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ABSTRACT

We introduce a shared data object, called a composite register, that generalizes the notion of
an atomic register. A composite register is an array-like variable that is partitioned into a number
of components. An operation of such a register either writes a value to one of the components or
reads the values of all of the components. A composite register reduces to an ordinary atomic
register when there is only one component. In this paper, we show that atomic registers can be
used to implement a composite register in which there is only one writer per component. In a re-
lated paper, we show how to use the composite register construction of this paper to implement a
composite register with multiple writers per component. These two constructions show that it is
possible for a process of a concurrent program to take an atomic snapshot of an entire shared
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1 Introduction

The concept of an atomic register is of fundamental importance in the theory of concurrent
programming; see, for example, [4, 5, 8, 9, 11, 12, 13, 14, 15]. An atomic register is a shared
data object that can either be read or written (but not both) in one indivisible operation.
Such a data object is characterized by the number of processes that can write it, the number
of processes that can read it, and the number of bits that it stores. The simplest atomic
register can be written by one process, read by one process, and store a one-bit value; the
most complex can be written and read by several processes and store any number of bits.
The previously cited papers show that the most complex atomic register can be implemented
in terms of the simplest.

In this paper, we go one step further by defining a new shared data object, which we call
a composile register, that generalizes the notion of an atomic register. A composite register
is an array-like variable that is partitioned into a number of components. An operation of
such a register either writes a value to one of the components or reads the values of all of
the components. A composite register reduces to an ordinary atomic register when there is
only one component.

A composite register differs significantly from an atomic register. A write operation of
an atomic register always “overwrites” the current value of the register. By contrast, a write
operation of a composite register only “overwrites” the value of a particular component; the
values of all other components are left unchanged.

We consider here the important question of whether composite registers can be con-
structed from atomic registers. Such a construction consists of a set of writer and reader
programs that communicate via a set of “internal” atomic registers. A process writes a
value to one of the components of the constructed composite register by invoking one of the
writer programs for that component. A process reads the values of all of the components
by invoking one of the reader programs. Different programs can be invoked by different
processes concurrently; the net effect, however, is required to resemble that of a serial in-
vocation. The programs are restricted to be wait-free, i.e., synchronization primitives and
unbounded busy-waiting loops are not allowed. This restriction guarantees that a process
reads or writes the constructed composite register in a finite amount of time, regardless of
the activities of other processes. It also ensures that the read or write of a process is immune
to the failure of other processes that also access the constructed composite register.

We use a two step approach to show that atomic registers can be used to construct
composite registers. In this paper, we show that atomic registers can be used to construct
a composite register in which there is only one writer per component. In [2], we show
that a composite register with multiple writers per component can be constructed from a
composite register with one writer per component.

One of the surprising consequences of this result is that, using only atomic registers, a
process of a concurrent program can take an atomic “snapshot” of an entire shared memory



without using mutual exclusion. Such a shared memory can be implemented by a single
composite register, with each shared variable corresponding to a component of the register,
To write a given variable, a process writes the corresponding component of the composite
register. To read some set of variables, a process reads the entire composite register, and
then selects the values of the components corresponding to the set. A global snapshot
operation is performed by simply reading the set of all variables.

The problem of constructing a composite register from atomic registers has also been
considered independently by Afek et al. [1, 10]. In particular, Afek et al. show that an
“atomic snapshot” primitive can be constructed from multiple-writer atomic registers. It
is interesting to note that the construction of this paper uses only single-writer atomic
registers. Thus, the construction given in [2] can be used as a means for constructing a
multiple-writer atomic register (the case in which there is only one component). A more
detailed comparison of our solution with that of Afek et al. appears in Section 4.

Our results shed new light on where the boundary lies between those operations that
can be implemented from atomic registers without waiting and those that cannot. It has
been shown that it is impossible to use atomic registers to implement (without waiting) an
operation that atomically reads and modifies a shared variable [3, 6]. For example, it is
impossible to implement an operation that both reads and increments the value of a shared
variable in one atomic step. Although this “read-and-modify” barrier cannot be crossed,
by using composite registers we can, in some cases, come surprisingly close. For example,
we show in Section 4 that it is possible to implement a shared variable that can either be
read or incremented in one atomic step. In this implementation, an increment operation is
performed without reading any shared variable.

The rest of the paper is organized as follows. In Section 2, we formally define the
problem of constructing a composite register from atomic registers. In Section 3, we present
a construction of a composite register with only one writer per component. Concluding
remarks appear in Section 4.

2 Composite Register Construction

In this section, we give the conditions that a composite register construction must satisfy
to be correct. For brevity, we will be rather informal about describing what we mean by a
“construction.” However, our treatment of the correctness condition will be formal.

Terminology: In order to avoid confusion, we henceforth capitalize terms such as “Read”
and “Write” when they apply to the consiructed composite register, and leave them uncap-
italized when they apply to the internal variables of a construction. 0

A construction consists of a set of Writer programs and a set of Reader programs that

communicate via a set of “internal” variables. A Whiter program is invoked in order to



Each component contains L bits

component 0 Reader 0
o component 2 N
component K — 1 Reader N — 1

Figure 1: K/L/M/N composite register structure,

Write a value to a component of the constructed composite register. A Reader program is
invoked in order to Read the values of all of the components of the constructed composite
register. Each Writer program has one input parameter indicating the value to be Written;
each Reader program has one output parameter for each component of the constructed
register.

We designate a composite register construction by a 4-tuple K/L/M/N, where K is
the number of components, L is the number of bits per component, M is the number of
Writers per component, and N is the number of Readers. (Thus, a 1 /L/M/N composite
register is an ordinary atomic register.) The structure of a K/L/M/N composite register
construction is depicted in Figure 1. In this figure, ovals denote programs, boxes denote
variables, and arrows denote direction of communication; an outgoing arrow from a program
to a variable indicates that the program Writes the variable, while an arrow in the reverse
direction indicates that the program Reads the variable. Note that this figure only depicts
the Writer programs for component . For an example of a Reader or Writer program, see
the programs in Figures 4 and 5.

Each internal shared variable of a construction corresponds to an atomic register — thus,
a statement of a program can either read a single shared variable, or write a single shared
variable, but not both; i.e., in each statement, there is at most one occurrence of a shared

variable. As mentioned in the introduction, each program of a construction is “wait-free,”



i.e., synchronization primitives and busy-waiting loops are not allowed. (A more formal
definition of wait-freedom is given in [3].)

We now define several concepts that are needed to state the correctness condition for a
construction. These definitions apply to a given construction.

Definition: A state is an assignment of values to the variables of the construction. One or
more states are designated as initial stales. 0O

Definition: An event is an execution of a statement of a program. ]

Definition: Let ¢ and u be any two states of a construction such that state u is the result
of executing some statement at state £. If e is the event corresponding to this statement
execution, then we write t->u. A hisiory of a construction is a sequence fg—3f1 5 - - - where
ig is an initial state. ]

A Reader (or Writer) program can be repeatedly invoked to Read (or Write) the con-
structed composite register. Therefore, a given statement may be executed many times in
a given history. Each such execution corresponds to a distinct event.

Definition: Event e precedes another event f in a history iff e occurs before f in the
history. The set of events in a history corresponding to some program invocation is called
an operation. An operation p precedes another operation ¢ in a history iff each event of p
precedes all events of ¢. |

Observe that the precedes relation is an irreflexive total order on events and an irreflexive
partial order on operations.

For the proof of correctness of a construction, it is sufficient to consider only histories
that do not contain any incomplete program executions (i.e., incomplete operations). From
now on, we deal only with such well-formed histories.

Definition: A Write operation of component & of the constructed composite register, where
0 <k < K, is called a k-Wrile operation. |

In order to avoid special cases when proving the correctness of a construction, we make
the following assumption concerning the initial Write operations.

Initial Writes: For each k, where 0 < 2 < K, there exists a k-Write operation that pre-
cedes each other k-Write operation and all Read operations. ]

According to the following definition, if several operations are executed concurrently,



then the net effect should be equivalent to some serial order. This definition is similar to

the definition of linearizability as given in [7].

Definition: Let A be a history of a construction. History % is atomic iff the precedence
relation on operations (which is a partial order) can be extended! to a total order = where
for each Read operation r in h and each k in the range 0 < k < X, the value Read by r for
component k is the same as the value Written by the k-Write operation v that is defined as
follows: v Cr A =(3w:wisa k-Write: v C w T 7). O

Note that the Write operation v in the definition above exists by our assumption con-
cerning the initial Writes.

Definition: A construction of a composite register is correct iff all of its histories are atomic.
]

This correctness condition, while intuitive, is rather difficult to use. We now present
a lemma that gives a set of conditions that are sufficient for establishing that a history is
atomic. Intuitively, a history is atomic if each operation in the history can be shrunk to
a point; that is, there exists a point between the first and last events of each operation at
which the operation appears to take effect. For this reason, the following lemma is referred
to as the “Shrinking Lemma.” The proof of this lemma is given in an appendix.

Shrinking Lemma: A history h is atomic if for each k, where 0 < k < K, there exists a
function ¢ that maps every Read operation and k-Write operation in & to some natural
number, such that the following five conditions hold.

e Uniqueness: For each pair of distinct k-Write operations v and w in &, ¢5(v) # ¢r(w).
Furthermore, if v precedes w, then ¢3(v) < ¢p(w).

e Integrity: For each Read operation 7 in A, and for each & in the range 0 < k < K,
there exists a k-Write operation w in & such that é(r) = ¢p(w). Furthermore, the
value Read by r for component % is the same as the value Written by w.

e Prozimity: For each Read operation r in h and each k-Write operation w in h, if r
precedes w then ¢x(r) < ¢1(w), and if w precedes r then ¢r(w) < ¢r(r).

e Read Precedence: For each pair of Read operations r and s in A, if (3% =2 ¢1(r) < $x(s))
or if r precedes s, then (Vk :: ¢ (r) < ¢r(s)).

e Wrile Precedence: For each Read operation r in /4, and each j-Write operation v and
k-Write operation w in A, where 0 < j < K and 0 < k < K, if v precedes w and
$r{w) < ¢r(r), then ¢;(v) < ¢;(r). =

L A relation R over a set S extends another relation R’ over S iff for each z and yin 8, eR'y = zRy.

oot



3 K/L/1/N Construction

In this section, we prove that a K/L/1/N composite register can be constructed from atomic
registers. An informal description of the construction is presented in Section 3.1 and the
correctness proof is given in Section 3.2.

3.1 Informal Description

The architecture of the construction is depicted in Figure 2. The construction uses N + 2
shared variables, Y[0], Y[1..K — 1], and Z[0],..., Z[N —1]. (We call the variable written by
Writer 0 “Y[0]” in order to avoid special cases in the proof of correctness. We stress that
Y[0] and Y[1..K — 1] are two distinct variables.) Notice that the construction is recursive,
since variable Y[1..K — 1] is a {K — 1)-component composite register.

The shared variable declarations are given in Figure 3. The field names appearing in the
type definitions are as follows.

val: The value of a particular component.

id: An auxiliary variable that each Writer appends to the val that it Writes. The id fields
are introduced solely to facilitate the proof of correctness.

itern: A (val,id) pair.

z: The values read from Z[0],..., Z[N — 1] by an operation of Writer 0. Note that Writer

0 makes two “copies” of these values, one of which is stored in z[0] and the other in
z[1].

ss: The set of all items (one for each Writer) as read by an operation of Writer 0; ss stands
for “snapshot.”

seq: A modulo-3 integer “sequence number” that is incremented by each operation of Writer
0. (We use & to denote modulo-3 addition.)

The Reader and Writer programs are shown in Figures 4 and 5, respectively. We use
a special syntax in order to distinguish reads and writes of shared variables from reads
and writes of private variables. A program reads a given shared variable V by executing
a statement of the form “read # := V.,” where z is a private variable of the same type as
V. A program writes a shared variable V' by executing a statement of the form “write
V = 2.” We assume that the private variables of each program retain their values between
invocations.

Each Writer ¢, where 1 < ¢ < X, simply writes its val and id to Y[§]. Writer 0, on the
other hand, is more interesting. The execution of Writer 0 consists of two phases. In its
first phase, new values are computed for each of Y[0l.item, Y[0].2[0], and Y[0].seg. In its
second phase, Writer 0 takes a “snapshot” of the other Writers’ values. Then, new values
are computed for each of Y[0].2{1] and Y[0].ss. Note that Y[0].z[1] is a “copy” of Y[0].2[0].
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Figure 2: K/L/1/N construction architecture.

type itemiype = record wval:vallype; id:integer [+ auxiliary variable ¥/ end;
Yiype = record wal:wallype; id:integer; /+ auxiliary variable %/
z : array[0..1][0..N — 1] of 0..2;
ss: array[0.. K — 1] of dtemiype; seq:0..2 end
shared var
Y0] : Yiype;
Yk]: ¢temiype, for each k, where 1 < k < K
Z : array[0..N — 1] of 0..2

Figure 3: Shared variable declarations for K/L/1/N construction.

The values written to Y[0].2[0], Y[0].seq, and Y[0].2[1] are used by a Read operation to
detect whether it is “overlapped” by an operation of Writer 0.

Reader j also comsists of two phases. In its first phase, a new value is computed for
Z[j]. This value is later used in the second phase of Reader j to detect an “overlapping”
operation of Writer 0. In its second phase, Reader j alternates between reading from Y[0]
and Y[1..K —~1]. Y[0] is read three times, and Y[1..K — 1] twice. Then, the K return values
are computed based upon three cases: (i) there exists an “overlapping” 0-Write operation
(ez[l,jl= 2z V e.seq = a.seq @ 2); (ii) the values read from Y[0] at statements 3 and 5,
respectively, are written by the same 0-Write operation (a.seq = c.seq); and (iii) the values



program Reader(j: 0..N — 1) returns array[0..K — 1] of valiype
private var

a,c e,z Yiype;

b, d: arrvay[1..K — 1] of itemiype;

ttem : array[0..K — 1] of dtemiype;

z:0..2
begin

/# select new value for Z[j] */
0: read z :=Y[0};

select z such that z # 2.2[0,5] A z 5 2.2[1,7];
2: write Z[j] := z;

/* compute stem[0.. K — 1] =/

3: read a:=Y[0]; 4 read b:=Y[1.K ~1];
5: read c:=Y[0]; 6: read d:=¥[l.K -1}
7: read e := Y[0];
8: ife.z[l,j]=2 V e.seq=a.seq®?2 then
item[0], ..., item[K — 1] :=e.58[0], ..., e.ss[K — 1]
else if a.5eq = c.seq then
ttem[0].val, item[0].id, dtem[1}, ..., ttem[K — 1] i= a.wal, a.id, b[1], ..., B[K — 1]
else [* c.seq = e.seq */
item[0]val, item[0].id, item[1], ..., dtem[K — 1] := cwel, c.id, d[1], ..., d[K — 1]
fi;
9: return(item[0]lval, ..., ftem[K — 1lval)
end

Figure 4: Reader program for K/L/1/N construction.

read from Y'[0] at statements 5 and 7, respectively, are writien by the same 0-Write operation
{e.seq = e.seq). In case (i), Reader j returns the K values from the “snapshot” of the
overlapping 0-Write operation. In case (ii}), Reader § returns the values read from Y[0] and
Y[1..K — 1] at statements 3 and 4, respectively. In case (iii), Reader j returns the values
read from Y[0] and Y[1..K — 1] at statements 5 and 6, respectively.

The proof of correctness for this construction is based upon the following fact (which
is proved as a lemma in Section 3.2): for each Read operation r, if r returns the K values
vy, ..., VK1, then there exists a state that occurs “during” r such that (VA : 0 <k < K :
Yk]wval = vg). In case (i) above, this state exists by virtue of the fact that the overlapping
0-Write operation takes its snapshot “during” r. In case (ii), the existence of this state
follows because the value read by » from Y[0].val at statement 3 persists until » reads Y[0]
again at statement 5. Thus, at the state prior to the execution of statement 4 by r,

fed]



program Writer0{val : valiype)
private var
z : array[0..1][0..N — 1] of 0..2;
seqg: 0..2;
ttem : itemiype;
ss : array[0..K — 1] of ilemiype;
y : array[l..K — 1] of itemiype;
n:0.N—1
initialization
seq = Y[0lseq A dtem.id =Y[0]id A (Vi:0<i< N :z[l,d]=Y[0]2[1,i]) A
(Vi:0< 5 < K :sslj]=Y][0].ss[5])
begin

/* compute item, z[0][0..N — 1], and seg %/
0: seq, stem.val, item.id 1= seq & 1, val, item.id + 1;
for n=10to N —1 do 2.n: read z[0,n] := Z[n] od;
write Y[0] := (item.val, item.id, z[0..1][0..N — 1], ss[0..K ~ 1], seq);

/* compute z{1][0..N — 1] and ss[0.. K — 1] %/

4: read y:=Y[1.K -1}

5 2[1,0], ..., 2[1, N —1]:=2[0,0], ..., z[0, ¥ — 1];

6: ss[0], ss[1], ..., ss[K —1}:=item, y[1], ..., y[K — 1];

7. write Y[0] = (item.val, item.id, 2[0..1][0..N — 1], s3[0..K — 1], seq)
end

program Writer(i : 1. K — 1; val : valiype)
private var
item @ itemiype
initialization
item.id = Y'[i].id
begin
0: slem.val, stem.id i= val, item.id + 1;
1 write item to Y[i]
end

Figure 5: Writer programs for K/L/1/N construction.



Y[0].val = vg. By the program for the Reader, (Vk: 1 < k < K : Y[k].val = v;) also holds
at this state. Case (iii) is similar to case (ii).

We now compute the space complexity of our K/L/1/N construction by determining the
number of shared 1/1/1/1 composite registers used in the construction. Let B(K, L, M, N)
denote the number of shared 1/1/1/1 composite registers required to construct a K/L/M/N
composite register. If we remove the auxiliary id fields from our K/L/1/N construction,
then the complexity of each of the shared variables is as follows.

e Y[0] uses B(1,4N + KL + L + 2,1, N) bits.
e Y[1.K —1] uses B(K —1,L,1, N + 1) bits.
e Z[i], where 0 < ¢ < NN, uses 2 bits.

If we use the construction of [14] to implement a 1/L/1/N composite register, then B(1,L, 1,
N)=6N?+ 2LN. Therefore,

B(K,L,1,N) = 14N>+ 2KLN +2LN + 6N + B(K —1,L,1,N + 1) .

By solving this recurrence, we see that B(K,L,1,N) = O(KN? + K?LN + K3IL).

We compute the time complexity of our K/L/1/N construction by determining the num-
ber of reads and writes of shared 1/L/1/N composite registers (i.e., single-writer atomic
registers) required to Read and Write the constructed register (for simplicity, we do not
go down to the level of 1/1/1/1 registers when computing the time complexity). Let
TR(K,L,M,N)and TW(K, L, M, N) denote the time complexity for Reading and Writing,
respectively, a K/L/M/N composite register. Then, the time complexity of a Read in our
construction is TR(K, L,1,N) = 54 2TR(K —1,L,1, N + 1). By solving this recurrence,
we see that TR(K,L,1,N) = O(2%). The time complexity of a Write in our construction
is TW(K,L,1,N)= N +2+TR(K —1,L,1, N + 1). By solving this recurrence, we get
TW(K,L,1,N)= O(N + 2%).

3.2 Correctness Proof

We prove that the K/L/1/N construction is correct by defining functions ¢g, ..., ¢x—; fora
given history, and by showing that the defined ¢’s satisfy the five conditions of Uniqueness,

Integrity, Proximity, Read Precedence, and Write Precedence given in the Shrinking Lemma.

Notation: In the remainder of this section, we assume that k ranges over {0,..., K -1}
We use p and ¢ to denote arbitrary operations, » and s to denote Read operations, v and w
to denote Write operations, and 7 and u to denote states. O

Notation: In order to avoid using too many parentheses, we define a binding order for the

symbols that we use. The following is a list of these symbols, grouped by binding power;

the groups are ordered from highest binding power to lowest.

10
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Definition: If event e precedes event f, then we write e < f. Welet (¢ < f) = (e

fve<f) 0

]

Definition: Let p be an operation, and let « be any private variable of p. Then, plz denotes
the final value of variable @ as assigned by operation p. |

Definition: Let p be an operation of some Reader or Writer program and let ¢ be a label
of a statement in that program. We denote the event corresponding to the execution of
statement ¢ in operation p by p:i. O

Definition: If £ is an expression that holds at state ¢, then we write t = E. 0

Assumption: We assume that each state in every history is distinct. This assumption is

easy to ensure by introducing an integer auxiliary variable that is incremented with each

event. O
Definition: Consider the history 103 .. -tg-f;’?ti+1 .- We say that ¢; is the state prior to
the event e;, and e; is the event prior {o the state #;,1. 0

Note that the event prior to a given state is uniquely defined since, by assumption, each
state appears at most once in a given history.

Definition: Let e be the event corresponding to the execution of the statement read z := ¥
in an operation p, where z is a private variable and Y is a shared variable. If f is the last

event to write ¥ before e, then we say that f deiermines plz. O

Definition: If p and ¢ are successive operations of the same Reader or Writer program,
then we write p = pred(q) and ¢ = suce(p). ]

11



As mentioned in Section 3.1, each value of type valtype is tagged with an integer auxiliary
variable, which we call id. These auxiliary variables have been introduced in order to
facilitate the definition of the functions ¢q,...,¢x—1.

Definition: Let » be a Read operation and let w be a k-Write operation. We define the
function ¢ as follows.

or(r)
ou(w)

The proof of correctness is based upon Lemma 2. The following lemma is used in the

rlitemlk].id
wlitemn.id 0

i

il

proof of Lemma 2.

Lemma 1: Let » be an operation of Reader j and let v and w be 0-Write operations
such that rla is determined by an event of v, and rle is determined by an event of w. If
rle.z[1, j1 # rlz, then one of the following is true: w = v, w = succ(v), or w = suce{suce(v)).

Proof: Let 7, v, and w be as defined in the lemma. Assume that rle.z[1, j] # rlz.

By the program for the Reader, r:3 < r:7. Therefore, because rla is determined by an
event of v and rle is determined by an event of w (and because the (-Write operations are
totally ordered) either v = w or v precedes w. In the former case, our proof obligation is
satisfied; so, in the remainder of the proof, assume that v precedes w. We show in this case
that either w = succe(v) or w = suce(suce(v)).

Assume, to the contrary, that w # suecc(v) and w # suce(succ(v)). Then, because v
precedes w, there exist 0-Write operations v' and v” such that v/ = suce(v), v/ = suce(v’),
and v precedes w.

Because rla is determined by an event of v, r:3 < v':3. Because v’ and v” are successive
0-Write operations, v':3 < v”:0 < v”:7. Because v” precedes w, v":7 < w:0. By the
program for Writer 0, w:0 < w:3. Because rle is determined by an event of w, w:3 < »:7.
Therefore,

r:3=<v:3 <00 <0 T <wl<w:3<r:7 .

Let w' = pred{w). Then, v precedes or equals w’. Hence, by the above precedence
assertion, r:3 < w':2.5 < w:2.j < r:7. This implies that w'1z[0, j] and w!2[0, 5] are both
determined by r:2; thus, w'!z[0, j] = w!z[0, j] = rlz. By the program for Writer 0, w'!z[1, j]
= wlz[0, j] and wiz[l, j] = w!z[0, j]. Therefore,

wiz[l, = wizl, jl=rlz . (5

Notice that statement 3 of Writer 0 does not alter the value of Y[0].2]1, j]. Hence, if rle is
determined by w:3, then rle.z[1, j]= w'lz[1, j]. On the other hand, if rle is determined by
w:7, then rle.z[1, j] = w!z[l, j]. In either case, by (1), we have rle.z[1,j] = rlz, which is a

12



contradiction. Thus, either w = suce(v) or w = suce(suce(v)). ]

As mentioned in Section 3.1, the following lemma establishes the existence of a state
“during” a Read operation r that corresponds to the “snapshot” taken by r.

Lemma 2: Let » be a Read operation. Then, there exists a state between the events r:0
and r:9 such that (Vk :: Y{k].val = rlitem[k].val A Y[k].id = ¢x(r)).

Proof: Assume that r is an operation of Reader j. We consider four cases, based upon the
conditional statement 8 of Reader j.

Case 1: rle.z[1,j] = rlz. Let S be the set of 0-Write operations defined as follows: p is
in 5 iff p is a 0-Write operation and p:7 < r:7. Note that 5 is nonempty, since by our
assumption concerning the initial Writes, each Read operation is preceded by at least one 0-
Write operation. Let w be the Write operation in S such that for each other Write operation
pin S, p:7 < w:7. Then, rle is determined by either w:7 or w’:3, where w’ = succ(w).
Because statement 3 of Writer 0 does not alter the value of Y[0].2[1, j] or ¥[0].ss[0..K — 1],
this implies that

rle.z[1, 7] = wlz[1, 5] A (Vk = rle.ss[k] = wiss[k]) . (2)

By the program for Writer 0, w!z[0, j] = w!z[1, j]. By assumption, rle.z[1, j] = rlz; therefore,

by (2),
wlz[0, /] = wiz[l, j] = rlz . 3

We now show that 7:0 < w:3. Assume, to the contrary, that w:3 < r:0. By the
program for the Reader, r:0 < r:7. Therefore, w:3 < r:0 < r:7. Because rle is determined
by either w:7 or w’:3, this precedence assertion implies that rlz is determined by w:3, w:7,
or w':3. If rlz is determined by w:3, then rlz.z[0, j] = w!2[0, j]. By (3), this implies that
rlz = rlz.2[0, j. But, by the program for the Reader, rlz # rl2.z[0, j]; therefore, we have a
contradiction.

If, on the other hand, rlz is determined by either w:7 or w’:3, then because statement 3
of Writer 0 does not alter the value of Y'[0].2[1, 7], rlz.2[1, j] = w!z[1, j]. By (3), this implies
that rlz = rlz.2[1,j]. But, by the program for the Reader, r!z # riz.z[1, j]; therefore, we
have a contradiction. Thus, our assumption that w:3 < r:0 is false, i.e., r:0 < w: 3.

Because rle.z[1, j] = rlz, by the program for the Reader, (Vk :: rlitem[k] = rle.ss[k]).
Therefore, by (2), (Vk :: rlitem[k] = w!ss[k]). By the definition of ¢y, (Vk 2 ¢p(r) =
rlitern[k].id). Hence,

(Vk :: rlitem[k].val = wiss[klval A ¢(r) = wlss[k].id) . (4)
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We now establish the existence of the required state. As shown above, »:0 < w:3. By
the program for Writer 0, w:3 < w:4 < w:7. Because w is in set S, w:7 < r:7. Therefore,

r0<wd<wd<w:7T<r:7T .

Let ¢ denote the state prior to the event w:4. By the above precedence assertion, ¢
occurs between 7:0 and r:9. By the program for Writer 0, w!ss[0] = wlitem. Moreover,
t &= Y[0]wal = wlitem.val A Y[0].id = wlitem.id. Therefore, t = Y[0].val = wlss[0].val A
Y[0].id = wlss[0].id. By (4), this implies that ¢ = Y[0l.val = rlitem[0].val A Y[0].id =
¢o(r). By the program for Writer 0, (Vk : k > 0 : wiss[k] = wly[k]). Moreover, t E (Vk:
k> 0:Y[k] = wly[k]). Therefore, t = (Vk :k > 0:Y[k] = wlss[k]). By (4), this implies
that ¢ = (Vk:k > 0: Y[klval = rlitem[k].val A Yk].id = ¢x(r)).

Case 2: rle.z[1,j] # rlz A rle.seq = rla.seq & 2. Assume that rla is determined by an
event of 0-Write operation v and rle is determined by an event of 0-Write operation w. (v
and w exist because, by our assumption concerning the initial Writes, there exists a 0-Write
operation that precedes all Read operations.) Then, by the programs for the Reader and
Writer 0,

rla.seq = viseq A rle.seq = wlseq . (5)

Because rle.z[1, j] # rlz, by Lemma 1, one of the following holds: w = v, w = suce(v),
or w = succ(suce(v)). Because rle.seq = rla.seq @ 2, by (5), wlseq = viseq & 2. Therefore,
w = sucel{suce(v)).

Let w' = suce(v). Because rla is determined by an event of v, :3 < w’:3. By the
program for Writer 0, w':3 < w/:4 < w':7. Because w = suce(w’), w':7 < w:0. By the
program for Writer {0, w:0 < w:3. Because rle is determined by an event of w, w:3 < r:7.
Therefore,

ri3<wid3<wid<<w T w0 <w:3<r:7 . (6)

We now show that rle is determined by w:3. By (6), wlz[0, j] is determined by r:2.
Therefore, w!z[0, j] = rlz. By the program for Writer 0, w!z[1, j] = w!z[0, j]; hence, by
transitivity, wiz[l, j] = rlz. By assumption, rle is determined by either w:3 or w:7. In the
latter case, rle.2[1, j] = w!z[l, j]. Therefore, by transitivity, rle.z[1, ] = rlz. However, we
have assumed in Case 2 that rle.z[1, j] # rlz. Hence, rle is determined by w:3.

Since statement 3 of Writer 0 does not alter the value of Y[0].ss[0..K — 1], this implies
that (Vk :: rle.ss[k] = w'lss[k]). Because rle.z[1,j] # rlz A rle.seq = rla.seq @ 2, by the
program for the Reader, (Vk :: rlitem[k] = rle.ss[k]). Therefore, (Vk == rlitem[k] = w'lss[k]).
By the definition of ¢, (Vk = ¢1(r) = rlitem[k].id). Therefore,

(Vk o plitem[k]val = w'lss[klval A ¢p(r) = w'lss[k].id) . (7

We now establish the existence of the required state. Let ¢ be the state prior to w': 4.

By (6}, t occurs between r:0 and r:9. By the program for Writer 8, w'lss[0] = w'litem.
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Moreover, ¢t = Y[0].val = w'litem.val A Y[0].id = w'litem.id. Therefore, 1 & Y[0]wal =
w'lss[0].val A Y[0].id = w'lss[0].id. By (7), this implies that ¢ = Y[0].val = rlitem[0].val A
Y[0].id = ¢o(r). By the program for Writer 0, (Vk : k > 0 : w'lss[k] = w'ly[k]). Moreover,
t &= (Vk:k>0:Y[k]=wlylk]). Therefore, t = (Vk:k > 0:Y[k] = w'lss[k]). By (7),
this implies that ¢ = (Vk 1k > 0 Y[klval = rlitem[k]val A Yik]id = ¢x(r)).

Case 3: rlez[l,j] # riz A rle.seqg # rlo.seg® 2 A rlaseq = rlc.seq. Let v and w be as
defined in Case 2, i.e., rla is determined by an event of v and rle is determined by an event
of w. Assume that rle is determined by an event of 0-Write operation v’. Then, by the

programs for the Reader and Writer 0,
rla.seq = viseq A rle.seq = v'lseq A rle.seq = wlseq . (8)

We first show that v = v’. Because rla is determined by an event of v, rlc by an event
of v/, and rle by an event of w, by the program for the Reader (and the fact that the
0-Write operations are totally ordered), v precedes or equals v/ and v/ precedes or equals
w. As in Case 2, Lemma 1 implies that one of the following holds: w = v, w = suce(v), or
w = succ(suce(v)). This implies that one of the following holds as well: v = v, v’ = suce(v),
or v/ = suce(suce(v)). Because rla.seq = rle.seq, by (8), we have vlseq = v'lseq. Thus,
because each 0-Write operation assigns seq := seq @ 1, and because @ is modulo-3 addition,
v’ # suce(v) and v/ # suce(suce(v)). Therefore, v’ = v.

Because rle.z{l, j] # riz A rle.seq # rla.seqd 2 A rla.seg = rle.seq, by the program
for the Reader, rlitem[0].val = rla.val, rlitem[0].id = rla.id, and (Vk : k > 0 : rlitem[k] =
r1b{k]). By the definition of ¢y, (Vk 2 ¢ (r) = rlitem[k].id). Therefore,

rlitem[0].val = rlaval A ¢o(r) = rla.id A
(Vk : k> 0:rlitem[k]val = »Iblk]val A ¢p(r) = rlblk].id) . (9

We now establish the existence of the required state. Let ¢ be the state prior to r:4.
Because rla and rlc are both determined by an event of v (recall v = o), Y[0]wal =
rlawal A Y[0].id = rla.id holds at each state between r:3 and r:5. Thus, because ¢
occurs in this interval, ¢ | Y[0]lwval = rlawval A Y[0].id = rla.id. Therefore, by (9),
t E Y[0lwal = rlitem[0lval A Y[0].id = ¢o(r). By the program for the Reader,
t FE (Ve :k > 0:Y[k] = rb[k]). By (9), this implies that ¢ E (V& : k& > 0 :
Y{k].val = rlitem[k]val A Yklid = ¢1(r)).

Case 4: rle.z[1,7] # rlz A rle.seq # rla.seg® 2 A rla.seq # rlc.seq. Let v, o', and w be
as defined in Case 3, i.e., rla is determined by an event of v, rl¢ is determined by an event
of v/, and rle is determined by an event of w.

We first show that v/ = w. As in Case 3, v precedes or equals v/, v/ precedes or equals
w, and one of the following holds: w = v, w = suce(v), or w = suce(succ(v)). Because
rle.seq # rla.seq & 2, by (8), we have wlseq # viseq ® 2. Because each 0-Write operation
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assigns seg = seq @ 1, this implies that w # succ(suce(v)). Because rla.seq # rle.seq, by
(8), we have viseq # v'lseq. This implies that v 3 o’. Therefore, v precedes v’, v’ precedes
or equals w, and either w = v or w = suce(v). This implies that v/ = w.

Because rle.z[1,j] # rlz A rleseq # rlaseg® 2 A rla.seq # rle.seq, by the program
for the Reader, riitem|[0].val = ricwal, rlitem[0].id = rleid, and (Vk 1 k > 0 : rlilem[k] =
r!d[k]). By the definition of ¢5, (Vk == ¢5(r) = rlitem[k].id). Therefore,

rlitemn[0].val = rlcval A ¢o(r) = rlcid A
(Vk : k > 0 rlitem[k]val = ridlk]lval A ¢p(r) = rid[k].id) . (10)

We now establish the existence of the required state. Let { be the state prior to r:6.
Because rlc and rle are both determined by an event of w (recall v/ = w), Y[0lval =
rlewal A Y[0].id = rle.id holds at each state between r:5 and r:7. Thus, because ¢ oc-
curs in this interval, ¢ | Y[0lwval = rlewal A Y[0lid = rle.id. Therefore, by (10),
t E Y[0lval = rlitem[0lval A Y[0lid = ¢o(r). By the program for the Reader,
t B (VYk: k>0 : Y[k} = rId[k]). By (10), this implies that ¢ &= (Vk : k& > 0 :
Yklval = rlitem[klval A Y]kl.id = ¢5(r)). o

‘We now show that the five conditions given in the Shrinking Lemma are satisfied. The
preceding lemma is used in the proofs of Integrity, Read Precedence, and Write Precedence.

Proof of Uniqueness: Uniqueness is satisfied because each k-Write operation increments
the private variable item.id of Writer k, and because the k-Write operations are totally
ordered. 0

Proof of Integrity: Let » be a Read operation. By Lemma 2, there exists a state { that
occurs between 7:0 and r:9 such that

= (Yk o Yk]val = rlitem[klval A Yk]id = ¢p(r)) . (11

Let 0 < k < K, and suppose that the last event to write to Y[k] before state { is an event
of Write operation v. (v exists because, by assumption, there is a k-Write operation that
precedes every Read operation.) Then, by the program for Writer k, ¢ £ Y[k]lval =
vlitemwal A Y[klid = vlitem.id. Therefore, by (11), vlitem.val = rlitem[k].val, and
vlitem.id = ¢5(r); by the definition of ¢, this implies that ¢r(v) = ¢3(r). O

Proof of Proximity: Let r, {, and v be as given in the proof of Integrity. Let w be a
k-Write operation. Our proof obligation is to show that if r precedes w, then ¢p(r) < ¢u{w),
and if w precedes r, then ¢p{w) < ¢p(r).

First, consider the case in which r precedes w. Because the last event to write to Y[k]
before state ¢ is an event of v, and because state ¢ occurs between 7:0 and r:9, r does not

precede v. Therefore, because r precedes and w and because the Write operations on a given

16



component are totally ordered, v precedes w. Therefore, by Uniqueness, ¢;(v) < ép{w).
From the proof of Integrity, ¢i(r) = ¢p(v). Therefore, ¢1(r) < dp(w).
Now, consider the case in which w precedes r. In this case, because the last event to write

to Y{k] before state ¢ is an event of v, w precedes or equals v. Therefore, by Uniqueness,

or(w) < ¢r(v). Thus, ¢r(w) < ¢r(r). o

Proof of Read Precedence: The proof of Read Precedence is based upon the following
property: if state ¢ occurs before state u, then for each k, the value of Y'[k].id at state u is at
least its value at state ¢. This property holds because each k-Write operation increments the
private variable item.id of Writer k, and because the k-Write operations are totally ordered.

Consider two Read operations r and s. By Lemma 2, there exists a state ¢ that occurs
between the first and last events of » such that ¢ = (Vk :: Y[k]l.id = ¢x(r)), and a state u
that occurs between the first and last events of s such that u | (Vk :: Y[k].id = ¢1(s)).
If state ¢ equals state w, then (Vk :: ¢p{r) = ¢5(s)). If state 1 occurs before state wu,
then by the above property, (Vk i ¢1(r) < ¢r(s)). If state u occurs before state ¢, then
(Vk :: ¢5(s) < ¢x(r)). This implies that Read Precedence is satisfied. o

Proof of Write Precedence: Let » be a Read operation, and let v be an operation of
Writer 2 and w be an operation of Writer §, where 0 <i < K and 0 < j < K. Assume that v
precedes w and ¢;(w) < ¢;(r). By the definition of ¢;, this implies that wlitem.id < ¢;(r).
Our proof obligation is to show that ¢;(v) < ¢;(r). By the definition of ¢;, it suffices to
prove that vlitem.id < ¢;(r).

As in the proof of Read Precedence, we use the following property: if state w occurs
before state u’, then for each k, the value of Y[k].id at state u’ is at least its value at state

u. By Lemma 2, there exists a state ¢ between the first and last events of » such that
t = (Ve Y[klid = ¢r(r)) . (12)

Thus, because whitem.id < ¢;(r), we have t = wlitem.id < Y[j].id. Let ¢’ be the state
prior to w:0. Then, by the program for Writer j, ¥/ | Y[jl.id = wlitem.id — 1. Therefore,
the value of Y[j].id at state ¢’ is less than the value of Y[j].id at state t. By the property
mentioned above, this implies that state ¢’ occurs before state .

Define state ¢ as follows: if ¢ = 0, then let ¢ be the state following v:3; otherwise,
let t¥ be the state following v:1. Observe that ¥ [ Y[i|.id = vlitem.id. Because v
precedes w, 1/ either equals or occurs before #/. Therefore, ¢ occurs before ¢. Thus, by the
property stated above, the value of Y[i].id at state ¢ is at least the value of ¥[i].id at state
t”. Hence, t = Y[ilid > vlitem.id. By (12), we have t = Y[il.id = ¢;(r). Therefore,
viitern.id < ¢;(r). This establishes our proof obligation. O



4 Concluding Remarks

The construction of this paper, together with the one in [2], shows that we can allow an
atomic operation of a concurrent program to either write a single shared variable or read
several shared variables (but not both) and the resulting program can be implemented from
atomic registers. By contrast, if we allow an atomic operation of a program to either write
several shared variables, or to both read and write shared variables, then, in general, such
a program cannot be implemented from atomic registers. This result has been proved both
by Herlihy [6] and by Anderson and Gouda [3].

Our K/L/1/N construction and the construction of Afek et al. [1, 10] are both based
upon the following insight: if a Read operation is overlapped by “too many” Write opera-
tions, then it returns the K values as read in a single snapshot by one of these overlapping
Writes. In our comstruction, we have resorted to recursion to enable a Write operation to
take a snapshot of all X' components. Afek et al. do not resort to recursion, and as a result,
their solution is polynomial in both space and time. As mentioned earlier, the K/L/M/N
construction of Afek et al. is based upon multiple-writer atomic registers. By contrast, our
K/L/M/N construction (which is obtained by using the construction of [2] along with the
one in this paper) uses only single-writer atomic registers. Thus, our K/L/M/N construc-
tion can be used to construct a multiple-writer atomic register (the case in which there is
only one component).

As stated in the introduction, composite registers can be used to implement a shared
variable that can either be read or incremented in one atomic step. A variable that can
be incremented by K processes and read by N processes can be implemented by using a
single K/L/1/N composite register. Fach process that can increrent the variable writes to
a particular component of the composite register; to increment the value of the variable, a
process increments the value of its component. (Since there is only one writer per component,
a process can increment the value of its component by maintaining a local copy of its
component. Thus, an increment operation can be performed without reading any shared
variable.) A process reads the value of the variable by reading all of the components of the
composite register and adding together their values.

This approach can be used to implement any operation that can be defined in terms of
an operator that is both commutative and associative. For example, because addition is
commutative and associative, we can implement operations that increment or decrement.
Because multiplication is commutative and associative, we can implement an operation that
multiplies by a constant, or one that shifts a string of bits (shifting can be defined in terms
of multiplying by 2).
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Appendix: Proof of the Shrinking Lemma

Shrinking Lemma: A history A is atomic if for each k, where 0 < k < K, there exists a
function ¢ that maps every Read operation and k-Write operation in A to some natural
number, such that the following five conditions hold.

e Unigueness: For each pair of distinct k-Write operations v and w in h, ¢z (v) # ép(w).
Furthermore, if v precedes w, then ¢p(v) < ¢p(w).

e Iniegrily: For each Read operation » in A, and for each & in the range 0 < k < K,
there exists a k-Write operation w in h such that ¢r(r) = ¢i(w). Furthermore, the
value Read by r for component k is the same as the value Written by w.

e Prozimily: For each Read operation r in A and each k-Write operation w in A, if r
precedes w then ¢1{r) < ¢p{w), and if w precedes r then ¢p(w) < ¢r(r).

e Read Precedence: For each pair of Read operations » and s in h, if (3k :: ¢r(r) < ¢x(s))
or if r precedes s, then (Vk :: ¢1(r) < ¢i(s)).

e Write Precedence: For each Read operation r in h, and each j-Write operation v and
k-Write operation w in h, where 0 < j < K and 0 < k& < K, if v precedes w and
¢r(w) < é(r), then ¢;(v) < ¢;(r).

Proof: The proof strategy is as follows. We first augment the precedence relation on
operations in history h by adding pairs of operations. We then show that the resulting
relation is an irreflexive partial order, i.e., it is irreflexive and transitive. Finally, we show
that any extension of this relation to an irreflexive total order satisfies the conditions in the
definition of “atomic history” given in Section 2.

In the remainder of the proof, we use » and s to denote Read operations in history %, v
and w to denote Write operations in h, and z, y, and z to denote arbitrary operations in A.
We also assume that ¢, §, and & each range over {0,..., K — 1}. If 2 precedes y in h, then
wewritez <ty Welet (2 dy) = (z=y V 2<dy). We now define six relations 4, B, C,
D, E, and F'; in these definitions, we assume that v and v’ denote j-Write operations, and
w and w' denote k-Write operations.

e A includes all pairs (2, y) such that z < 4.

¢ B includes all pairs (w,r) such that ¢p(w) < ¢x(r), and all pairs (r,w) such that
¢i(r) < dr(w).

C includes all pairs (r, s) such that (3k = () < ¢r(s)).

L3

@

D includes all pairs (v, w) such that (3r : vBr A rBuw).

@

E includes all pairs (v, w), such that v # w and for some v' and w’,

$i(v) < $;(0) A v D A gi(w) < dulw) .
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e ' = AUBUCUDUE

Relation A is the precedence relation on operations in history h. Relation F is obviously
an extension of A. We now show that F' is irreflexive and transitive. To prove that F' is
irreflexive, we are obligated to show that #Fy = =z #£ y. If Ay, then because A is an
irreflexive partial order, # # y. If 2By, then one of z and y is a Read operation and the
other is a Write operation, so z # y. If 2Cy, then ¢x(z) < ¢1(y) for some k, which implies
that z # y. If Dy, then because relation B (which is used to define D) totally orders each
Read with respect to all Writes, we have z # y. If £Ey, then by the definition of £, & # y.
Therefore, we conclude that relation F is irreflexive.

In the proof of transitivity, we use the following three properties.

Property 1: For each pair of Read operations » and s, 7Fs = (V& :: ¢5(r) < ¢r(s)).

Proof of Property 1: Assume that »F's holds. Of the five relations that define ', only A
and C can relate two Read operations. Therefore, 7 As holds or »C's holds. In the former
case (i.e., r precedes s), by Read Precedence, (Vk :: ¢x(r) < é1(s)). In the latter case, by
the definition of C, (Tk :: ¢x(r) < #1(s)); hence, by Read Precedence, (Vk :: ¢1(r) < ¢1(s)).

0

Property 2: For each Read operation r and k-Write operation v, 7F'v = ¢5(r) < ¢1(v)
and vF'r = ¢p(v) < ¢r(r).

Proof of Property 2: We prove that 7Fv = ¢r(r) < ¢z(v); the proof that vFr =
$r(v) < ¢r(r) is similar. Assume that rFv holds. Of the five relations that define 7, only
A and B can relate a Read operation and a Write operation. Therefore, r Av holds or rBv
holds. In the former case (i.e., r precedes v), by Proximity, ¢x(r) < ¢1(v). In the latter
case, by the definition of B, ¢(r) < ¢x{v). O

Property 3: For each pair of Write operation v and w, vAw = vEw.

Proof of Property 3: Let v be a j-Write operation and let w be a k-Write operation such
that vAw holds. If j # k, then v # w. If j = k, then by Uniqueness, ¢;(v) < ¢;(w), which
implies that v # w. Therefore, letting v/ = v and w' = w, we have

vEw A ¢i(v) <6 (v) A VD w A gp(w) < gr(w) .
This implies that vEw. O
To prove that F is transitive, we are obligated to show that 2Fy A yFz = zFz. We

have to consider eight cases since each of z, y, and z can be either a Read operation or a

Write operation.
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Case 1: x, y, and z are all Read operations. Of the five relations that define F', only A and
C can relate two Read operations. If z Ay and yAz, then because A is a partial order, z Az.
Now, suppose that zCy holds. By the definition of C, we have ¢;(x) < ¢;(y) for some j.
By Property 1, (Vk :: 61(y) < ¢x(2)). Therefore, by transitivity, ¢;(z) < é;(z), i.e., 2Cz.
Similar reasoning applies if yC'z holds.

Case 2: ¢ and y are Read operations and z is a j-Write operation. By Property 1, (Vk =
ér(z) < ¢r(y)). By Property 2, ¢;(y) < ¢;(z). Therefore, by transitivity, ¢;(z) < ¢;(2),
ie., zBz.

Case 3: z and z are Read operations and y is a j-Write operation. By Property 2, ¢;(z) <
#;(y) and ¢;(y) < ¢;(z). Therefore, by transitivity, ¢;(z) < ¢;(z), i.e., zCxz.

Case 4: z is a Head operation, y is a j-Write operation, and z is a k-Write operation. Of
the five relations that define F, only A, D, and E can relate two Write operations. Thus,
by Property 3, yDz holds or yEz holds. If yDz holds, then by the definition of D, there
exists a Read operation r such that yBr and rBz. Because zFy A yBr holds, by Case 3,
we have zFr. Because zFr A rBz holds, by Case 2, we have zFz.

Now, consider the case yEz. By the definition of E, there exists a j-Write operation v
and a k-Write operation w such that

di(y) < ¢i(v) A vDdw A gp{w) < di(2) .

By Property 2, ¢;(z) < ¢;(y); thus, by transitivity, ¢;(z) < ¢;(v). If v = w (which implies
that j = k), then ¢p(2) < ¢p(w). If, on the other hand, v <1 w, then by the contrapositive
of Write Precedence, ¢5(2) < ¢5(w). Therefore, by transitivity, ¢r(z) < ¢p{z), i.e.,, 2Bz.

Case 5: =z is a j-Write operation and both y and z are Read operations. By Property 2,
¢;(z) < ¢;(y). By Property 1, (Vk :: ¢3(y) < é1(2)). Therefore, by transitivity, ¢;(z) <
¢i(z), i.e., zBz.

Case 6: z is a j-Write operation, y is a Read operation, and z is a k-Write operation. By
Property 2, ¢;(z) < ¢;(y) and ¢x(y) < ¢r(z). Hence, by the definition of B, x By and yBz.
Therefore, by the definition of D, 2Dz,

Case 7: z is a j-Write operation, y is a k-Write operation, and z is a Read operation. Of
the five relations that define F', only A, D, and £ can relate two Write operations. Thus,
by Property 3, Dy holds or # Ey holds. If zDy holds, then by the definition of D, there
exists a Read operation r such that zBr and rBy. Because rBy A yFz holds, by Case 3,
we have 7Fz. Because xBr A rFz holds, by Case 5, we have 2 Fz.

Now, consider the case zEy. By the definition of F, there exists a j-Write operation v
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and a k-Write operation w such that
$i(2) < 6i(v) A vdw A di(w) < drly) -

By Property 2, ¢x(y) < ér(z). Thus, by transitivity, ¢x(w) < ¢x(z). If v = w (which
implies that j = k), then ¢;(v) < ¢;(z). If, on the other hand, v < w, then by Write
Precedence, ¢;(v) < ¢;(2). Hence, by transitivity, ¢;(z) < ¢;(2), i.e., zBz.

Case 8: z, y, and z are all Write operations. Of the five relations that define ¥, only A4, D,
and E can relate two Write operations. Thus, by Property 3, 2Dy holds or z Ey holds, and
yDz holds or y£z holds. If 2Dy holds, then there exists a Read operation r such that zBr
and rBy. Because rBy A yFz holds, by Case 4, we have rFz. Because zBr A rFz holds,
by Case 6, we have Fz. The case in which yDz holds is similar.

The remaining possibility is xEy and yEz. Assume that z is an i-Write operation, y is
a j-Write operation, and z is a k-Write operation. By the definition of F, there exist an

i-Write operation v, j-Write operations w and v/, and a k-Write operation w’ such that
sFy A di(2) <di(v) A vdw A ¢j(w) < ¢;i(y)

and
y#Fz A ¢i{y) < 4;(v) AV D' A dp(w') < ilz) .

There are three possibilities to consider: ¢ = j, j =k, and i # § A j # k. First,
suppose that ¢ = j. We show that £z holds by first proving that ¢;(z) < #;(v'). Because
v Jw, by Uniqueness, ¢;(v) < ¢;(w). Therefore, by transitivity, ¢;(z) < ¢;(y). Because
z # y, Uniqueness implies that ¢;(z) # ¢;(y). Thus, ¢;(z) < ¢;(y). Thus, by transitivity,
¢j(2) < ¢;(v').

We now show that zEz. If i # k, then because z is an i-Write operation and z is a k-
Write operation, & # z. If i = k, then by Uniqueness, ¢;(v') < ¢;(w’); thus, by transitivity,
¢;(z) < ¢;(2), which implies that z # z. Therefore, we conclude for the case i = j that

Fz A gi(e) <) AV Dw A dp(w) < di(z) .

Thus, zEz.

The case in which j = & is similar to the case ¢ = j.

Now suppose that ¢ # j and j # k. In this case, we prove that  Ez by first showing that
v<dw'. Because i # j and because v is an i-Write operation and w a j-Write operation, we
have v # w. Similarly, because j # k, we have v/ # w’. Hence, v < w and v/ <1 w’. Observe
that, by transitivity, ¢;(w) < ¢;(v’). Therefore, by Uniqueness, =(v/ <t w). Also, observe
that vdw A v/ 9w’ = v/ <dw V v<Qw'. Thus, v<iw'. Hence, the following expression
holds.

$i(z) < ¢i(v) A v A dr(w') < gi(2)
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If i # k, then because z is an i-Write operation and z a k-Write operation, z # z. If, on the
other hand, i = k, then by Uniqueness, ¢;(v) < ¢;(w’); hence, ¢;(x) < ¢;(z), which implies
that z # z. Therefore, we conclude that zEz holds.

Thus, we have established that F' is an irreflexive partial order. We now show that any
extension of F to an irreflexive total order satisfies the conditions given in the definition of
an atomic history. The following property is used in the proof.

Property 4: For each pair of k-Write operations v and w, vFw = ¢3(v) < ¢r(w).

Proof of Property 4: Assume that vF'w holds. Then, by Property 3, vDw holds or vEw
holds. If vDw holds, then there exists a Read operation r such that vBr A rBw. By the
definition of B, ¢x(v) < ¢x(r) and ¢r(r) < ¢p(w). This implies that ¢1(v) < dr(w). If, on
the other hand, vEw holds, then there exists k-Write operations v' and w’ such that

dr(v) < ¢r(v') A v Dw A Gp(w') < dr(w) .

By Uniqueness, ¢z{(v') < ¢p(w’). This implies that ¢z(v) < ¢p(w). By the definition of E,
v # w. Therefore, by Uniqueness, ¢(v) < ép(w). |

Let » be a Read operation. By Integrity, there exists a k-Write operation v such that
61 (v) = ¢r(r) and the value Written by v is the same as the value Read by r for component
k. By the definition of B, vFr. Moreover, by Properties 2 and 4, =(Fw : w is a k-Write :
vFw A wFr). Observe that, by the definition of B, F' totally orders each Read with respect
to all Writes. Also, by the definition of E and Uniqueness, the Writes on a given component
are totally ordered. Thus, any extension of relation F to an irreflexive total order satisfies
the conditions given in the definition of an atomic history. O
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