3 Conversion via Projection

Lam showed how the techniques of protocol projection [22] can be used to reason about
the correctness of conversion systems, and in some cases to derive a converter specification
[21, 20]. In the context of protocol verification, projection is a way to focus on the aspects of
each system that are relevant to the properties to be proved. This is achieved by projecting
the system onto an image protocol. The method is based on the following result: let P be
a protocol, and P’ its image protocol under a projection mapping. For any safety property
of P’, there is a corresponding safety property that holds for P. If, in addition, transitions
of the image protocol satisfy a well-formedness condition, then an analogous result holds
for progress properties. (A statement and proof of the above results using temporal logic
can be found in [23].) The projection method can be used for protocols specified with finite
state machines, in a programming language notation, or in a relational notation [23, 24].
The message passing model is assumed, and communication channels may lose, duplicate
and reorder messages in transit.

3.1 Image Protocols

We briefly describe the projection method. An image protocol is derived from a given
protocol by partitioning the state set of each protocol component; states in the same block
of the partition are considered to be indistinguishable in the image of that component. This
defines a mapping from each component state to a state in the image component. The state
space partition induces an equivalence relation on the set of messages sent and received in the
protocol. Messages whose receptions cause the same image state transitions are considered
equivalent, and are mapped to the same image message. Messages that cause no change in
the image state of their receiver do not appear in the image protocol at all, and are said to
have a null image.

A simple example of a protocol projection is shown in Figure 6; the original protocol is on
top, with its image below. Primes indicate image quantities. States 0 and 1 of each original
protocol component are indistinguishable in the image; thus Py’ and P;’ each have only two
states. Because neither message “x” nor message “y” causes any image state change, each
has a null image.

One type of safety property is an invariant: a predicate that is true at all states reachable
by a path in the global state machine. An invariant of the image protocol in the figure is
(pb = 0') = (pi = 0), where pj, and p| represent the state of the left and right image
components, respectively. FEach state 0’ is the image of original states 0 and 1, so the
corresponding invariant of the original protocol is (pg =0V pp=1) = (p1 =0V p, = 1).

3.2 Common Image Protocol

Conversion can be considered as a solution to a protocol mismatch only when the protocols
“provide similar services.” Projection can be used to formalize this notion. Suppose pro-
tocols P and Q can each be projected onto the same image protocol, say R. Then R, the



common image, embodies some functionality that is common to P and Q. Each protocol has
properties corresponding to those of R; each has messages whose meanings correspond to
those of R. On the other hand, messages that have a null image in the projection have no
meaning with respect to the common functionality represented by R. The common image R
defines a semantic correspondence between states of P and states of Q: states with the same
image have the same meaning with respect to the service implemented by R.

If a common image with adequate functionality can be found, specification of a converter
is straightforward. The projection mapping defines an equivalence between the messages of
P and Q, just as it does for states: messages with the same image have the same “mean-
ing.” This static equivalence can easily be implemented by a stateless converter, as follows:
whenever the converter receives a message, it immediately forwards a message of the other
protocol that has the same image. Null-image messages are ignored. It can be shown that
the common image protocol is an image of the resulting conversion system; thus the conver-
sion system has safety properties corresponding to those of the common image. If the image
is well-formed in each projection, then the correspondence holds for progress properties as
well.

It is always possible to find a common image for any two protocols: the degenerate pro-
tocol, in which each component has only one state and no transition, is a well-formed image
of every protocol. The problem is to find an image protocol that satisfies the conversion ser-
vice specification Sg. This is a process that must be carried out heuristically, using intuitive
understanding of the protocols. Unfortunately, a common image protocol satisfying S¢ may
not exist.

3.3 Example

When no common image with the desired characteristics can be found, a finite-state con-
verter may be constructed based on intuition. Projection can also be useful in proving
properties of a system with such a converter. This is illustrated in [1], and also by our
example problem involving AB and NS, as shown in [21]. Refer to Figure 7, which shows a
projection of Ag that resembles Ny, but is not quite the same. The difference is the “--a0”
and “+al” transitions from image state (2/5) to image state (1/4), which are not present in
No. After receiving an acknowledgement, the image Sender may still retransmit data. Thus,
we cannot statically map “A” to either “a0” or “al.” We therefore propose a converter
of more complex structure, one that emulates the AB Receiver and the NS Sender in an
alternating manner (Figure 8).

We can derive properties of this conversion system by viewing as a single component
the subsystem consisting of C, Ag, and the channels between them (Figure 9). As shown
in [21], this composite system can in fact be projected onto Ng by partitioning the subsystem
states based on the states of C. With N; projected onto itself, the conversion system has
NS as a well-formed image. Similarly, the system can be projected onto AB by aggregating
C and N;. It follows that the properties of AB hold for the communication between the
Sender and the Converter, and those of NS hold between Converter and Receiver. Using
these properties, and the structure of the converter, we can deduce properties of the global



system. The AB protocol guarantees that each accepted message will be delivered exactly
once. The NS protocol, however, guarantees that each accepted message will be delivered
at least once. What can we say about the service of the conversion system?

Informally, we reason as follows. In the projection of C and N, onto A;, the “+A” event
maps to the “del” transition in the image. Thus we can infer (from the properties of AB —
not given here explicitly) that “+A” occurs exactly once for each “acc” event. However, as
we have already noted, “del” can occur at N; several times for each occurrence of “+A” at
Ng because of the possibility of losses. Thus, the service of the whole system corresponds to
that of NS. If the desired service is that of AB, then converter C must be connected to the
NS Receiver by reliable channels that do not lose messages.

3.4 Discussion

The projection method provides a sufficient condition for finding a useful converter to over-
come a protocol mismatch. If a common image protocol with the desired properties can be
found, a very simple converter can be obtained easily. However, such a common image need
not exist, and must be sought using intuitive understanding of the protocols. Projection can
also be used to reason formally about correctness of converters obtained by other methods.
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4 Okumura’s Approach

Another approach to the problem of Figure 3 has been presented by Okumura [31]. For this
method, the protocols must be specified as finite-state machines (FSMs), which interact by
passing messages over channels. The sets of messages sent and received in each protocol
are assumed to be disjoint; this is easily achieved by renaming of messages, if necessary.
The method employs an algorithm to construct a converter from components of the original
protocols and a partial specification of the converter’s behavior. For protocols P and Q,
where communication between Py and () is desired, the input to the algorithm consists of
P, Qo, and an additional FSM called a conversion seed.

4.1 The Algorithm

Okumura’s algorithm is based on a somewhat different idea of correctness for the conversion
system than that of Figure 3. In particular, there is no explicit definition of a service to
be provided to users; indeed there is no notion of “users” in the model at all. Instead, the
conversion system is considered correct if it is free from deadlock and unspecified reception,?
and if the converter, C, satisfies two requirements. The first is that C must be a reduced-FSM
of Py in its communication with Pg, and a reduced-FSM of Qg in its communication with
Q1. This is defined as follows. For communicating FSMs A, B, and E, “A is a reduced-FSM
of B in its communication with E,” means that

(i) for every path in A, there is a corresponding path in B that has the same sequence of
send and receive events (of messages to and from E); and

(ii) if a path in B that corresponds to some path in A can be extended by reception of a
message from E, then the corresponding path in A can also be extended by the same
reception event.

This property of the converter implies that any sequence of messages sent by C to Pg (Qy)
is a sequence that could have been sent by P; (Qo). If the original protocols are free from
deadlock and unspecified reception, this is a sufficient condition for the conversion system
to be free from those faults.

The conversion seed defines the other required property of C as follows. The seed — call
it X — is a finite state machine whose message set is a subset of the union of the message
sets of Py and Qp. This message set contains the significant messages of the conversion, and
X defines a constraint on the order in which these messages may be sent and received by the
converter. In particular, each of the converter’s possible sequences of sends and receives of
significant messages must correspond to some sequence of sends and receives of X. Messages
that are not in X’s message set are unconstrained and may be sent or received at any time
by the converter, as long as the reduced-FSM requirement is satisfied.

?An unspecified reception is a reachable global state in which a message is at the head of some channel,
and the receiving component has no receive event specified for that message.
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Figure 10 shows a simple example, adapted from [31]. We want to provide communication
between Po and Q. The “data” message of P corresponds to the “msg” of Q, so we want
each “msg” received to be forwarded as “data” by the converter. The seed X specifies
that “+msg” and “~data” events must alternate. For inputs P, Qo, and X, the algorithm
produces the converter shown in Figure 11. Note that the “~data” for a given “4-msg”
need not occur immediately, but may be preceded by any number of “poll,end” exchanges
between Py and C.

The algorithm constructs a converter from the input FSMs, Py, Qo, and X, in several
steps, as follows. Let Sp, and Sg, represent the state sets of Py and Qq, respectively. Let e
and f represent arbitrary send or receive events.

1. Construct a FSM Y with states {p, ¢), where p€ Sp, and g € Sg,. For each ¢, and each
transition p - p’ of Py, Y has a transition (p,¢) = (p/,q). Similarly, for each p, and

each transition ¢ EA g’ of Qo, Y contains a transition (p, ¢) ER {p,q').

2. Remove transitions of ¥ that violate the constraints defined by the conversion seed,
by combining Y and X to form FSM Z as follows. Z has states (y,z), where y is a
state of Y and z is a state of X. For each transition y — 3’ of Y involving a message
that is not significant, Z has a transition (y,z) = (y/,z). If the message is significant,
then there is a transition (y,z) = (y’,#') in Z if and only if there is also a transition
z =z in X.

3. Mark all states (y, z) of Z such that either (y, ) has no outgoing transitions, or there
is a receive event y ¥ y’ of ¥ for some m and y’, with no corresponding receive
event (y,z) it {y',2') in Z. Remove marked states from Z, together with all their
incoming transitions, thereby possibly creating new marked states (by removal of a
receive transition or the last outgoing transition of a state). Iterate as long as there

are marked states.

Upon termination, the remaining states and transitions, if any, form the correct converter.
The running time of the algorithm is polynomial in the product of the sizes of P; and Q.

A component FSM is said to be effective in a protocol if for every sequence of messages
that can be sent and received by the component, there is a path in the protocol system’s
global state machine containing the same sequence of events. If the input FSMs P and Qg
are effective, and the state set of Z is empty when the algorithm terminates, it means that
the reduced-FSM requirement conflicts with the requirements of the conversion seed. Thus,
failure of the algorithm to produce a converter means that none exists for the given inputs,
provided the inputs Py and Qg are effective in their original protocols.

Okumura considers an unspecified reception to occur when a message appears at the head
of a channel and no receive event is specified for it in that state of the component. This is a
strong condition — usually it is not considered an unspecified reception if the message can
eventually be received after some sequence of sends and/or internal transitions. Under the
Okumura definition, removal of a receive transition from an effective FSM will result in an
unspecified reception. If the algorithm fails to produce a converter for effective protocols,
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the conclusion that no converter exists is based on this strong definition; a converter that
would be considered correct under the usual definition of unspecified reception could exist.

4.2 Example

The input for our example includes the specifications of the AB Receiver (A;) and NS Sender
(Np) from Figures 4 and 5. The algorithm permits only send and receive transitions, so the
“acc” and “del” events and associated transitions of A; and Ng are removed. For the required
service, we want every message accepted by Ag to be delivered by Ny eventually. Clearly,
“d0” and “dl” should be forwarded as “D” by the converter; our conversion seed should
reflect this. However, the algorithm is sensitive to the way this functionality is represented
in the seed. With the naive seed shown in Figure 12, the algorithm fails to produce a
converter. (The input FSMs are not effective, so we cannot conclude that no converter
exists for these inputs.) The seed of Figure 13, however, produces the converter shown in
Figure 14. Analysis of a system including this converter shows that the service provided is
similar to that of NS.

4.3 Discussion

A general method for solving the problem of Figure 3 using Okumura’s algorithm is the
following. From the service specification Sc¢, construct (heuristically) a conversion seed X,
and run the algorithm on Py, Qq, and X. If a converter C is produced, analyze the system
comprising Pg, C, and Q. If this system satisfies S¢, then C is the desired converter;
otherwise, iterate with a different seed.

The algorithm allows efficient construction of the converter from the existing components
P; and Qq, provided a suitable seed can be found. However, desired global properties of the
conversion system cannot be input directly; a service specification given in terms of Pg
and Q; must be changed into a conversion seed constraining the converter’s behavior. As
we have seen, this transformation may not be straightforward. Moreover, if the algorithm
fails to produce a converter, it is difficult to conclude that a hard mismatch exists (even if
the protocols are effective), because the problem may be in the way the conversion seed is
specified, or due to the strong definition of unspecified reception.
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5 The Quotient Approach

In the previous two methods, finding a converter involves relating the conversion system to
the original protocols or to some other protocol. The global service specification enters the
picture only after this relationship has been established. The advantage of this approach
is that a converter can be efficiently constructed; the disadvantage is that no systematic
way of finding the desired relationship — a satisfactory common image protocol in the
projection method, or a proper conversion seed in the Okumura method — is available. It
is also difficult to conclude with certainty that the required service cannot be provided with
the given protocols. In contrast to these “bottom-up” approaches, a “top-down” approach
would derive the converter directly from the given specifications, and give precise conditions
for detection of a hard mismatch. In this section, we describe such an approach.

Consider the problem depicted in Figure 15. Let A be a service specification, and let B
specify one component of an implementation. B has two interfaces; one is “external,” and
is the same as the interface of A, while the other is “internal,” comprising a set of possible
interactions between B and another component. The goal is to specify another component
C, which interacts with B via its internal interface, so that the behavior observed at B’s
external interface implements the service defined by A. Let the operator “||” on specifi-
cations represent interaction between components, and let satisfies be a relation between
specifications that means one implements the service defined by the other. We want to find
C such that (B || C) satisfies A. By analogy with the problem of finding the multiplicative
inverse of a number, we call this the quotient problem: in effect, we want to “divide” A by
B. As with real numbers, a quotient does not exist for every A and B.

It should be clear that Figure 3 depicts a form of the quotient problem: Py and Q.
correspond to B, while the service specification of the conversion system corresponds to A.
The interface between Py and Q; and their users corresponds to B’s external interface; B’s
internal interface corresponds to the actions by which Pg interacts with Py, and Q; interacts
with Q. Thus, a solution method for the quotient problem can be used to solve the problem
of Figure 3.

An algorithmic solution for the quotient problem is impossible for any sufficiently pow-
erful specification formalism: if the specified systems can imitate Turing machines, an al-
gorithm that decides whether a quotient exists could be used to solve the halting problem!
By restricting the specification language such that only finite-state systems can be specified,
an algorithm is possible, but the problem is computationally hard.® This is not surprising
— the problem is extremely general, because only the abstract structure of the given com-
ponents can be used to solve it. In other words, without resorting to the kind of intuitive
understanding that must be used to find a common image, or a conversion seed, we are faced
with an exhaustive search of possibilities.

In [28], Merlin and Bochmann discussed the similar problem of “construction of sub-
module specifications” using a simple trace-set semantics. They described a solution that

3For specifications represented as (nondeterministic) finite state machines, a method to decide whether
a quotient exists can be used to decide whether two nondeterministic finite state machines accept different
languages, a problem as hard as any that can be solved in polynomial space [11].



dealt with safety properties only. More recently, the “supervisor synthesis problem” for
discrete-event systems has received some attention in the control theory literature, and so-
lutions based on language-theoretic semantics have been proposed [34, 6, 4]. Parrow [33]
has described an interactive system for solving “equations” in components, based on the
bisimulation semantics of CCS [29].

In what follows, we describe briefly a theory of specifications of finite-state systems, and
present an algorithm for solving quotient problems for a class of such systems. Our algorithm
deals with both safety and progress properties, and produces a specification of a solution if
and only if one exists.

5.1 Specifications

We model protocols as collections of finite state machines interacting via named actions.
This form of interaction is used in many formalisms [16, 29, 26, 19], including LOTOS [18].
We are concerned with two main ideas: composition, i.e., viewing interacting components
together as a composite whole; and what it means for one system to satisfy, or implement,
another. These ideas appear in the theory as a composition operator and a satisfaction
relation on specifications. Together, they allow us to reason about whether a collection of
protocol components correctly implements a specified service.
A specification is a tuple (£, 5,T,1, s0), where

Y is a finite set of actions

S is a nonempty finite set of states

TCSxXY xS is the external transition relation
1C 8 x 8 is the internal transition relation

s €S s the distinguished initial state.

The set T of actions completely defines a systems’s interface with its environment. (Note:
by “system” here, we mean the specified object. It may be an individual component, a com-
posite formed from several interacting components, or a service — all are specified the same
way.) The actions of the interface are the only way systems can interact; intuitively, actions
model an exchange of information or handshake across the interface, possibly involving a
state change on both sides. In a protocol or service specification, actions are abstractions of
occurrences such as submission of a message for transmission, or expiration of a timer.

The relations T and I define the transitions of the system. Each transition in T has an
associated interface action in X; these define how the local state is affected by interaction
with the environment. If (s,e,s’) is in T, we write s = s’. Whenever the local state is s,
and the environment is also ready for action e, e may occur, accompanied by a state change
to s’. It is important to realize that external events are not under the exclusive control of
either side of an interface, but can occur only when the associated action is enabled on both
sides.

The relation I defines internal state transitions that may occur unobserved and without
environmental interaction. When (s, s’) is in I, we write simply s — s’. Internal transitions
allow some state changes to occur under the exclusive control of one side an the interface,
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and play several important roles in specifications. In a correctness or service specification,
an internal transition can represent a choice among different acceptable behaviors, and
help avoid unnecessary overspecification. For example, suppose the buffering capacity of a
transport service is not specified in its correctness specification. After accepting the first
data unit for transmission, the allowable behaviors are to accept another data unit, or to
refuse to accept another until the previous one has been delivered. The choice among these
behaviors is made once, by the designer of the implementation.

Internal transitions also serve as an abstraction mechanism in considering the service
implemented by a collection of interacting components. The environment (user) is not
concerned with interactions between the individual components, so these are hidden by
making them internal transitions. Thus A || B can have internal transitions corresponding
to the synchronized interactions between A and B, even if neither A nor B separately has
internal transitions.

Finally, internal transitions can model low-level behavior that would add too much com-
plexity if modeled explicitly. An example is the loss of a message in a communication
channel. Modeling the actual causes of the loss would greatly complicate the channel spec-
ification. Instead, the chain of events constituting a loss is represented by a single internal
transition, which may or may not occur. This kind of transition is often regarded as fair,
meaning that if it is repeatedly enabled, it will eventually occur. On the other hand, such
a fairness requirement would usually not be placed on internal transitions used to avoid
unnecessary overspecification, as in the buffering capacity example above.

Instead of attaching explicit fairness requirements to each internal transition in our
specifications, we make certain assumptions about fairness. In defining “B satisfies A,” we
regard A as a service specification, and B as the specification of an implementation. In this
paper, service specifications are assumed to be deterministic in the following sense: they have
no internal transitions, and no action is associated with more than one transition originating
in the same state. (Our results hold, and our quotient algorithm works, for nondeterministic
service specifications in a certain “normal form;” the restriction to deterministic service
specifications simplifies the presentation, and is adequate for the examples in this paper. A
fuller treatment appears in [2].) We also assume that implementation specifications satisfy
the following fairness requirement: any transition that is repeatedly enabled will eventually
occur.

In what follows, A, B, C, and D refer to distinct specifications. Parts of different spec-
ifications are distinguished by subscripts: Xp is the set of actions of B, S, is the state set
of A, etc. The states of a specification are represented by (primed) lower-case italic letters
corresponding to the name of that specification; thus ¢ and a’ are members of Ss. The
letter denoting a state makes it clear to which specification it belongs, so that when we
write @ = a’ A b= V', it should be clear that one transition is defined in T4, while the other
is in Tp. Function and predicate application are denoted by a period, as in f.c.
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5.2 Composition

When components interact, each becomes part of the other’s environment; their interac-
tions with each other are synchronized and hidden from the rest of the environment. The
specification of the resulting composite system is determined by the specifications of its
components, as denoted by the infix operator “||.”

For any specifications A and B, (A || B) is a specification given by:

Sap) = (ZaUZp)—(ZanIp)

Sapy = Sa x5

T = {(a,0),e(d' b)) :e€Bup A((a=d A=)V (b= Aa=d))}

Iappy = {{a,0),(a",¥): (b=bANa—a)V(e=ad Ab=V)V
(Je:e€ZanNZpha=>ad AbS0)}

(a,b), = (ao,bo)

Each internal transition of the composite comes from one of two sources: an internal
transition in one of the components, or a synchronized action in ¥4 N T that becomes
hidden in the composition.

5.3 Satisfaction

A trace is a sequence of actions, and represents a behavior of the system as it might be
observed by its environment. In terms of the directed graph structure, a trace corresponds to
the sequence of labels along a finite path in the graph. We associate a particular prefix-closed
set of traces with each specification, namely those corresponding to all finite paths in the
graph beginning at the initial state. This set describes all possible behaviors of the system,
and thus captures all of its safety properties. Each trace represents a sequence of actions
that the environment might observe over some finite time interval, and is not necessarily
maximal or complete. The empty trace, denoted by &, corresponds to the interval before
anything happens, and is a possible behavior of every system. We denote traces by the
letters ¢, r, etc. Individual actions are considered traces of length one, and concatenation
is denoted by juxtaposition: te is a trace ending with action e. For any specification A, we
write A.? to denote “¢ is a trace of A.” The symbol = denotes the reflexive and transitive
closure of A; thus s = s/ means s’ is reachable from s via zero or more internal transitions.
Also, for a set L of actions, X* is the set of all finite sequences of members of 3.

Every specification defines a relation “—s.”
states s, ', 8, trace ¢, and event e,

‘—,” which is the least relation satisfying, for any

&
e s — 3.
b * i
e s — s N — "= 5 5"

% e te
e s—8 ANs = s5"= 55 5"
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In other words, s L, &’ means there is a path from s to s’ corresponding to trace t. Thus we
have A.t = (Jda : ao 5 a).

“B satisfies A with respect to safety” means that every possible behavior of B is a possible
behavior of A. Using the trace set interpretation of specifications, this is easy to express:
the set of traces of B is contained in the set of traces of A. Thus, B satisfies A with respect
to safety if and only if Vi : B.t = A.1.

Because both sides of the interface must “be ready” for an action to occur, the notion
of progress in this model deals with the actions (or sets of actions) enabled in the system
after any particular trace. With this information, the environment can ensure that there
is always some action enabled on both sides of the interface, and thus prevent deadlock.
Intuitively, “B satisfies A with respect to progress” means that if an environment cannot
reach a deadlock with A, then it cannot reach a deadlock with B. This idea of progress is
similar to the “refusals” of Hoare [16], or the “acceptance sets” of Hennessey [15]. To define
this in terms of specifications, we must consider what it means for an action to be enabled
after a trace.

For a deterministic specification, there is at most one path corresponding to any trace.
Thus, the state of the system — which cannot be observed directly by its environment —
after any trace is uniquely determined, and the environment can always “know” exactly what
actions are enabled. If internal transitions are present, however, things are more complicated.
The problem is that a transition associated with an action may be “pre-empted” by an
internal transition, if the two are enabled in the same state. Thus we might consider an
action to be “enabled” only in a state with no outgoing internal transitions. But a trace
may lead to a cycle of internal transitions; if these internal transitions occur continuously,
the system may never enter a state with no outgoing internal transition. However, our
fairness assumption says that a repeatedly-enabled transition must eventually occur; under
this assumption no cycle of internal transitions can pre-empt any transition infinitely many
consecutive times. If there is a transition, internal or otherwise, leading out of the cycle,
then enventually it or some other cycle-breaking transition will occur. As a consequence,
we can regard a set of states connected by a cycle of internal transitions as a single state for
the purposes of defining the set of enabled events. We call such a set of states a sink set if
no internal transition (except those in the cycle) is enabled in any state of the set.

In the left-hand specification of Figure 16, the two unlabeled states constitute a sink set.
Once either state is reached, the actions f and g cannot forever be preempted by internal
transitions, and one of them will eventually occur. Thus we can view the sink set as a single
state with two events enabled, as on the right-hand side. We write sink.s to indicate that a
state s is a member of a sink set.

We denote the set of actions associated with transitions originating in state s by 7.s:

ecr.s = (Is':5 =)
We write 7*.s for the set of all actions enabled in any state internally reachable from s:

ect*s = (s’ :s =5 ANeer.s)
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The set 7*.5 contains all actions that may occur next if the current state of the system is s;
if 5 is in a sink set, the set of actions considered enabled at s is defined to be 77.s. Observe
that for a deterministic specification, every state is a singleton sink set, and 7%.s = 7.s.

Now consider a deterministic service specification A, and an implementation specification
B satisfying the fairness requirement. Let ¢ be a trace of both systems, and suppose that
ao — a in A and b L b in B, where b is a sink set. In order for B to satisfy A, the set of
actions enabled at b must contain all actions enabled at a; otherwise, some action e can be
enabled at @ but not b. An environment that has only e enabled after trace ¢ can deadlock
with B after ¢, because no action is enabled on both sides; however, it would not deadlock
with A after ¢. Formally, B satisfies A with respect to progress if and only if

Vt,a,b: (ao L aANby S bA sink.b) = r.a S 7.0

Using the fact that a sink set is reachable from every state, the above formula can be shown
to be equivalent to
Vi, a,b: (ao—t-> a A by5 by = 7.a C7".b

For deterministic A, and B satisfying the fairness requirement, B satisfies A if and only
if both of the following conditions hold:

(Safety) Vt:B.t = Al

(Progress) Vi,a,b: (ag 5 aNby5b)= 1.0 C b

5.4 The Algorithm

The algorithm described here takes a (deterministic) service specification A and a specifica-
tion B describing part of an implementation, and produces C such that B || C satisfies A, if
such a C exists. If no such C exists, the algorithm produces a degenerate specification with
an empty state set. In computing C, safety and progress are handled in sequential phases. In
the first phase, the state set and transition relation of C are built up inductively, beginning
with the initial state; the result is a specification with the largest trace set consistent with
safety of B || C. In the second phase, states of C at which a progress violation by B || C
cannot be prevented are iteratively removed. (Such progress problems can only be corrected
by remowal of transitions from C, because C already has the largest possible trace set; no
transitions can be added without violating safety requirements.) When the second phase
terminates, if C’s state set is nonempty, then it is a quotient, and moreover it is a mazrimal
quotient in the sense that, for any other quotient D, any trace of D is a trace of C.

Let the specifications A and B be given, the user interface of A consist of the set Eat of
actions, and Int be the set of actions comprising the B-C interface (Figure 15). We have
Yo = Fxt, ¥ = IntUEzt, Yo = Int, and Int and Frt are disjoint. In terms of the conversion
problem of Figure 3, the event set Fut is the interface between the user and the service, and
Int represents the interactions (messages that may be sent and received) between the peers
of protocols P and Q.
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Now, the observable aspects of the behavior of B || C are determined by B: the trace
set of B || C consists of members of B’s trace set with actions in Int removed. Also, the
behaviors that can occur at the B-C interface are traces of B with events in Ext removed.
The functions ¢ and o will be used to make these ideas precise. If ¢ is a trace of B, 7.t and
0.t are subsequences of ¢ containing only actions in Int and Ext, respectively.

.6 = ¢

: . (zt)e if e€ Int
ve = { it if c¢ Int
0.8 = ¢

te — (o.t)e ife€ Ext
o = ) ot ifed Ext

In what follows, the variable ¢ denotes a member of Ert™ (e.g., a trace of A or B || C); ¢
denotes a member of (Int U Ezt)* (a trace of B); and r is in Int™ (a trace of C).

For each trace ¢ of B|| C, there is a corresponding trace ¢ of B such that 0.t = ¢ and ¢.1
is a trace of C. In a similar way, a trace r of C corresponds to the set of traces ¢ of B such
that ¢.¢ = r and o.t is a trace of B || C. The following formula characterizes the relationship
among traces and states of B, C, and B || C, for any ¢, b, ¥, ¢, and ¢’ (recall that (b,¢) is a
state of B || C):

(b, c) 4 (V,dYy=(EFt:0t=qA bbb A &)

We say a trace r in Int™ is safe, and write safe.r, if every trace of B that matches r is a
trace of A when projected on Exi:

safe.r = (Vt: (it =7 A B.t) = A.(o.1))

Note that safe.re does not imply safe.r, and that r is trivially safe if no trace of B matches
it. For any specification C, B || C satisfies A with respect to safety if and only if every trace
of C is safe.

In the first phase of the algorithm, we construct a specification C satisfying the following:
(Safety) Vr: C.r = safe.r

(Maximality) (Vr:D.r = C.r), for any specification D such that B || D satisfies A with
respect to safety.

The first requirement says that C is a solution with respect to safety; the second says that
it has the largest possible trace set. To accomplish this, we must consider each trace over
Int as a possible trace of C. Because trace sets are prefix-closed, the obvious way to do this
is inductively, beginning with the empty trace.

In constructing C, we “tag” each state with information about the traces leading to it,
the corresponding traces of B, and their projections on the Ezf interface. This information
enables us to ensure that every trace of C is safe, and also makes an inductive computation
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possible. We first introduce a mapping % from traces in Int™ to sets of pairs (a, b), where a
is a state of A, and b is a state of B. The mapping is defined by

(a,b)eh.rz(Ei:i.izr/\bggbf\ag?—'ga).

Each pair in h.r represents a possible state of B after some trace ¢ matching r, and the
state of A after the trace o.t. The idea is that from h.r, we determine what events might be
enabled in B || C after C observes the behavior 7 at the B-C interface. We set up a bijection
tag between such sets of pairs and states of C, and construct C so that fag.co = h.¢, and
for any trace r and state ¢ such that co L ¢, tag.c = h.r. We know S and Sp are finite,
hence the number of distinct sets of (a, b) pairs is finite. Since each state of C corresponds
to a different set, S¢ is finite.

We can check the safety of traces inductively using a predicate over these sets of pairs.
For a set J of (a,b) pairs such that J = h.r for some trace r, we define the predicate ok.J
by

ok.J = (Va,b: (a,b) € J: (r.bN Ezxt) C 7.a)

Intuitively, ok.J says that for every pair (a,b) in J, any event in Ezt that is enabled in & is
also enabled a. Note that ok.J is easily checked by examination of J and the specifications
A and B. The following properties are consequences of the definitions given above.

e ok.(h.c) = safe.c
e For any r € Int* and e € Int: safe.r A ok.(h.re) = safe.re

We begin the inductive construction of C by computing h.¢, and checking ok.(k.€), a neces-
sary and sufficient condition for existence of a solution (with respect to safety). If ok.(h.¢)
holds, we create an initial state ¢o and set tag.co = h.e. Then we iterate, computing h.re
for each e from an already-computed (and safe) h.r, and adding a state with tag h.re, if
ok.(h.re) holds; this continues until closure is achieved.

To obtain h.re from h.r, we define a function ¢ that maps a set J of (a, b) pairs and an
action e to another set of pairs, such that if J = h.r, then ¢.(J,¢) = h.re. Such a function,
easily computed from J, A, and B, is given by

(a,b)Eg@.(J,e)E(E]a',b',t:(a',b’)eJ/\i.t:e/\b’—gb/\ a' 23 a)

Observe that ¢.(J,e) is empty if and only if the action e is not enabled in B in any of the
possible states represented by set J. So if tag.c = J and ¢(J,e) = 0, e will never occur
at ¢. The quotient will in general have a “dead state,” whose tag is the empty set, which
can never be reached via any interaction with B. Figure 17 shows the safety phase of the
algorithm, which implements this inductive construction. The internal transition relation
Ic is defined to be empty. The state set S¢ is empty upon termination of this phase if and
only if B has a trace ¢ such that 7.7 = ¢, and 0.7 is not a trace of A.

In the progress phase — which is executed only if the first phase produces a nonempty
Sc — we identify states of B || C where a progress requirement of A is violated (because
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some required event is not enabled in B|| C), and remove the corresponding states of C. We
say a state ¢ of C is bad if and only if

da,b: (a,b) € tag.c A 7.a L 77.(b, c)

From the properties of tag.c and the definition of satisfaction, it follows that B || C satisfies
A with respect to progress if and only if C contains no bad states. Because the definition
of a bad state depends on 7*.(b, ¢), which depends on T, if we remove any bad states and
modify T¢ we must then recalculate 7*.(b,c) for each b and ¢, and re-check for bad states.
The process terminates when there are no more bad states to remove. Note that removing
the initial state is equivalent to removing all remaining states, because it makes them all
unreachable.

The progress phase of the algorithm is shown in Figure 18. This phase preserves the
maximality of C: any trace removed from C’s trace set cannot be a trace of any D such that
B || D satisfies A. It follows that if the algorithm terminates with an empty state set, and
therefore an empty trace set, no quotient exists.

5.5 Example

To apply the algorithm to our example AB-NS conversion problem, we have to model the
transmission media as separate components; Figure 19 shows the protocol configuration.
The converter interacts only with the channels, and not directly with Ao and Ny. The
specifications for channels ABchan and NSchan are shown in Figure 20. The unlabeled
(internal) transitions in the specifications represent loss of a message; after each such loss, a
timeout event occurs at the “Sender end” of the channel. In the case of NSchan, the “Sender
end” is the converter end.

The specifications of Ag and Ny are as shown in Figures 4 and 5, without the *virtual
message” transitions. The inputs to the quotient algorithm are Ao || ABchan || NSchan || Ny
(this composite specification is not shown, but is straightforward to compute) and the service
specification shown in Figure 21, which requires service similar to that of AB.

The output of the safety phase of the quotient algorithm for these inputs is shown in
Figure 22. (For clarity, the “dead state” and transitions leading to it are omitted from
the figures showing the output of the quotient algorithm.) This is a correct converter with
respect to safety: all traces of the system Ag || ABchan || C || NSchan || Ny are prefixes of
the sequence “acc, del, acc, del, ....” However, the converter is not correct with respect to
progress. We have already seen the problem in previous sections: when a timeout occurs
at the converter, there is no way to determine whether the loss occurred before or after the
“del” action, and thus no more “D” messages can be forwarded. As soon as a loss occurs
in NSchan, the system enters a set of states in which neither “del” nor “ack” can be safely
enabled, while the service specification requires that one of these two be enabled at all times.
In the progress part of the algorithm, states 3, 4, 6, 8, 12, 13, 15 and 17 are immediately
marked “bad;” this leaves only states 0, 1, and 2 reachable, and they are removed in the
second iteration. The algorithm terminates with a degenerate converter, and we conclude
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that the “exactly once” service of Figure 21 cannot be provided with the given protocol
components.

The constructed quotient has the largest possible trace set, so it may contain states and
transitions that are harmless, but contribute nothing to system progress; these useless parts
of the converter are indicated in the figures by dotted boxes. The converter in Figure 22 can
return the “wrong” acknowledgement to Ag even after receiving the data message correctly.
Removal of such superfluous sections simplifies the converter without affecting correctness,
but is hard to accomplish automatically, and is best left to a human.

We can solve the problem of losses in NSchan by assuming that the converter is co-
located with N;. We then have the configuration of Figure 23. The inputs to the algorithm
are Ao || ABchan || Ny, and the same service specification. The quotient algorithm yields a
converter for this case; it is shown in Figure 24. Note that the “+D” action of the converter
matches that of Ny, and denotes the passage of a data message from C to Ny; similarly, the
“_A” action denotes passage of a message from N; to C.

An alternative way to solve the problem is to weaken the service specification to allow
more than one “del” per “acc.” To accomplish this with a deterministic service specification,
we can model loss or correct transmission of a message with interface actions of NSchan
(and of the service). Each time a message is submitted to NSchan, the environment chooses
between “Is” and “xmit,” representing the loss or correct transmission of the message. The
“Is” and “xmit” actions are not part of the interface with the user of the service, but with
another part of the environment that we regard as a random process, modeling the actual
events that lead to message loss in channels. The service specification (Figure 25) indicates
that “del” may occur until there are two “xmit” events in a row. In other words, only as
many extra deliveries as necessary are allowed. The modified channel specification is shown
in Figure 26. The output of the quotient algorithm for these inputs is shown in Figure 27.
Removal of the “useless” states in the dotted boxes results in a converter similar to those
obtained with the other two methods.

5.6 Discussion

The quotient algorithm can, in theory, be used to find a converter for any mismatch problem
that can be represented by our finite-state specifications. However, the state set of the
quotient is constructed so that each state corresponds to a set of pairs of states of A and B.
There are 2/541%198] such sets of pairs, so the state set of the quotient can grow exponentially
in the size of the inputs. In terms of running time, the problem of finding C such that
B || C satisfies A with respect to safety only is hard enough that we cannot hope to do
better than exponential time in the worst case. Interestingly, the progress phase does not
add significantly to the overall worst-case running time of the algorithm: it takes time
polynomial in the size (of the state set) of the output of the safety phase.

However, as our example showed, the algorithm does not always use exponential time
and space. In some cases it can very quickly yield a correct converter or determine that we
are dealing with a hard mismatch. In taking the quotient view of the conversion problem,
we trade guaranteed efficiency for generality.
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6 Architectural Issues

In the foregoing discussion, we considered a simplified form of the conversion problem in
order to focus on solution methods. In practice, however, protocol mismatches may involve
multiple layers in an architecture. In this section, we broaden our view to consider the prob-
lem of interconnection of layered networks with different architectures. Note that this is still
an abstract view, in that we ignore issues such as addressing, routing, network management,
etc.

Although protocol mismatches can occur at any layer, the problems of primary interest
today occur at the network and transport layers. Figure 28 shows two “adjacent” networks,
each with a different architecture. The network services are represented by a single box
labeled NS in each network; the transport protocol peer entities are labeled TAg and TA;,
and TBg and TB;, respectively, and the transport services are denoted by TS. The goal is
to provide a transport service conforming to a service specification CST between the user
on Network A and the user on Network B. (Note that these “users” may be peers of some
higher-level protocol.)

We assume that the two networks are in some sense close to each other; that is, the two
network services can be easily physically connected (perhaps, a host is connected to both
networks). By connecting the different transport services to each other via a simple pass-
through device (Figure 29), we provide a “concatenated” data transport service between the
two users. However, any end-to-end synchronization capability of the existing services will
not be preserved. In Figure 29, sychronization occurs only between user and converter; this
is not sufficient for the transport level, which is supposed to provide end-to-end functionality.
In particular, the connection management function is concerned only with synchronization.
An example is the “orderly close” function, which guarantees that all user data have been
delivered to the remote end if the connection closes normally. One user might successfully
close the connection, and think that all data had been delivered to the far user, when it was
actually only delivered as far as the converter.

One solution is to replace TA; and TBg with a converter, as shown in Figure 30. This
is essentially the same configuration as in Figure 19, where the network service between the
converter and the transport peer entities may be lossy. In terms of the simplified problem
discussed earlier, we can consider TAg and NS4 as Py, and TB; and NSg as 1, and apply any
of the three methods. A description of a conversion between two transport-level protocols,
the DoD Standard Transmission Control Protocol [9] and the International Organization for
Standardization’s Transport Protocol Class 4 [17], can be found in [14].

Figure 31 shows a different approach, combining conversion with augmentation, the ad-
dition of a “sublayer” protocol in both architectures. This sublayer deals with routing and
addressing, combining all the (intra-) network services into an (unreliable) internetwork ser-
vice. An example of this approach is the Internet Protocol [8] used in the DARPA Internet,
a collection of heterogeneous networks. In Figure 31, the internetwork service provides a
transmission path between the transport peers TAy and TB;. At that point, however, a
protocol mismatch occurs. To handle the mismatch, a converter is co-located with the TB;
implementation (it could also be placed at the TA, end). As in Figure 23, the configura-
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tion is asymmetric, because the path between converter and TAg is unreliable, while that
between converter and TB; is (presumably) reliable. As we have seen from the AB-NS
example, such a setup allows the converter to have better “knowledge” of the state of the
local entity, and may allow a more powerful conversion system than would be possible in
the symmetric configuration of Figure 30. With the internetwork service specified by IS, the
required converter is the quotient of CST and TAg || IS || TB;.

This configuration has other advantages. We have already noted that addressing issues
are essentially confined to the network layer, at the boundary between networks. Another
advantage is that, if both NS4 and NSp provide alternate routing, and the two networks
“intersect” at more than one place, then the conversion system can have the advantages of
alternate routing. This is not possible when the converter is placed at the network boundary,
and state information for each internetwork connection is maintained in the converter. (For
a discussion of this and other issues related to transport-level “gateways,” the reader is
referred to [32].)

Although the problems of interest today are primarily at the transport level, it might be
expected that in the future, solutions of one kind or another will be found, and an adequate,
end-to-end, reliable transport service will be more or less universally available. At that point,
the conversion problems of interest may be those at higher levels, as shown in Figure 32.
AP, and APp are application protocol peers that perform some similar function, and AS is
the service to be provided by them. TS is a standard internetwork transport service, which
both are designed to use.

As a simple example, APg might be a “yellow pages” server on Network B, and AP, is a
yellow pages client on Network A, designed to work with Network A’s service. The converter
serves as a “front man” for the B server, allowing Network A clients to access the service. At
the same time, Network A clients can access the server directly. Interoperation of clients and
servers using different protocols is discussed in [30]. The approach described there involves
modification of the server entity to use a single protocol service, which can be implemented
by placing a so-called “thin-veneer” on top of any of several different underlying protocols.
This differs from protocol conversion in that the server must be modified.
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7 Conclusions

We have formalized the problem of constructing a protocol converter as a way to overcome
protocol mismatch, and discussed a range of approaches to solving the problem. The problem
of finding a converter can be viewed as the problem of finding a “quotient” of specifications.
For some classes of (finite state) protocols, general algorithmic methods for deriving a con-
verter (solving a quotient problem) exist, but the problem is hard: the quotient algorithm
has exponential worst-case running time.

Okumura’s algorithm is efficient, but it can be applied only when a partial specification
of the converter — the seed — is known. If it terminates without producing a converter, it
is difficult to conclude that a hard mismatch exists, because a converter might exist for a
slightly different seed.

Lam’s projection approach provides a sufficient condition for finding a useful converter,
based upon our intuitive understanding of the protocols; as such, it is a heuristic. It is useful
for formalizing semantic equivalences between protocols, and can be used to reason formally
about correctness of converters obtained by other methods.

Even if convergence to a “universal” network architecture is achieved, different imple-
mentations of the same protocol standard may not be compatible with each other. We
are also witnessing a proliferation of variants of the same standard as time goes by. Thus,
protocol conversion will remain a problem for the forseeable future.
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Figure 13: Correct seed for AB-NS example

Figure 14: Resulting converter
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Se = 0; new := {;
tag.co := h.¢;
if ok.(tag.co) then new = {co};
while new is not empty
select ¢ in new;
for each e in Int:
J = p(tag.c,e);
if ok.J then
if tag™1.J ¢ (Sc U new)
then create ¢’;
tag.c' = J,;
add ¢ to new,
else ¢’ 1= tag™.J
add ¢ = ¢ to T¢;
move ¢ from new to S¢;

Figure 17: Algorithm — safety phase
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repeat
save 1= S¢;
compute 7*.(b, ¢} for each b, ¢ pair;
foreach c € S¢:
foreach (a,b) € tag.c:
if .a € 7*.(b,c) then
mark ¢ bad;
remove bad states and their
associated transitions from Sc¢ and T¢;
until ¢y is removed or save = S¢

Figure 18: Algorithm — progress phase
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34



ABchan

NSchan

Figure 20: Channel specifications

ace
del

Figure 21: Service specification
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