MULTIPLE-WRITER
COMPOSITE REGISTERS”

James H. AndersonT

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-89-26 September 1989
July 1990 (Revision)

ABSTRACT

A composite register is an array-like variable that is partitioned into a number of components.
An operation of such a register either writes a value to one of the components, or reads the values
of all of the components. A composite register reduces to an ordinary atomic register when there
is only one component. In a related paper, we showed that atomic registers can be used to im-
plement a composite register in which there is only one writer per component. In this paper, we
show that a composite register with multiple writers per component can be implemented from a
composite register with one writer per component. Together, these two constructions show that it
is possible for a process of a concurrent program to take an atomic snapshot of an entire shared
memory without using mutual exclusion.

Keywords: Atomicity, atomic register, composite register, concurrency, interleaving seman-
tics, linearizability, shared variable, snapshot.

CR Categories: D.4.1, D.4.2, F.3.1.

* A preliminary version of this paper will be presented at the Ninth Annual ACM Symposium on Principles of
Distribuied Computing.

T Work supported in part by Office of Naval Research Contract NO0014-89-J-1913.

1 Introduction

The concept of an atomic register is of fundamental importance in the theory of concurrent
programming; see, for example, [4, 5, 8, 9, 11, 12, 13, 14, 15]. An alomic regisier is a shared
data object that can either be read or written (but not both) in one indivisible operation.
Such a data object is characterized by the number of processes that can write it, the number
of processes that can read it, and the number of bits that it stores. The simplest atomic
register can be written by one process, read by one process, and store a one-bit value; the
most complex can be written and read by several processes and store any number of bits.
The previously cited papers show that the most complex atomic register can be implemented
in terms of the simplest.

In [2], we defined a shared data object, called a composile regisier, that extends the
notion of an atomic register. A composite register is an array-like variable that is partitioned
into a number of components. An operation of such a register either writes a value to one of
the components, or reads the values of all of the components. A composite register reduces
to an ordinary atomic register when there is only one component.

We consider here the important question of whether atomic registers can be used to
construct composite registers. Such a construction consists of a set of writer and reader
programs that communicate via a set of “internal” atomic registers. A process writes a
value to one of the components of the constructed composite register by invoking one of the
writer programs for that component. A process reads the values of all of the components
by invoking one of the reader programs. Different programs can be invoked by different
processes concurrently; the net effect, however, is required to resemble that of a serial
invocation. The programs are restricted to be wait-free, i.e., synchronization primitives and
unbounded busy-waiting loops are not allowed. This restriction guarantees that a process
reads or writes the constructed composite register in a finite amount of time, regardless of
the activities of other processes. It also ensures that the read or write of a process is immune
to the failure of other processes that also access the constructed composite register.

We use a two step approach to show that atomic registers can be used to construct
composite registers. In [2], we showed that atomic registers can be used to construct a
composite register in which there is only one writer per component. In this paper, we
use the construction of [2] to implement a composite register in which several writers per
component are allowed.

One of the surprising consequences of this result is that, using only atomic registers, a
process of a concurrent program can take an atomic “snapshot” of an entire shared memory
without using mutual exclusion. Such a shared memory can be implemented by a single
composite register, with each shared variable corresponding to a component of the register.
To write a given variable, a process writes the corresponding component of the composite
register. To read some set of variables, a process reads the entire composite register, and
then selects the values of the components corresponding to the set. A global snapshot

operation is performed by simply reading the set of all variables.

The problem of constructing a composite register from atomic registers has also been
considered independently by Afek et al. [1, 10]. In particular, Afek et al. show that an
“atomic snapshot” primitive can be constructed from multiple-writer atomic registers. It is
interesting to note that the construction given in [2] uses only single-writer atomic registers.
Thus, the construction given in this paper (which is based upon the one in [2]) gives us
a means for implementing a composite register using only single-writer atomic registers.
It follows, then, that our construction can be used to implement a multiple-writer atomic
register (the case in which there is only one component) from single-writer atomic registers.

Composite registers are quite powerful and can be used to implement a number of inter-
esting shared data objects. For example, as shown in [2], composite registers can be used
to implement a shared variable that can be either read or incremented in one atomic step.
This result is somewhat surprising because it has been shown both by Herlihy [6] and by
Anderson and Gouda [3] that it is impossible to implement a shared variable that can be
both read and incremented in one atomic step.

The rest of the paper is organized as follows. In Section 2, we formally define the
problem of constructing a composite register from atomic registers. In Section 3, we present
our construction along with its proof of correctness. The version of the construction that is
considered in Section 3 has unbounded space complexity. We show in an appendix that this
version can be transformed into one with bounded space complexity. Concluding remarks
appear in Section 4.

2 Composite Register Construction

In this section, we give the conditions that a composite register construction must satisfy
to be correct. For brevity, we will be rather informal about describing what we mean by a

“construction.” However, our treatment of the correctness condition will be formal.

Terminology: In order to avoid confusion, we henceforth capitalize terms such as “Read”
and “Write” when they apply to the consiructed composite register, and leave them uncap-
italized when they apply to the internal variables of a construction. 0

A construction consists of a set of Writer programs and a set of Reader programs that
communicate via a set of “internal” variables. A Writer program is invoked in order to Write
a value to a component of the constructed composite register. A Reader program is invoked
in order to Read the values of all of the components of the constructed composite register.
Each Writer program has one input parameter indicating the value to be Written; each
Reader program has one output parameter for each component of the constructed register.

We designate a composite register construction by a 4-tuple K/L/M /N, where K is the
number of components, L is the number of biis per component, M is the number of

b

Each component contains I bits

component 0 Reader 0
. component ¢ o
component K — 1 Reader N — 1

Figure 1: K/L/M/N composite register structure.

Writers per component, and N is the number of Readers. {Thus, a 1/L/M/N composite
register is an ordinary atomic register.) The structure of a K/L/M/N composite register
construction is depicted in Figure 1. In this figure, ovals denote programs, boxes denote
variables, and arrows denote direction of communication; an outgoing arrow from a program
to a variable indicates that the program Writes the variable, while an arrow in the reverse
direction indicates that the program Reads the variable. Note that this figure only depicts
the Writer programs for component :. For an example of a Reader or Writer program, see
the programs in Figures 4 and 5.

Each internal shared variable of a construction corresponds to an atomic register — thus,
a statement of a program can either read a single shared variable, or write a single shared
variable, but not both; i.e., in each statement, there is at most one occurrence of a shared
variable. As mentioned in the introduction, each program of a construction is “wait-free,”
i.e., synchronization primitives and busy-waiting loops are not allowed. (A more formal
definition of wait-freedom is given in [3].)

We now define several concepts that are needed to state the correctness condition for a

construction. These definitions apply to a given construction.

Definition: A siale is an assignment of values to the variables of the construction. One or
more states are designated as infiial siates. 0

Definition: An event is an execution of a statement of a program. O

Definition: Let £ and u be any two states of a construction such that state u is the result
of executing some statement at state ¢. If e is the event corresponding to this statement
execution, then we write t—u. A history of a construction is a sequence {5=3t;<% - - - where
ip is an initial state. 0

A Reader (or Writer) program can be repeatedly invoked to Read {or Write) the con-
structed composite register. Therefore, a given statement may be executed many times in

a given history. Each such execution corresponds to a distinct event.

Definition: Event e precedes another event f in a history iff e occurs before f in the
history. The set of events in a history corresponding to some program invocation is called
an operation. An operation p precedes another operation g in a history iff each event of p
precedes all events of g.]

Observe that the precedes relation is an irreflexive total order on events and an irreflexive
partial order on operations.

For the proof of correctness of a construction, it is sufficient to consider only histories
that do not contain any incomplete program executions (i.e., incomplete operations). From
now on, we deal only with such well-formed histories.

Definition: A Write operation of component & of the constructed composite register, where
0 <k < K, is called a k-Write operation. O

In order to avoid special cases when proving the correciness of a construction, we make

the following assumption concerning the initial Write operations.

Initial Writes: For each k, where 0 < k < FK, there exists a k-Write operation that pre-
cedes each other k-Write operation and all Read operations. O

According to the following definition, if several operations are executed concurrently,
then the net effect should be equivalent to some serial order. This definition is similar to
the definition of linearizability as given in [7].

Definition: Let 5 be a history of a construction. History h is afomic iff the precedence
relation on operations (which is a partial order) can be extended® to a total order [” where
for each Read operation r in i and each k in the range 0 < k < K, the value Read by r for
component £ is the same as the value Written by the k-Write operation v that is defined as

1A relation R over a set § extends another relation R’ over § iff for each z and y in S, o R y = zhRy.

follows: v Cr A =(Jw:wisa k-Write: v Cw T 7). O

Note that the Write operation v in the definition above exists by our assumption con-

cerning the initial Writes.

Definition: A construction of a composite register is correct iff all of its histories are atomic.
0

This correctness condition, while intuitive, is rather difficult to use. We now present
a lemma that gives a set of conditions that are sufficient for establishing that a history is
atomic. Intuitively, a history is atomic if each operation in the history can be shrunk to
a point; that is, there exists a point between the first and last events of each operation at
which the operation appears to take effect. For this reason, the following lemma is referred
to as the “Shrinking Lemma.” The proof of this lemma is given in [2].

Shrinking Lemma: A history A is atomic if for each %, where 0 < & < K, there exists a
function ¢y that maps every Read operation and k-Write operation in h to some natural
number, such that the following five conditions hold.

e Uniqueness: For each pair of distinct k-Write operations v and w in b, ¢x(v) # ¢x(w).
Furthermore, if v precedes w, then ¢3(v) < ¢p{w).

e Integrity: For each Read operation r in h, and for each & in the range 0 < k < K,
there exists a k-Write operation w in h such that ¢3{r) = ¢p(w). Furthermore, the
value Read by r for component k is the same as the value Written by w.

e Prozimily: For each Read operation r in h and each k-Write operation w in h, if
precedes w then ¢p(r) < ¢r(w), and if w precedes » then ¢ (w) < ¢p(r).

e Read Precedence: For each pair of Read operations r and s in b, if (3k 2 ¢5{r} < ¢p(s))
or if r precedes s, then (Vk :: ¢ (v) < ¢i(s)).

e Write Precedence: For each Read operation r in A, and each j-Write operation v and
k-Write operation w in A, where 0 < j < K and 0 < k < K, if v precedes w and

ér(w) < ¢r(r), then ¢;(v) < ¢;(r). o

3 K/L/M/N Construction

As stated in the introduction, we show in [2] that atomic registers can be used to implement
a K/L/1/N composite register. Therefore, to show that atomic registers can be used to
implement a K/L/M/N composite register, it suffices to construct a K/L/M/N composite
register from K/L/1/N composite registers. In this section, we give such a construction.

Reader 0
Qlk, 0] Qlk, M]
° ° read by
each
Qlk,1] Qlk, M + 1] N
Reader

and Writer

Q[k> M- 1] Q[k72M - 1]

Reader N — 1

Figure 2: K/L/M/N construction architecture,

An informal description of the construction is presented in Section 3.1, and the correctness

proof is given in Section 3.2.

3.1 Informal Description

The architecture of our K/L/M/N construction is shown in Figure 2. (This figure only de-
picts the A/ Writers for component k of the constructed register.) There is a single shared
variable, namely Q. Variable Q is a KM/L'/1/KM + N composite register, where (as
shown later) L' is O(L + M log M). As seen in Figure 2, each pair of variables Qlk, 7] and
Qlk, M + 1], where 0 < k < K and 0 < i < M, corresponds to a single component of Q.
Each of the KM Writer programs writes to one component of @, and all KM + N programs
read (7.

Terminology: In order to avoid confusion, we henceforth use the term “component” only
when referring to the constructed composite register. We call each Q[k, 7], where 0 < k < K
and 0 < j < 2M, an “element” of Q. |

The type definition for @), along with its initialization, is given in Figure 3. The fields
of each element of variable {J are as follows.

o

type Qlype = record wal : valiype;
tag : integer; /+ as shown in the appendix, a range of 0..88 — 4 suffices %/
bid, eid : integer; /* auxiliary variables #/
we: 0..2;
seq : array[0..23/ — 1] of 0..2M;
flag : array[0..2M — 1] of boolean;
maich : array[0..1] of boolean
end
shared var
Q : array[0..K — 1][0..2M — 1] of Qtype;
P :array[0..K — 1] of integer [+ auxiliary variable %/
initialization
(VE,m:0< k<K A O0LSm<2M:Qlk,mlwe=2 A Q[k,mltag=0A
~Q[k, m}match0] A —Q[k, m].match[l] A
(¥n:0< n < 2M : ~Q[k,m].flagln] A Q[k, m].seq[n] = m))

Figure 3: Shared variable declarations for K/L/M/N construction.

program Reader{j : 0..N — 1) returns array[0. K — 1] of valtype
private var
7 : Qlype;
E:0.K—1,
n:0.2M —1;
mez : array[0..K — 1] of 0..2M — 1;
val : array[0.. K — 1] of valiype;
id : array[0.. K — 1] of integer [/ auxiliary variable */
begin
0: read z:= @
it fork=01t0 K ~1do
select maz[k] such that SA(z, k, maz[k]) A
(Vn: SA(z, k,n) : (z[k, nltag,n) < (z[k, maz[k]].tag, maz[k]));
vallk], id[k] = z[k, maz[k]].val, o[k, maz[k]].eid
od;
2: return(velf0],..., val[K — 1])
end

Figure 4: Reader program for K/L/M/N construction.

program Writer(k: 0. K —1;m: 0. M — 1, val : valtype)
private var

z,9y, % : Qtype;

seq : array[0..2M — 1] of 0..2M;

flag : arvay[0..2M — 1] of boolean;

maich : array[0..1] of boolean;

i, j,maz,n:0.2M —1;

bid, eid : integer; [+ auxiliary variables »/

tag : integer [+ as shown in the appendix, a range of 0..8M — 4 suffices =/
begin

0: (if i =wm then i, j:=M+m,m else 4, j :=m, M + m fi; bid, P[k] := P[k], P[k]+ 1);

/* compute sequence numbers and flags */
read z := @,
select seg[i] such that (Vn : 0 < n < 23 : seqli] # s[k, n].seq[s]);
tag, eid, maich[0..1], flagli] := z[k, i].tag, o[k, 1].eid, 2k, i].maich[D..1), false;
for n =0 to 2M — 1 skip ¢ do
seqln), flugln] := =k, n].seqln], (z[k, i].seq[n] = z[k, j].seq[n] = =k, n].seq[n])
od;
5: write Q[k, 1] 1= (val, tug, bid, eid, 0, seq[0..23 — 1}, flag[0..2M — 1], maich[0..1]);

/# compute tag and maich{0] =/
6: read y == (;
select maz such that WA(y, k, maz) A
(Yn: WA(y, k,n): (y[k,nllag, n) < (ylk, mazl.iag, maz));
8: tag := ylk, mazliag + 1;
9: match(l]:=(n 0 < a < 2M A nF#i:ylk alflagli] A ylk, n].seqli] = seqli]);
10: write Q[k,] := (val, tag, bid, eid, 1, seq[0..2M — 1], flag[0..28 — 1], maich]0..1]);

=X

/* compute match[1] =/
11: read z ;= @
12: match{l]:=(In : 0 <n < 2M A n#£i:zlk] flagli] A z[k, n]seq[i] = seq[s]);
13: (eid, P[k]:= P[k], P[k]+
write Qlk, 1] := {val, iag, bzd eid, 2, seq[0..2M — 1], flag[0..2M — 1], match[0..1]))
end

Figure 5: Writer program for K/L/M/N construction.

val: A value Written by a Write operation.

tag: An integer “tag” that is appended to a value. As explained below, each tag field can
be restricted to range over 0..8M — 4,

bid: An integer auxiliary variable updated at the “beginning” of a Write operation.
etd: An integer auxiliary variable updated at the “end” of a Write operation.

wes A modulo-3 integer “write counter” that is incremented each time a Write operation
writes to a particular element of (.

The remaining fields are used to bound the size of the fag fields. This is described below.

seq: An array of 2M “sequence numbers.” Each sequence number is a modulo-(2M + 1)
integer.

flag: An array of 2A1 bits.
maich: A pair of bits.

The Reader and Writer programs are shown in Figures 4 and 5, respectively. In the
Reader and Writer programs, we use a special syntax in order to distinguish reads and
writes of shared variables from reads and writes of private variables. A program reads a
given shared variable V' by executing a statement of the form “read 2 := V,” where z is a
private variable of the same type as V. A program writes a shared variable V by executing a
statement of the form “write V := 2.” Notice in Figure 5 that the private auxiliary variable
bid of each k-Write operation is updated by atomically incrementing the shared auxiliary
variable P[k] in line 0, and that the private auxiliary variable eid is updated by atomically
incrementing P[k] in line 13. This is denoted by the angle brackets ‘(’ and ‘)’.

Fach Write operation writes to a particular element of ; we call a Write operation that
writes to Q[k, j] a (k, j)- Wrile operation. The Write operations for a given component follow
a protocol that is similar to that used in the multiple-Writer atomic register construction
of Vitanyi and Awerbuch [15]. Each Write operation for a particular component appends
a “tag’ to the value that it Writes; a Write operation computes its tag by incrementing
the value of the maximum tag that it reads from the elements of @) corresponding to its
component. A Read operation returns the value from the element of that component with
the maximum tag (ties are broken using the indices of the Writers). The K values returned
by a Read operation constitute a consistent snapshot since all of the elements of variable
are read in a single statement.

As seen in Figure 5, each Write operation writes to a particular element of three times.
As we shall see later, the value of a particular component is determined only by the elements
of that component that are up-to-date, i.e., that were last written by a completed Write
operation. Thus, the value of a particular component is well-defined at some state only if

there exists an element of that component that is up-to-date at that state. To ensure that
this is always the case, successive operations of the same Writer write to different elements
of (). In particular, the operations of Writer (k,m), where 0 < k < K and 0 < m < M,
alternate between writing to Q[k,m] and Q[k,m + M]. (This is why each component of
the constructed register consists of 2M elements of @, instead of just M.) This strategy
guarantees that at least half of the elements of a component are up-to-date at every state.

In order to determine which element of a component has the maximum tag, it is necessary
only to consider those elements that have been written “recently.” By exploiting this fact,
it is possible to bound the size of the lag fields. We say that a recently written element
is “alive.” The alive elements are identified by including a number of additional fields in
each element of . One of these fields is an array seq[0..2M — 1] of “sequence numbers.”
The field Qlk, j].seq[j] is the “primary” sequence number of the most recent (%, j)-Write
operation. The field Q[k, j].seq{n], where n # j, is a copy of the primary sequence number
of the most recent (k,n)-Write operation as read from Q[k,n].seq[n] by the most recent
(k, j)-Write operation.

A (&, j)-Write operation seeks to make the value of its primary sequence number,
Qlk, j].seq[7], distinet from all copies of it. At the same time, it updates its copy of each
other primary sequence number to correspond to the current value of that sequence number;
more specifically, it tries to make the value of Q[k, jl.seq[n] equal to that of Q[k, n].seq[n],
for each n # j. If the primary sequence number for a given element remains unchanged
for a sufficiently long period of time, then it will eventually be copied by some Write op-
eration. An element is no longer alive once its primary sequence number has been copied
by three successive operations of some Writer. (Note that if v, v/, and v” are three suc-
cessive operations of the same Writer, then v and v” are (k, {)-Write operations and v’ is a
(k,i+ M modulo 2M)-Write operation for some ¢ in the range 0 < i< 2M.)

The above condition is detected by means of the flag and maich fields. The bit
Qlk,n].flag[j], where § # n, is set by a (k, n)-Write operation if three successive opera-
tions of its Writer have read the same value from Qlk, j].seq[j]. The bits Q[k, j].match|0]
and Qlk, jl.match{l] are set by a {k, j)-Write operation if it detects that its own primary
sequence number, @[k, jl.se¢[j], has been read by three successive operations of some other
Writer.

As shown in an appendix, the tags of the alive elements of a given component are within
arange of size 434 —1. Therefore, we can restrict the size of each tag to range over 0..8 M —4.
The maximum tag for the alive elements is then determined with respect to this range.

The Readers use a slightly stronger “aliveness” condition than that of the Writers. Ac-
cording to the Readers’ aliveness condition, if an element is alive, then its we field equals
2. This ensures that a Read operation Reads a value as Written by a completed Write
operation. Thus, the value of a particular component is determined only by the up-to-date
elements of that component. According to the Writers’ aliveness condition, if an element is

alive, then its we field equals either 1 or 2. This ensures that a Write operation chooses its

10

tag based upon the most recently written tags. In the Reader program, the alive elements
are determined by the predicate SA(Q, %, j), and in the Writer program, the alive elements
are determined by the predicate WA(Q, k, j); SA stands for “strongly alive” and WA stands
for “weakly alive.” These predicates are defined as follows.

WA(Q, k,7) = Qlk, jlwe > 1 A =Qlk, j].maich[0] A
(Vrn:n#j A Qlk,nlwe=2:Qk, n]flaglj] =
Qlk, nl.seq[f] # Qlk, j]-seqlj])

SAQk, Y= WAQ, k) N Qlk, jlwe=2 AN =Q[k, j].matchl]

According to the first conjunct in the definition of WA, WA(Q, k, j) fails to hold if the
last Write operation to write to Q[k, j] has done so only once. According to the second con-
junct, WA(Q, k, j) fails to hold if the last Write operation to update the bit Q[k, j].match[0]
detected that its primary sequence number, @[k, j].seq[j], was read by at least three suc-
cessive operations of some other Writer. According to the third conjunct, WA(Q, k, j) fails
to hold if at least three successive operations of some Writer have read the current value of
Qlk, j]-seqls]-

According to the first conjunct in the definition of SA, SA(Q,k, j) fails to hold if
WA(Q, k, j) fails to hold. According to the second conjunct, SA(Q,k, j) fails to hold if
the last Write operation to write to @[k, 7] has not completed. According to the third con-
junct, SA(Q, k, §) fails to hold if the last Write operation to update the bit Q[k, j].match[1]
detected that its primary sequence number, Qk, j].seq[4], was read by at least three succes-
sive operations of some other Writer.

We now compute the space complexity of our K/L/M/N construction by determining the
number of shared 1/1/1/1 composite registers used in the construction. Let B(K, L, M, N)
denote the number of shared 1/1/1/1 composite registers required to construct a K/L/M/N
composite register. If we remove the auxiliary bid and eid fields from our K/L/M/N
construction, then the complexity of the fields of each component of variable Q is as follows.

e val uses L bits.
e tag uses log(8M — 3) bits.

we uses 2 bits.

@

seqli], 0 <4< 20, uses log{2A4 + 1) bits.
o flagli], 0 < i < 2M, uses 1 bit.
e matchli], 0 <7< 1, uses 1 bit.

Thus, variable @ is a KM/L'/1/KM + N composite register, where L' = O(L + M log M).
Hence, the space complexity of our K /L/M/N construction is B(K,L, M,N)= B(KM, L',

11

1, KM+N). By using the value of B(X, L, 1, N) as computed in [2], we have B(K,L,1,N) =
O(KN? + K2LN + K3L). Therefore, we get

B(K,L,M,N) = O(K3LM®+ K3M*logM + K*LM*N + K*M?N log M + KMN?) .

We compute the time complexity by determining the number of reads and writes of
shared 1/L/1/N composite registers (i.e., single-writer atomic registers) required to Read
and Write the constructed register (for simplicity, we do not go down to the level of 1/1/1/1
registers when computing the time complexity). Let TR(K, L, M, N} and TW(K, L, M, N)
denote the time complexity for Reading and Writing, respectively, a K/L/M/N composite
register. The time complexity of a Read operation is

TR(K,L,M,N)=TR(KM,L',1, KM+ N) .
The time complexity of a Write operation is
TW(K,L,M,N)=3TR(KM,L',1, KM + N)+3TW(KM,L',1, KM + N) .

By using the values of TR(K,L,1,N) and TW(K,L,1,N) as computed in [2], we have
TR(K,L,1,N) = O(2X) and TW(K,L,1,N) = O(N + 2%). Therefore, if variable Q is
implemented using the K/L/1/N construction given in [2], then the time complexity of a
Read would be O(25M) and the time complexity of a Write would be O(N + 25M)_1If, on
the other hand, a polynomial-time K/L/1/N construction is used to implement (J, then the
time complexity for our K/L/M/N construction would also be polynomial.

3.2 Correctness Proof

In this section, we prove that the construction is correct as is, i.e., with unbounded tags. In
an appendix, we show how to transform the original algorithm into one with bounded tags.

The correctness proof is based on the Shrinking Lemma. We first define functions
&0, ..., bx-1 for a given history, and then show that the defined ¢’s satisfy the five con-
ditions of Uniqueness, Integrity, Proximity, Read Precedence, and Write Precedence. The
following notations and definitions are used in the rest of the paper.

Notation: Unless stated otherwise, we assume that k ranges over {0,..., K — 1}, and that
i, 4, and n each range over {0,...,24f — 1}. We use p and ¢ to denote arbitrary operations,
r and s to denote Read operations, v and w to denote Write operations, and ¢ and u to
denote states. Unless stated otherwise, we assume that v and w are k-Write operations.
Also, we use @ to denote modulo-2M addition. O

Notation: In order to avoid using too many parentheses, we define a binding order for the

symbols that we use. The following is a list of these symbols, grouped by binding power;

the groups are ordered from highest binding power to lowest.

12

(O 1

!

+, —, &

=#<>,52,%%,€

A,V

=, =

E]
Definition: If event e precedes event f, then we write e < f. Welet (e X f) = (e =
FVve<f) O

Definition: Let p be an operation, and let # be any private variable of p. Then, plz denotes
the final value of variable © as assigned by operation p.]

Definition: Let p be an operation of some Reader or Writer program and let i be a label
of a statement in that program. We denote the event corresponding to the execution of
statement ¢ in operation p by p:i. 0

Definition: If £ is an expression that holds at state 7, then we write t |= E. O

Whenever we say that a given assertion holds without referring to a particular state, we

mean that the assertion is an énvarient; t.e., it is true at each state of every history.

Assumption: We assume that each state in every history is distinct. This assumption is
easy to ensure by introducing an integer auxiliary variable that is incremented with each

event. 0
Definition: Counsider the history 165 .. -tifitz-_;_l -+, We say that {; is the state prior fo
the event e; and #;4 is the state following e;. Similarly, e; is the event prior o the state

;41 and the event following state 1;. o

Note that the events prior to and following a given state are uniquely defined since, by
assumption, each state appears at most once in a given history.

Definition: Let ¢ be the event corresponding to the execution of the statement read z := Y
in an operation p, where z is a private variable and Y is a shared variable. If f is the last
event to write Y before ¢, then we say that [delermines plez.]

Definition: If p and ¢ are successive operations of the same Reader or Writer program,

13

then we write p = pred{q) and ¢ = suce(p).]

Definition: An assertion A is stable iff for every pair of consecutive states in any history,
if A holds in the first state, then it also holds in the second state. o

Definition: Let X be a shared variable of the construction, and let p be an operation. The
assertion last(X) = p holds at a state iff the last event to write to X before that state is an
event of p. O

Definition: Let ¢ be an event in some history. Then, afier(e) is true at a state iff the state
occurs after the event e. o

Based on the definitions of WA and SA given in Section 3.1, we define four predicates:
walive indicates whether a Write operation is “weakly alive,” salive indicates whether a
Write operation is “strongly alive,” wpref indicates whether a weakly alive operation is
“preferable,” i.e., has the largest tag for its component, and spref indicates whether a
strongly alive Write operation is preferable.

Definition: Let w be a (k, j)-Write operation. Then,

walive(w, k) = last(Qk,j]) = w A WA(Q,k, j)

last(Q[k, j]) = w A SA(Q, %, J)

walive(w, k) A (Vv : walive(v, k) : (vitag, vii) < (whag, 7})

salive(w, k) A (Vv : salive(v, k) : (viag, vli) < (wlag, 1)) o

salive(w, k)
wpref(w, k)
spref(w, k)

As mentioned in Section 3.1, each element of) includes two auxiliary fields bid and eid.

o

i

These variables have been introduced in order to facilitate the definition of ¢y, ..., ¢x 1.

Definition: Let r be a Read operation and let w be a k-Write operation. Then, ¢; is
defined as follows.

dp(r) = rlidlk]

wleid if spref(w, k) holds at the state following w:13
¢r(w) . .
wlbid otherwise

i

0

Before establishing the conditions of Uniqueness, Integrity, Proximity, Read Precedence,

and Write Precedence, we first prove a number of lemmas. The following lemma gives us a
means for determining the value of Q[k, j] at a given state.

Lemma 1: Let v be a (&, j)-Write operation. Then,
e last(Qk, j) = v = Qlk, jlval = vival A Qlk, jl.bid = vibid A (Vo 0 Qlk, jl.seqln] =
viseqln] A QIE, j].flagln] = viflagln])

14

o last(Qlk,5]) = v A after(v:10) = Qk,jlwe > 1 A Qlk,jltag = vltag A
Qlk, j].match[0] = vimatch[0]

e last{Qlk,j]) = v A afler(v:13) = Qlk, jlwec=2 A Q[k, j].match[l] = vimatch[1] A
Qlk, jl-eid = vleid

Proof: The lemma holds because v:5 assigns the values vival, vlbid, 0, vlseq[0..2M — 1],
and v!flag[0..2M — 1] to the fields val, bid, we, seq[0..2M — 1], and flag[0..2M — 1], re-
spectively, of @[k, j], while leaving the value of each other field unchanged; v:10 assigns the
values vltag, 1, and vlmateh[0] to the fields tag, we, and match([0], respectively, of Q[k, j],
while leaving the value of each other field unchanged; and v:13 assigns the values vleid, 2,
and vimatch[1] to the fields eid, we, and match(l], respectively, of @[k, 5], while leaving the
value of each other field unchanged. |

According to the next lemina, if Write operation v is “strongly alive” then it is also
“weakly alive.”

Lemma 2: (Vv k = salive(v, k) = walive(v, k)).
Proof: Follows by the definition of salive, walive, SA, and WA. O

According to the next lemma, the initial (k, j)-Write operation assigns the value false to
Qlk, 71.flag[n] for each n # j.

Lemma 3: Let v be the initial (k, j)-Write operation, and let n # j. Then, v!flag[n] is
false.

Proof: Let v be as defined in the lemma, and let n # j. We show that v!flag[n] is false.
Let ¢ be the state prior to the event v:1. By the program for the Writer, ¢ £ @ = v!z.
Also, by the program for the Writer,

viflagln] = (vizlk, jl.seq[n] = viz[k, j'].seq[n] = vlzlk, n].seqn]),

where j' = j @ M. Therefore, we can meet our proof obligation by showing that ¢t |=
Qlk, jl.seq[n] # Q[k, n].seq[n].

Because v is the initial (k, j)-Write operation, by the definition of the initial state,
t = Qlkjlseqln] = j. Ift = Qk nl.seq[n] = n, then clearly t = Qlk, j].seq[n] #
Qlk,n].seq[n]. So, assume that ¢ = Q[k,nl.seq[n] # n. In this case, the value of
Q[k, n].seq[n] at state ¢ differs from its initial value. Therefore, there exists a (k,n)-Write
operation w such that ¢ [last(Q[k,n]) = w A Qlk, nl.seq[n] = wlseq[n]. Because
last(Qlk,n]) = w at state ¢, i.e., the state prior to v:1, by the program for the Writer
w:d < v:1. This implies that w:1 < v:1. Hence, because v is the initial (%, j)-Write opera-
tion, by the definition of the initial state, Q[k, j].seq[n] = j at the state prior to w:1. This

-

15

implies that wiz{k, f].seq[n] = j. By the program for the Writer, wlseq[n] # wizlk, j].seq[n].
Therefore, wiseq(n] # j. Hence, t | Q[k, 7].seqln] # Qlk, n].seq[n]. o

In the next lemma, we consider the case in which three successive operations of one

Writer have copied the current sequence number of another Writer.

Lemma 4: Suppose that ¢ k= last(Qk,n]) = v A last(@Qk, j]) = w, where n # j. If
viflag[j] A viseq[f] = wiseq[f], then there exists v’ such that v/ = pred(v) A w:b <
v:1 A v'iseqlf] = wiseqls].

Proof: Let v, w, and ¢ be as defined in the lemma. Suppose that

viflaglil A viseqlj] = wiseqlf] . (1

Our proof obligation is to show that there exists v’ such that v/ = pred(v) A w:b <
v':1 A Viseq[j] = wiseqlj].
We first show that w:1 < v:5. Assume, to the contrary, that v:5 < w:1. By the program
for the Writer, w:1 < w:5. Let e be the event prior to {. Because t &= last{Q[k, j]) = w,
we have w:5 < e. Therefore,
vib<w:l<w:5<e

Because last(Q[k, n]) = v at state ¢ (the state following e), the above precedence assertion
implies that last(Q[k, n]) = v at every state between v:5 and e. In particular, last(Q[k, n]) =
v at the state prior to w:1. Therefore, by Lemma 1, @[k, nl.seq]j] = viseq[j] at the state
prior to w:1l. By the program for the Writer, this implies that wla[k, n].seq[j] = vlseq[j].
Furthermore, because w is a (&, j}-Write operation, from the program for the Writer,
wlseq[j] # wizlk, n].seq[j]. Therefore, wiseq[j] # vlseq[j], which contradicts (1). Thus,
our assumption that v:5 < w:1 is false, l.e., w:1 < v:5.

Because v!flag[j] holds, by Lemma 3, v is not the initial (k, n)-Write operation. There-
fore, there exist Write operations v’ and v” such that v/ = pred(v) and v"/ = pred(v’). Note
that v’ is a (k, n® M)-Write operation and v" is a (k, n)-Write operation. Because v!flag[j]
is true, by the program for the Writer, v"'!seq[j] = v'lseq[j] = vlseq[j]. Therefore, by (1),

vseq[j] = v'lseqlj] = wiseqlj] - (2)

We now show that w:1 < v”:5. Assume, to the contrary, that +”:5 < w:1. Then,
because w:1 < v:5, we have v":5 < w:l < v:5. Since v” and v are consecutive (k,n)-
Write operations, this implies that lasi(Qk, n]) = v" at the state prior to w:1. Therefore,
by Lemma 1, Qlk, n].seq[j] = v’lseq[j] at the state prior to w:1. Hence, by the program
for the Writer, wlz[k, n].seq[j] = v"!seq[j]. Thus, because wiseq[j] # wlzlk, n].seqj], we
conclude that wlseq[j] # v"!seq[j]. However, this contradicts (2). Thus, our assumption
that v”:5 < w:1 is false, i.e., w:1 < 2”5,

16

Thus far we have established that there exists v/, where v/ = pred(v), such that v'lseq[j] =
wlseq[§]. Our remaining proof obligation is to show that w:5 < v':1. Assume, to the con-
trary, that v':1 < w:5. As established above, w:1 < v”:5. Because v" = pred(v'),
v":5 < v':1. Thus,

w:il<v:1<w:b . (3)

Let ' = n@® M. Then, v’ is a (k, n/)-Write operation. Because w is a (k, j)-Write operation
{(and because the (k, j)-Write operations are totally ordered), (3) implies that n’ # j.
Because w is a (k, j)-Write operation, by (3) and the program for the Writer, Q[k, j].seq[j]
has the same value both at the state prior to w:1 and the state prior to v’:1. Therefore,
by the program for the Writer, wle[k, jl.seq[j] = v'lz[k, jl.seq[j]. Because w is a (k, j)-
Write operation, i.e., wli = j, we have wiseq[j] # wlzlk, j].seq[j]. Because v’ is not a
(k, j)-Write operation, ie., v’ = n' # j, we have v'lseq[j] = v'lz[k, j].seq[j]. Therefore,
wlseqlj] # v'lseq[j]. However, this contradicts (2). Thus, our assumption that v':1 < w:5
is false, L.e.,, w:5 < v': 1.]

According to the following lemma, if a completed k-Write operation w is not “strongly
alive” then there exists another completed k-Write operation v such that w:5 < v:1.

Lemma 5: (afier(w:13) A —salive(w, k)) = (Fv w5 < v:l A afler(v:13)).

Proof: Suppose that after(w:13) A —salive(w, k) holds at some state {, where w is a
(k, 7)-Write operation. Our proof obligation is to show that there exists a k-Write operation
v such that w:5 < v:land ¢ k= after(v:13).

We first dispose of the case in which ¢t = lasi(Q[k,j]) # w. In this case, because
after(w:13) holds at ¢, there exists a (k, j)-Write operation w’, where w precedes w’, such
that ¢ | last(Q[k, j]) = w’. Because successive operations of the same Writer write to
different elements of), this implies that there exists a (k, j @ M)-Write operation v such
that v = succ(w) and after(v:13) holds at t. Because v = succ{w), we have w:5 < v:1.
This establishes our proof obligation.

In the remainder of the proof, we assume that ¢ [lesi(Q[k,j]) = w. In this case,
because t = —salive(w, k), by the definition of salive, ¢ &= —SA(Q,k,j). We now show
that there exists a state u, where u either equals or occurs before ¢, such that for some n # j
the following expression holds.

u = last(Q[k,) = w A Qlk,n].flag[j] N Qlk,n].seqlj] = Qlk, j].seqls] (4

Because ¢t = last(Q[k,j]) = w A after(w:13), by Lemma 1, ¢ & Q[k, jlwec = 2.
Therefore, since ¢ = —SA{Q, k, j), by the definition of 54, there are two possibilities to
consider:

(i) there exists n # j such that ¢ = Qk,n].flaglj] A Qlk,n].seqli] = Qlk, j].seq[j], or

17

(i) t & Qlk,jl.matchl0] vV Q[k, jl.match[l].

If (i) holds, then take v = . Then, by assumption v |= last(Qlk, j]) = w, which
establishes (4).

Now, suppose that (ii) holds, i.e., Q[k, j].match[c] holds at #, where ¢ equals either 0 or
1. Because t = last(Q[k,5]) = w A after(w:13), by Lemma 1, ¢ = Q[k, jl.matchlc] =
wimatchlc]. Therefore, wimatchlc] is true. If ¢ = 0, then let u be the state prior to w:6,
and if ¢ = 1, then let u be the state prior to w:11. In either case, because after(w:13) holds
at ¢, u occurs before ¢. Also, in either case, u [= last(Q[k, j]) = w. We establish that (4)
holds for the case in which ¢ = 0; the case in which ¢ = 1 is similar. Because w'match[0]
holds, there exists n # j such that wiy[k, n].flaglj] A wlylk,n].seq[j] = wiseq[j]. By the
definition of state u, u | Q[k,n] = wlylk,n] A Q[k, j].seqlj] = wiseq[j]. Therefore,
u = Qk,n].flagls] A Q[k,n].seqlj] = Q[k, j].seq[j]. This establishes (4).

We now use (4) to establish our proof obligation. Let v be the Write operation such
that w [last(Q[k,n]) = v. (v exists because Q[k, n].flaglj] is initially false.) Because
u k= last(Q[k,n]) = v A last(Qlk,j]) = w, by Lemma 1, u = Qk,n].flaglj] =
oiflagli] A Qk,n)seq[i] = viseqlj] A Q[k, j].seqlj] = wiseq[j]. Therefore, by (4),
viflaglj] A vlseq[j] = wlseqlj]. Therefore, by Lemma 4, there exists v’ such that o =
pred(v) and w:5 < v’ : 1. Because v’ precedes v and last(Q[k, n]) = v at state u, after(v’:13)
holds at state u. By the definition of u, u either equals or occurs before . Thus, by the
definition of after, after(v’:13) holds at state ¢. This establishes our proof obligation. O

The next lemma shows that salive(w, k) holds for some w at every state that occurs

after the initial k-Write operation.
Lemma 6: (v : affer(v:13)) = (Bw :: salive(w, k)).

Proof: Let ¢ be a state such that for some k-Write operation v, ¢ k= afier(v:13). We show
that there exists some k-Write operation w such that ¢ = salive(w, k). Let S denote the
set of k-Write operations defined as follows: p € S iff ¢ = after(p:13). By assumption,
S is nonempty. Let w denote the Write operation in S such that for each other k-Write
operation pin S, p:5 < w:5. Then, by Lemma 5, t |= salive(w, k).]

As we now show, Lemma 6 implies that (37 :: SA(Q, k, j)) holds at every state. By the
definition of SA, this implies that (3j :: WA(Q, k, 7)) also holds at every state. As a result,
the computation of maz[k] and maz in the Reader and Writer programs, respectively, is
well-defined.

Let v be the initial k-Write operation. Assume that v is a {(k, j)-Write operation. By our
assumption concerning the initial Writes, v precedes all other k-Write operations. Consider
a state £. If ¢ occurs after the event v:13, then by Lemma 6, ¢ | (3w :: salive(w, k)).
Therefore, by the definition of salive, 1 & (In = SA(Q, k,n)).

18

Now, suppose that ¢ occurs before the event v:13. If ¢ occurs before v:5, then by the
definition of the initial state, ¢ = (Vn' = =Qlk, j]- flag[n]). I t occurs between v:5 and
v:13, then ¢t & Q[k, j].wc # 2. Therefore,

tE Qlbjlwe# 2 V (Yo' ~Qlk, j].flagln’)) -
Because v precedes all other k-Write operations, by the definition of the initial state,

t B (Yn:n#j:Qlk,nlwec=2 A ~Qlk,n].match[0] A
=Q[k,n]match[l] A (Vn':: =Qlk,n].flag[n"])) .

By the definition of SA, the above two assertions imply that ¢ = (Vn:n # j: SA(Q,k,n)).
Because, by assumption, n ranges over 0 < n < 20, the range in this expression is not
empty. Therefore, i = (3n:: SA(Q, k,n)).

According to the next lemma, if a Write operation that has written to) at least twice
is not “weakly alive” at some state, then it is forever after not “weakly alive.”

Lemma 7: —~walive(w, k) A after(w:10) is stable.

Proof: Let ¢ and u be consecutive states such that ¢ &= -—walive(w, k) A after(w:10).
By the definition of afier, v = after{w:10). This reduces our proof obligation to showing
that v | —walive(w, k).

Assume that w is a (k, j)-Write operation. By the definition of walive, if v |=
last(Qk, 1) # w, then v = —walive(w, k). So, in this case, our proof obligation is
satisfied. In the remainder of the proof, assume that u = last{Qlk, j]) = w. Because
after{w:10) holds at state u, we have

u | last(@Qlk,j) =w A afler{w:10) . (5)

By the definition of walive, our proof obligation is to show that WA(Q, &, j) is false at state
u.

Because ¢ and u are consecutive states and ¢ |= after(w:10), by (5) and the program
for the Writer,

t = last(Qk,) =w A ofter{w:10) . {(6)

Because ¢ | last(Qk,j]) = w A —walive(w, k), by the definition of walive,
t E —WA(Q,k j). By (6) and Lemma 1, ¢ | Q[k jlwe > 1. Therefore, by
the definition of WA, t = Qlk, jl.maich[0] or there exists n, where n # j, such that
i k= Qb nlwe=2 A Qlk,nl.flaglil A @k, nl.seq]i] = QE, j].seq]j]. We first dispose of
the case ¢ = Q[k, j].mateh[0]. By Lemma 1 and (6), ¢ = Qlk, jl.maich[0] = wimatch[0].
Thus, wimatch[0] is true. By Lemma 1 and (5), u k& Q[k, jl.match[0] = wimatch[0].
Hence, u = Qlk, jl.match]0]. Therefore, by the definition of WA, v &= - WA(Q, k%, 7),
which establishes our proof obligation.

19

In the remainder of the proof, we consider the other case, i.e., there exisis n, where
n # j, such that

t = Qlk,nlwe=2 A Qlk,n].flag[j] A Qlk,n].seq[j] = Qlk, j].seqls] . (M
Let v be the (k, n)-Write operation such that
t = last(Qk,n])=v . (8)

(v exists because Q[k,n].flag[j] is initially false.) By (6) and (8) and Lemma 1, ¢t |=
Qlk, n].flaglj]l = v!flag[j] A Qlk, n]l.seq[j] = viseq[j] A Qlk, jl-seq[j] = w!seq[j]. Hence,
by (7),

viflagli] A vlseqf] = wlseq[s] . (9

We now consider two cases, depending on whether u = last(@k, n]) = v.

Case 1: v | last(Qk,n]) = v. By (7) and (8), ¢t = last(Q[k,n]) A Qlk, n]we = 2.
By the program for the Writer this implies that ¢ = lasi(Q[k,n]) = v A after(v:13).
Because ¢ and w are consecutive states and u = last(Q[k,n]) = v, this implies that
u = last(Qlk,n]) =v A after(v:13). Therefore, by Lemma 1, Q[k, n] has the same value
at both states ¢ and u. As stated previously, ¢ = Q[k, n].seq[j] = vlseq[j]. Hence, by (7),

u = Qlk,nlwe=2 A Qlk,n] flaglj] A Qlk,n].seqj] = viseq[s] . (10)

By (9), this implies that v |= Q[k, n].seq[j] = wiseq[j]. By (5) and Lemma 1, u |
Qlk, j].seqlj] = wiseq[j]. Hence, u = Qlk, nl.seq[j] = Qlk, j].seq[j]. Thus, by (10), we get
the following.

v = Qk,nlwe=2 A Q[nlflagls] A Qlk, n)seqlj] = Qlk, j].seq(5]

By the definition of WA, this implies that u = —~WA(Q, k, j), which is our proof obligation.

i
@

Case 2: u k= last(Qk,n]) # v. In this case, because ¢ and u are consecutive states and
t | last(Q[k,n]) = v, state u is reached from ¢ via the occurrence of the event p:5, where
p = succ(succ(v)). Let p’ be the k-Write operation such that p’ = suce(v) and p = suce(p').
Note that p’ is a (k, n’)-Write operation, where n’ = n @ M. Because u is reached from ¢
via the occurrence of p:5, last(Q[k,n']) = p’ at state u.

By (6), (8), (9), and Lemma 4, there exists a Write operation v/ such that v’ = pred(v),
w:5 < v':1, and v'lseq[j] = wiseq[j]. Therefore, by (9),

(w:b <o :1) A (wlseq[j] = v'lseq[j] = viseq[s]) . (1)

Because v/, v, p, and p are successive operations of the same Writer, v':1 < p/:1 < p':13 <
p:5. Therefore, by (11), the following precedence assertion holds.

w:b<p:l=<p:13<p:5 (12)

20

By (12), p’ # w. Thus, because u = last(Q[k,n]) = p/, by (5), n' # J.
We now establish that p'lflag[j] A p'lseq[s] = wlseq[j]. Because last(Qk,n']) = p’ at
state u (i.e., the state following p:5), (12) implies that

u k= Qlk,nlwe=2 . (13)

By (5), last(Qlk, j]) = w at state u; hence, by (12), lasi(Q[k, j]) = w at the state prior
to the event p':1. Therefore, by Lemma 1, Q[k, jl.seq[j] = wiseq[j] at the state prior to
p’:1. Therefore, by the program for the Writer, p'lz[k, j].seq[j] = wiseq[j]. Because p’
is a (k,n’)-Write operation and n’ # j, we have p'lseq[j] = p'lalk, j].seq[j]. Therefore,
p'lseqlj] = wiseq[s]. Hence, by (11), p'lseq[j] = viseq[j] = v'lseq[j]. Thus, p'!flag[s] holds.
This establishes the following assertion.

P'Uflagls] A plseqli] = wiseql] (14)

We now establish our proof obligation, ie., u | —WA(Q,%, 7). Because v [
last(Qk, 7)) = w A last(Q[k,n']) = ¢/, by Lemma 1, v k= Qlk,n'). flagljl = p'I flag[j] A
Qlk, n').seqlj] = p'lseqj] AN Qlk, jl.seqlj] = wiseq[j]. By (13) and (14), this implies that
the following assertion holds:

v | Qlk,nlwe=2 A Qk,n'].flaglj] A Q[k,n"].seq[j] = QIF, j].seq[s]

where (as shown earlier) n’ # j. Hence, by the definition of WA, u = ~WA(Q, k, j). |

According to the following lemma, if a completed Write operation is not “strongly alive”
at some state, then it is forever after not “strongly alive.”

Lemma 8: —salive(w, k) A after(w:13) is stable.

Proof: Let ¢ and u be consecutive states such that 1 = —salive(w, k) A after{w:13). Our
proof obligation is to show that v = —salive{w, k).

Assume that w is a (k, j)-Write operation. By the definition of salive, if u |=
last(Q[k, 7)) # w, then v | —salive(w, k). So, in this case, our proof obligation is
satisfied. In the remainder of the proof, assume that u | last(Q[k, j]) = w.

Because ¢ and u are consecutive states and ¢ |= afler(w:13) and v &= last(Qlk, 7]} = w,
the following assertion holds at both states ¢ and w.

last(Qlk, j1) = w A after{w:13)
Therefore, because salive{w, k) is false at £,

t B last(Qlk,) = w A after(w:13) A —salive(w, k) . (15)

21

From (15) and Lemma 1, we have { = @[k, jlwe = 2. From (15) and the definition of
salive, we also have t |= —=S5A(Q, %, 7). Therefore,

t = Qb jlwe=2 A =SAQ,k,5) .

Thus, by the definition of SA, there are two possibilities to consider: ¢ | —WA(Q,k, 7)
ort = Qlk,jlmatch[l]. In the former case, by (15), we have t k= last(Q[k,j]) =
w A - WA(Q, k, j) A after(w:13). Hence, by the definition of walive, t | —walive(w, k) A
after(w:13). Therefore, by Lemma 7, v |= —walive(w, k). Hence, by the contrapositive of
Lemma 2, u = -salive(w, k), which establishes our proof obligation.

Now, consider the latter case, ie.,, ¢ | Qlk,jl.match[l]. As established above,
last(Q[k,j]) = w A after(w:13) holds at both states ¢ and v. By Lemma 1, this im-
plies that Q[k, jl.match[l] has the same value at both states ¢t and u. Therefore, be-
cause Q[k, j].match[1] holds at ¢, it also holds at u. Hence, by the definition of SA,
u | ~SA(Q,k, j). Thus, by the definition of salive, u | =salive(w, k). O

The next lemma gives the conditions under which salive(v, k) may be falsified.

Lemma 9: Suppose that ¢ and u are consecutive states such that ¢ k= salive(v, k) and
u | —salive(v,k). Then, there exists a k-Write operation w such that v:11 < w:5 and

v = after(w:13).

Proof: Let ¢, u, and v be as defined in the lemma. Assume that v is a (k, j)-Write
operation. Let e be the event prior to state u, i.e., t—u. We first dispose of the case in
which v | last(Q[k,j]) # v. Because ¢ | salive(v,k), by the definition of salive,
t = last(Q[k, j]) = v. Because ¢ and u are consecutive states and last(Q[k, j]) = v holds at
i but not u, event e equals v':5, where v' = succ(suce(v)). Let w be the k-Write operation
such that w = suce(v) and v’ = suce(w). Because w = succ(v), we have v:11 < w:5.
Because v’ = suce(w) and event e equals v':5, we have u k= after(w:13). So, in this case,
our proof obligation is satisfied.

In the remainder of the proof, we assume that v = last(Q[k, j]) = v. We first show that
u B Qk, jlwe=2 A =Qlk, jl.match[0] A =Q[k, jl.match[1]. Because t = salive(v, k),
by the definition of salive, ¢ = last(Q[k,j]) = v A Q[k, jl.we = 2. By the program for
the Writer, this implies that

t = last(Qk,j]) =v A after(v:13) . (16)

Hence, by Lemma 1, ¢ = Q[k, jl.match[0] = vlmaich[0] A Qlk, jl.match[1] = vimatch[1].
Because ¢ = salive(v, k), by the definition of salive and SA, ¢ | -Qlk, j].match[0] A
=Q[k, jl.match[1]. Therefore, vimatch[0] and vimatch[l] are both false.

By assumption, v = last(Q[k,j]) = v. Therefore, because ¢ and u are consecutive
states, by (16) and the definition of after, u k& last(Q[k,j]) = v A after(v:13). Hence,

22

by Lemma 1, v k= Q[k, jlwe=2 A Qlk, jl.match[0] = vimaich[0] A Q[k, jl.match[l] =
v!match[1]. Therefore, because vimatch[0] and vimatch[1] are both false, v = Qk, jl.we =
2 A ~Qlk, jl.match[0] A =Q[k, j].match[1].

To recapitulate, we have u = last(Q[k, 5]) = v A Q[k, jl.we =2 A =Q[k, jl.match[0] A
-Q[k, jl.match[1]. Because salive(v, k) does not hold at u, this implies that there exists n,
where n # j, such that the following expression holds.

u | Qlk,nlwe=2 A Qlk,n].flag[j] A Q[k,n].seq(s] = Q[k, 5].seq[j] an

Let w be the Write operation such that u [last(Q[k,n]) = w. (w exists because
Q[k, n].flaglj] is initially false.) Then, because u = Q[k,n]wc = 2, by the program
for the Writer, u = after(w:13). This establishes one of our proof obligations.

We now establish our other proof obligation, i.e., v:11 < w:5. Assume, o the contrary,
that w:5 < v:11. By (16), afler(v:13) holds at state £, i.e., the state prior to e. This
implies that v:11 < e. Therefore,

w:b<v:ll<e .

Let ¢’ be the state prior to v: 11. Because lasi(Q[k, n]) = w at state u (i.e., the state following
¢), the above precedence assertion implies that last(Q[k, n]) = w at state ¢'. Therefore, by

Lemma 1,
' | Qlk,n].flag[j] = w!flag[j] A Q[k,n].seqlj] = wiseq[j] . (18)

Because u k= last(Qlk,j]) = v A last(Q[k,n]) = w, by Lemma 1, u = Q[k,n]. flag[j]
= wiflag[jl N Q[k,nl.seqlj] = wiseqlj] A Qlk, jl.seqlj] = vlseq[j]. Therefore, by
(17), w!flag[j] is true and wiseq[j] = vlseq[j]. Hence, by (18), ' k= Qlk,n].flag[j] A
Q[k, n].seq[j] = vlseq[j].

By the program for the Writer, ¢ k= @ = wvlz. Therefore, vlzlk, n].flaglil A
vlz[k, n].seq[j] = viseq[s]. By the program for the Writer, this implies that vlmaich[1]
is true. By (16) and Lemma 1, ¢ | @[k, j].match[l] = vimatch[1]. Hence, Q[k, jl.match[1]
is true at state . By the definition of SA, this implies that ¢ & —SA(Q, %,). But, this
implies that salive(v, k) is false at state ¢, which is a contradiction. Therefore, our assump-

tion that w:5 < v:11 is false, i.e., v:11 < w:5.]

The following lemma shows that the value of the “preferable” tag does not decrease from
state to state.

Lemma 10: Let { and u be consecutive states such that ¢ [spref(v, k) and v =
spref(w, k). Then, (vitag, v'i) < (wltag, w'd).

Proof: Let #, u, v, and w be as defined in the lemma. If u = salive(v, k), then because

23

u k= spref(w, k), we have (vltag, v1i) < (wltag, wld). Thus, in this case, our proof obligation
is satisfied. In the remainder of the proof, assume that u | —salive(v, k).

Let e be the event prior to state u, i.e., t->u. Because ¢ |= spref(v, k), by the definition
of spref, t k= salive(v, k). Therefore, by Lemma 9, there exists a k-Write operation w’
such that v:11 < w':5 and u k= after(w’:13).

Let S be the set of k-Write operations defined as follows: p € S iff p is a k-Write operation
and u k= after(p:13). Observe that v’ is in 5. Let w” denote the Write operation in §
such that for each other Write operation pin S, p:5 < w”:5. Then, by Lemma 5,

v = salive(w” k) . (19)

Because w' is in S, w':5 < w”:5. By the program for the Writer, »:10 < »:11 and
w”:5 < w":13. Because w” is in S, afier(w’”:13) holds at u; hence, w':13 < e. Therefore,

v:10< vl <w b L w:b<w:13<e . (20)

Let ' be the state prior to w”:6. We now show that ¥ = wdalive(v, k). Because
t k= salive(v, k), by Lemma 2, t = walive(v, k). Therefore, by Lemma 7, walive(v, k) is
true for all states between v:10 and e. Thus, by (20), walive(v, k) is true at state ¢'.

We now show that witag > vitag. Assume that v is a (k, j)-Write operation. Because
t' & walive(v, k), by the definition of walive, ¥ = last(Q[k,j) = v A WA(Q,k, 7).
By (20) and the definition of state ¢/, we have ¢ k&= after(v:10). Therefore, because
' E lasi(Qlk,j]) = v A after(v:10), by Lemma 1, ¢ | @[k, j].tag = vltag. This
establishes the following assertion.

¢ = Qlk,jltag = vitag A WA(Q,E, j)

Because WA(Q, k, j) holds at ¢/, by the program for the Writer, ¢ = w'lag > Qlk, j].tag.
Therefore, w'ltag > vltag. Because u k= spref(w, k), by (19) and the definition of spref,
wltag > w”ltag. Hence, wltag > vltag. This implies that (vltag, vl) < (whag, wh), which
establishes our proof obligation. O

According to the next lemma, if a completed Write operation is not “preferable” at some
state, then it is forever after not “preferable.”

Lemma 11: —spref(w, k) A after(w:13) is stable.

Proof: Let { and u be consecutive states such that ¢ = —spref(w, k) A after{w:13). By
the definition of after, u = after(w:13). This reduces our prool obligation to showing
u k= —spref(w, k).

If salive(w, k) is false at u, then by the definition of spref, spref(w, k) is also false at
u, which establishes our proof obligation. So, in the remainder of the proof, assume that

salive(w, k) holds at u. By Lemma 8, this implies that salive(w, k) holds at ¢ as well.

24

Because after(w:13) holds at both states ¢ and u, by Lemma 6 and the definition of spref,
there exist k-Write operations v and v’ such that ¢ |= spref(v, k) andu |= spref(v’, k). Be-
causet |= salive(w, k) A ~spref(w, k), by the definition of spref, (wlag, wl) < (vltag, v!i).
Because ¢ and u are consecutive states, by Lemma 10, (vitag, vié) < (v'Hag,v'l). There-
fore, by transitivity, (wltag, w!i) < (v'ltag,v'é). Hence, because u = spref(v’, k), by the
definition of spref, u | —spref(w, k). |

According to the next lemma, if Read operation » Reads the value Written by k-Write

operation w, then no other k-Write operation “lies between” w and r.

Lemma 12: Suppose that spref(w, t) holds at the state prior to r:0. Then, for each k-
Write operation w’ that differs from w, w':0 < w:13 or r:0 < w’:13.

Proof: Let r and w be as defined in the lemma. Assume that w is a (k, j)-Write operation.
Let t be the state prior to r:0. Because ¢ |k spref(w, %), by the definition of spref,
t [salive(w,k). By the definition of salive, this implies that ¢ | last(Q[k, j]) =
w A Qlk, jl.we = 2. Therefore, by the program for the Writer, w:13 < r:0. We establish
our proof obligation by assuming, to the contrary, that there exists a (k, n)-Write operation
w’ (that differs from w) such that

w3 < w0 <w:13<r:0 . (21)

Because last(Q[k, j]) = w at state ¢, this precedence assertion implies that j # n.

Let S be the set of k-Write operations defined as follows: p € S iff pis a k-Write operation
and after(p:13) holds at state ¢ (i.e., the state prior to r:0). By (21), w’ isin S. Let v be
the Write operation in S such that for each other Write operation pin S, p:5 < v:5. Then,
by Lemma 5, ¢ = salive(v, k).

Let ¢’ be the state prior to v:6. We now show that walive(w, k) holds at state ¢’.
Because w' is in S, w’:5 < v:5. Hence, by (21), w:13 < v:5. By the program for the
Writer, v:5 < v:13. Because v isin 8, v:13 < v:0. Therefore, w:13 < v:5 < v:13 < r:0.
Because salive(w, k) holds at state ¢, by Lemma 8, this precedence assertion implies that
salive(w, k) holds at state ¢'. Hence, by Lemma 2, walive(w, k) also holds at state ¢’.

We now show that vltag > wltag. Because ' = walive(w, k), by the definition of
walive, ! |= last(Q[k, j]) = w A WA(Q, k, j). Because w:13 < v:5, by the definition of
state t', we have ¢ = after(w:10). Because ' = last(Q[k,j]) = w A after(w:10), by
Lemma 1, t = Q[k, jl.tag = wltag. This establishes the following assertion.

i = Qlk, jltag = witag A WA(Q, %,)

Because WA(Q, k, j) holds at ', by the program for the Writer, ¢/ k& wltag > Q[k, j].tag.
Therefore, vltag > whiag.

Becauset |= salive(v, k) and vltag > wliag, by the definition of spref, t | —spref(w, k).
But, by the statement of the lemma, ¢ = spref(w, k). Therefore, we have a contradiction.
Hence, our assumption that there exists w’ such that w:13 < w’:0 < w’:13 < 7:0 is false.
This establishes our proof obligation. O

The following lemma is a strengthening of the Integrity condition.

Lemma 13: Let r be a Read operation. Then, there exists a (k, j)-Write operation w such
that (i) ¢x(r) = ¢r(w) = wleid, (ii) rlvallk] = wlval, (iii) last(Q[k, j]) = w A Q[k, jl.eid =
wleid holds at the state prior to 7:0, and (iv) w:13 < r:0 and spref(w, k) holds at each
state between w:13 and 7:0.

Proof: Let r be a Read operation and let ¢ be the state prior to the event r:0. By the
definition of ¢z, ¢p(r) = rlid[k]. Let j = rlmax[k]. (As explained on page 18, Lemma 6
implies that r!maz[k] is well-defined.) By the program for the Reader, ¢t | Q[k, jl.eid =
rlid[k] A Qlk, jl.val = rlvallk]. Hence, by transitivity,

t &= Qlk, jleid = ¢p(r) A Qlk, jlval = rlvallk] . (22)
Also, because j = rlmazlk], by the program for the Reader,

t | SAQ k5) A (Yn:SA(Q k,n) : (Qlk, nliag,n) < (Q[k, jllag, 5)) - (23)

We now show that the value of Q[k, j] at state 1 differs from its initial value. By
our assumption concerning the initial Writes, there exists a k-Write operation p such that
after(p:13) holds at ¢. By Lemma 6, this implies that there exists a (&, j')-Write operation
¢’ such that ¢ f= salive(p/,k). It can be shown that each tag field in the construction
is always nonnegative. Thus, p'Hag = p'lylk,{].tag + 1 > 0, where { = p’lmaz. Because
t k= salive(p', k), we have t = lasi(Qk,j']) = p' A SA(Q,k, ;). By the definition of
SA, this implies that t &= last(Q[k,j']) = p' A Qlk, j].we = 2. Hence, by the program
for the Writer, ¢ & last(Qk,71) = ¢ A after(p/:13). By Lemma 1, this implies that
t k= Qlk,j'l.tag = p'ltag. Therefore, t = SA(Q,k,5) A Qlk,j].tag > 0. Hence, by (23),
t &= Qlk,jltag > Qlk, j'].tag > 0. Thus, the value of Q[k, j].tag at state ¢ differs from its
initial value.

Let w be the k-Write operation such that ¢ | last(Q[k, j1) = w. {w exists because the
value of Q[k, j] at state ¢ differs from its initial value.) By (23),¢ | SA(Q,k, j). Therefore,
by the definition of SA, ¢ = Qlk, jl.we = 2. From the program for the Writer, this implies
that ¢ k= after(w:13). Therefore, by Lemma 1,

t B last(Qlk,j) =w A afler(w:13) A Qlk, jleid = wleid A
Qlk, jlval = wival A Qlk, jtag = wltag . (24)

Observe that (24) establishes (iii).

26

We now show that ¢ |= spref(w, k). By (23) and (24), we have t = lasi(Qk, j]) =
w A SA(Q,k, j). Therefore, by the definition of salive, ¢ = salive(w, k). By the definition
of spref, we are thus obligated to show that if ¢ = salive(v, k), where v is a (k, n/)-Write
operation, then (vltag,n’) < (wltag, j). So, assume that v is a (k, n')-Write operation and
that ¢ = salive(v, k). By (24),

t | Qlk, jllag = wltag . (25)

Because t |= salive(v, k), by the definition of salive, t = last(Q[k,n']) = v A SA(Q, k, n').
By the definition of SA, this implies that ¢ = last(Q[k,n']) = v A Qk, n'l.we = 2. Hence,
by the program for the Writer, ¢t = last(Qk,n']) = v A after(v:13). Thus, by Lemma
1, t | Qlk n'liag = vliag. Therefore, we have t | SA(Q,k,n') A Qlk,n')tag =
vltag. Consequently, by (23) and (25), (vltag,n’) < (wltag, j). This establishes that ¢ k=
spref{w, k).

By (24), after(w:13) holds at state ¢ (i.e., the state prior to r:0). Therefore, w:13 <
r:0. Since spref(w, k) holds at state ¢, by Lemma 11, spref(w, k) holds at each state be-
tween w:13 and r:0. This establishes condition (iv). In particular, spref(w, k) holds at
the state following w:13. Therefore, by the definition of ¢x, ¢p(w) = wleid. By (24),
t = Qlk jleid = wleid A Q[k, jlval = wlval. Hence, by (22), ¢p(r) = ér(w) and
rlval[k] = wlval. This establishes conditions (i) and (ii). o

We now use the preceding lemimas to establish the conditions of Uniqueness, Integrity,
Proximity, Read Precedence, and Write Precedence.

Proof of Uniqueness: Uniqueness is satisfied since the shared auxiliary variable P[k]
is atomically incremented whenever a k-Write operation assigns its value to either private
variable bid or eid. |

Proof of Integrity: Integrity follows from conditions (i) and (ii) of Lemma 13. o
Proof of Proximity: Let » be a Read operation and let w be a k-Write operation. We
prove that Proximity is satisfied by proving the stronger result 7:0 < w:0 = ¢p(r) < ¢p(w)
and w:13 < 7r:0 = ¢p(w) < dp(r).

Let ¢ denote the state prior to the event r:0, let u denote the state prior to the event
w:0, and let ¥ denote the state prior to the event w:13.

Case 1: 7:0 < w:0. By the definition of ¢, either u = ¢p(w) = Plklor v/ | ¢p(w) =
Plk]. Because r:0 < w:0, state ¢ occurs before both states u and «’. Notice that a Write
operation only changes the value of P[k] by atomically incrementing it; thus, the value of P[k]
at either state u or v’ is at least the value of P[k] at state ¢. Therefore, t = Plk] < ¢p(w).

By conditions (i) and (iii) of Lemma 13, there exists j such that t &= Q[k, jl.eid = ¢i(r).

27

Because Plk] is incremented atomically when a Write operation assigns its value to either
of its private variables bid or eid, ¢+ k& Qlk, jl.eid < P[k]. Therefore, by transitivity,

Case 2: w:13 < r:0. By condition (i) of Lemma 13, there exists a k-Write operation v such
that ¢ (r) = ¢p(v) = vleid. Moreover, condition (iv) of Lemma 13 implies that v:13 < »:0
and spref(v, k) holds at each state between v:13 and »:0.

We now meet our proof obligation by showing that ¢p(w) < ¢p(v). If v = w, then
the result trivially holds, so assume that v # w. Then, by Lemma 12, w:0 < v:13.
If w:13 < v:13, then wlbid < wvleid and wleid < wvleid; thus, by the definition of ¢y,
¢r(w) < ¢r(v). Now consider the other case, i.e., w:0 < v:13 < w:13 < r:0. In this
case, vli # w!i. Thus, because spref(v, k) holds for all states between v:13 and r:0, by the
definition of spref, spref(w, k) is false at the state following w:13. Hence, ¢r(w) = wibid.
Because w:0 < v:13, wlbid < vleid. Therefore, ¢p{w) < ¢p{v). O

Proof of Read Precedence: Let r and s be two Read operations. We prove that Read
Precedence holds by proving r:0 < 5:0 = (Vk 11 ¢p(r) < ¢r(s)).

Assume that 7:0 < 5:0. By conditions (i) and (iv) of Lemma 13, there exists a k-Write
operation w such that ¢p(w) = ¢r{r) and w:13 < r:0. Hence, by transitivity, w:13 < s:0.
By the proof of Proximity, this implies that ¢3(w) < ¢1(s). Therefore, ¢p(r) < ¢(s). O

Proof of Write Precedence: Let r be a Read operation, let v be a j-Write operation,
and let w be a k-Write operation. Assume that v precedes w and ¢x(w) < ¢(r). Our proof
obligation is to show that ¢;(v) < ¢;(r).

In the proof of Proximity, we showed that 7:0 < w:0 = ¢5(r) < ¢r(w). By the
contrapositive of this expression and by our assumption that ¢p(w) < ¢i(r), we conclude
that w:0 < r:0. Because v precedes w, v:13 < w:0. Thus, by transitivity, v:13 < r:0. By
the proof of Proximity, this implies that ¢;(v) < ¢;(r). O

4 Concluding Remarks

Our results show that we can allow an atomic operation of a concurrent program to either
write a single shared variable or read several shared variables (but not both) and the resulting
program can be implemented from atomic registers. By contrast, if we allow an atomic
operation of a program to either write several shared variables, or to both read and write
shared variables, then, in general, such a program cannot be implemented from atomic
registers. This result has been proved both by Herlihy [6] and by Anderson and Gouda [3].

The problem of constructing a K/L/M/N composite register has been solved indepen-
dently by Afek et al. [1, 10]. Our K/L/M/N construction differs from that of Afek et al.
because it does not use any multiple-writer atomic registers. In particular, the K/L/M/N

28

construction presented in this paper is based upon the K/L/1/N construction presented in
[2], and this latter construction uses only single-writer atomic registers. It follows, then,
that our construction can be used to implement a multiple-writer atomic register (the case
in which there is only one component) from single-writer atomic registers.

Acknowledgements: I would like to thank Anish Arora, Ken Calvert, Mohamed Gouda, and

Jacob Kornerup for their comments on an earlier draft of this paper.

Appendix: Bounding the Tags

In this appendix, we show that is possible to bound the size of the tag fields. As seen in
Figure 5, a Write operation compares the fag fields of two different elements of @ only if
both elements are weakly alive. Also, as seen in Figure 4, a Read operation compares the
tag fields of two different elements of ¢ only if both elements are strongly alive. From the
definition of SA, if an element of @ is strongly alive, then it is also weakly alive. Therefore,
it suffices to prove that the fag fields of the weakly alive elements of a particular component
are within some bounded range.

The basic insight is really rather simple. In particular, consider a (k, j)-Write operation
w. Note that the maximum tag for the weakly alive elements of component k can increase by
a “large” amount between w’s second read and second write of @ {i.e., while w is computing
its tag) only if a “large” number of k-Write operations occur in this interval. But, in this
case, the primary sequence number for w will be read by at least three successive operations
of some Writer, and @[k, j] will not be weakly alive after w’s second write to Q. So, if Q[k, j]
is weakly alive after w’s second write to @, then the value of its tag field will differ from
that of some other weakly alive element by only a “small” amount.

In the rest of this appendix, we show that the tags for the weakly alive elements of a
given component are within a range of sizve 43/ — 1. More specifically, we prove that the
following expression holds.

(WAQ,k,§) A WAQ,k,3)) = (Qk,iltag — Qlk, jltag] < 4M —2)

Therefore, if the smallest tay field among the weakly alive elements for some component is
b, then the tag fields for these elements lie within the range b, ... b+ 4M — 2. This implies
that we can restrict the size of each tayg field to range over 0.8 — 4.

We first prove a lemma that is similar to Lemma 9. This lemma gives the conditions
under which walive(v, &) may be falsified.

Lemma 14: Suppose that ¢ and u are consecutive states such that ¢ = walive{v,) and

u = —walive(v, k). Then, there exists a k-Write operation w such that v:6 < w:5 and

w = after(w:13).

29

Proof: Let {, u, and v be as defined in the lemma. Assume the v is a (k, j)-Write op-
eration. Let e be the event prior to state u, i.e., i-—u. We first dispose of the case in
which u = last(Q[k, j]) # v. Because ¢ | walive(v,k), by the definition of walive,
t = last(Qlk,j]) = v. Because ¢ and u are consecutive states and last(Q[k, 5]) = v holds
at ¢ but not u, event e equals v':5, where v' = succ(suecc(v)). Let w be the k-Write opera-
tion such that w = succ(v) and v’ = succ(w). Because w = suce(v), we have v:6 < w:5.
Because v’ = succ(w) and e equals v':5, we have u = after(w:13). This satisfies our proof
obligation.

In the remainder of the proof, assume that v [last(Qlk, j]) = v. We first show that
v | Qk, jlwe>1 A =Q[k, jl.match[0]. Because t | walive(v, k), by the definition
of walive, t = last(Q[k,j]) = v A Q[k, jlwe > 1. By the program for the Writer, this
implies that

t = last(Qk, 1) =v A after(v:10) . (26)

Hence, by Lemma 1, ¢ = Qlk, jlmatch[0] = vlmatch[0]. Because t | walive(v, k), by
the definition of walive and WA, t = —Q[k, j].match[0]. Therefore, vimatch[0] is false.

By assumption, u | last(Q[k, j]) = v. Therefore, because ¢ and u are consecutive
states, by (26) and the definition of after, u k= last(Q[k,j]) = v A after(v:10). Hence,
by Lemma 1, u = Q[k,jlwe > 1 A Q[k, jl.match[0] = vlmatch[0]. Therefore, because
vimatch[0] is false, u = Q[k, jlwe>1 A =Q[k, jl.match[0].

To recapitulate, we have u |= last(Q[k,]) = v A Q[k, jlwe>1 A =Qlk, j].match[0].
Because walive(v, k) does not hold at u, this implies that there exists n, where n # 7, such
that the following expression holds.

u = Qk,nlwe=2 A Qlk,n].flag[j] A Qlk,n].seqj] = Qlk, j].5eq]J] (27)

Let w be the Write operation such that u [last(Q[k,n]) = w. (w exists because
Qlk, n].flag[j] is initially false.) Then, because v | Q[k,n].we = 2, by the program
for the Writer, v |= after(w:13). This establishes one of our proof obligations.

We now establish our other proof obligation, i.e., v:6 < w:5. Assume, to the contrary,
that w:5 < v:6. By (26), v:10 < e. This implies that v:6 < e. Therefore,

w:hb~<v:b<e .

Let ¢ be the state prior to v:6. Because last(Q[k, n]) = w at state u (i.e., the state following
e), the above precedence assertion implies that lasi(Q[k, n]) = w at state t. Therefore, by
Lemma 1,

¢ = Qlk,n].flaglj] = wiflag[j] A Qlk,n].seqlj] = wiseq[s] . (28)

Because u = last(Q[k, j]) = v A last(Q[k,n]) = w, by Lemma 1, u & Qlk, n].flag[j]
= wiflagljl A Qlk,n]seqli] = wiseqlj] A Qlk, jl.seq[j] = vlseq[j]. Therefore, by
(27), wiflag[j] is true and w!seq[j] = vlseq[j]. Hence, by (28), ¢ k& Qlk,n].flag[s] A
Qlk, n].seqlj] = viseq[s].

30

By the program for the Writer, Y | @ = oly. Therefore, vly[k,n].flag[j] A
vlylk, n].seq[j] = viseq[j]. By the program for the Writer, this implies that v!match[0]
is true. By (26) and Lemma 1, ¢ |= Qlk, j].match[0] = vimaich[0]. Hence, Q[k, j].match[0]
is true at state {. However, by the definition of walive and WA, t = walive(v, k) implies
that ¢ = —Q[k, j].match[0]. Hence, we have a contradiction. Therefore, our assumption
that w:5 < v:6 is false, i.e., v:6 < w:5.]

Definition: We define the function maztag(k) as follows:

maztag(k) = MAXocj<on{Qk, jltag | WA(Q, %, j)} O

As explained on page 18, Lemma 6 implies that at every state there exists some j such
that WA(Q, k, j) holds. This implies that the function maztag(k) is well-defined at every
state. The following three lemmas give us a means for determining the value of maztag(k)
at & particular state.

Lemma 15: Let ¢ be the state prior to v:6. Then, vltag = maztag(k) + 1 at state t.

Proof: Let ¢ and v be as defined in the lemma and let j = v!maz. (As explained on page
18, Lemma 6 implies that v!maz is well-defined.) Then, by the program for the Writer,

t | WA@Q K j) A (Yn: WA(Q, k,n) : (Q[k, n].tag,n) < (Qlk, j]tag, j)) .

Then, by the definition of maztag(k), ¢ = maztag(k) = Q[k, jl.tag. By the program for
the Writer, ¢ | vltag = Q[k, jl.tag+ 1. Therefore, ¢ | vliag = maztag(k) + 1.]

Lemma 16: walive(v, k) = maztag(k) > viag.

Proof: Let v be a (&, j)-Write operation, and assume that walive(v, k) holds at some state
. By the definition of walive, t = last(Q[k,j]) = v A WA(Q,k,j). By the definition
of WA, this implies that ¢ = Q[k, jl.we > 1. Therefore, by the program for the Writer,
t = after(v:10). Hence, by Lemma 1, ¢ | Q[k,j].tag = v'iag. By the definition of
maztay, this implies that ¢ &= maztag(k) > vltay. O

Lemma 17: wpref(v, k) = maztag(k) = vliag.

Proof: Let v be a (%, j)-Write operation, and assume that wpref(v, k) holds at some state
t. Then, by the definition of wpref,

t B walive(v, k) A (Yw : walive(w, k) : (witag, wli) < (viag, 7)) .

By the definition of walive, this implies that ¢ = WA(Q,k,7) A last(Q[k,j]) = .
Therefore, by the definition of WA, ¢ = Q[k, j].we > 1. From the program for the Writer,

31

this implies that ¢ = after(v:10). Hence, by Lemma 1, ¢ = Q[k, jl.tag = vliag. This
establishes the following assertion.

t = WAQ,k,j) A Qlk, jliag=vltag A (Yw : walive(w, k) : witag < Q[k, jl.tag) (29)

Suppose that ¢ = WA(Q, k, n) holds for some n. To prove that ¢ = maziag(k) = vitag,
by (29) and the definition of mawztay, it suffices to prove that ¢ = @[k, n].tag < Q[k, jl.tag.

If there exists some w such that ¢ |= lasi(Q[k,n]) = w, then wehavet |= last(Q[k,n]) =
w A WA(Q, %k, n). By the definition of WA and walive, this implies that ¢ = last(Q[k, n]) =
w A Qlk,nlwe > 1 A walive(w, k). By the program for the Writer, this implies that
t B last(Qlk,n]) = w A after(w:10) A walive(w, k). Hence, by Lemma 1, t k
Qlk,n]lag = witag A walive(w, k). Therefore, by (29), ¢ | Q[k,n].tag < Q[k, j]-tag.

If no such w exists, then the value of Q[k, n].tayg at state ¢ equals its initial value. There-
fore, by the definition of the initial state, ¢ &= Q[k, n].tag = 0. Because each fag field is
always nonnegative, this implies that ¢ & @[k, n].tag < Q[k, 7].tag. |

Lemmas 18 and 19 together give us means for determining how much the value of
maztag(k) can increase over an interval of states.

Lemma 18: Let { and v be consecutive states and let ¢ be the event prior to u. Let b be
the value of maztag(k) at state {. Then, maziag(k) equals either b or b+ 1 at state u, and,
in the latter case, event ¢ is of the form w:10 for some k-Write operation w.

Proof: At suffices to prove that the lemma holds for two consecutive states ¢ and u, given
the assumption that the lemma holds for the prefix of the given history ending with state
t. Let e be the event prior to state u, and let b be the value of maztag(k) at state 1. Our
proof obligation is to show that maztag(k) equals either b or b + 1 at state u, and, in the
latter case, event e is of the form w: 10 for some k-Write operation w.

Let p be the initial k-Write operation. We consider two cases, depending on whether

t = afier(p:13).

Case 1: t = —after(p:13). We establish our proof obligation by showing that maziag(k) =
0 at each state prior to p:10, and that maztag(k) = 1 at each state in the interval between
p:10 and p:13 and at the state following p:13.

Assume that p is a (k, j)-Write operation. By the definition of the initial state and our
assumption concerning the initial Writes, (Vj’' :: Q[k, j/].tag = 0) holds at each state prior
to p:10. Thus, mazitag(k) = 0 at each state in this interval.

By the definition of the initial state and our assumption concerning the initial Writes,
the following assertion holds at each state between p:10 and p:13 and at the state following
p:13.

Qlk,jltag =1 A Q[k, jlwe>1 A =Qlk, jl.match[0] A

32

(Vi': 5" #7:Qlk, 5'ltag =0 A =QIk, j']. flag[j])

By the definition of WA, this implies that the following assertion holds.
WAQ,k,5) A Qlk,fltag=1 A (Vj': 5 # j: Qlk, §ltag = 0)

Therefore, by the definition of maxtag(k), maziag(k) = 1 at each state between p:10 and
p:13 and at the state following p:13.

Case 2: ¢ [after(p:13). In this case, by Lemma 6, there exists a k-Write operation ¢
such that ¢ |= salive(q, k). Hence, by Lemma 2, ¢ = walive(g, k). Thus, by the definition
of wpref, there exists a k-Write operation v such that { = wpref(v, k). Similar reasoning
shows that there exists a k-Write operation w such that u = wpref(w, k). By Lemma 17,

(t & maztag(k) = vliag) A (v | maziag(k) = wHag) . (30)

We establish our proof obligation by showing that wliag equals either vitag or vitag + 1,
and in the latter case e = w:10.

Assume that w is a (k, n)-Write operation. Because u = wpref(w, k), by the definition
of wpref, v |= walive(w, k). Thus, by the definition of walive and WA, u = last(Q[k,n]) =
w A Q[k,n].we > 1. By the program for the Writer, this implies that u = affer(w:10).
This establishes the following assertion.

v | walive(w, k) A afier(w:10) . {31}

We now show that if wltag = v/tag+1, then e = w:10. In this case, because wpref(v, k)
holds at {, walive(w, k) does not hold at . By (31), walive(w,k) A after(w:10) holds
at u. Because { and u are consecutive states such that ¢ = —walive(w,k) and u |
walive(w, k) A after(w:10), by Lemma 7, ¢ | -afler(w:10). Therefore, because
after(w:10) is false at ¢ but true at u, u is reached from ¢ via the occurrence of the event
w:10.

We now consider our other proof obligation, i.e., vltag < whag < vliag+ 1. Let ' be
the state prior to the event w:6. By Lemma 15, v/ = wlag = maztag(k) + 1. Because
t and u are consecutive states, from (31) we conclude that v’ occurs before . Therefore,
becanse the lemma holds for the prefix of the given history ending with state £, the value of
maxtag(k) at state ¢ is at least its value at state u’. Therefore, ¢ = wlag < maztag(k)+1.
Consequently, by (30), wlag < vHag + 1.

Our remaining proof obligation is to show that vliag < wlteg. We first dispose of the
case in which u = walive(v, k). In this case, because u = wpref(w, k), by the definition
of wpref, wlag > vlag.

In the remainder of the proof, we consider the case in which v [—walive(v,k).
Because t |= wpref(v, k), we have { | walive(v, k). Therefore, by Lemma 14, there
exists a k-Write operation w’ such that v:6 < w’:5 and u = afler(w’:13). Let S denote

33

the set of k-Write operations defined as follows: ¢ € S iff ¢ is a k-Write operation and
u = afler(q:13). Observe that w' is in S. Let w” denote the Write operation in S such
that for each other Write operation ¢ in S, ¢:5 < w”:5. Then, w':5 < w’:5. Furthermore,
because after(w”:13) holds at u, i.e., the state following event e, w”:13 < e. Thus,

vib<w:b<w:b<wl3<e . (32)

By Lemma 5, u k= salive(w”, k). By Lemma 2, this implies that v |= walive(w”, k).
Therefore, by Lemma 16, u = maztag(k) > w”ltag. By (30), this implies that

w'ltag < wlag . {33)
Let ¢’ be the state prior to v:6 and let t be the state prior to w”:6. Then, by Lemma 15,
(' B vlag=maziag(k)+1) A (" |E w'lag = maztag(k) +1) . (34)

Notice that {32) implies that ¢ occurs between ?' and t. Therefore, because the lemma
holds for the prefix of the given history ending with state 1, the value of maxtag(k) at state
t' is at least its value at state #'. Hence, by (34), vlteg < w'ltag. Consequently, by (33),
vliag < wliag. O

Lemma 19: Suppose that state t occurs before state u and that @[k, j1.seq[4] has the same
value at each state in the closed interval [¢,u]. Let b be the value of maxtag(k) at state u.
Ifu = WA(Q,k, 7), thent &= maxtag(k) > b—4M + 2.

Proof: Let 1, u, and b be as defined in the statement of the lemma, and suppose that
Qlk, j]-seq[j] has the same value at every state in the closed interval [¢,u]. Assume that
u | WAQ,E, j).

Let D denote the number of events between ¢ and w of the form v:10, where v is a
k-Write operation. Then, by Lemma 18, ¢ k= mawztag(k) > b — D. Therefore, to establish
our proof obligation, it suffices to show that D < 4M — 2.

Let 7 = j@ M. By the program for the Writer, if v is a (k, j)-Write operation, then the
value of @[k, jl.seq[s] at the state prior to v:5 differs from its value at the state following
v:5. Therefore, because Qlk, j].seq[j] has the same value at every state in [¢,u], there are
no events between ¢ and u of the form v:5, where v is a (%, j)-Write operation. Because
successive operations of the same Writer write to different elements of 7, this implies that
between t and u there is at most one event v:10, where v is a (k, j)-Whrite operation, and
at most one such event, where v is a (&, 7/)-Write operation.

Letn#j A n#j, and let v = n & M. In the remainder of the proof, we use v to
denote an arbitrary {(k, n)- or (k, n")-Write operation. We show that there are at most four
events of the form v:10 between ¢ and u. Assume, to the contrary, that there are at least

five such events between ¢ and u. Then, there exists an event of the form v:4 between ¢

34

and u. Let vq:4 be the last such event between ¢ and u. Let va = pred(vs), vs = pred(vs),
vy = pred(vz), and vg = pred(vq). Let e be the event following state #, and let f be the
event prior to state . Then, because there are at least five events of the form v: 10 between
t and u, the following precedence assertion holds.

e<v1:0<v1:13<v2:0<v9:183 < v3:0<v3:13< f (35)

Without loss of generality, assume that vz is a (k, n)-Write operation. Because v4:4 is
the last event between ¢ and u of the form v:4 (and because successive operations of the
same Writer write to different elements of @), (35) implies that v3:13 is the last event to
write to @[k, n] before state u.

Assume that Q[k, j].seq[j] = ¢ at state w. Then, by assumption, Q[k, j].seq[j] = ¢ at
every state in the interval [¢, u]. By (35) and the program for the Writer, this implies that

vilseq[j] = valseq[j] = vslseq[j] = ¢ .

Therefore, v3!flag[j] holds. Hence, because vz:13 is the last event to write to Q[k, n] before
state u, u = Qk,nlwe=2 A Qlk,nl.flag[j] A Q[k,n].seq[j] = q. Therefore,

v = Qlk,nlwe=2 A Qlk,nlflaglj] A Qlk,n].seqlj] = Q[k, j].seq[j] -

Hence, by the definition of WA, v &= —WA(Q, %, j), which is a contradiction.

So, to summarize, there is at most one event between ¢ and u of the form p:10, if p is
a (k, j)-Write operation; at most one such event, if p is a (k, j/)-Write operation; and at
most four such events, if p is either a (k, n)- or (k,n® M)-Write operation, 0 < n < M and
n # j modulo M. Therefore, there are at most 2 + 4(M — 1) such events total between ¢
and u. Hence, D < 4M — 2. This establishes our proof obligation. 0

Proof of Boundedness: We prove that the following expression holds.
(WA(Q,k,9) A WAQ,,9) = (IQIk,i).tag— Qlk, jltag] < 43 — 2)

Let u be a state, and suppose that u = WA(Q,k,i) A WA(Q, %, j), where i # j. Our
proof obligation is to show that u = |Q[k,i].tag — Qlk, j]-tag] < 4M — 2.

Ifu k= Qlkiltag =0 A Q[k,jliag = 0, then our proof obligation is satisfied. So,
without loss of generality, assume that v &= @[k, jl.iag # 0. We have two cases to consider,
depending on whether v = Q[k, ¢]tag = 0.

Case 1: v = Q[k,¢].tag = 0. In this case, it suffices to prove that u &= Q[k, jl.tag < 4A—2.
Let ¢ be the initial state. Note that the value of Q[k, j].iag at state u differs from its
initial value. Thus, w is not the initial state, i.e., £ occurs before u.
We now show that Q[k, {].seq[i] has the same value at every state in the closed interval
[2,u]. If no (k,4)-Write operation exists in the given history, then clearly Q[k, ¢].seq[i] has

35

the same value at every state in [¢, u]. Otherwise, it suffices to prove that the event v:5 does
not occur between ¢ and u, where v is the initial (&, ¢{)-Write operation. By the program
for the Writer, each Write operation assigns a nonzero value to its fag field. Because
u = Q[k,i.tag = 0, this implies that the event v:10 occurs after u. By assumption,
u | WA(Q,k,i). By the definition of WA, this implies that u E Qlk,iwe > 1.
Therefore, because v is the initial (k,7)-Write operation and v:10 occurs after u, by the
program for the Writer, v:5 does not occur between 7 and u.

Let b be the value of maztag(k) at state u. Because u = WA(Q,k,7) and because
Qlk, i].seq[i] has the same value at every state in [t,u], by Lemma 19, ¢ = maztag(k) >
b — 4M + 2. By the definition of the initial state ¢ = maztag(k) = 0. Therefore,
b < 4M — 2. Because v k= WA(Q,k,j), we have u = Q[k,jl.tag < b. Therefore,
u k= Qlk,jliag < 4M —2.

Case 2: u = Q[k,i].tag # 0. In this case, the value of Q[k, i].tag at state u differs from its
initial value. Therefore, there exists a (k, i)-Write operation v such that u |= last(Q[k,d]) =

v. Similarly, because u = Q[k, jl.tag # 0, there exists a (k, j)-Write operation w such that
u k last(Qlk, j]) = w.

Because u k= WA(Q,k,i), we have u | Qlk,iJ.wec > 1. Therefore, because u =
last(Q[k,4]) = v, by the program for the Writer, u |[= after(v:10). Similarly, because
u = WAQ,k,j) A lasi(Q[k, j]) = w, we have u |= after(w:10). This establishes the

following assertion.
u = last(Qk,i]) = v A after(v:10) A last(Q[k, j]) =w A after(w:10) (36)

From (36) and Lemma 1, u | Q[k,].tag = vitag A Q[k, j].tag = w'tag. Therefore, we
can establish our proof obligation by showing that |vitag — witag| < 4M — 2.

Without loss of generality, assume that v:6 < w:6. Let e be the event prior to state u.
By the program for the Writer, w:6 < w:10. By (36), after(w:10) holds at state u; hence,
w:10 < e. Therefore, we have the following precedence assertion.

vib<wib<w:10<e (37)

Let i be the state prior to v: 6, and let ¢ be the state prior to w:6. Because last{Q[k,i]) =
v at state u (i.e., the state following event ¢), (37) implies that last(Q[k,d]) = v at each
state in the closed interval [t,u]. Therefore, by Lemma 1, Q[k, i].seq[¢] has the same value
at every state in [t, u]. Let b be the value of maziag(k) at state 1, and let ¢ be the value of
maztag(k) at state u. Then, by Lemma 19, b > ¢—4M +2. Let b’ be the value of maztag(k)
at state t'. By (37), ¢’ occurs between ¢ and u. Therefore, by Lemma 18, b < b’ < ¢. This
implies that b < b’ < b+4M —2. By Lemma 15, vltag = b+1, and wltag = b'+1. Therefore,
vitag < witay < vlag -+ 40 — 2. O

References

[11 Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic snapshots,
Proceedings of the Ninth Annual Symposium on Principles of Distributed Compuiing,
1990, to appear.

[2] J. Anderson, Composite registers, Technical Report TR.89.25, Department of Com-
puter Sciences, University of Texas at Austin, 1989,

[3] J. Anderson and M. Gouda, The virtue of patience: concurrent programming with and
without waiting, unpublished manuscript.

[4] B. Bloom, Constructing two-writer atomic registers, IJEEE Transactions on Computers,
vol. 37, no. 12, December 1988, pp. 1506-1514. Also appeared in Proceedings of the Sixth
Annual Symposium on Principles of Distribuied Compuiing, 1987, pp. 249-259.

[5] J. Burns and G. Peterson, Constructing multi-reader atomic values from non-atomic
values, Proceedings of the Sizth Annual Symposium on Principles of Distributed Com-
puting, 1987, pp. 222-231.

[6] M. Herlihy, Wait-free implementation of concurrent objects, Proceedings of the Seventh
Annual Symposium on Principles of Distributed Computing, 1988.

[7] M. Herlihy and J. Wing, Axioms for concurrent objects, Proceedings of the 4th Annual
ACM Symposium on Principles of Programming Languages, 1987.

[8] A. Tsraeli and M. Li, Bounded time-stamps, Proceedings of the 28ih IEEE Symposium
on Foundations of Computer Science, pp. 371-382, 1987.

[8] L. Lamport, On interprocess communication, parts [and I, Distributed Computing,
vol. 1, pp. 77-101, 1986.

[10] M. Merritt, private communication, 1990.

[11] R. Newman-Wolle, A protocol for wait-free, atomic, multi-reader shared variables, Pro-
ceedings of the Sizth Annual Symposium on Principles of Disiribuled Computing, 1987,
pp- 232-248.

[12] G. Peterson, Concurrent reading while writing, ACM Transaclions on Programming
Languages and Systems, vol. 5, pp. 46-55, 1983.

[13] G. Peterson and J. Burns, Concurrent reading while writing 11: the multi-writer case,
Proceedings of the 281h Annual Symposium on Foundations of Computer Science, 1987,

[14] A. Singh, J. Anderson, and M. Gouda, The elusive atomic register, revisited, Proceed-
ings of the Swwth Annual Symposium on Principles of Distributed Computing, 1987, pp.
206-221.

37

[15] P. Vitanyi and B. Awerbuch, Atomic shared register access by asynchronous hardware,
Proceedings of the 27h Annual Symposium on Foundations of Computer Science, 1986.

38

